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Variational theory for thermodynamics of thermal waves
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We discuss description of macroscopic representations of thermal fields with finite signal speed by compos-
ite variational principles involving suitably constructed potentials along with original physical variables. A
variational formulation for a given vector field treats all field equations as constraints that are linked by
Lagrange multipliers to the given kinetic potential. We focus on the example of simple hyperbolic heat transfer,
but also stress that the approach can be easily extended to the coupled transfer of heat, mass, and electric
charge. With our approach, various representations may be obtained for physical fields in terms of potentials
~gradient or nongradient representations!. Corresponding Lagrangian and Hamiltonian formalism can be de-
veloped. Symmetry principles yield components of the energy-momentum tensor for the given kinetic poten-
tial. The limiting reversible case appears as a special yet suitable reference frame to describe irreversible
phenomena. With the conservation laws resulting from the least action principle and the Gibbs equation, the
variational scheme of nonequilibrium thermodynamics follows. Its main property is abandoning the assump-
tion of local thermal equilibrium.
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I. INTRODUCTION

This paper deals with thermal processes described
fields; it is motivated by the fact that the construction
variational principles for irreversible fields still seems
have large difficulties. The most severe difficulty arises fro
unknown kinetic potentials, which are integrands of fun
tionals that should be extremized, as there are hardly
systematic rules to obtain suitable functions of this so
Equations of dissipative fluid mechanics and irreversi
thermodynamics provide a frequently used Eulerian or fi
representation of the process. At best, only some trunc
forms of these equations were shown to possess the w
known structure of the Euler-Lagrange equations of the c
sical variational problem@1,2#.

When investigating thermal fields two general fram
works may be applied. The first deals directly with differe
tial equations describing the process, whereas the se
uses the corresponding action integrals. By extremizing th
integrals, solutions of the differential equations in quest
can be found by the so-called direct variational methods@1#.
The important physical ingredient comes with conservat
laws obtained from the Hamiltonian actions and symme
principles@2#. However, for irreversible processes, there a
serious impediments to find a general variational formu
tion. These are attributed to the presence of non-self-adj
operators@3#. The non-self-adjoint operators cause nonsy
metric Frechet derivatives in the original state space so
according the Vainberg’s theorem, an exact variational
mulation cannot be found in this space@4,5#.

Among the recent results found in the first framewo

*On leave from Faculty of Chemical and Process Engineer
Warsaw University of Technology, 1 Warynskiego Street, 0
645 Warsaw, Poland. Electronic address:
sieniutycz@ichip.pw.edu.pl

†Electronic address: berry@uchicago.edu
1063-651X/2002/65~4!/046132~11!/$20.00 65 0461
as
f

-
ny
t.
e
d
ed
ll-
s-

-
-
nd
se
n

n
y
e
-
nt
-
at
r-

~differential equations! we stress those obtained durin
1985–1997 by Grmela and co-workers. They worked out
so-called bracket formalisms~Grmela @6#; Grmela and Ot-
tinger @7#!, the main features of which were exposed in
recent book by Beris and Edwards@8#. The single-bracket
and two-bracket descriptions are usually distinguish
These formalisms produce evolution equations via Pois
nian and dissipative brackets, the latter being the functio
extension of the Rayleigh dissipation function. Yet the
bracket approaches are usually not associated with an e
mum of a definite quantity. For this purpose a single Pois
nian bracket and a Hamiltonian system are both neces
and sufficient.

Working within the variational framework, we focus he
on the so-called exact variational formulations, i.e., tho
that do not involve any subjectively chosen ‘‘frozen’’ var
ables. These formulations have many well-established
tues. First, physical insight is gained when a single sca
quantity is found that generates the whole vector field rep
sented by many equations of motion. Second, unification
diverse processes is often possible, for example, mechan
electrical, and even chemical processes. Third, with the
called direct variational methods that use trial functions,
proximate solutions can be obtained. They are usually
good accuracy@1#, and they may be the only usable solutio
when the analytical solution of the differential equations
interest cannot be found. Fourth, integrals of motion a
conservation laws can be obtained from the symmetry p
ciples @2#.

In our approach, the process is transferred to a differ
suitable space, and a variational formulation is found in t
space. This is made by means of certain potentials, simila
those known for electromagnetic field. The origin and pro
erties of these potentials are not explained sufficiently wel
date. Our purpose is to contribute to improved understand
of this issue. We exploit some observations done in ear
works on thermal fields@9–11#. We also refer to results ob
tained for reversible systems, in particular those of Heri
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@12#, Stephens@13#, Seliger and Whitham@14#, Atherton and
Homsy @15#, Caviglia @16#, and Sieniutycz and Berry@17#.
These latter papers proved the crucial role of the Lagra
multipliers in constructing potential representations of phy
cal fields for the purpose of variational principles~see also,
Refs.@18,19#!.

II. LAGRANGE MULTIPLIERS AS ADJOINTS AND
EXTRA VARIABLES IN IRREVERSIBLE PHENOMENA

For nonconservative and other irreversible phenome
the difficulties in finding variational formulations are attrib
uted to the presence of the so-called non-self-adjoint op
tors. They introduce asymmetries in the related equatio
whence, according to Vainberg’s theorem, a suitable fu
tional cannot be found in the space of original variables.
show that these difficulties do not appear when the proc
space is enlarged by addition of suitable new variables, o
called ‘‘the potentials,’’ which are, in fact, the Lagrange mu
tipliers for the given constraints. In brief, our method tran
fers the problem to the space composed of original varia
and potentials. In fact, the method assures a spontan
transfer to the most proper space. The method is eas
apply because the equations for which a variational princ
is sought are simply adjoined by Lagrange multipliers~vec-
tor l! to the accepted kinetic potentialL.

