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Relaxation of nonspherical sessile drops towards equilibrium
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We present a theoretical study related to a recent experiment on the coalescence of sessile drops. The study
deals with the kinetics of relaxation towards equilibrium, under the action of surface tension, of a spheroidal
drop on a flat surface. For such a nonspherical drop under partial wetting conditions, the dynamic contact angle
varies along the contact line. We propose a new nonlocal approach to the wetting dynamics, where the contact
line velocity depends on the geometry of the whole drop. We compare our results to those of the conventional
approach in which the contact line velocity depends only on the local value of the dynamic contact angle. The
influence on drop dynamics of the pinning of the contact line by surface defects is also discussed.
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I. INTRODUCTION upon. This situation is partly due to the scarceness of the
information that can be extracted from the experiments. Most
At first glance, the motion of the gas-liquid interface of them deal with either drops with cylindrical symmetry
along the solid surface is a purely hydrodynamic problem(circular contact lingsor the climbing of the contact line
However, it attracted significant attention from the physicistsover a solid immersed into a liquigtraight contact ling In
since the worK 1], which showed an unphysical divergence these experiments, the contact line veloaitymeasured in
that appears in the hydrodynamic treatment if a motion of dhe normal direction does not vary along the contact line on
wedge-shaped liquid slides along the solid surface. The re@ macroscopic scale larger than the size of the surface de-
son for this divergence lies in the no-slip conditio®., zero  fects. The experiments with nonspherical drops where such a
liquid velocity) at the solid surface. Being so common in variation exists can give additional information. This infor-
hydrodynamics, this boundary condition is questionable irmation can be used to test microscopic models of the contact
the vicinity of the contact line along which the gas-liquid line motion. To our knowledge, there are only two kinds of
interface joins the solid. In the absence of mass transfer beénvestigated situations that feature the nonspherical drops.
tween the gas and the liquid, the no-slip condition requireg'he first one is the sliding of the drop along an inclined
zero velocity for the contact line that is supposed to besurface[13]. The second concerns the relaxation of the
formed of the liquid molecules in the contact with the solid. sessile drops of complicated shape towards the equilibrium
It means that, for example, an oil drop cannot move alonghape of spherical cap. This latter case was studied experi-
the glass because of the no-slip condition. Of course, thignentally in[6] for water drops on silanized silicon wafers at
contradicts the observations. room temperature. The present paper deals with this second
The experimeni2] demonstrated that the velocity on the case.
liquid-gas interface is directed towards the contact line dur- The principal results df6] can be summarized as follows.
ing the contact line advance. The authors interpreted this (i) The relaxation of the drop from the elongated shape
result by the rolling(caterpillaj motion of the drop[3].  towards the spherical shape is exponential. The characteristic
However, later theoretical studi¢] shows that such a motion relaxation timer is proportional to the drop size. The drop
is compatible with the no-slip condition on the nondeform-size can be characterized by the contact line raétisat
able solid surface only for the contact angles close to 180°equilibrium when the drop eventually relaxes towards a
The justification of the no-slip condition is well known spherical cap.
[5]: it is the excess of the attractive force between the solid (ii) The dependence af on the equilibrium contact angle
and the liquid molecules over the force between two liquidé is not monotonousr(30°)< 7(53°) and7(53°)>7(70°).
molecules. This attraction has a tendency to prevent the mo- (iii) The relaxation is extremely slow. The capillary num-
tion of the liquid molecules adjacent to the solid. Obviously,ber Ca= R* »/(7a) is of the order of 107, whereo is the
the same forces resist when these molecules are forced sairface tension ang is the shear viscosity.

move. In other words, some relatively larggith respect to Since the motion is not externally forced, a small Ca
viscous dissipationenergy should be spent for this forcing. shows that the energy dissipated in the vicinity of the contact
Numerous microscopic theorigsee, e.g.[J5—-12]) pro- line is much larger than in the bulk of the drop.

