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Variational theory for thermodynamics of thermal waves
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We discuss description of macroscopic representations of thermal fields with finite signal speed by compos-
ite variational principles involving suitably constructed potentials along with original physical variables. A
variational formulation for a given vector field treats all field equations as constraints that are linked by
Lagrange multipliers to the given kinetic potential. We focus on the example of simple hyperbolic heat transfer,
but also stress that the approach can be easily extended to the coupled transfer of heat, mass, and electric
charge. With our approach, various representations may be obtained for physical fields in terms of potentials
(gradient or nongradient representatipriSorresponding Lagrangian and Hamiltonian formalism can be de-
veloped. Symmetry principles yield components of the energy-momentum tensor for the given kinetic poten-
tial. The limiting reversible case appears as a special yet suitable reference frame to describe irreversible
phenomena. With the conservation laws resulting from the least action principle and the Gibbs equation, the
variational scheme of nonequilibrium thermodynamics follows. Its main property is abandoning the assump-
tion of local thermal equilibrium.
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I. INTRODUCTION (differential equations we stress those obtained during
1985-1997 by Grmela and co-workers. They worked out the
This paper deals with thermal processes described aso-called bracket formalism&Grmela[6]; Grmela and Ot-
fields; it is motivated by the fact that the construction oftinger [7]), the main features of which were exposed in a
variational principles for irreversible fields still seems to recent book by Beris and Edwardi8]. The single-bracket
have large difficulties. The most severe difficulty arises fromand two-bracket descriptions are usually distinguished.
unknown kinetic potentials, which are integrands of func-These formalisms produce evolution equations via Poisso-
tionals that should be extremized, as there are hardly angyian and dissipative brackets, the latter being the functional
systematic rules to obtain suitable functions of this sortextension of the Rayleigh dissipation function. Yet these
Equations of dissipative fluid mechanics and irreversiblebracket approaches are usually not associated with an extre-
thermodynamics provide a frequently used Eulerian or fieldnum of a definite quantity. For this purpose a single Poisso-
representation of the process. At best, only some truncatesian bracket and a Hamiltonian system are both necessary
forms of these equations were shown to possess the welknd sufficient.
known structure of the Euler-Lagrange equations of the clas- Working within the variational framework, we focus here
sical variational problenl,2]. on the so-called exact variational formulations, i.e., those
When investigating thermal fields two general frame-that do not involve any subjectively chosen “frozen” vari-
works may be applied. The first deals directly with differen-ables. These formulations have many well-established vir-
tial equations describing the process, whereas the secondes. First, physical insight is gained when a single scalar
uses the corresponding action integrals. By extremizing thesguantity is found that generates the whole vector field repre-
integrals, solutions of the differential equations in questionsented by many equations of motion. Second, unification of
can be found by the so-called direct variational methdds  diverse processes is often possible, for example, mechanical,
The important physical ingredient comes with conservatiorelectrical, and even chemical processes. Third, with the so-
laws obtained from the Hamiltonian actions and symmetrycalled direct variational methods that use trial functions, ap-
principles[2]. However, for irreversible processes, there areproximate solutions can be obtained. They are usually of
serious impediments to find a general variational formulagood accuracyl], and they may be the only usable solutions
tion. These are attributed to the presence of non-self-adjoinwhen the analytical solution of the differential equations of
operatorq 3]. The non-self-adjoint operators cause nonsym-interest cannot be found. Fourth, integrals of motion and
metric Frechet derivatives in the original state space so thatonservation laws can be obtained from the symmetry prin-
according the Vainberg’s theorem, an exact variational forciples[2].
mulation cannot be found in this spaleg5]. In our approach, the process is transferred to a different,
Among the recent results found in the first framework suitable space, and a variational formulation is found in that
space. This is made by means of certain potentials, similar to
those known for electromagnetic field. The origin and prop-
*On leave from Faculty of Chemical and Process Engineeringerties of these potentials are not explained sufficiently well to
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[12], Stephen$13], Seliger and Whitharfil4], Atherton and  variational principles of classicdhonfrictiona) mechanics
Homsy[15], Caviglia[16], and Sieniutycz and Berrfl7].  with space coordinates as original variables and momenta as
These latter papers proved the crucial role of the Lagrangadjoints. It is also worth stressing that the potentiatsilti-
multipliers in constructing potential representations of physipliers, adjoints, momentum-type coordinates, etc., whatever
cal fields for the purpose of variational principlesee also, we call them are quantities of the same sort as those used by
Refs.[18,19). Clebsch in his representations of hydrodynamic velocity.
Clearly, the phase space, which is well known in the statis-