Yet, to date, the origins and key aspects of approache
this sort were not enunciated clearly in the literature. Th
essence is that the kinetic potentialL can be arbitrary, or
correct formulations can be found for an infinite number
variousL. Until now, this was not stated sufficiently clear
in the literature, perhaps due to the apparent puzzle o
nonuniqueL. However, a change in the kinetic potentialL
leaves the original equations unchanged. While this is a
should be, extremum conditions of the action with respec
the original variables do change with changes inL. When-
ever the original variables are expressible in terms of
Lagrange multipliersl, explicit ‘‘representations’’ of the
original fields in terms ofl and its derivatives are obtained
They depend on the accepted kinetic potentialL, although
similar representations could be found for a differentL. The
new fieldsl are adjoint variables for the problem; they ‘‘rep
resent’’ the original variables in the way depending on pro
erties of the original equations and the acceptedL. In fact,
one can produce an infinite number of different, still corre
representations of the process in the space of the orig
coordinates and Lagrange multipliers.

In different branches of science, the latter are called
various names. The names adjoint variables or simply
joints appear as a rule in various problems of optimal con
in which the adjoints are companions of original coordina
of state, for any chosen objective function. In some cases
whole variational description can be accomplished only
the space of adjoints; in others, only in the space of origi
variables. Yet, in the general case, the variational descrip
can be set only in the general composite space of phys
variables and their adjoints. In the optimization theory, a
in particular in Pontryagin’s principle, the role of adjoints
well known. The case of adjoints may also be referred
04613
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variational principles of classical~nonfrictional! mechanics
with space coordinates as original variables and moment
adjoints. It is also worth stressing that the potentials~multi-
pliers, adjoints, momentum-type coordinates, etc., whate
we call them! are quantities of the same sort as those used
Clebsch in his representations of hydrodynamic veloc
Clearly, the phase space, which is well known in the sta
tical mechanics, is the space composed of the space co
nates and their adjoints.

With all these examples, it should not be surprising th
general variational formulations should be sought in e
tended spaces~with adjoints! rather than in original spaces o
physical formulations. The apparent, formal peculiarity
irreversible processes could be accepted in this context
in the way that they require the whole composite space
their variational formulation, meaning that the reduction
coordinates is impossible. From a physical perspective,
reversibility’’ can be interpreted to mean that there are so
degrees of freedom into which otherwise-conserved qua
ties such as energy may flow but from which no return c
be observed, at least under the conditions of the descrip
or observation. One way to do this is to treat some degre
freedom as implicit rather than explicit. Still, the impossib
ity of reducing the space seems to be an essential co
quence stemming from the presence of both even and
time derivatives in equations describing the irreversible p
nomena.

In the ~enlarged! space with Lagrange multipliers or pro
cess adjoints as extra coordinates, the difficulties relate
asymmetries do not appear. In the realm of the enlar
space, irreversibility properties do little to hamper a var
tional formulation; they only cause a more complex rep
sentation of physical fields for the sameL. The dimension of
the enlarged space is 2n, wheren is the number of both the
original physical variables and the original equations writt
in the form of first-order~partial or ordinary! vanishing con-
straints,C50. This is the dimension of what we call her
‘‘the proper enlarged space’’ as the space that is capabl
accommodating a variational formulation for every set
first-order differential equations. Spaces of lower dimensio
are in general too restricted for that purpose, spaces of la
dimensions are unnecessary. In fact, the proper enla
space is the space of minimal dimensionality in which
variational formulation still exists for nontruncated equ
tions. In the proper enlarged space, to which considered
cesses are transferred, the Frechet symmetry is assured
matically. Namely, in the proper enlarged space,
necessary extremum conditions are obtained by setting
zero the variation of the action integralA based on the La-
grangianL5L1lC ~whichever kinetic potentialL and con-
straints C50 are!. These extremum conditions are,
course, the Euler-Lagrange equations of the variational pr
lem for A. With the tool of the Legendre transform, Hami
tonian formulations consistently follow.

Hyperbolic heat transfer, considered in the following se
tions, is one of examples where the progress resulting fr
use of the present approach is explicit. Yet the approach
be easily extended to the coupled transfer of heat, mass,
electric charge. With various ‘‘gradient or nongradient’’ re
2-2
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VARIATIONAL THEORY FOR THERMODYNAMICS OF . . . PHYSICAL REVIEW E 65 046132
resentations of original physical fields in terms of potentia
least action type criteria can be formulated for other p
cesses as well, and corresponding Lagrangian and Ha
tonian formalisms can be developed. Symmetry princip
can be considered, and components of the energy-mome
tensor can be evaluated for the accepted kinetic potentiaL.
In each case, an interesting observation follows: the limit
reversible process is a suitable reference frame for ana
of typical irreversible processes.

III. ACTION INTEGRAL AND ADJOINT VARIABLES FOR
A DAMPED-WAVE HEAT TRANSFER

We demonstrate here the technique of adjoint represe
tions of physical fields by constructing a variational form
lation for the linear process of pure heat conduction~heat
flux q! in a rigid solid at rest. The finite speed of propagati
of thermal signals is assumed, which means that we decid
use a hyperbolic model rather than parabolic; in particu
the equation of change for the energy density or tempera
needs to be a damped-wave equation. All standard equa
of change~with parabolic terms! have an absurd physica
property: a disturbance~thermal, concentrational, etc.! at any
point in the medium is felt instantly at every other point; th
is, the velocity of propagation of disturbances is infinite. T
paradox is clearly seen in certain routine solutions of pa
bolic equations; for instance, in the case of heat conduc
in a semi-infinite solid on the surface of which the tempe
ture may suddenly increase from, for example,T5T0 to T
5Ts . The parabolic solution, which is based on the er
integral, providesT5T0 for the timet50, but for any very
short timet.0 and arbitrarily large distancesx from the wall
one has aT(x,t) different from T0 in the whole space im-
plying infinitely fast propagation of the disturbance.

