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Remarks about the Tsallis formalism
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In the present paper the conditions for the validity of the Tsallis statistics are analyzed. The same has been
done following the analogy with the traditional case: starting from the microcanonical description of the
systems and taking into account their self-similarity scaling properties in the thermodynamic limit, it is ana-
lyzed the necessary conditions for the equivalence of microcanonical ensemble with the Tsallis generalization
of the canonical ensemble. It is shown that the Tsallis statistics is appropriate for the macroscopic description
of systems with potential scaling laws of the asymptotic accessible states density of the microcanonical
ensemble. Our analysis shows many details of the Tsallis’'s formalisny:éixpectation values, the generalized
Legendre transformations between the thermodynamic potentials, as well as the conditions for its validity,
havinga priori the possibility to estimate the value of the entropic index without the necessity of appealing to
the computational simulations or the experiment. On the other hand, the definition of physical temperature
received a modification that differs from the Toral result. For the case of finite systems, we have generalized
the microcanonical thermostatistics of Gross with the generalization of the curvature tensor for this kind of

description.
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I. INTRODUCTION Similar difficulties can be found in other formulations of

the thermodynamics based on a parametric information en-
In the last years many researchers have been working ittopic form. However, there is no reason to consider that in
the justification of the Tsallis formalism. Many of them have the context of the equilibrium thermodynamics theory this
pretended to do it in the context of the information theoryyind of parameters cannot be precised. That is the reason
[1-3] without appealing to the microscopic properties of the, . \ve consider that the statistical description of nonexten-

systems. Through the years many functional forms of theg o ostems should start from their microscopic characteris-
information entropy similar to the Shanonn-BoItzmann-éiCS

i hav n considered in many investigation fiel . . . L
Gibbs have been considered any investigation field Following the traditional analysis, the derivation of the

with different purposegsee, for example, in Ref$4—7]), 9 . ! :
but only the Tsallis nonextensive entrof] have been first thermostatistics from the microscopic properties of the sys-

proposed in order to generalize the traditional thermodynam{€Ms could be performed by the consideration of the micro-
ics. Nowadays, after the first success of the Tsallis approaci§anonical ensemble. For the case of the Tsallis's statistics
other entropy forms are also considered with the same objedhis is not a new idea.
tive (see Refs[9—12)). In 1994 Plastino and Plastifd9] had proposed one way
This way of deriving the thermostatistics is very attrac-to justify the g-generalized canonical ensemble with similar
tive, since it allows us to obtain directly the probabilistic arguments employed by Gibbs himself in deriving his ca-
distribution function of the generalized canonical ensemblgionical ensemble. It is based on the consideration of a closed
at the thermodynamic equilibrium, as well as to develop thesystem composed by a subsystem weakly interacting with a
dynamical study of systems in nonequilibrium processes. finite thermal bathThey showed that the macroscopic char-
The main difficulty for this kind of description is to de- acteristics of the subsystem are described by the Tsallis po-
termine the necessary conditions for the application of eackential distribution, relating thentropy index qwith the fi-
specific entropic form. For example, in the Tsallis statistics niteness of the last one. In this approach the Tsallishoc
the theory is not to be able to determine univocally the valuesutoff condition comes in a natural fashion.
of the entropy indexg in the context of the equilibrium Another attempt was made by Abe and Rajagdgél: a
thermodynamics, so that, the experiment or the computeelosed system composed by a subsystem weakly interacting
tional simulation are needed in order to precise it. There arevith a very large thermal bath, this time analyzing the be-
some evidences suggesting the determination of the entropfavior of the systems around the equilibrium, considering
index g throughout the sensitivity of the system to the initial this as a state in which the most probable configurations are
conditions and the relaxation properties towards equilibriungiven. They showed that the Tsallis canonical ensemble can
[13-18. be obtained if the entropy counting rule is modified, intro-
ducing the Tsallis generalization of the logarithmic function
for arbitrary entropic indeXx21], showing in this way the
*Email address: luisberis@geo.upr.edu.cu possibility of the nonuniqueness of the canonical ensemble
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So far it has been said that the Tsallis statistics allows t®f the representation of the motion integrals spig, Jy .
extend the thermodynamics to the study of systems that arghe previous analysis suggests that a possible application of
anomalous from the traditional point of view, systems withthe Tsallis formalism could be found for those systems with
long-range correlations due to the presence of long-ranggn scaling behavior weaker than the exponential.
interactions, with a dynamics of non-Markovian stochastic |n this analysis the followingpotential self-similarity
processes, where the entropic index gives a measure of tRealinglaws will be considered:
nonextensivity degree of a system, an intrinsic characteristic
of the samd8]. The identification of this parameter with the N—N(a)=aN
finiteness of a thermal bath is limited, since this argument is — X ok
non-applicable on many other contexts in which the Tsallis's I=1(a)=at = Wasynf @)= @ Wagyn(1), (1)
Statistics is expected to work: astrophysical systf22s23, a—a(a)=a™a
turbulent fluids, and nonscreened plasi@d], etc. ] , ] ,