pose different phenomena as to be responsible for the contact The contact line motion is characterized by the normal
line motion. However, no general theory has been agreedomponenv , of its velocity. Many existing theories result in
the following relationship between, and the dynamic con-

tact angleé:
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teristic velocity andF is a function of two arguments, the earlier discussed experimental resui$ the dissipation in
form of which depends on the model used. For all existingthe bulk is assumed to be much smaller than that in the

models, the following relation is satisfied: vicinity of the contact line.
Since we assume that most dissipation takes place in the
F(6,05)=—F(0s,0), (2 region of the drop adjacent to the contact line, our discussion

is limited to the case where the prewetting filthat is ob-

which implies the trivial condition(6s,0s)=0. It means served for zero or very low contact anglés absent. This

simply that the line is immobile whefi= 6. situation corresponds to the conditions of the experirh@ht

The theories of Voinoy11] and Cox[10] correspond to  where the dropwiséas opposed to filmwigecondensation
shows the absence of the prewetting liquid film. The above

F=6°— 63. (3 assumption also limits the description to the partial wetting
case. This assumption is also justified by the experimental
There are many theoridsee, e.g.[5,7]) which result in conditions under which it is extremely difficult to obtain
macroscopic convex drops for the contact angles less than
F =cosf;—cosé. (4)  30° because of the contact line pinnir&]. The main reason

is that the potential energy of the drop from Eq(A6) in
In a recent model by Pomeau and co-workg8s9], it is  Appendix A goes to zero as the contact angle goes to zero. At
proposed that small contact angleb is not large enough to overcome the
pinning forces that originate from the surface defects, see
F=0— 6 (5 Sec. lll. Therefore, the macroscopic convex drops under con-
sideration cannot be observed at small contact angles.
with the coefficientv . that depends on the direction of mo-  Generally speaking, the behavior of the drop obeys the

tion (advancing or recedindyut not on the amplitude af,, . Lagrange equatiofil5]
Since the drop evolution is extremely slow, the drop shape
can be calculated using the quasistatic argument according to d/laoc\ or oT
which at each moment the drop surface can be calculated at T T (7)
o aj aq;

from the constant curvature condition and the known posi-
tion of the contact line. The major problem is how to find

this position. Independently of the particular contact line mo

tion mechanism, at least two approaches are possible. THgalized coordinateg; and of their time derivatives, which
first of them is the “local” approachi6], which consists in areé denoted by a dot. Thf current time is denoted, iy is

the determination of the position of a given point of the tNe Kinetic energy, andJ=U(q)) is the potential energy.
contact line from Eq(1) whered is assumed to be tHecal Since there is no externally forced_llqwd motion in this prob-
value of the dynamic contact angle at this point. Anotherl€m and the drop shape change is slow, we can neglect the

nonlocal approach is suggested in Sec. II. Both of these agdnetic energy by putting®=—U. Then Eq.(7) reduces to
proaches should give the same result whgroes not vary

where the Lagrangiad=K —U is the function of the gen-

along the contact line. However, we show that the result is M JT ®
different in the opposite case. aq; aq;

The influence of surface defects on the contact line dy- .
namics is considered in Sec. llI. the expression applied first to the contact line motiofsh

The potential energy of a sessile drofd 1<}]
Il. NONLOCAL APPROACH TO THE CONTACT LINE
DYNAMICS U=0(AyL—AsCOSOcq), 9

