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Remarks about the Tsallis formalism
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In the present paper the conditions for the validity of the Tsallis statistics are analyzed. The same has been
done following the analogy with the traditional case: starting from the microcanonical description of the
systems and taking into account their self-similarity scaling properties in the thermodynamic limit, it is ana-
lyzed the necessary conditions for the equivalence of microcanonical ensemble with the Tsallis generalization
of the canonical ensemble. It is shown that the Tsallis statistics is appropriate for the macroscopic description
of systems with potential scaling laws of the asymptotic accessible states density of the microcanonical
ensemble. Our analysis shows many details of the Tsallis’s formalism: theq-expectation values, the generalized
Legendre transformations between the thermodynamic potentials, as well as the conditions for its validity,
havinga priori the possibility to estimate the value of the entropic index without the necessity of appealing to
the computational simulations or the experiment. On the other hand, the definition of physical temperature
received a modification that differs from the Toral result. For the case of finite systems, we have generalized
the microcanonical thermostatistics of Gross with the generalization of the curvature tensor for this kind of
description.
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I. INTRODUCTION

In the last years many researchers have been workin
the justification of the Tsallis formalism. Many of them ha
pretended to do it in the context of the information theo
@1–3# without appealing to the microscopic properties of t
systems. Through the years many functional forms of
information entropy similar to the Shanonn-Boltzman
Gibbs have been considered in many investigation fie
with different purposes~see, for example, in Refs.@4–7#!,
but only the Tsallis nonextensive entropy@8# have been first
proposed in order to generalize the traditional thermodyn
ics. Nowadays, after the first success of the Tsallis appro
other entropy forms are also considered with the same ob
tive ~see Refs.@9–12#!.

This way of deriving the thermostatistics is very attra
tive, since it allows us to obtain directly the probabilist
distribution function of the generalized canonical ensem
at the thermodynamic equilibrium, as well as to develop
dynamical study of systems in nonequilibrium processes

The main difficulty for this kind of description is to de
termine the necessary conditions for the application of e
specific entropic form. For example, in the Tsallis statisti
the theory is not to be able to determine univocally the va
of the entropy index,q in the context of the equilibrium
thermodynamics, so that, the experiment or the comp
tional simulation are needed in order to precise it. There
some evidences suggesting the determination of the entr
indexq throughout the sensitivity of the system to the init
conditions and the relaxation properties towards equilibri
@13–18#.
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Similar difficulties can be found in other formulations o
the thermodynamics based on a parametric information
tropic form. However, there is no reason to consider tha
the context of the equilibrium thermodynamics theory th
kind of parameters cannot be precised. That is the rea
why we consider that the statistical description of nonext
sive systems should start from their microscopic characte
tics.

Following the traditional analysis, the derivation of th
thermostatistics from the microscopic properties of the s
tems could be performed by the consideration of the mic
canonical ensemble. For the case of the Tsallis’s statis
this is not a new idea.

In 1994 Plastino and Plastino@19# had proposed one wa
to justify theq-generalized canonical ensemble with simil
arguments employed by Gibbs himself in deriving his c
nonical ensemble. It is based on the consideration of a clo
system composed by a subsystem weakly interacting wi
finite thermal bath. They showed that the macroscopic cha
acteristics of the subsystem are described by the Tsallis
tential distribution, relating theentropy index qwith the fi-
niteness of the last one. In this approach the Tsallisad hoc
cutoff condition comes in a natural fashion.

Another attempt was made by Abe and Rajagopal@20#: a
closed system composed by a subsystem weakly interac
with a very large thermal bath, this time analyzing the b
havior of the systems around the equilibrium, consider
this as a state in which the most probable configurations
given. They showed that the Tsallis canonical ensemble
be obtained if the entropy counting rule is modified, intr
ducing the Tsallis generalization of the logarithmic functi
for arbitrary entropic index@21#, showing in this way the
possibility of the nonuniqueness of the canonical ensem
theory.
©2002 The American Physical Society34-1
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So far it has been said that the Tsallis statistics allows
extend the thermodynamics to the study of systems that
anomalous from the traditional point of view, systems w
long-range correlations due to the presence of long-ra
interactions, with a dynamics of non-Markovian stochas
processes, where the entropic index gives a measure o
nonextensivity degree of a system, an intrinsic character
of the same@8#. The identification of this parameter with th
finiteness of a thermal bath is limited, since this argumen
non-applicable on many other contexts in which the Tsall
Statistics is expected to work: astrophysical systems@22,23#,
turbulent fluids, and nonscreened plasma@24#, etc.