The Abe-Rajagopal analysis suggests that there is an ay\_/hereWaSy_mls the acceSS|bIe_v0Iun_1e of the mlc_rocanonlcal
bitrariness in the selection of the entropy counting rule €nSemble in the system configurational space in the ThL,
which determines the form of the distribution. In their works &€ the system integrals of motion of the macroscopic de-
they do not establish a criterium that allows to define theSCription in a specific representati®d) of Jy, ais a certain
selection of the entropy counting rule univocally. set of parametersy is the scaling parametey, ., and«x

In the Boltzmann-Gibbs statistics the entropy counting@€ real constants characterizing the scaling transformations.
rule is supported by means of the scaling behavior of thd Ne nomenclatur®Ves, @) represents
microcanonical states density and the fundamental macro-
scopic observables, the integ¥als of motion and external pa- Wasyn @) =Wasyn I (a),N(a),a(a)]. @

rameters, with the increasing of the system degrees of free- This kind of self-similarity scaling laws demands an en-

dom, and its thermodynamic formalism, based on thetro counting rule different from the logarithmic. It is sup-
Legendre’s transformations between the thermodynamic pa- Py 9 9 ; P

tentials, by the equivalence between the microcanonical an@c’se‘.j that the Tsallis generalization of exponential and loga-
the canonical ensembles in the thermodynamic [{ffiftL). rithmic functions[21]

In Ref.[25] it was addressed the problem of generalizing xi-a_1
the extensive postulates in order to extend the thermostatiseq(x):[1+(1_q)x]1/(1—q), Ing(x)= —Eeq—l(x)
tics for some Hamiltonian nonextensive systems. Our propo- 1-q
sition was that this derivation could be carried out taking into ©)
::é)rgidvsirt?]u?r?etr;ﬁcsrgg;si,hmlIanty sc_:allng properties of the syséire more convenient to deal with it.

g of their degrees of freedom an

analyzing the conditions for the equivalence of the microca- Let us consider a finite Hamiltonian system with this kind
yzing q of scaling behavior in the ThL. We postulate that tfener-

nonical ensemble with the generalized canonical ensemble i L .
Bol | he foll form:
the ThL. The last argument has a most general character thziylrl{zed oltzmann principlg25] adopts the following form

the Gibbs, since it does not demand the separability of one (Sg) =Ny W. (4)
subsystem from the whole system. The Gibbs argument is in Bla— T

disagreement with the long-range correlations of the nonexrhe accessible volume of the microcanonical ensemble in
tensive systems. The consideration of the self-similarity scalthe system configurational spadeis given by

ing properties of the systems allows us to precise the count-

ing rule for the generalized Boltzmann entrdi@b|, as well

as the equivalence of the microcanonical ensemble with the W(I,N,a)=Q(l vaa)‘sIo:‘SIof ol =In(X;a)]dX,

generalized canonical one determines the necessary condi- (5)
tions for the applicability of the generalized canonical de-
scription in the ThL. where 8l , is a suitableconstant volume element that makes

W dimensionless. The corresponding information entropy for
the g-generalized Boltzmann entropy, Ed), is the Tsallis’s

Il. THE LEGENDRE FORMALISM nonextensive entrop§TNE) [28]
In this section the analysis of the necessary conditions for
the equivalence of the microcanonical ensemble with the S :_2 p?1Iny p (6)
. . . . . q k '"g Mk
Tsallis canonical one will be performed in analogy with our K

previous work 26], which was motived by the methodology

used by Gross in deriving his microcanonical thermostatis{theé Boltzmann constant has been set down as the)uity

tics [27] through the technique of the steepest descenéhe thermodynamic equilibrium the TNE leads to the

method. g-exponential generalization of the Boltzmann-Gibbs distri-
In Ref.[26] it was shown that the Boltzmann-Gibbs sta- butions,

tistics can be applied to the macroscopic study of the pseu-

doextensive systems, those wigxponential self-similarity wy(X: BN, a)=

scaling lawg[ 25,26 in the ThL, using an adequate selection EAU

1
Weq[_ﬁm(x;a)], 7
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whereZ,(3,a,N) is the partition functiorj29]. For this en- We recognized immediately the formalism of thermal-
semble, theg-generalized Laplace transformatida given ized g-expectations valu¢80]. The maximization leads to
by the relation,
Zy(B.N a)=f e(-AWIND S @ V& g 17)
o P T S, DAL