tical mechanics, is the space composed of the space coordi-
nates and their adjoints.
With all these examples, it should not be surprising that
For nonconservative and other irreversible phenomenegeneral variational formulations should be sought in ex-
the difficulties in finding variational formulations are attrib- tended spacesvith adjointg rather than in original spaces of
uted to the presence of the so-called non-self-adjoint operghysical formulations. The apparent, formal peculiarity of
tors. They introduce asymmetries in the related equationdireversible processes could be accepted in this context only
whence, according to Vainberg’'s theorem, a suitable funcin the way that they require the whole composite space for
tional cannot be found in the space of original variables. Weheir variational formulation, meaning that the reduction of
show that these difficulties do not appear when the procesgoordinates is impossible. From a physical perspective, “ir-
space is enlarged by addition of suitable new variables, oftereversibility” can be interpreted to mean that there are some
called “the potentials,” which are, in fact, the Lagrange mul- degrees of freedom into which otherwise-conserved quanti-
tipliers for the given constraints. In brief, our method trans-ties such as energy may flow but from which no return can
fers the problem to the space composed of original variablege observed, at least under the conditions of the description
and potentials. In fact, the method assures a spontaneogs observation. One way to do this is to treat some degree of
transfer to the most proper space. The method is easy fseedom as implicit rather than explicit. Still, the impossibil-
apply because the equations for which a variational principlégty of reducing the space seems to be an essential conse-
is sought are simply adjoined by Lagrange multiplierec-  quence stemming from the presence of both even and odd
tor \) to the accepted kinetic potentikl time derivatives in equations describing the irreversible phe-
Yet, to date, the origins and key aspects of approaches ¢fomena.
this sort were not enunciated clearly in the literature. Their In the (enlarged space with Lagrange multipliers or pro-
essence is that the kinetic potentlalcan be arbitrary, or cess adjoints as extra coordinates, the difficulties related to
correct formulations can be found for an infinite number ofasymmetries do not appear. In the realm of the enlarged
variousL. Until now, this was not stated sufficiently clearly space, irreversibility properties do little to hamper a varia-
in the literature, perhaps due to the apparent puzzle of &onal formulation; they only cause a more complex repre-
nonuniquelL. However, a change in the kinetic potential  sentation of physical fields for the saheThe dimension of
leaves the original equations unchanged. While this is as ithe enlarged space is2 wheren is the number of both the
should be, extremum conditions of the action with respect t@riginal physical variables and the original equations written
the original variables do change with changed.inWhen-  in the form of first-ordex(partial or ordinary vanishing con-
ever the original variables are expressible in terms of thestraints,C=0. This is the dimension of what we call here
Lagrange multipliersn, explicit “representations” of the “the proper enlarged space” as the space that is capable of
original fields in terms of\ and its derivatives are obtained. accommodating a variational formulation for every set of
They depend on the accepted kinetic potentiablthough first-order differential equations. Spaces of lower dimensions
similar representations could be found for a differenffhe  are in general too restricted for that purpose, spaces of larger
new fields\ are adjoint variables for the problem; they “rep- dimensions are unnecessary. In fact, the proper enlarged
resent” the original variables in the way depending on prop-space is the space of minimal dimensionality in which a
erties of the original equations and the acceptedn fact, variational formulation still exists for nontruncated equa-
one can produce an infinite number of different, still correct,tions. In the proper enlarged space, to which considered pro-
representations of the process in the space of the originglesses are transferred, the Frechet symmetry is assured auto-
coordinates and Lagrange multipliers. matically. Namely, in the proper enlarged space, the
In different branches of science, the latter are called byhecessary extremum conditions are obtained by setting to
various names. The names adjoint variables or simply adzero the variation of the action integrAlbased on the La-
joints appear as a rule in various problems of optimal contrograngianA =L +XC (whichever kinetic potentidl and con-
in which the adjoints are companions of original coordinatesstraints C=0 arg. These extremum conditions are, of
of state, for any chosen objective function. In some cases theourse, the Euler-Lagrange equations of the variational prob-
whole variational description can be accomplished only inlem for A. With the tool of the Legendre transform, Hamil-
the space of adjoints; in others, only in the space of originatonian formulations consistently follow.
variables. Yet, in the general case, the variational description Hyperbolic heat transfer, considered in the following sec-
can be set only in the general composite space of physicdions, is one of examples where the progress resulting from
variables and their adjoints. In the optimization theory, anduse of the present approach is explicit. Yet the approach can
in particular in Pontryagin’s principle, the role of adjoints is be easily extended to the coupled transfer of heat, mass, and
well known. The case of adjoints may also be referred tcelectric charge. With various “gradient or nongradient” rep-