_ In this section we generalize anotht_ar approach, suggestgghere o is the liquid surface tensior,, andA_s are the
in [14], for an arbitrary drop shape. This approach postulategeas of the vapor-liquid and liquid-solid interfaces, respec-
neither Eq.(1) nor a particular line motion mechanism. It tyely and feq is the equilibrium value of the contact angle.
simply assumes that the energy dissipated during the contagie neglect the contribution due to the van der Waals forces
line motion is proportional to its length and does not depent)ocause we consider macroscopic drops and large contact
on the direction of motiortadvancing or recedingThen, at  gngjes=30°. For such drops the van der Waals forces influ-
low contact line velocity, the leading contribution to the en-gnce the interface shape only in the very close vicinity of the
ergy d|35|pated_ per unit tim@.e., the dissipation function  .gntact line and this influence can be neglected.
can be written in the form In general the static contact angle is not equal tofe,
5 because of the presence of the defects, a problem that will be
T= % %dl 6) treated in the Sec. lll. Meanwhile, we assume tl#at
2 7 = 0.q- The gravitational contribution is neglected in E§)
because the drops under consideration are supposed to be
where the integration is performed over the contact line anégmall, with the radius much smaller than the capillary length.
¢ is the constant dissipation coefficient. According to theThe volume of a sessile drop is fixed. Its calculation provides
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zZ there are only two free parameters left. The time-dependent
A parameters andb can be taken as generalized coordinates.
However, it is more convenient to use another set of param-
eters,R, andR,, which are the half axes of the ellipse that
form the base of the drofsee Fig. 1, R,>R,. They are

(b-d) related toa andb by the equations
Ri+d?=b? and R,=Rya, (13
8\ M that follow from Eq.(11). At the end of the relaxation
> Y .
Ou /0O R, R,=R,=Rsin6,=R*, (14)
N whereR is the final radius of curvature of the drop. There-
R fore, during the late stage
X X
Ry=R*(1-r,)
FIG. 1. Reference system to describe the 3D spheroidal cap. (15)
Only one quarter of it is shown. The surface is described by Eq. Ry= R* (1+ ry)

(11). The local contact angles at the poiiMsandN are shown too.

) ] ) . with |r,,[<1. Some points of the contact line advance,
us with another equation, which closes the problem providedome points recede. The dynamic contact angle changes its
that the shape of the drop surface is known. The drop shap@jue along the contact line. In particular, the point
is determined from the condition of the quasiequilibrium thatn (R 0,0) in Fig. 1 advance anii (OR,,0) recede. These
results in the constant curvature of the drop surface. points are extreme and their velocities have the maximum

Usually, the wetting dynamics are observed either for theypsolute values, positive fot and negative foM. The dy-
spreading c_Jf droplets yvlth the shape c_Jf the sphe_rlcal ¢ap, Ghamic contact anglesd;,: dynamic advancing contact angle
for the motion of the liquid meniscus in a cylindrical capil- i, N and 04 : dynamic receding contact angle M) also

lary, or for the extraction of a solid plate from the liqul.  haye the extreme values there. They can be found from the
In all these cases, the contact line veloaitydoes not vary  gquations

along the contact line and the dissipation function in the

form of Eq. (6) results in the expressidi4] cosfy,=d/b,
o ) (16)
v n=E(cos¢95— cosé), (10) tanfga=R}/(dRy),
o . . . _ that reduce for,,ry<1 to
which is equivalent to Eq1), with the functionF taking the
usual form as in Eq(4). One might think that this equiva- cosedrzcoses+sin205(2+coses)(Zry—rx)/3,
lence confirms the universal nature of this expression. In the (17)

following section we show that it is not exactly so because _ .
) . , COSHOya=COSHs— SIF A4 (2+ 4coshs)r— (4— coshs)r, /3.
the nonlocal approach results in a different expression when 92 S sL( S ( Syl

vy Varies along the contact line. _ Equation (8), written for the generalized coordinateg
Let us now apply the algorithm described above to theandry together with the expression for the dissipation func-

problem of drop relaxation. A shape for a nonspherical.droqiOn (see Appendix A implies the set of equations
surface of constant curvature can be found only numerically.

In order to treat the problem analytically, we approximate the 3r,— =10 Y(Br,—Ar,)
drop shape by a spheroidal cap that is described in Cartesian x Ty o oo

; X 18)
(x,y,z) coordinate system by the equation . _ (
3ry—r,=15 (Bry—Ar,),
X2  y?+(z+d)? - .
St = 1, (12) wherer,= oR*/ £ and the coefficienté andB are given by
a b Eq. (A7) in Appendix A. The solutions of Eq$18) read

at z>0, the planeX-Y corresponding to the solid surface. | (t)=[(r()—rMyexp —t/7y)+(r+rD)exp —t/7,)]/2,
The symmetry of the problem allows only a quarter of the < <

drop (see Fig. 1 to be considered. Since one of the param- (19)
eters @,b,d) is fixed by the condition of the conservation of  (t)=[(r—rDyexp( —t/79)+ (1O +rD)exp —t/7,)]/2,
the drop volume that can be calculated as Y o < 20