The Laplace transformation establishes the connection be- ) .
tween the fundamental potentials of both ensembles, thE/sing the identity,
g-generalizedPlanck potentia|

v __ V(e (18
Pq(B.N,a)=—Iny[Z4(B.N,a)], 9 SB_1+(1_q)(SB)q;
and the generalized Boltzmann entropy defined by the
Eq. (4) whereSg is the usual Boltzmann entropy, the Efj7) can be
rewritten as
B dl
eql:_Pq(Blea):l_feq(_ﬁl)eq[(SB)q(l1Naa-)]y0 B:VSB[l_(l_q)ﬁl] (19)

(10

The g-logarithmic function satisfies theubadditivity rela- Finally it is arrived to the relation,

tion,
VSs

Ing(xy) =Ing(x) +Ing(y) +(1=q)Ing(X)Ing(y), (11) p= [1+(1-q)IVSg]”

(20)

and, therefore, This is a very interesting result because it allows to limit

e.(x)e(V)=e[x+v+(1—a)xvl. 12 the values of the entropy index. If this formalism is arbi-
d(X)eq(y) =g x+y+ (1= a)xy) 12 trarily applied to a pseudoextensive systaee in Ref[26]),
The last identity allows us to rewrite the EQ.0) as then IVSg will not bound in the ThL andB will vanish

trivially. The only possibility in this case is to impose the

dl restrictiong=1, that is, the Tsallis statistics with an arbitrary
€l ~ Pq(B,N,a)]—f €ql —CaBl + (Sg)q(! ,N,a)]m, entropy index cannot be applied to the pseudoextensive sys-
(13)  tems. There are many examples in the literature in which the

Tsallis statistics has been applied indiscriminately without

where minding if the systems are extensive or not, i.e., gases

_ [31,32, blackbody radiatioi33], and others.

Cq=1+(1-0a)(Ss)q- (14) In some cases, the authors of these works have introduced

In the Tsalliss case, the linear form of the Legendre transS°Me artificial modifications to the original Tsallis formalism

formationis violatedand, therefore, the ordinary Legendre in order to obtain the same results as those of the classical

formalism does not establish the correspondence between t| ermodynamics, €., the-dependent Boltzmann constant

two ensembles. In order to preserve the homogeneous sc ee, for examp_lg, in Ref34)). The apo_ve results |nd|_cate
the nonapplicability of the Tsallis statistics for these kind of

ing in the g-exponential function argument, it must be de- ; it th inted out that thi lusion i
manded the scaling invariance of the set of admissible rep‘c-'yS ems. 't must be pointed out that this conclusion 1S sup-

resentations of the integrals of motion sp&28], M., that ported with a great accuracy by direct experimental mensu-

is, the setM_ is composed by those representatidissat- rements trying to find nonextensive effects in some ordinary
is%ying the réstricti on extensive systemé&osmic background blackbody radiation

[35], fermion system$36], gaseq37]).
=0, (15) The Tsallis formalism introduces a correlation to the ca-
nonical intensive parameters of the Boltzmann-Gibbs proba-
in the scaling transformation given in E@.). In these cases, bilistic distribution function. This result differs from the one
when the ThL is invoked, the main contribution to the inte-obtained by Toral[38], who applied to the microcanonical
gral of Eq. (13 will come from the maxima of the ensemble the physical definitions of temperature and pres-
g-exponential function argument. The equivalence betweesure introduced by Abe in Reff32],
the microcanonical and the canonical ensemble will only

take place when there is only one sharp peak. Thus, the ar- 1 1 J

gument of theg-exponential function leads to assume the KT 14(1— Esqy

nonlinear generalization of the Legendre formalig30,31] phys (1S,

given by
_ PPhYS _ 1 isq (21)
Pq(B,N,a)=maxc,Bl —(Sg)q(I,N,a)]. (16 KTphys 1+(1—-q)Sqav "
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When these dgflnltlons are applled to the mlcroca_nonlcal en- el —Po(B.N a)]zeq[_ﬁ (BN,a)]
semble assuming the generalized Boltzmann principle, Eq.