Il. LAGRANGE MULTIPLIERS AS ADJOINTS AND
EXTRA VARIABLES IN IRREVERSIBLE PHENOMENA
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resentations of original physical fields in terms of potentials, Assuming that the heat conduction process is described by
least action type criteria can be formulated for other pro-the Cattaneo equation of heat transfer and the energy conser-
cesses as well, and corresponding Lagrangian and Hamil-ation law, the set of constraints is

tonian formalisms can be developed. Symmetry principles

can be considered, and components of the energy-momentum aq q Vo.—0 1
tensor can be evaluated for the accepted kinetic potential %jL o2, T VPeT (1)
In each case, an interesting observation follows: the limiting

reversible process is a suitable reference frame for analysignd

of typical irreversible processes.

J
—+V.q=0, (2
IIl. ACTION INTEGRAL AND ADJOINT VARIABLES FOR

-WAVE HEAT TRANSFER . -
A DAMPED where the density of the thermal energy satisfiesdpe

We demonstrate here the technique of adjoint representa= pC dT, ¢ is propagation speed for the thermal wavés
tions of physical fields by constructing a variational formu-thermal relaxation time, and the produzt= cgr is the ther-
lation for the linear process of pure heat conductibrat  mal diffusivity.
flux g) in a rigid solid at rest. The finite speed of propagation A subtle feature is the irreversible nature of the heat pro-
of thermal signals is assumed, which means that we decide tess that requires distinguishing between the trajectories of
use a hyperbolic model rather than parabolic; in particularmatter, energy, and entropy. Only in reversible processes en-
the equation of change for the energy density or temperaturgopy or energy “flow with the matter” or they are “linked to
needs to be a damped-wave equation. All standard equatiotise matter,” in irreversible processes the trajectories of en-
of change(with parabolic terms have an absurd physical tropy or energy differ from those of the matter. Although we
property: a disturbancghermal, concentrational, ef@at any  restrict ourselves here to a definite coordinate system, the
point in the medium is felt instantly at every other point; thatrest frame of the solid, a flow of energy and entropy does
is, the velocity of propagation of disturbances is infinite. Thisoccur; the energy flow is represented by the heat flow vector
paradox is clearly seen in certain routine solutions of parae. The name “vector” is attributed here to a set of numbers
bolic equations; for instance, in the case of heat conductiodescribing the coordinates qf as in the matrix theory, with-
in a semi-infinite solid on the surface of which the tempera-out considering any transformation propertiesqab differ-
ture may suddenly increase from, for examples To to T ent coordinate frames.
=Ts. The parabolic solution, which is based on the error For simplicity we assume the constant values of the fields
integral, providesl =T, for the timet=0, but for any very g andp, at the boundary. We ignore in this section the vor-
short timet>0 and arbitrarily large distancasrom the wall ticity properties of the heat flux, i.e., it is not our concern
one has ar(x,t) different fromT, in the whole space im- here whetheWV X g vanishes or is different from zero. Yet we
plying infinitely fast propagation of the disturbance. point out that the Cattaneo equatidn ensures the vanishing

The above mentioned nonphysical behavior has beerotation for all future times whenever the rotation of the ini-
pointed out by many research¢20—-24 and others, and the tial field q(x,0) vanishes. The vorticity properties of the sys-
dilemma was resolved by the acceptance of the hypothesis ¢ém are discussed in Sec. IV.
heat flux relaxation. The link between the hypothesis and For the purpose of a variational formulation, we assume
certain results of nonequilibrium statistical mechanics, suclthat all dynamical equations of interest constitute “the con-
as Grad's solution of the Boltzmann kinetic equati@b], straints,” these constraints are adjoined in an action func-
was found[17,26. The hypothesis is based on the positiontional A to a singular kinetic potentidl that does not contain
that Fourier’s law is an approximation to a more exact equathe derivatives. An important issue that distinguishes the
tion, called the Cattaneo equation, which contains the timeariational formulation considered here from the traditional
derivative of the heat flux along with the flux itself. ones is that one can apply diverseand always will get a

For the hyperbolic description of the example considerectorrect variational formulation satisfying the constraints. In
above, an interesting effect appears for the wall heat fluXact, there is an infinite number of possiltlis that can suc-
(x=0) when the “driving force is being turned on.” Namely, cessfully be applied. In particular, for a given vector fiald
the wall heat flux,q(0), does not start instantaneously, but one can use quadratic¢s of the structurd. = (1/2)B:uu, and
rather grows gradually24] with a rate that depends on a correct representations afcan be obtained for any nonsin-
relaxation timer. After some time the wall heat flux arrives gular quadratic matriB. This property, which was first ex-
at a maximum and then decreases in time, similar to themplified in an explicit way for a vector set of parabolic
Fourier case. This decrease is a classical effect and it occuegjuations of changel9] happens because differdds yield
since the temperature gradient at the wall decreases in tindifferent representations of physical fields of interest in terms
in the course of heating of our solid. Consequently the Fouef the Lagrange multipliers of the constraints. These multi-
rier and Fick theories are inappropriate for describing thepliers are, in fact, the potentials of the field; they may be
short-time effects, and although relaxation times are typicallycalled the Clebsch potentials of the problem, as the well-
very brief (of the order of 10'%s for typical liquids and known Clebsch representations of hydrodynamic velocity
metals, and 10° s for gases under normal conditiorthe  use the potential functions that belong to this class. We shall
related effects can still have theoretical importance. also see that among variolls Hamilton's structure ofL
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(designated by) has a definite preference. We restrict our-ent representations; the representation dothen has the
selves here to the Lagrangian formalism; yet the results obstructure of the electric fiel& expressed in terms of electro-
tained here can be transformed into the Hamiltonian formalmagnetic potentials.
ism whose main properties for extended thermodynamic For the Hamilton’s structure df, the actionA, Eqg. (3), in
systems are described by Grmela and Le®A. terms of the adjointgy and ¢ is