The above mentioned nonphysical behavior has b
pointed out by many researchers@20–24# and others, and the
dilemma was resolved by the acceptance of the hypothes
heat flux relaxation. The link between the hypothesis a
certain results of nonequilibrium statistical mechanics, s
as Grad’s solution of the Boltzmann kinetic equation@25#,
was found@17,26#. The hypothesis is based on the positi
that Fourier’s law is an approximation to a more exact eq
tion, called the Cattaneo equation, which contains the t
derivative of the heat flux along with the flux itself.

For the hyperbolic description of the example conside
above, an interesting effect appears for the wall heat
(x50) when the ‘‘driving force is being turned on.’’ Namely
the wall heat flux,q(0), does not start instantaneously, b
rather grows gradually@24# with a rate that depends on
relaxation timet. After some time the wall heat flux arrive
at a maximum and then decreases in time, similar to
Fourier case. This decrease is a classical effect and it oc
since the temperature gradient at the wall decreases in
in the course of heating of our solid. Consequently the F
rier and Fick theories are inappropriate for describing
short-time effects, and although relaxation times are typic
very brief ~of the order of 10212 s for typical liquids and
metals, and 1029 s for gases under normal conditions! the
related effects can still have theoretical importance.
04613
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Assuming that the heat conduction process is describe
the Cattaneo equation of heat transfer and the energy con
vation law, the set of constraints is

]q

c0
2]t

1
q

c0
2t

1“re50 ~1!

and

]re

]t
1“•q50, ~2!

where the density of the thermal energyre satisfiesdre
5rC dT, c0 is propagation speed for the thermal wave,t is
thermal relaxation time, and the productD5c0

2t is the ther-
mal diffusivity.

A subtle feature is the irreversible nature of the heat p
cess that requires distinguishing between the trajectorie
matter, energy, and entropy. Only in reversible processes
tropy or energy ‘‘flow with the matter’’ or they are ‘‘linked to
the matter,’’ in irreversible processes the trajectories of
tropy or energy differ from those of the matter. Although w
restrict ourselves here to a definite coordinate system,
rest frame of the solid, a flow of energy and entropy do
occur; the energy flow is represented by the heat flow ve
q. The name ‘‘vectorq’’ is attributed here to a set of number
describing the coordinates ofq, as in the matrix theory, with-
out considering any transformation properties ofq to differ-
ent coordinate frames.

For simplicity we assume the constant values of the fie
q andre at the boundary. We ignore in this section the vo
ticity properties of the heat flux, i.e., it is not our conce
here whether“3q vanishes or is different from zero. Yet w
point out that the Cattaneo equation~1! ensures the vanishing
rotation for all future times whenever the rotation of the in
tial field q(x,0) vanishes. The vorticity properties of the sy
tem are discussed in Sec. IV.

For the purpose of a variational formulation, we assu
that all dynamical equations of interest constitute ‘‘the co
straints,’’ these constraints are adjoined in an action fu
tional A to a singular kinetic potentialL that does not contain
the derivatives. An important issue that distinguishes
variational formulation considered here from the tradition
ones is that one can apply diverseL and always will get a
correct variational formulation satisfying the constraints.
fact, there is an infinite number of possibleL’s that can suc-
cessfully be applied. In particular, for a given vector fieldu
one can use quadraticL’s of the structureL5(1/2)B:uu, and
correct representations ofu can be obtained for any nonsin
gular quadratic matrixB. This property, which was first ex
emplified in an explicit way for a vector set of parabol
equations of change@19# happens because differentL’s yield
different representations of physical fields of interest in ter
of the Lagrange multipliers of the constraints. These mu
pliers are, in fact, the potentials of the field; they may
called the Clebsch potentials of the problem, as the w
known Clebsch representations of hydrodynamic veloc
use the potential functions that belong to this class. We s
also see that among variousL, Hamilton’s structure ofL
2-3
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~designated byL! has a definite preference. We restrict ou
selves here to the Lagrangian formalism; yet the results
tained here can be transformed into the Hamiltonian form
ism whose main properties for extended thermodyna
systems are described by Grmela and Lebon@27#.

An action functional that absorbs constraints~1! and ~2!
by the Lagrange multipliers, the vectorc and the scalarf, is
taken in the Hamilton’s form

A5E
t1 ,V

t2
«21H 1

2

q2

c0
22

1

2
re

22
1

2
«21c•S ]q

c0
2]t

1
q

c0
2t

1“reD
1wS ]re

]t
1“•qD J dV dt. ~3!

In Eq. ~3!, « is the energy density at an equilibrium referen
state, the constant that ensures the action dimension foA,
but otherwise is unimportant. Yet we assume that the ac
energy densityre is close to«, so that the variablere can be
identified with the constant« in some suitable approxima
tions.

We shall call the multiplier-free term of the integrand~3!

L[
1

2
«21H q2

c0
22re

22«J ~4!

the Hamiltonian form of kinetic potential for heat transfer.
is based on the quadratic form of an indefinite sign, an
has usual units of the energy density. It can easily be sh
that not far from equilibrium, wherere is close to«, the two
static terms ofL yield altogether the density of thermal e
ergy,re .

This result proves that the limiting structure ofL is
Hamiltonian, and it should be suitable to describe proces
of heat transfer. While, as pointed out in Sec. II, we co
use different kinetic potentials, we have shown that
Hamilton’s form ofL defined by Eq.~4! is the most suitable
from the viewpoint of the energy conservation in a limitin
reversible process. Thus, in spite of arbitrariness in the
ceptedL, Hamiltonian structures of the kinetic potential a
preferred.

Vanishing variations of actionA with respect to multipli-
ersc andf recover constraints, whereas those with resp
to state variablesq andre yield representations of state var
ables in terms ofc andf. For the accepted Hamilton’s struc
ture of L,

q5
]c

]t
2

c

t
1c0

2
“w ~5!

and

re52“•c2
]f

]t
. ~6!

In a limiting reversible process~undamped or wave heat con
duction fort→`! the process is described by purely gra
04613
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ent representations; the representation forq then has the
structure of the electric fieldE expressed in terms of electro
magnetic potentials.