(4), the physical temperature coincides with the usual Boltz- 1
mann relation, X 9

Sl det”z( = (—Kg) ur

=

It is easy to show, that this result does not depend on the F( 2- q 1 )
entropy counting rule of the generalized Boltzmann principle 1-q 2
[25], but on separability of a closed system in subsystems _ .
weakly correlated among them, and the additivity of the in- DenotingKg = by
tegrals of motion and the macroscopic parameters. It must be
recalled that these exigencies are only valid for the extensive F( 2- q)
systems, but, it is not the case that we are studying here. Our _, 1
2-q 1\’
T

-l

(24)

1
kT

4
_aESB'

phys F

result comes in fashion as consequence of the system scaling™a — 1-q

laws in the thermodynamic limit. 5|odet”2(2—(—Kq),w _
An important second condition must be satisfied for the m

validity of the Legendre transformation, the stability of the

maximum. This condition leads to tliegeneralization of the  and rewriting Eq.(24) again

microcanonical thermostatistics of Groga7]. In this ap-

proach, the stability of the Legendre formalism is supported e;[ — P4(8,N,a)]

by the concavity of the entropy, the negative definition of the _

quadratic forms of the curvature teng@6,27]. In the Tsal- ~eq[ —Py(B.N,a)+Ing(K;H)—(1-q)

lis's case, the curvature tensor must be modified as

XIng(Kq Pg(B.N,a)], (26)
it is finally arrived to the condition
g e (a7 1
(1~aP R(q; 8,N,a)=|(1—q)Ing(Kq *)[<1. 27
J . . S
x| Bu—(Se)q+ ﬂv (SB) (22) The last condition could be considered asoptimization
v problem since the entropic index is an independent variable

in the functional dependency of the physical quantities. The
o . . . . specific value ofj could be chosen in order to minimize the
Taking into consideration that the scaling behavior of thefuncuon R(q;3,N,a) for all the possible values of the inte-
functions ©g), and P, are identical, which is derived from grals of motion. In this way, the problem of the determina-
Eq. (16), it is easy to ‘See that the curvature tensor is scalingjon of the entropic index could be solved in the frame of the

invariant. USIng the above definition and dEVE|Op|ng the Taym|crocanon|ca| theory without appea“ng to the computa-
lor power expansion up to the second order term in thgjonal simulation or the experiment.

g-exponential argument, we can approximate E¢) as Thus, theg-generalized Planck potential could be ob-
tained by means of the generalized Legendre transformation,
eq —Pq(B,N,a
ol ~Po( A N2)] PUBN=CoBl —(So)g(lNa),  (28)
=f e —Pq(B.N,a)] where the canonical parametgsshold Eq. (20). Thus, the

g-generalization of the Boltzmann entropy will be equivalent
with the Tsallis entropy in the ThL;

(Se)g=Sq- (29
dl

S (23 If the uniqueness of the maximum is not guaranteed, that
© is, any of the eigenvalues of thegcurvature tensor is non-
negative in a specific region of the integrals of motion space,
The maximum will be stable if all the eigenvalues of the there will be a catastrophe in the generalized Legendre trans-
g-curvature tensor areegativeandvery large In this case, formation. In analogy with the traditional analysis, this pe-
in the g-generalized canonical ensemble there willdmeall  culiarity can be related with the occurrence of a phenomenon
fluctuations of the integrals of motion around its similar to the phase transition in the ordinary extensive
g-expectation values. The integration of E3) yields systems.

X€q

1
— 5 (=T~ Kg)uy

I=ly

X(1=1y)"
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[1l. CONCLUSIONS of the Tsallis formalism that in this approach appear in a
natural way: theg-expectation values, the generalized Leg-

We have analyzed the conditions for the validity of the dre t ¢ i betw the th q . A
Tsallis generalization of the Boltzmann-Gibbs statistics ENCr€ transtormations between the thermodynamic: poten-

Starting from the microcanonical ensemble, we have showfaS: @s Well as the conditions for the validity of the same
that the same one can be valid for those Hamiltonian systenfd€: havinga priori the possibility to estimate the value of
with potential self-similarity scaling laws in the asymptotic e entropic index without the necessity of appealing to the
states density. Systems with this kind of scaling laws must bomputational simulations or the experiment.

composed of strongly correlated particles, and, therefore, For the case of finite systems satisfying this kind of scal-
these systems must exhibit an anomalous dynamical behaid laws in the thermodynamic limit, we have generalized
ior. There are some computational evidences that sugge#ie microcanonical thermostatistics of Gross assuming the
that the Tsallis’s statistics could be applied for dissipativeTsallis generalization of the Boltzmann’s entropy. This as-

dynamical systems at the edge of chasse in Refs[13—  sumption leads to the generalization of the curvature tensor,
17,39-41) and Hamiltonian systems with long-range inter- which is the central object in the thermodynamic formalism
actions[42-44. of this theory, since it allows us to access to the ordering

In this context we have shown an entire series of detailsnformation of a finite system.
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