An action functional that absorbs constrait$ and (2)

by the Lagrange multipliers, the vectgrand the scalag, is ~ , _ ftZ ) L [0 l'—[,-I-CZV(f) 21 V.out ¢\
taken in the Hamilton’s form ty,V ZCS gt 0 2 ot
A‘ftz Y T P UL R, —582}dth (7)
- tl,v8 2¢ 2Pe” 2° v coot  cor Pe 2
Ipe Its Euler-Lagrange equations with respectgtcand ¢ are,
+ ‘P(T +V. q) ] dv dt (3)  respectively,

. . D B 19 ¥ ,
In Eq. (3), & is the energy density at an equilibrium reference 51| 2| ¢~ 7 teVo |1+ —= Tt 7 +coVe
state, the constant that ensures the action dimensioA,for 0

but otherwise is unimportant. Yet we assume that the actual ¢
energy density, is close toe, so that the variablp, can be - V( Vgt —-]=0 (8)
identified with the constant in some suitable approxima-
tions. and
We shall call the multiplier-free term of the integra(®)
——(v-¢+% +V. a—*['—f+c2v¢ =0. (9
1 (g, at at a v 0 '
L= 5¢€ CS pe—¢€ (4)

IV. HYPERBOLIC EQUATIONS FOR ORIGINAL
the Hamiltonian form of kinetic potential for heat transfer. It ~ VARIABLES AND THEIR VARIATIONAL ADJOINTS
is based on the quadratic form of an indefinite sign, and it
has usual units of the energy density. It can easily be show
that not far from equilibrium, wherg, is close toe, the two
static terms ofL yield altogether the density of thermal en-

It is easy to see that Eq$8) and (9) are the original
Qquations of the thermal field, Egd) and (2), in terms of
the potentials/ and ¢. Their equivalent form below shows
the damped-wave nature of the transfer process.

€19y, pe- For the Cattaneo equatidni) we obtain from Eq(8
This result proves that the limiting structure o&f is quatiad) a(8)
Hamiltonian, and it should be suitable to describe processes Py 1y Vo

of heat transfer. While, as pointed out in Sec. Il, we could V(V-¢)=0 (10

use different kinetic potentials, we have shown that the
Hamilton’s form ofL defined by Eq(4) is the most suitable and, with the energy conservation equatian the simplifi-
from the viewpoint of the energy conservation in a limiting cati(’)n of Eq.(9) yields
reversible process. Thus, in spite of arbitrariness in the ac-
ceptedL, Hamiltonian structures of the kinetic potential are Pp V- en
preferred. szt coV<p=0. (11

Vanishing variations of actioA with respect to multipli-
ers ¢ and ¢ recover constraints, whereas those with respecijote that the set10) and (11) becomes decoupled in the
to state variableg andp. yield representations of state vari- reversible case of an infinite Interpretingr as an average
ables in terms ofy and 4. For the accepted Hamilton's struc- time between the collisions, we can regard the reversible
ture ofL, processwith 7—) as the collisionless one.

Still another form of heat equations is interesting. While

Cg&tz TCST

_ (7_111_ f+ 2y 5 we have obtained Ed8) or Eq.(9) as the adjoint represen-
a= at ot CoVe (5) tations of the Cattaneo relatigth), a more insightful form is
found after one starts with separating the term lineag in
and Eq. (8),
1o ¢ ) ( ip\ q

d —— {5 =—=+c2 + Pt — | = —.
pe=—V.1/;—(9—(f. (6) at{cg(&t ;revé } VIVt 5 7CH

(12

In a limiting reversible processindamped or wave heat con- Then the¢ terms of the left-hand side reduce and we are left
duction for 7— ) the process is described by purely gradi- with
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Py 0P q
-5+t —=+ V2 =—. 13
coat?  rchat v 7c2 (13

Thus, for the Cattaneo equatidd), and in terms of the
scaled vector potentialP such that\If=¢rc§ the above
equation takes the form

v ) aZ‘p+ W 14
csot? TCS&t_q' (14

For the energy conservation equati@ we obtain by sim-
plification of Eq.(9),

PP V-
a—j;+7¢'—cgv2¢—o (15)

Multiplying this equation by7r and eliminatingys with the
help of the energy density representation,

Pe:_v"/’_

i¢
o [Eq. (6)]

yields the following equation for the scalar potential:

(16)

In terms of the modified scalar potentid such thatd =
— ¢7c (note the minus sign in this definitiprthe above
equation takes the form

V20 P . FL) an
22 et Pe

Along with the equation(14) for the vector potential, we

have thus found the set of four inhomogeneous equation
describing dissipative process of heat transfer in terms of th