For the Hamilton’s structure ofL, the actionA, Eq. ~3!, in
terms of the adjointsc andf is

A5E
t1 ,V

t2
«21H 1

2c0
2 S ]c

]t
2

c

t
1c0

2
“f D 2

2
1

2 S“•c1
]f

]t D 2

2
1

2
«2J dV dt. ~7!

Its Euler-Lagrange equations with respect toc and f are,
respectively,

]

]t H 1

c0
2 S ]c

]t
2

c

t
1c0

2
“f D J 1

1

tc0
2 S ]c

]t
2

c

t
1c0

2
“f D

2“S“•c1
]f

]t D50 ~8!

and

2
]

]t S“•c1
]f

]t D1“•S ]c

]t
2

c

t
1c0

2
“f D50. ~9!

IV. HYPERBOLIC EQUATIONS FOR ORIGINAL
VARIABLES AND THEIR VARIATIONAL ADJOINTS

It is easy to see that Eqs.~8! and ~9! are the original
equations of the thermal field, Eqs.~1! and ~2!, in terms of
the potentialsc and f. Their equivalent form below show
the damped-wave nature of the transfer process.

For the Cattaneo equation~1! we obtain from Eq.~8!

]2c

c0
2]t22

1c

tc0
2t

1
“f

t
2“~“•c!50 ~10!

and, with the energy conservation equation~2!, the simplifi-
cation of Eq.~9! yields

2
]2f

]t2 2
“•c

t
1c0

2¹2f50. ~11!

Note that the set~10! and ~11! becomes decoupled in th
reversible case of an infinitet. Interpretingt as an average
time between the collisions, we can regard the revers
process~with t→`! as the collisionless one.

Still another form of heat equations is interesting. Wh
we have obtained Eq.~8! or Eq. ~9! as the adjoint represen
tations of the Cattaneo relation~1!, a more insightful form is
found after one starts with separating the term linear inq in
Eq. ~8!,

2
]

]t H 1

c0
2 S ]c

]t
2

c

t
1c0

2
“f D J 1“S“•c1

]f

]t D5
q

tc0
2 .

~12!

Then thef terms of the left-hand side reduce and we are
with
2-4
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2
]2c

c0
2]t2 1

]c

tc0
2]t

1¹2c 5
q

tc0
2 . ~13!

Thus, for the Cattaneo equation~1!, and in terms of the
scaled vector potentialC such thatC5ctc0

2 the above
equation takes the form

¹2C2
]2C

c0
2]t2 1

]C

tc0
2]t

5q. ~14!

For the energy conservation equation~2! we obtain by sim-
plification of Eq.~9!,

]2f

]t2 1
“•c

t
2c0

2¹2f50. ~15!

Multiplying this equation byt and eliminatingc with the
help of the energy density representation,

re52“•c 2
]f

]t
, @Eq. ~6!#

yields the following equation for the scalar potential:

t
]2f

]t2 2
]f

]t
2tc0

2¹2f5re . ~16!

In terms of the modified scalar potentialF such thatF5
2ftc0

2 ~note the minus sign in this definition! the above
equation takes the form

¹2F2
]2F

c0
2]t2 1

]F

tc0
2]t

5re . ~17!

Along with the equation~14! for the vector potential, we
have thus found the set of four inhomogeneous equat
describing dissipative process of heat transfer in terms of
potentials of thermal field,F andC. They show that the hea
flux q and energy densityre are sources of a thermal fiel
that satisfies the damped-wave equations for the potentiaF
andC. The problem of thermal energy transfer is thus b
ken down to the problem of the related potentials. This i
situation similar to that in electromagnetic theory@28# or in
gravitation theory@29#, where the specification of source
~electric four current or matter tensor, respectively! defines
the behavior of the field potentials. In fact, some equation
heat transfer in terms of these potentials are analogou
inhomogeneous equations for potentials of the electrom
netic field, yet we recognize these analogies as formal o

The partial differential equations for potentialsF and C
may be contrasted with the differential equations of cha
for the state variables,re andq, which follow from Eqs.~1!
and~2!. By taking divergence of Eq.~1! and using Eq.~2! we
find the telegraphers equation

¹2re2
]2re

c0
2]t22

]re

tc0
2]t

50, ~18!
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or its equivalent form, which is the damped-wave equat
for the temperature

¹2T2
]2T

c0
2]t22

]T

tc0
2]t

50. ~19!

V. VORTICITY CONSTRAINT AND A GENERALIZED
ACTION FUNCTIONAL

A problem arises when we attempt to obtain an equat
of the above structure for the heat flux. Indeed, by taking
partial derivative of Eq.~1! with respect to time we conclud
that the heat flux densityq satisfies the equation

]2q

c0
2]t2 1

]q

tc0
2]t

1“

]re

]t
1¹2q5

]2q

c0
2]t2 1

]q

tc0
2]t

2“~“•q!

50. ~20!

With the help of the well-known vector identity

“~“•q!5¹2q1“3~“3q! ~21!

we discover that the heat fluxq satisfies a partial differentia
equation of the type of telegraphers equations~18! and ~19!
only if it is irrotational, i.e., if“3q50. We recall that this
was an initial assumption of our analysis; it was possi
because the Cattaneo equation ensures the vanishing rot
for all future times when the rotation of the initial fiel
q(x,0) vanishes. This observation follows directly from th
vorticity form of Eq. ~1!,

]“3q~x,t !

]t
5 2

“3q~x,t !

t
, ~22!

which proves that even if the initial vorticity field is nonva
nishing its effect will decay soon because it will relax to ze
in accordance with the equation

“3q~x,t !5“3q~x,0!expr ~2t/t!. ~23!