The Abe-Rajagopal analysis suggests that there is an
bitrariness in the selection of the entropy counting ru
which determines the form of the distribution. In their wor
they do not establish a criterium that allows to define
selection of the entropy counting rule univocally.

In the Boltzmann-Gibbs statistics the entropy count
rule is supported by means of the scaling behavior of
microcanonical states density and the fundamental ma
scopic observables, the integrals of motion and external
rameters, with the increasing of the system degrees of f
dom, and its thermodynamic formalism, based on
Legendre’s transformations between the thermodynamic
tentials, by the equivalence between the microcanonical
the canonical ensembles in the thermodynamic limit~ThL!.

In Ref. @25# it was addressed the problem of generalizi
the extensive postulates in order to extend the thermost
tics for some Hamiltonian nonextensive systems. Our pro
sition was that this derivation could be carried out taking in
consideration the self-similarity scaling properties of the s
tems with the increasing of their degrees of freedom a
analyzing the conditions for the equivalence of the micro
nonical ensemble with the generalized canonical ensemb
the ThL. The last argument has a most general character
the Gibbs, since it does not demand the separability of
subsystem from the whole system. The Gibbs argument
disagreement with the long-range correlations of the non
tensive systems. The consideration of the self-similarity s
ing properties of the systems allows us to precise the co
ing rule for the generalized Boltzmann entropy@25#, as well
as the equivalence of the microcanonical ensemble with
generalized canonical one determines the necessary c
tions for the applicability of the generalized canonical d
scription in the ThL.

II. THE LEGENDRE FORMALISM

In this section the analysis of the necessary conditions
the equivalence of the microcanonical ensemble with
Tsallis canonical one will be performed in analogy with o
previous work@26#, which was motived by the methodolog
used by Gross in deriving his microcanonical thermosta
tics @27# through the technique of the steepest desc
method.

In Ref. @26# it was shown that the Boltzmann-Gibbs st
tistics can be applied to the macroscopic study of the ps
doextensive systems, those withexponential self-similarity
scaling laws@25,26# in the ThL, using an adequate selectio
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of the representation of the motion integrals space@25#, IN .
The previous analysis suggests that a possible applicatio
the Tsallis formalism could be found for those systems w
an scaling behavior weaker than the exponential.

In this analysis the followingpotential self-similarity
scaling laws will be considered:

N→N~a!5aN

I→I ~a!5axI

a→a~a!5apaa
J ⇒Wasym~a!5akWasym~1!, ~1!

whereWasym is the accessible volume of the microcanonic
ensemble in the system configurational space in the ThI
are the system integrals of motion of the macroscopic
scription in a specific representationRI of IN , a is a certain
set of parameters,a is the scaling parameter,x, pa , andk
are real constants characterizing the scaling transformati
The nomenclatureWasym(a) represents

Wasym~a!5Wasym@ I ~a!,N~a!,a~a!#. ~2!

This kind of self-similarity scaling laws demands an e
tropy counting rule different from the logarithmic. It is sup
posed that the Tsallis generalization of exponential and lo
rithmic functions@21#

eq~x!5@11~12q!x#1/(12q), lnq~x!5
x12q21

12q
[eq

21~x!

~3!

are more convenient to deal with it.
Let us consider a finite Hamiltonian system with this kin

of scaling behavior in the ThL. We postulate that thegener-
alized Boltzmann principle@25# adopts the following form:

~SB!q5 lnq W. ~4!

The accessible volume of the microcanonical ensemble
the system configurational spaceW is given by

W~ I ,N,a!5V~ I ,N,a!dI o5dI oE d@ I 2I N~X;a!#dX,

~5!

wheredI o is a suitableconstant volume element that mak
W dimensionless. The corresponding information entropy
theq-generalized Boltzmann entropy, Eq.~4!, is the Tsallis’s
nonextensive entropy~TNE! @28#

Sq52(
k

pk
q lnq pk ~6!

~the Boltzmann constant has been set down as the unity!. In
the thermodynamic equilibrium the TNE leads to t
q-exponential generalization of the Boltzmann-Gibbs dis
butions,

vq~X;b,N,a!5
1

Zq~b,N,a!
eq@2bI N~X;a!#, ~7!
4-2
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REMARKS ABOUT THE TSALLIS FORMALISM PHYSICAL REVIEW E65 046134
whereZq(b,a,N) is the partition function@29#. For this en-
semble, theq-generalized Laplace transformationis given
by

Zq~b,N,a!5E eq~2bI !W~ I ,N,a!
dI

dI o
. ~8!