PHYSICAL REVIEW E 65 046132

or its equivalent form, which is the damped-wave equation
for the temperature

V2T —z—azT —z—aT =0 (19
ciot?  rciot

V. VORTICITY CONSTRAINT AND A GENERALIZED
ACTION FUNCTIONAL

A problem arises when we attempt to obtain an equation
of the above structure for the heat flux. Indeed, by taking the
partial derivative of Eq(1) with respect to time we conclude
that the heat flux density satisfies the equation

2 2
é%+ %+ %+V2q= gi(yz%+ %—V(Vq)
=0. (20
With the help of the well-known vector identity
V(V-q)=V2q+VX(VXQq) (21

we discover that the heat fluxsatisfies a partial differential
equation of the type of telegraphers equati¢i® and(19)

only if it is irrotational, i.e., if VX q=0. We recall that this

was an initial assumption of our analysis; it was possible
because the Cattaneo equation ensures the vanishing rotation
for all future times when the rotation of the initial field
d(x,0) vanishes. This observation follows directly from the
vorticity form of Eq. (1),

avXxa(xt)  VXa(xt)
ot B T

(22

which proves that even if the initial vorticity field is nonva-
gishing its effect will decay soon because it will relax to zero
iy accordance with the equation

potentials of thermal fieldp and¥. They show that the heat
flux q and energy densitp, are sources of a thermal field
that satisfies the damped-wave equations for the potedtials

V Xq(x,t)=VXq(x,00expr(—t/7). (23

and V. The problem of thermal energy transfer is thus bro-
ken down to the problem of the related potentials. This is

situation similar to that in electromagnetic the¢88] or in

gravitation theory[29], where the specification of sources

(electric four current or matter tensor, respectiyelgfines

the behavior of the field potentials. In fact, some equations o
heat transfer in terms of these potentials are analogous tt
inhomogeneous equations for potentials of the electromal
netic field, yet we recognize these analogies as formal only;,

The partial differential equations for potentialsand W

may be contrasted with the differential equations of chang

for the state variableg, andq, which follow from Egs.(1)
and(2). By taking divergence of Ed1) and using Eq(2) we
find the telegraphers equation

2 azpe &pe

Vépe— 55— ——=—-=0, 18
Pe Coatz TCO(?t ( )

Clearly, after a short time, comparable with the average
time between collisions, the effects associated with the heat

Rux vorticity are negligible. Equatiof23) also says that the

flows g that are irrotational at the beginning will remain
irrotational for any future timé. These conclusions substan-
F’ate omission of effects caused by the finite vorticity of heat
lux for sufficiently long times. Since, however, the role of
%e initial vorticity condition may not be ignorable for short
imes, we stress that there are theoretical tools that allow
both to preserve or to ignore vorticity effects. Tools of taking
(ianto account the finite vorticity effects are known in the lit-
erature of hydrodynamics of adiabatic fluid in the form of the
so-called Lin's constraintgSeliger and Whitham[14]),
which are build into related action functionals to describe the
identity of fluid elements along their Lagrangian trajectories.
Yet in problems such as mass diffusion or heat transfer, the
identity of the relevant pseudofluid elements does not seem

to be at issue in view of the inherent dispersion. If we as-
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sume, for example, that the vanishing vorticity is the extraConsequently wave equatidfi4) for W= yrc3 is obtained

constraint, the action functional is

t 19> 1 1 a9 q
A= R R B e e
L,VS {253 LR G i Voe
dpe
—Kk-VXQgto W+Vq dVv dt (29

again
V2w - + i = Eq. (22
EO(W ?OE & [Ea. (22)]

Moreover, as diW X«)=0, for the energy balancg) one
finds from EQq.(28) the representatiofil5) again. Hence, as
the energy density representation in the form of Ej.is

In this functional the vorticity constraint was adjoined to the still valid, wave equation§l6) or (17) are obtained again for

kinetic potential with the help of the vector potential The
representations of the physical variables in termsajpfp,
and k are

J
qza—lfl—g—b—CSV(p-l-VXK (25
and
¢
pe=—V b= —-. [Eq. (6)]
The actionA, Eq. (24), expressed in terms of the potentials
U, k, and ¢ is
t 1 (o 2
= NS == = +ciV e+ VX
A ftl,vs {20%( Fra coVop+V Xk
1V +a¢212dVd 26
5|\ Vg | —5e t (26)
Its Euler-Lagrange equations with respeci/tap, andx are,
respectively,

I(1low ¥ w oy,
E{FS(E_;_FCOVQ{)—FVXK ]+%(H__ C0V¢
P

+ VXK _V<V"’[’+E =0, (27
9 g\ [ b, _
_E<V¢+E +V E—;—FCOV(;S—FVXK =0,
(28)
and
4

——;+cgv¢+v><,< =0, (29

where the last equation ensures the vanishing vorticity o

heat flux. After separating the terms lineargnn Egs.(27)

and(28) and rearranging these equations as before we get

01 (91,0 l/l 2 (9(}5
—E{C—S(E—;‘FCOV(ﬁ‘FVXK +V Vlﬂ‘l‘ﬁ)
q

the scalar potentialg and® = — ¢rc3. Thus, even for gen-
eralized actiong24) and (26) we find