Clearly, after a short time, comparable with the avera
time between collisions, the effects associated with the h
flux vorticity are negligible. Equation~23! also says that the
flows q that are irrotational at the beginning will rema
irrotational for any future timet. These conclusions substan
tiate omission of effects caused by the finite vorticity of he
flux for sufficiently long times. Since, however, the role
the initial vorticity condition may not be ignorable for sho
times, we stress that there are theoretical tools that al
both to preserve or to ignore vorticity effects. Tools of taki
into account the finite vorticity effects are known in the l
erature of hydrodynamics of adiabatic fluid in the form of t
so-called Lin’s constraints~Seliger and Whitham@14#!,
which are build into related action functionals to describe
identity of fluid elements along their Lagrangian trajectorie
Yet in problems such as mass diffusion or heat transfer,
identity of the relevant pseudofluid elements does not se
to be at issue in view of the inherent dispersion. If we a
2-5



tr

he

ls

o

e

r

p-

-

that
nce
in
ns

ed
he
rs.
ch
ore

es.

ich

ed
a
ns
ns
hey

rgy

. In

-
t
be
run-

STANISLAW SIENIUTYCZ AND R. STEPHEN BERRY PHYSICAL REVIEW E65 046132
sume, for example, that the vanishing vorticity is the ex
constraint, the action functional is

A5E
t1 ,V

t2
«21H 1

2

q2

c0
22

1

2
re

22
1

2
«21c•S ]q

c0
2]t

1
q

c0
2t

1“reD
2k•“3q1wS ]re

]t
1“•qD J dV dt. ~24!

In this functional the vorticity constraint was adjoined to t
kinetic potential with the help of the vector potentialk. The
representations of the physical variables in terms ofc, f,
andk are

q5
]c

]t
2

c

t
1c0

2
“w1“3k ~25!

and

re52“•c2
]f

]t
. @Eq. ~6!#

The actionA, Eq. ~24!, expressed in terms of the potentia
c, k, andf is

A5E
t1 ,V

t2
«21H 1

2c0
2 S ]c

]t
2

c

t
1c0

2
“f1“3kD 2

2
1

2 S“•c1
]f

]t D 2

2
1

2
«2J dV dt. ~26!

Its Euler-Lagrange equations with respect toc, f, andk are,
respectively,

]

]t H 1

c0
2 S ]c

]t
2

c

t
1c0

2
“f1“3kD J 1

1

tc0
2 S ]c

]t
2

c

t
1c0

2
“f

1“3kD2“S“•c1
]f

]t D50, ~27!

2
]

]t S“•c1
]f

]t D1“S ]c

]t
2

c

t
1c0

2
“f1“3kD50,

~28!

and

“3S ]c

]t
2

c

t
1c0

2
“f1“3kD50, ~29!

where the last equation ensures the vanishing vorticity
heat flux. After separating the terms linear inq in Eqs.~27!
and ~28! and rearranging these equations as before we g

2
]

]t H 1

c0
2 S ]c

]t
2

c

t
1c0

2
“f1“3kD J 1“S“•c1

]f

]t D
5

q

tc0
2. ~30!
04613
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Consequently wave equation~14! for C5ctc0
2 is obtained

again

¹2C2
]2C

c0
2]t2 1

]C

tc0
2]t

5q. @Eq. ~22!#

Moreover, as div(“3k)50, for the energy balance~2! one
finds from Eq.~28! the representation~15! again. Hence, as
the energy density representation in the form of Eq.~6! is
still valid, wave equations~16! or ~17! are obtained again fo
the scalar potentialsf andF52ftc0

2. Thus, even for gen-
eralized actions~24! and ~26! we find

¹2F2
]2F

c0
2]t2 1

]F

tc0
2]t

5re . @Eq. ~17!#

The only difference refers to the vanishing vorticity pro
erties ofq. By taking the partial derivative of Eq.~1! with
respect of time and using the vector identity~21! we obtain
instead of Eq.~20!

¹2q2
]2q

c0
2]t22

]q

tc0
2]t

50 ~31!

for the irrotational heat flux~29!. In this case all basic physi
cal fields, Eqs.~18!, ~19!, and ~31!, are described by the
telegrapher’s equations. These are linear PD equations
describe damped heat transfer in solids. Note the differe
in sign of linear or ‘‘dissipative’’ terms of these equations
comparison with equations for the potentials. This mea
that whereas the physical fields are damped due to the~posi-
tive! dissipation the potentials are simultaneously amplifi
due to a ‘‘negative dissipation.’’ This also shows how t
variational principle deals with non-self-adjoint operato
We may conclude that the Lagrange multiplier approa
leads to the potential descriptions much easier and in a m
systematic and transparent manner than other approach

VI. SOME SPECIAL CASES

An irreversible process constitutes a general case in wh
both potentials~vector potentialc and scalarw! are neces-
sary. To prove this statement let us deal with a simplifi
action ~24! in the single potential but irreversible case of
finite t. Then a truncated form of general representatio
~25! and~6! follows. However, the truncated representatio
are invalid in the case of irreversible processes. In fact, t
imply the source term2“•c/t5re /t for the four diver-
gence of energy, which means the violation of the ene
conservation.

The truncated representations are still quite general
fact, they include the well-known Biot’s representations,q
5]c/]t andre5“•c, which are the simplest gradient rep
resentations of the process~Biot @30#!. We thus conclude tha
from the physical viewpoint Biot’s representations should
restricted to reversible processes. They correspond with t
cated Cattaneo equation~1! without the irreversibleq term
and with a collisionless limit of action~26! when both fields
k andw vanish and only the fieldc is essential. An irrevers-
2-6
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ible process constitutes a general case in which both po
tials ~vector potentialc and scalarw! are necessary. To prov
this statement let us as deal with a simplified action~24! in
the single-potential but irreversible case of a finitet. Then a
truncated form of general representations~25! and ~6! fol-
lows. However, the truncated representations are invalid
the case of irreversible processes. In fact, they imply
source term2“•c/t5re /t for the four divergence of en
ergy, which means the violation of the energy conservati

The related reversible action takes in the adjoint space
simplest possible form

A5E
t1 ,V

t2
«21H 1

2c0
2 S ]c

]t D 2

2
1

2
~“•c!22

1

2
«2J dV dt.