The Laplace transformation establishes the connection
tween the fundamental potentials of both ensembles,
q-generalizedPlanck potential,

Pq~b,N,a!52 lnq@Zq~b,N,a!#, ~9!

and the generalized Boltzmann entropy defined by
Eq. ~4!

eq@2Pq~b,N,a!#5E eq~2bI !eq@~SB!q~ I ,N,a!#
dI

dI o
.

~10!

The q-logarithmic function satisfies thesubadditivity rela-
tion,

lnq~xy!5 lnq~x!1 lnq~y!1~12q!lnq~x!lnq~y!, ~11!

and, therefore,

eq~x!eq~y!5eq@x1y1~12q!xy#. ~12!

The last identity allows us to rewrite the Eq.~10! as

eq@2Pq~b,N,a!#5E eq@2cqbI 1~SB!q~ I ,N,a!#
dI

dI o
,

~13!

where

cq511~12q!~SB!q . ~14!

In the Tsalliss case, the linear form of the Legendre tra
formation is violatedand, therefore, the ordinary Legend
formalism does not establish the correspondence betwee
two ensembles. In order to preserve the homogeneous
ing in the q-exponential function argument, it must be d
manded the scaling invariance of the set of admissible
resentations of the integrals of motion space@25#, Mc , that
is, the setMc is composed by those representationsRI sat-
isfying the restriction

x[0, ~15!

in the scaling transformation given in Eq.~1!. In these cases
when the ThL is invoked, the main contribution to the int
gral of Eq. ~13! will come from the maxima of the
q-exponential function argument. The equivalence betw
the microcanonical and the canonical ensemble will o
take place when there is only one sharp peak. Thus, the
gument of theq-exponential function leads to assume t
nonlinear generalization of the Legendre formalism@30,31#
given by

P̃q~b,N,a!5max@cqbI 2~SB!q~ I ,N,a!#. ~16!
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We recognized immediately the formalism of thenormal-
ized q-expectations values@30#. The maximization leads to
the relation,

b5
“~SB!q

11~12q!~SB!q
@12~12q!bI #. ~17!

Using the identity,

“SB5
“~SB!q

11~12q!~SB!q
, ~18!

whereSB is the usual Boltzmann entropy, the Eq.~17! can be
rewritten as

b5“SB@12~12q!bI #. ~19!

Finally it is arrived to the relation,

b5
“SB

@11~12q!I“SB#
. ~20!

This is a very interesting result because it allows to lim
the values of the entropy index. If this formalism is arb
trarily applied to a pseudoextensive system~see in Ref.@26#!,
then I¹SB will not bound in the ThL andb will vanish
trivially. The only possibility in this case is to impose th
restrictionq[1, that is, the Tsallis statistics with an arbitra
entropy index cannot be applied to the pseudoextensive
tems. There are many examples in the literature in which
Tsallis statistics has been applied indiscriminately witho
minding if the systems are extensive or not, i.e., ga
@31,32#, blackbody radiation@33#, and others.

In some cases, the authors of these works have introdu
some artificial modifications to the original Tsallis formalis
in order to obtain the same results as those of the class
thermodynamics, i.e., theq-dependent Boltzmann consta
~see, for example, in Ref.@34#!. The above results indicat
the nonapplicability of the Tsallis statistics for these kind
systems. It must be pointed out that this conclusion is s
ported with a great accuracy by direct experimental men
rements trying to find nonextensive effects in some ordin
extensive systems~cosmic background blackbody radiatio
@35#, fermion systems@36#, gases@37#!.

The Tsallis formalism introduces a correlation to the c
nonical intensive parameters of the Boltzmann-Gibbs pro
bilistic distribution function. This result differs from the on
obtained by Toral@38#, who applied to the microcanonica
ensemble the physical definitions of temperature and p
sure introduced by Abe in Ref.@32#,

1

kTphys
5

1

11~12q!Sq

]

]E
Sq ,

Pphys

kTphys
5

1

11~12q!Sq

]

]V
Sq . ~21!
4-3
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When these definitions are applied to the microcanonical
semble assuming the generalized Boltzmann principle,
~4!, the physical temperature coincides with the usual Bo
mann relation,

1

kTphys
5

]

]E
SB .

It is easy to show, that this result does not depend on
entropy counting rule of the generalized Boltzmann princi
@25#, but on separability of a closed system in subsyste
weakly correlated among them, and the additivity of the
tegrals of motion and the macroscopic parameters. It mus
recalled that these exigencies are only valid for the exten
systems, but, it is not the case that we are studying here.
result comes in fashion as consequence of the system sc
laws in the thermodynamic limit.