V2P 7o + ° Eq. (17

The only difference refers to the vanishing vorticity prop-
erties ofg. By taking the partial derivative of Eql) with
respect of time and using the vector identiB1) we obtain
instead of Eq(20)

”q  dq

V- 55— —5 =
RS Freapny 1

(31

for the irrotational heat flux29). In this case all basic physi-
cal fields, Eqgs.(18), (19), and (31), are described by the
telegrapher’s equations. These are linear PD equations that
describe damped heat transfer in solids. Note the difference
in sign of linear or “dissipative” terms of these equations in
comparison with equations for the potentials. This means
that whereas the physical fields are damped due t¢pibsi-

tive) dissipation the potentials are simultaneously amplified
due to a “negative dissipation.” This also shows how the
variational principle deals with non-self-adjoint operators.
We may conclude that the Lagrange multiplier approach
leads to the potential descriptions much easier and in a more
systematic and transparent manner than other approaches.

VI. SOME SPECIAL CASES

An irreversible process constitutes a general case in which
both potentialdvector potentialy and scalarp) are neces-
sary. To prove this statement let us deal with a simplified
action (24) in the single potential but irreversible case of a
finite 7. Then a truncated form of general representations
(25 and(6) follows. However, the truncated representations
are invalid in the case of irreversible processes. In fact, they
imply the source term-V -/ 7=p./7 for the four diver-
gence of energy, which means the violation of the energy
?onservation.

The truncated representations are still quite general. In
fact, they include the well-known Biot's representatiogs,
=diyldt andp.=V - ¢, which are the simplest gradient rep-
resentations of the proce&Biot [30]). We thus conclude that
from the physical viewpoint Biot's representations should be
restricted to reversible processes. They correspond with trun-
cated Cattaneo equatigf) without the irreversibleg term
and with a collisionless limit of actiof26) when both fields
k and ¢ vanish and only the fields is essential. An irrevers-
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ible process constitutes a general case in which both poten- Any physical tensoitG=G!* has the following general

tials (vector potentialy and scalak) are necessary. To prove structure:

this statement let us as deal with a simplified acti@4) in

the single-potential but irreversible case of a finitdhen a T -T

truncated form of general representatig2$) and (6) fol- G Q E/

lows. However, the truncated representations are invalid in

the case of irreversible processes. In fact, they imply thevhereT is the stress tensdr,is the momentum densitQ is

source term—V - i 7=p./7 for the four divergence of en- the energy flux density, andl is the total energy density.

ergy, which means the violation of the energy conservation. When external fields are present, the kinetic potertial
The related reversible action takes in the adjoint space theontains explicitly some of coordinatgs. Then the balance

(34)

simplest possible form equations are satisfied rather than conservation laws,
t 1 ()2 1 1 ank) aA
= U D S (V-g)2— =2 —x |+ —=—=0 35
(32

for j, k=1,2,...,4. Equatioi35) is the formulation of balance

With the simplestBiot's) representations, or even with their €guations for momentumj € 1,2,3) and energyjE4).
reversible generalizations involving, energy conservation ~ We recall the assumption of the small deviation from
is satisfied identically. Functional32) then refers to un- €quilibrium at which our model is physically consistent.
damped thermal waves that propagate with the spgethd With this assumption and for the kinetic poFentlaI of E4).
satisfy D’Alembert's equation for the energy density or gauged as described above, the gauge action assures t'ha}t the
temperatureT. components of the energy-momentum tensor are multiplier

The reversible process is a suitable limiting case to disindependent. These components are given by B-(39)
cuss the advantages and disadvantages resulting from thelow. Respectively, they describe: momentum derisity
choice of a definite kinetic potentidl. As already pointed Stress tensof “, total energy densitf, and density of the
out, with our choice oL, abandoning the energy conserva- total energy fluxQ®, which approximately equalg”.

tion constraint in the actiorfor the formal substitutionp The momentum density of heat flow follows as

=0 in A) is allowed, provided that the Hamiltonian form of

the kinetic potentigl, I_Eq(4), is _st_iII_ applied. However, for_ re= —G““:cgzﬁqazcgzq“, (36)
differentL’s the omission of adjoining the energy constraint g

would not be admissible. For example, a change of the sign . ]

of p2 in Eq. (4 would result in representations violating Whlcszmeans that the momentum density for heatl'is
energy conservation even in the reversible case, should tigdCo - Whereas, the stress tensot has the form

Cattaneo equation and the equation of vanishing vorticity of

q be taken as the only adjoined constraints. This substantiG**=T**=&"Y{—c;°q*qP+ 8*A(30%c, *— 3 pa+32?)}.

ates our choice of the Hamiltonian structure of the kinetic (37)
potential as the most economical structure. Yet, as aIread¥ ] )

stated, there is considerable flexibility in choosing the kinetic! NiS guantity represents stresses caused by the pure heat
potential wherall process constraints are adjoined. flow; it vanishes at equilibrium. The total energy density is