~32!

With the simplest~Biot’s! representations, or even with the
reversible generalizations involvingk, energy conservation
is satisfied identically. Functional~32! then refers to un-
damped thermal waves that propagate with the speedc0 and
satisfy D’Alembert’s equation for the energy densityre or
temperatureT.

The reversible process is a suitable limiting case to d
cuss the advantages and disadvantages resulting from
choice of a definite kinetic potentialL. As already pointed
out, with our choice ofL, abandoning the energy conserv
tion constraint in the action~or the formal substitutionw
50 in A! is allowed, provided that the Hamiltonian form o
the kinetic potential, Eq.~4!, is still applied. However, for
different L’s the omission of adjoining the energy constra
would not be admissible. For example, a change of the s
of re

2 in Eq. ~4! would result in representations violatin
energy conservation even in the reversible case, should
Cattaneo equation and the equation of vanishing vorticity
q be taken as the only adjoined constraints. This substa
ates our choice of the Hamiltonian structure of the kine
potential as the most economical structure. Yet, as alre
stated, there is considerable flexibility in choosing the kine
potential whenall process constraints are adjoined.

VII. ENERGY-MOMENTUM TENSOR
AND CONSERVATION LAWS

The energy-momentum tensor is defined as

Gjk[(
i

]n l

]x j F ]L

]~]n l /]xk!G2d jkL, ~33!

whered jk is the Kronecker delta andx5(x,t) comprises the
spatial coordinates and time. The conservation laws are v
in absence of external fields; they describe then the vanis
four divergences~¹, ]/]t! of Gjk. Our approach here follows
those of Stephens@13# and Seliger and Whitham@14#, where
the components ofGjk are calculated forL gauged by use o
divergence theorem along with differentiation by parts. T
link of the components of tensorGjk with the partial deriva-
tives of four principal functionsSj , which are solutions of
Hamilton-Jacobi equations, is known@31#.
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Any physical tensorG5Gjk has the following genera
structure:

G5F T 2G

Q E G , ~34!

whereT is the stress tensor,G is the momentum density,Q is
the energy flux density, andE is the total energy density.

When external fields are present, the kinetic potentiaL
contains explicitly some of coordinatesx j . Then the balance
equations are satisfied rather than conservation laws,

(
k

S ]Gjk

]xk D1
]L

]xj 50 ~35!

for j, k51,2,...,4. Equation~35! is the formulation of balance
equations for momentum (j 51,2,3) and energy (j 54).

We recall the assumption of the small deviation fro
equilibrium at which our model is physically consisten
With this assumption and for the kinetic potential of Eq.~4!
gauged as described above, the gauge action assures th
components of the energy-momentum tensor are multip
independent. These components are given by Eqs.~36!–~39!
below. Respectively, they describe: momentum densityGa,
stress tensorTab, total energy densityE, and density of the
total energy fluxQb, which approximately equalsqb.

The momentum density of heat flow follows as

Ga52Ga45c0
22 re

«
qa>c0

22qa, ~36!

which means that the momentum density for heat isG
5qc0

22. Whereas, the stress tensorTab has the form

Gab5Tab5«21$2c0
22qaqb1dab~ 1

2 q2c0
222 1

2 re
21 1

2 «2!%.

~37!

This quantity represents stresses caused by the pure
flow; it vanishes at equilibrium. The total energy density

G445Etot5 1
2 «21c0

22q21 1
2 «21re

21 1
2 «> 1

2 «21c0
22q21re .

~38!

Finally, we find for the energy flux

G4b5Qb5«21req
b>qb. ~39!

In the quasiequilibrium situationre is very close to«, then
the formal density of the energy fluxG4b coincides with the
heat flux density,q.

As the heat fluxq is both the process variable and th
entity resulting from the variational procedure, the fact tha
is recovered here may be regarded as a positive test fo
self-consistency of the procedure.

The associated conservation laws for the energy and
mentum have the form

]~ 1
2 «21c0

22q21re!

]t
5¹•~«21req!, ~40!
2-7
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]~c0
22«21req

a!

]t
5¹•$«21

„2c0
22qaqb1dab~ 1

2 q2c0
222 1

2 re
2

1 1
2 «2!…%. ~41!

The energy conservation law~40!, which stems from equa
tions ~35!, ~38!, and ~39!, refers to nonequilibrium total en
ergy E that differs from the nonequilibrium internal energ
re by presence of the ‘‘kinetic energy of heat’’@explicit in
our L of Eq. ~4! or in Eq. ~38!#. The necessity of distinction
betweenE andre is caused by the property of finite therm
momentum~36! in the frame of stationary skeleton of rigi
solid, in which we work. The physical content of resu
stemming from the quadratic kinetic potentialL seems thus
acceptable when the system is close to equilibrium. Ye
should be kept in mind that in this section we evalua
standardized physical components of the matter tensorG for
a givenL rather than formal integrals for our model of he
transfer.

VIII. ENTROPY PRODUCTION AND SECOND LAW
OF THERMODYNAMICS

Now we evaluate the entropy properties. The entry ofG
we need to apply now isG445E as it is the total energy tha
is both global and exact conservative property. The den
of the conserved energy,E, is a basic variable in the Gibb
relation that links the entropy densityrs with E and the
currentq. The equality

1
2 «21c0

22q21re~rs!5E ~42!

shows that entropy densityrs is a functionS of E andq of
the following structure:

S5rs~re!5rs~E2 1
2 «21c0

22q2!. ~43!

This means that at the constant mass density the differe
of the densityS satisfies an extended Gibbs equation,

dS5~]rs /]re!d~E2 1
2 «21c0

22q2!

5T21dE2T21«21c0
22q•dq. ~44!

Taking into account thatc05(a/t)1/25@l/(rmCt)#1/2 where
l is the thermal conductivity, one findsc0

225rmCt/l
5«T1tl21 and the above differential can be expressed
terms ofl as

dS5T21dE2T22tl21q•dq ~45!