_T E(2b3—3b2d+d3) (12) wherer{) andr{ are the initial ¢=0) values forr, andr,,

V X . .
3b respectively, and the relaxation times
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1000000 g——————————T7 1 T 3 (cosfs— cosh) =sirt (5 coshs—2)r,/3  at the pointN,
F ] (26)
100000 | -
] the local approackil0) implies that
10000 4
3 ol .
Un=— — = Siff4(2+cosb,)r, atthe pointM,
< 1000 £3
A (27)
~
100
ol .
=3 SirfA4(5 cosfs—2)r,  atthe pointN. (28)
10

The comparison of Eqg22)—(24) with Eqgs. (27) and (28)
show that the results of the local and the nonlocal approaches
are different. However, one can verify that the results are the
same in the limit of very smalys. For finite contact angles,
the nonlocal approach is not equivalent to the local approach.
The main difference can be summarized as follows. #he
FIG. 2. The relaxation times , versus the static contact angle Valué that is obtained with our nonlocal approach can be
0. ' presented in the forngl) common for the local approach.
However, while the characteristic velocity. from Eq. (1) is
— ; constant in the local approach, itasfunction of the position
7s= 7o/l Si 6(2-+ coshy) ], @Y on the contact linein Ft)rﬁ)e nonlocal approach. Ingeed, the

comparison of Eqs(23)—(26) with Egs. (1) and (4) shows
Tn=4570(1+C0S05)/[ (108+ 41 cosfs+ 14 cos b that

+17 cos6,)(1—cosbs)]. (22 o
v.=3— —0/ [sirff(2+cosh,)] atthe pointM,

The variables, andr, are defined in Eq(15) in such a way &
that wherr = —r{ the drop surface remains spherical dur- (29
ing its relaxation. One can see from E@$9) and (20) that o T
the evolution is defined entirely by the characteristic tirge V=3~ —O/ [sirf64(5 coshs—2)] atthe point N.
(spherical in this case. Whem(x')=r§,'), only 7, (nonspheri- §
cal) defines the drop evolution. In the real experimental situ- (30

ation where (f(')—r(y'))<(r'§')+r§,')), the relaxation timery, We do not expect our model to be a good description for
alone defines the relaxation of the drop as it follows fromie contact angles close to 90°. The reason is the limitation
Egs.(19) and(20). Therefore,r, should be associated with ¢ e spheroid model for the drop shape. The spheroidal
the experimt_antally observed relaxation_time. _ shape necessarily fixe&;, =90° when 4,=90° indepen-
The functionsr q(0s) are plotted in Fig. 2 assuming that gently of the contact line velocity, which is incorrect. In ad-
¢ is independent offs. Clearly, both7s and 7, increase jtion, the spheroid model does not work at all fa>90°.
monotonically withd in agreement with the observed ten- ope needs to find the real shape of the diwhich is defined
dency for large contact angles. It is interesting to checkyy constant curvature conditipto overcome these difficul-
whether or not by applying the local approach of Ef) we  tjes.
recover the nonlocal result far, . This is easy to do forthe | order to estimate the limiting value fak, for which the
caser{)=r{), i.e., whenr,=r,. In this case, the nonlocal spheroid model works well we mention that the dynamic
model(18) impliesr,= —r,/7,, and the contact line veloci- advancing and receding contact angles defined by(EQ.
ties at the point$ andN are must satisfy the inequalityy, < 6s=<604,. By putting r{’
=r§,') in Egs. (19 and (20) one finds that this inequality is
o T . satisfied wherg;<66°. The last inequality provides us with
vn= =g 7 fx atthepointM, (23 the limit of the validity for the spheroidal model.
To conclude this section we note that our nonlocal ap-
proach to the dynamics of wetting is not equivalent to the