VIl. ENERGY-MOMENTUM TENSOR GH=EM=3e "o "qP+ 5o ot ze= %871062‘4”’29
: - 39
AND CONSERVATION LAWS

The energy-momentum tensor is defined as Finally, we find for the energy flux

N G¥=Qf=c"1pgP=0". (39
. (9V| J .
k=N _ Sk
G _Ei x| a(av, 19xK) oA, (33 In the quasiequilibrium situatiop, is very close toe, then

the formal density of the energy flu®*? coincides with the

where s is the Kronecker delta ang=(x,t) comprises the ~Neat flux densityg.

spatial coordinates and time. The conservation laws are valid '.A‘S the h_eat fluxq is bOt.h t.he process variable and the_
in absence of external fields; they describe then the vanishin; ntity resulting from the variational procedure,_the fact that it
four divergencesV, d/dr) of GX. Our approach here follows i recovelred here may be regarded as a positive test for the
those of Stepher4.3] and Seliger and Whithafi4], where self-conS|sten_cy of the proce_dure.

the components oB1¥ are calculated fo gauged by use of The associated conservation laws for the energy and mo-
divergence theorem along with differentiation by parts. TheMentum have the form

link of the components of tens@¥ with the partial deriva- 1 1.2
tives of four principal functionss;, which are solutions of d(z8 "Co "7+ pe)
Hamilton-Jacobi equations, is knovwa1]. at

=V-(e 'peq), (40
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5(0528—1,, q%) - - - or in terms equivalent expressions containigr cg,
=V {e Mo Pa"aP+ 6" (3aPcy 308
ﬁS+V q)— vT! 1 9
+3e2)}. (41) a T T eTC at
The energy conservation la@0), which stems from equa- _9 VT (?_q 47
tions (35), (38), and(39), refers to nonequilibrium total en- TNT? Tt

ergy E that differs from the nonequilibrium internal energy
pe by presence of the “kinetic energy of hedt&xplicit in But, since Eq(1) is a simple transformation of the original
our L of Eq. (4) or in Eg.(38)]. The necessity of distinction Cattaneo equation

betweenE andp. is caused by the property of finite thermal

momentum(36) in the frame of stationary skeleton of rigid Tﬂ_q
solid, in which we work. The physical content of results at
stemming from the quadratic kinetic potentlalseems thus

acceptable when the system is close to equilibrium. Yet, itve arrive at the expression
should be kept in mind that in this section we evaluated

+q=—erciT IVT=—AVT (48)

standardized physical components of the matter te@Gsfmr &—S+V a) _ q° _CI_2 49
a givenL rather than formal integrals for our model of heat ot T srCST CNT® (49)
transfer.
It describes the second law of thermodynamics in the iden-
VIIl. ENTROPY PRODUCTION AND SECOND LAW tically satisfied form, and it holds in both classical irrevers-
OF THERMODYNAMICS ible thermodynamics and extended irreversible thermody-

. namics(EIT, Ref.[32]). Let us recall now that Eq48) is as
Now we evaluate the entropy properties. The entnGof Eq. (1) the result of our variational approach. We have thus
we need to apply now i§*‘=E as it is the total energy that ohtained confirmation that our approach yields the results in
is both global and exact conservative property. The densitygreement with the second law of thermodynamics. This
of the conserved energg, is a basic variable in the Gibbs seems to prove that the accepted kinetic potential whose
relation that links the entropy density; with E and the  structure conforms with the Hamilton’s structures encoun-

currentq. The equality tered in various mechanical action principles has the proper-
1L 1.2 ties of admissible physical entity to describe the heat flow
28 Co Q" tpelps) =E (42 not far from equilibrium.

o ) As rightly pointed out by some authof83,34], possess-
shows that entropy densify, is a functionSof E andq of  juq 5 kinetic potential that produces only suitable variational

the following structure: equations is by no means sufficient to ascertain that a field
a4 theory is sufficient as a whole from the physical viewpoint.
_ _ _ 1 1 2.2
S=ps(pe)=ps(E—2¢ "Co °q"). (43 This was, in fact, the main reason to tést Sec. VIl and