Calculating the four-divergence of the entropy flow (¹,]/]t)
and using the global conservation law for the energyE, Eq.
~40!, we obtain

]S

]t
1“•S q

TD5T21S ]E

]t
1“•qD2

t

lT2 q•dq1q•“T21

5q•S“T212tT22l21
]q

]t D ~46!
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it
d
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or in terms equivalent expressions containingl or c0 ,

]S

]t
1“•S q

TD5q•S“T212
1

«Tc0
2

]q

]t D
5

q

lT2 •S 2l“T2t
]q

]t D . ~47!

But, since Eq.~1! is a simple transformation of the origina
Cattaneo equation

t
]q

]t
1q52«tc0

2T21
“T52l“T ~48!

we arrive at the expression

]S

]t
1“•S q

TD5
q2

«tc0
2T

5
q2

lT2 . ~49!

It describes the second law of thermodynamics in the id
tically satisfied form, and it holds in both classical irrever
ible thermodynamics and extended irreversible thermo
namics~EIT, Ref. @32#!. Let us recall now that Eq.~48! is as
Eq. ~1! the result of our variational approach. We have th
obtained confirmation that our approach yields the result
agreement with the second law of thermodynamics. T
seems to prove that the accepted kinetic potential wh
structure conforms with the Hamilton’s structures encou
tered in various mechanical action principles has the prop
ties of admissible physical entity to describe the heat fl
not far from equilibrium.

As rightly pointed out by some authors@33,34#, possess-
ing a kinetic potential that produces only suitable variatio
equations is by no means sufficient to ascertain that a fi
theory is sufficient as a whole from the physical viewpoi
This was, in fact, the main reason to test~in Sec. VII and
VIII ! Noether integrals, conservation laws, and entropy p
duction as consequences of the accepted kinetic poten
Eq. ~4!. The positive result of these tests@obtained by inde-
pendent methods and within assumptions of validity of E
~1! and~2!# proves that total energy density, thermal mome
tum, and all remaining values of the energy-momentum t
sor Gik are quantities that are physically admissible in t
range of admissibility of linear Cattaneo models~1! and~2!.
As all these values are relevant to the chosen kinetic po
tial ~4!, we can accept this kinetic potential as the ent
leading to physical results, with functional expressions
terms of q and re described by Eqs.~36!–~49!. In effect,
from an infinite variety of possible kinetic potentials that c
be used in the field description considered~see Sec. II! we
accept the sole kinetic potential~4! to restitute both the Cat
taneo equations and associated extended thermodyn
theory @Eqs. ~45!–~49!, in agreement with EIT@32##. It
should be underlined that, in view of admissibility of th
approximation«21re

2/21«/2>re in Eqs. ~4! and ~38!, the
kinetic potential~4! represents—in the framework of the lin
ear theory—the Hamiltonian structure of a difference b
tween part of the energy density related to heat flux~‘‘kinetic
energy of heat,’’«21q2/2c0

2! and the density of~nonequilib-
2-8
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rium! internal energy,re . Too little is known about nonlinea
structures generalizing Cattaneo equation~1! in order to ex-
periment with proposals of a nonlinear theory at the pres
time. Some of our results for reversible heat flows@17# show
that entropy fluxj s5q/T may be a better variable than he
flux q in nonlinear cases. The progress regarding this p
will be reported.

IX. GAUGE PROPERTIES OF THERMAL POTENTIALS

The specification of thermal potentialsc, k, andf deter-
mines unique values of physical fields defined by Eqs.~6!
and~25! or any functions of these quantities, such as therm
momentumG or total energyE. However, as in case of elec
tromagnetic field, various thermal potentialsc, k, andf and
kinetic potentialL can be attributed to preassigned therm
fields, q and re . In cases of this sort it is both natural an
standard to determine admissible class of transformed po
tials that still ensure unchanged physical fields, and cho
from this class definite potentials having the simplest form
structure or certain physical interpretation. In fact, our cho
of L, Eq. ~4!, followed this rule.

Gauging original thermal potentials may lead to tho
transformed ones that have certain physical interpretati
However, any interpretation of potentials is valid in a p
ticular frame of reference. In the framework of Hamilton
principle for linear and reversible heat transfer, the accep
L, Eq. ~4!, may be regarded as a quantity that is ‘‘alrea
suitably gauged.’’ Biot’s interpretation of the thermal di
placement vector and his trailing function@30# can be attrib-
uted to the potentialc. Yet, as Eqs.~25! and~6! show, ourc
and f represent altogether the generalization of the Bio
displacement that secures natural treatment of irrevers
dynamics and abandons any extraneous concept of a dis
tion function addedad hocin the Biot approach. For revers
ible cases, whenf can be gauged to zero, Biot’s represen
tion is recovered~Sec. VI!. Mathematics of gauging therma
potentials is analyzed below.

As usual in field theories, even if physical fieldsq andre
are secured, the fields of Lagrange multipliersc, k, andf
are not unique, as the same physical valuesq andre , E, etc.,
can be represented by various multiplier functions. In g
eral, this change in multipliers can be attributed to change
kinetic potential L or to transformation of physical con
straints in the way ensuring physical equivalence of origi
and transformed constraints. Gauging thermal potential
partly similar to that in the theory of electromagnetic fie
where the Lagrange multipliers of inhomogeneous Maxw
equations, or the potentials of electromagnetic field~A0 and
A!, are gauged by addition of the partial time derivative o
scalar function toA0 and subtraction of the gradient of th
same function fromA ~Jackson@28#!. A number of general
issues associated with gauge invariant field theories are
discussed here as there are many sources to which the r
can be referred@29,32,35,36#. The significance of gauge
groups is also shown in continuum mechanics@37#. When
dealing with thermal potentials we focus on the linear th
mal model considered rather than on possible nonlinear g
eralizations.
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Let us test the invariance of thermal fieldsq, “3q, and
re and the action functionalA when potentialsc, k, andf
are gauged according to the transformations

c85c2“V, ~50!

k85k2“V, ~51!

and

f85f1
]V

c0
2]t

2
V

c0
2t

, ~52!

in which V is a gauge scalar function. For transformatio
~50!–~52! we consider two cases.~1! V is completely arbi-
trary continuous function ofx and t or ~2! V is the function
restricted by the requirement that it should satisfy the follo
ing partial differential equation:

]2V

c0
2]t22

1

c0
2t

]V

]t
2¹2V50. ~53!