=2 2% atthe pointN. (24)  traditional local approach. Both approaches allow the relax-
Tn ation time to be calculated for a given contact angle provided
that the contact angle dependence of the dissipation coeffi-
Since Eq.(17) results in cient ¢ is known. Additional experiments are needed to re-

veal which approach is the most suitable. Under the assump-
(cosfs— cosh) = —sirff4(2+ coshy)r,/3 atthe pointM, tion that the¢(6;) dependencéf any) is weak, we find that
(25 the relaxation time decreases with the contact angle.
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This result explains the decrease of the relaxation time at
large contact angles observed[8]. We think that the oppo- b
site tendency observed for the small contact angles is related % """""" A
i
1
1
]
]
@

Y

to the influence of the surface defects addressed in the fol-
lowing section.

IIl. INFLUENCE OF THE SURFACE DEFECTS
ON THE RELAXATION TIME

The motion of the contact line in the presence of defects
has been frequently studiédgee[5] for a review. However, y
little is understood at the moment because the problem is
very sophisticated. Most of its studies deal with the influence % /
of the defects on the static contact litsee, e.g.[16]) when | %&ZZa _____________ AR
they are responsible for the contact angle hysteresis. The
latter was studied if17] and[18] for the wedge geometry X
that assumes the external forcing of the contact line. When FIG. 3. Unit cell of the model defect pattern on the solid sur-

the contact line moves under the action of a fofcé en-  face The reference system and the values of the contact angle in-
counters pinning on thg random potenqal cre_ated by s_urfacgde the round spotsf{) and outside themd,) are also shown.
defects. Thus, the motion shows the “stick-slip” behavior. It

is characteristic for a wide range of physical systems whergpe superscript (0) means that the corresponding quantity is

pinning takes place and is the basis of the theory of dynamiga|cylated forsR,=0 and for the constant value of the con-
cal critical phenomena, in which the average contact "ne[act angleg defined by the expression
eq

velocity is

— 1 IR
vn=v(flf.—1)B, (31 Oeq= arcco%mf(ﬁ\(o))cosﬁeq(r)dr]. (39
LS LS

where the exponeng is universal andf, is the pinning Then
threshold. This expression is often appliezske[19], and
references therejrio the contact line motion in the systems,
where the geometry of the meniscus does not depend on the

dragglng force. Howe\_/er, the Va'U?S_ pivary widely de- It can be shown that the first-order correction to this value,

pending on the experimental conditions and do not COMey hich appears due to the defects is

spond to the theoretical predictions. The motion of the con-

tact line during the coalescence of drops is even more _ .

complicated because the geometry of the meniscus is con- AU= —UJ(A(O))[COSQeq(I’)—COSQeq]dr. (36)
LS

stantly changing. Therefore, application of the expression

31) is even more questionable in this situation. . .
S g We accept the following model for defects because it is, on

In this section we employ the formalism developed in the :
preceding section in order to understand the influence of th8ne hand, simple and, on the other hand, prdisiito be a

surface defects on the relaxation time of the drop where thtgOOd dgscription for _the gdvanciqg and the receding contact
contact line isnot forced externallyThe surface defects are angles in the approximation considered. The defects are sup-

modeled by the spatial variation of the local density of theposed to be similar_ cir_cular spots O.f radiusirranged ir_1 a
surface energy, which can be related to the local value of thgﬁgular spatially periodic patterr\ being the spatial period,
t

S - e same in both directions, see Fig. 3. The spots and the
equilibrium contact anglé.(r) by the Young formula as g b

was suggested ifil7] to describe the static contact angles clean surface have the values of the equilibrium contact
: . . ; "angle#; and 6,< 64, respectively. For this pattern, E(4
The expressioli9) can be rewritten for this case in the form geon 271 P Y P B4

yields

UO@=gAl) - rA%cosbe,. (35)

L _ 2 2
U:(TAVL_O'J C0S0f F)dF. 32) feq= arccofe>cosd; + (1—&?)cosbs], (37)
(ALs)