An important second condition must be satisfied for
validity of the Legendre transformation, the stability of th
maximum. This condition leads to theq generalization of the
microcanonical thermostatistics of Gross@27#. In this ap-
proach, the stability of the Legendre formalism is suppor
by the concavity of the entropy, the negative definition of t
quadratic forms of the curvature tensor@26,27#. In the Tsal-
lis’s case, the curvature tensor must be modified as

~Kq!mn5
1

12~12q!P̃q
F ~22q!

]

]I m

]

]I n
~SB!q1~12q!

3S bm

]

]I n
~SB!q1bn

]

]I m
~SB!qD G . ~22!

Taking into consideration that the scaling behavior of
functions (SB)q and P̃q are identical, which is derived from
Eq. ~16!, it is easy to see that the curvature tensor is sca
invariant. Using the above definition and developing the T
lor power expansion up to the second order term in
q-exponential argument, we can approximate Eq.~13! as

eq@2Pq~b,N,a!#

.E eq@2 P̃q~b,N,a!#

3eqF2
1

2
~ I 2I M !m~2Kq!mnU I 5I M

3~ I 2I M !nG dI

dI o
. ~23!

The maximum will be stable if all the eigenvalues of t
q-curvature tensor arenegativeandvery large. In this case,
in the q-generalized canonical ensemble there will besmall
fluctuations of the integrals of motion around i
q-expectation values. The integration of Eq.~23! yields
04613
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eq@2Pq~b,N,a!#.eq@2 P̃q~b,N,a!#

3
1

dI o det1/2S 12q

2p
~2Kq!mnU I 5I M

D

3

GS 22q

12qD
GS 22q

12q
1

1

2
nD . ~24!

DenotingKq
21 by

Kq
215

1

dI o det1/2S 12q

2p
~2Kq!mnU I 5I M

D
GS 22q

12qD
GS 22q

12q
1

1

2
nD ,

~25!

and rewriting Eq.~24! again

eq@2Pq~b,N,a!#

.eq@2 P̃q~b,N,a!1 lnq~Kq
21!2~12q!

3 lnq~Kq
21!P̃q~b,N,a!#, ~26!

it is finally arrived to the condition

R~q;b,N,a!5u~12q!lnq~Kq
21!u!1. ~27!

The last condition could be considered as anoptimization
problem, since the entropic index is an independent varia
in the functional dependency of the physical quantities. T
specific value ofq could be chosen in order to minimize th
function R(q;b,N,a) for all the possible values of the inte
grals of motion. In this way, the problem of the determin
tion of the entropic index could be solved in the frame of t
microcanonical theory without appealing to the compu
tional simulation or the experiment.

Thus, theq-generalized Planck potential could be o
tained by means of the generalized Legendre transforma

Pq~b,N,a!.cqbI 2~SB!q~ I ,N,a!, ~28!

where the canonical parametersb hold Eq. ~20!. Thus, the
q-generalization of the Boltzmann entropy will be equivale
with the Tsallis entropy in the ThL;

~SB!q.Sq . ~29!

If the uniqueness of the maximum is not guaranteed, t
is, any of the eigenvalues of theq-curvature tensor is non
negative in a specific region of the integrals of motion spa
there will be a catastrophe in the generalized Legendre tr
formation. In analogy with the traditional analysis, this p
culiarity can be related with the occurrence of a phenome
similar to the phase transition in the ordinary extens
systems.
4-4
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III. CONCLUSIONS

We have analyzed the conditions for the validity of t
Tsallis generalization of the Boltzmann-Gibbs statisti
Starting from the microcanonical ensemble, we have sho
that the same one can be valid for those Hamiltonian syst
with potential self-similarity scaling laws in the asymptot
states density. Systems with this kind of scaling laws mus
composed of strongly correlated particles, and, theref
these systems must exhibit an anomalous dynamical be
ior. There are some computational evidences that sug
that the Tsallis’s statistics could be applied for dissipat
dynamical systems at the edge of chaos~see in Refs.@13–
17,39–41#! and Hamiltonian systems with long-range inte
actions@42–46#.

In this context we have shown an entire series of det
nt

m
,

ac

s

nd

n-
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of the Tsallis formalism that in this approach appear in
natural way: theq-expectation values, the generalized Le
endre transformations between the thermodynamic po
tials, as well as the conditions for the validity of the sam
one, havinga priori the possibility to estimate the value o
the entropic index without the necessity of appealing to
computational simulations or the experiment.

For the case of finite systems satisfying this kind of sc
ing laws in the thermodynamic limit, we have generaliz
the microcanonical thermostatistics of Gross assuming
Tsallis generalization of the Boltzmann’s entropy. This a
sumption leads to the generalization of the curvature ten
which is the central object in the thermodynamic formalis
of this theory, since it allows us to access to the order
information of a finite system.
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