@The origin of structure of the above restriction and transf
mation~52! will become clear after considering Eq.~56! be-
low.# After substituting transformations~50! and ~51! into
field representations of heat fluxq and energy densityre ,
Eqs. ~25! and ~6!, we find that the heat flux transforms in
variantly for arbitraryV ~meaning that the case 1 occurs!,
i.e.,

q85
]c 8

]t
2

c 8

t
1c0

2
“w81“3k8

5
]c

]t
2

c

t
1c0

2
“w1“3k5q. ~54!

Similarly, any definite vorticity of heat flux,v5“3q ~in
particular vanishing vorticityv50! satisfies the uncondi
tional gauge invariance

v85¹3k85¹3k5v. ~55!

On the other hand the energy density transforms as

re52“•c82
]f8

]t

52¹•c2
]f

]t
2

]2V

c0
2]t2 1

1

c0
2t

]V

]t
1¹2V

5re2
]2V

c0
2]t2 1

1

c0
2t

]V

]t
1¹2V. ~56!

This means that the energy density transforms invaria
only for ~restricted! scalarsV that satisfy the condition~53!.
Thus the invariance of the whole model of heat transfer
fers to the case 2. In other words, the theory assuresboth rc
and q as physical fields provided that condition~53! is sat-
isfied by gauge scalarsV. Interestingly, the structure of Lor
entz condition, well known in the theory of electromagne
fields ~Jackson@28#!, appears in the potential representati
2-9
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of re . However, in electromagnetic field theformal counter-
part of our densityre vanishes, i.e., Lorentz gauge conditio
holds in its classical form, the property that is consistent w
the vanishing mass of the photon. In the thermal case c
sidered here, the quantityre is nonvanishing as it represen
the density of the nonequilibrium internal energy. In fact,
analogies we have noted here are weak and formal. T
result from the field description accepted in both cases ra
than from any serious physical similarities.

Equations ~54!–~56! prove that the restricted gaugin
based on scalarsV, which satisfy Eq.~53!, leaves both fields
q and re , Eqs. ~25! and ~6!, invariant. In effect, each nar
rowed gauge transformation~50!–~53! of thermal potentials
c, k, andf preserves the same potential representations
q andre in the form assuring Cattaneo model of heat tra
fer, Eqs.~1! and~2!. This transformation also ensures inva
ance of actionsA under transformations~50! –~52! in which
the scalarV satisfied Eq.~53!.

X. CONCLUSIONS

This work shows that the problem of thermal ener
transfer can be broken down to the problem of related po
tials, similar to problems of electromagnetic and gravi
tional fields. We have found inhomogeneous equations
scribing dissipative process of heat transfer with a fin
propagation speed in terms of thermal potentials,w and c.
These equations show that heat fluxq and energy densityre
are sources of the field. For heat transfer theory, our res
yield a situation similar to that in electromagnetic gravi
tional field theories, where specification of sources~electric
four current or the matter tensor, respectively! defines the
behavior of the field potentials. The approach adjoin
physical constraints to a kinetic potential by Lagrange m
tipliers, has thus proven its power and usefulness in the c
text of quite complicated transfer phenomena in which b
reversible and irreversible effects accompany each other.
analysis proves that thermodynamic irreversibility does
influence the form of the kinetic potential, which remains t
Hamiltonian; it only complicates potential representations
physical fields in comparison with those describing reve
ible evolution. The results show that the heat fluxq has a
finite momentum and a related kinetic energy. This is
-

on

-

ia-
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energy form that yields inertial properties of heat, and res
in the theory satisfying the second law of thermodynamic

In the variational method developed in Secs. III–VI d
verse kinetic potentialsL can be applied to produce an infi
nite number of different, still correct, representations
physical variablesq andre in terms of field potentialsf and
c. Yet, as shown in Secs. VII and VIII, the physics of th
problem of correspondence with Noether’s energy and m
mentum formulas and the satisfaction of second law imp
restricting to the kinetic potential~4!, which is the Hamil-
tonian structure in the framework of the linear theory co
sidered. Indeed, in view of the tests in Secs. VII and VIII, t
kinetic potential of Eq.~4! may be regarded as a proper
gaugedL that not only yields the Cattaneo dynamics but a
satisfies the above physical requirements. ‘‘Nonautonomo
L’s involving time explicitly by an exponential term@38,39#
are excluded from considerations as they violate Noeth
conservation laws@34#. Comparing with earlier approache
our method is closer to those of Biot@30# and Lebon@40#, as
they both work with Biot’s thermal potentials that are gen
alized in our Eqs.~6! and ~25!.

At the present time too little is known about physics
nonlinear generalizations for Cattaneo equation~1! in order
to experiment with proposals of nonlinear theories with va
able r, c, t, andl. Note that, by its own nature, our varia
tional method is relevant togiven constraints and kinetic
potentialL. Therefore, in nonlinear generalizations, technic
difficulties are on the side of~proper physical generalizatio
of! Cattaneo constraint rather than on that involving t
variational method itself. In some nonlinear cases the met
can still assure simplicity of potentialsf andc for a suitably
chosenL; in others, getting explicit potentials is not a trivia
task. Some of our earlier results for reversible heat flows@17#
seem to imply that entropy fluxj s5q/T may be better vari-
able than heat fluxq in nonlinear cases. The progress in th
respect will be reported.
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