- the parametes? being the fraction of the surface covered by

The contribution of the defects and, thus, the deformatiori[;]g ql.eggﬁtif?sofh\x\éisc?gﬁzéh% C;]?\M in the follow-

SR, of the contact line due to the defects is assumed to be
small. Then, in the first approximation that corresponds to £2=27(r/\)? (38)
the “horizontal averaging” approximation frofil7] '

In the following, we will for simplicity treat a two-
U=U©@+AuU. (33)  dimensional(2D) sessile drop, i.e., a liquid stripe of infinite
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with the equilibrium value of the contact angle equal to the

value of 6 is also shown for comparison. The half width of
the drop on the ideal substrate relaxes to its equilibrium
value R* that is related to the volume of the drop through
Eq. (39) written for 6= 6., and R,=R*. We choseR*/\
=100 for Fig. 5.

The stick-slip motion is illustrated in the inset in Fig. 5.
Note that the contact line in its final position for the nonideal
case is pinned in a metastable state so that the final 2D radius
of the drop is larger thaR*. The final contact anglé¢the

FIG. 4. Reference system to describe the 2D drop. The contagtquilibrium receding contact anglethus, differs from that

angled is shown too.

for an ideal surface. Because the contact line is being stuck
on the defects, its motion is slowed down. However, the

length, the cross section of which is the segment of a circlgresence of defects does not change strongly the relaxation

as shown in Fig. 4. The volumé of the stripe per its length
| does not change with time,

RZ
Vllzm(e—sinecosa), (39)
where R, is the half width of the stripe, see Fig. 4. The
dynamic contact angl® can be calculated from Ed39),
provided thatR, is known. It can be shown by the direct
calculation ofU(®, Eq. (35) and the dissipation functiom,
Eq. (6) that Eq.(8) with the substitutiorg;— R, reduces to
the equation

o 7 ) 1 dAU
E(cos eq— COS )_2_§Id_Rx'

The first-order correction to the drop enerfy\J can be cal-
culated from Eq(36) by following the guidelines of17]. Its

R,= (40)

explicit expression for the chosen geometry is given in Ap-
pendix B. The kinetics of the relaxation is shown in Fig. 5.

time. It remains of the order ofy,=R* £/ o because this de-
celeration is compensated by the acceleration during the slip
motion. Figure 5 shows the impact of the defects on the
relaxation. The relaxation time appears todwmeallerin the
presence of defects than in the ideal cése defects be-
cause the contact line is pinned by defects whereas it would
have continued to move on ideal surface.

It should be noted that this model is just a first step to-
wards the description of contact line kinetics on a nonideal
substrate. In reality, the different portions of the contact line
slip at different moments in timécascades of slips are ob-
served, e.g., if19]). This means that the liquid flows in the
direction parallel to the contact line to the distances much
larger than the defect size, i.e., the first-order approximation
is not adequate. The direction of this flow reverses fre-
quently. This effect can lead to the expression as(&h.and
to a large relaxation time.

IV. CONCLUSIONS

The relaxation kinetics for the drop on the ideal substrate This paper deals with two important issues concerning

with defects
----- no defects

R /R

14 | .

12 \ 4

FIG. 5. Temporal evolution of the half widfR, of the drop with
and with no defects with the same initiat0) value of R,
=2R* and for R*=100n and #=~55°. The latter value corre-
sponds to the defect radius=0.2\, 6,=70°, andf,=50°.

contact line dynamics. First, it discusses the local versus
nonlocal approaches to contact line motion. While the local
approach consists in postulating a direct relationship between
the normal contact line velocity and the dynamic contact
angleat a given point of the contact linghe nonlocal ap-
proach starts from a more general hypothesis about the form
of the dissipation function of the droplet. These approaches
give the same results for very small contact angles or for the
normal contact line velocity that does not vary along the
contact line, which is the case of a drop that has the shape of
a spherical cap. In other caséarge contact angle, non-
spherical dropsthe results of these two approaches differ.
We carried out calculations assuming that the drop surface is
a spheroid. In reality, its surface is not a spheroid and has a
constant curvature. More work is needed to overcome this
approximation.

The second issue treated in this article is the influence of
surface defects on contact line dynamics. In the approxima-
tion of a 2D drop, it is assumed that the contact line remains
straight during its motion. In this approximation, the stick-
slip microscopic motion does not influence the average dy-
namics strongly. The defects manifest themselves by chang-
ing the final position of the contact line by pinning it in a
metastable state. Therefore, the relaxation is more rapid than
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that on an ideally clean surface simply because it is termiwheres:1—R§/R§~(rx—ry)<1. The subsequent develop-

nated earlier. ment of the integrand into the series oveand its integra-

tion term-by-term results in
APPENDIX A: DERIVATION OF THE DYNAMIC
EQUATIONS FOR r, AND r, €
™ _ Ay =am| 2(b—d)——(2b3—3b%d+d3)
We used thevATHEMATICA ~ system for the analytical 6 b?

computations. We find first the dissipation functidnThe

contact line can be described by the equation €

(8 b5 15b d-i—lOOZd3 3d5) (A5)
2 y 160
F X, =0 with F X, Y)=— ——1, Al

: This expression can be developed into a series with respect

to ry,ry by using Eqs(12) (13)—(15). Its substitution into
where R, and R, are time dependent. By using the well- Eq. (9) leads to the explicit expression fat,
known formula of differential geometry,= —F/|VF|, the _
integral (6) can be written in an explicit form. In order to SR
obtain the first-order approximation fdr, one can use the 8
expansion(15). We need to keep only the second-order
Ferr'ns. Since the integrand |§ a.quadratlc for.m with resp.ect to X[A(r§+r§)—28r ry]] (A6)
ry,fy, one can put,,r,=0 in it. The resulting expression
can be integrated to obtaln the explicit expression for the

U= UWRZ: 2—3 cosfs+ coS O+

dissipation function where
aR3sirdy ., . .. A=[(288+491 cosfs+ 374 coh+ 107 cos o
_ ErRSimhs g (3ri+3ri-2nry). (A2) . ) ° g
X (1—cosbs)]/[45(1+ cosby)],
It is easy to find out thaT=0 always holds as it should be.
It is more difficult to obtain the drop interface area B=[(72+409 cosfs+ 346 cod6s+ 73 cos b;)
92\2 [ 922 X (1—cosfg)]/[45(1+ coséy)]. (A7)
AsL X ay It is easy to show that the expression in the square brackets

in Eq. (A6) is positive for an arbitrary. It means that the
function U(r,,ry) has its minimum at the pointr{=0y,
=0), i.e., for the drop that has the shape of the spherical cap.

s b 2 2 2 This result was expected. . _
AVL:4bf Xarctar( _\/1___ _) \/1__de’ The substitution of Eq9A6) and(A2) into Eq. (8) writ-
d a® ten forq;=(ry,ry) results in the set of Eq¢18) and, thus,
(A4) concludes their derivation.

where the functiorz=z(x,y) is defined by Eq(11). After
the integration ovey, Eq. (A3) reduces to

APPENDIX B: EXPRESSION FOR THE FIRST-ORDER CORRECTION TO THE DROP ENERGY CAUSED BY DEFECTS

The accepted assumptions facilitate calculation ofAkK R,). The resulting function is periodical with the periad2, so
that forr <A/4 it can be presented in the form

g2p—[rlarcsinp/r)+p(r?—pH)Y?|IN, O=<p<r

A
AU e2(p—Nb), r<p<=-r

- 2

20pAc (B1)
. A A

g2(p—NI2)+{r?arcsii(N/2— p)/r ]+ (N2— p)[r2— (N12— p)2]Y2 /N, 5-r=<p<z,

wherep is the fractional part of R, /\, multiplied by \/2, andAc=cos6f,—cos6,. SinceR,>\, the presence of defects
generates many local minima of the functioR,) near its global minimum. These minima represent the metastable states.
According to this model, the contact line is pinned in the minimum closest to its initial position.
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