. . . .VIII') Noether integrals, conservation laws, and entropy pro-
Zplti(;nde:r?sit;ga;;;[sﬁ‘?eesC:r?ztzr:nr;;‘c?sc;?t)et?:léy Bgetigr']ﬁerem'%luction as consequences of the accepted kinetic potential,
q ' Eq. (4). The positive result of these tegtsbtained by inde-
_ 1 -1.-2.2 pendent methods and within assumptions of validity of Eqgs.
dS=(ps/dpe)d(E—z22 "Co "0 (1) and(2)] proves that total energy density, thermal momen-
=T 'dE-T ¢ 'c,%qg-dq. (44)  tum, and all remaining values of the energy-momentum ten-
sor G'* are quantities that are physically admissible in the
Taking into account thaty=(a/7)*>=[\/(p,,C7)]¥?where  range of admissibility of linear Cattaneo modél$ and(2).
\ is the thermal conductivity, one finds,?=p,Cr/\  As all these values are relevant to the chosen kinetic poten-
—eTi7A ! and the above differential can be expressed irfidl (4), we can accept this kinetic potential as the entity
terms of\ as leading to physical results, with functional expressions in
terms ofq and p, described by Eqgs(36)—(49). In effect,
dS=T 'dE-T 27\ q-dq (45) from an infinite variety of possible kinetic potentials that can
be used in the field description considersee Sec. )l we
Calculating the four-divergence of the entropy floW, ¢/ dt) accept the sole kinetic potenti@) to restitute both the Cat-
and using the global conservation law for the endfgyeq.  taneo equations and associated extended thermodynamic
(40), we obtain theory [Egs. (45—(49), in agreement with EIT[32]]. It
should be underlined that, in view of admissibility of the

S q _,[9E T _ approximatione ~*p2/2+&/2=p, in Egs. (4) and (38), the
gt +V. (T =T ot v q) T2 dg+q- VT kinetic potential(4) represents—in the framework of the lin-
ear theory—the Hamiltonian structure of a difference be-
_ o194 tween part of the energy density related to heat lildnetic
A 1_ 2y —194
—a (VT TN ) (46) energy of heat,’s ~1q%/2c3) and the density ofnonequilib-

046132-8



VARIATIONAL THEORY FOR THERMODYNAMICS OF . .. PHYSICAL REVIEW E 65 046132

rium) internal energyp. . Too little is known about nonlinear Let us test the invariance of thermal fieldsV xq, and
structures generalizing Cattaneo equaiibnin order to ex-  p, and the action functionah when potentialsy, «, and ¢
periment with proposals of a nonlinear theory at the preserare gauged according to the transformations

time. Some of our results for reversible heat flqdg] show

that entropy fluxjs=q/T may be a better variable than heat Y =¢-VQ, (50)
flux g in nonlinear cases. The progress regarding this point L
will be reported. K'=K=-VQ, (51
and
IX. GAUGE PROPERTIES OF THERMAL POTENTIALS 90 Q
The specification of thermal potentials «, and ¢ deter- ¢'=d+ Cg ot %, (52)

mines unique values of physical fields defined by EHGS.

and(25) or any functions of these quantities, such as thermaijn which () is a gauge scalar function. For transformations
momentuml” or total energyE. However, as in case of elec- (50)—(52) we consider two casesl) () is completely arbi-
tromagnetic field, various thermal potentiglsk, and¢ and  trary continuous function ot andt or (2) € is the function
kinetic potentialL can be attributed to preassigned thermalrestricted by the requirement that it should satisfy the follow-
fields, q and p.. In cases of this sort it is both natural and ing partial differential equation:

standard to determine admissible class of transformed poten-

tials that still ensure unchanged physical fields, and choose PO 1 00 V20—

from this class definite potentials having the simplest formal c2at? cir ot =0. (53
structure or certain physical interpretation. In fact, our choice

of L, Eq. (4), followed this rule. [The origin of structure of the above restriction and transfor-

Gauging original thermal potentials may lead to thosemation(52) will become clear after considering EG6) be-
transformed ones that have certain physical interpretationsow.] After substituting transformationé0) and (51) into
However, any interpretation of potentials is valid in a par-field representations of heat flux and energy density,,
ticular frame of reference. In the framework of Hamilton’s Egs. (25) and (6), we find that the heat flux transforms in-
principle for linear and reversible heat transfer, the acceptedlariantly for arbitrary(Q) (meaning that the case 1 occuyrs
L, Eqg. (4), may be regarded as a quantity that is “alreadyi.e.,
suitably gauged.” Biot’s interpretation of the thermal dis-

placement vector and his trailing functip80] can be attrib- ,_ 0y’ . LA p
. qg'=——+ciVo' +V Xk
uted to the potential. Yet, as Eqs(25) and(6) show, ourys ot T
and ¢ represent altogether the generalization of the Biot’s
displacement that secures natural treatment of irreversible _ ‘9‘/’_ £+CZV SV X k=
) 2 oVe K=(. (54)
dynamics and abandons any extraneous concept of a dissipa- at

tion function addedd hocin the Biot approach. For revers- o o )
ible cases, whew can be gauged to zero, Biot's representa-Similarly, any definite vorticity of heat fluxe=Vxq (in
tion is recoveredSec. V). Mathematics of gauging thermal Particular vanishing vorticityw=0) satisfies the uncondi-
potentials is analyzed below. tional gauge invariance

As usual in field theories, even if physical fieldandp,

! - '=VXK =VXKk=w.
are secured, the fields of Lagrange multipligksk, and ¢ @ =VXK =VX = (55)
are not unique, as the same physical valyesdp,, E, etc., On the other hand the energy density transforms as
can be represented by various multiplier functions. In gen-
eral, this change in multipliers can be attributed to changes in ag’
kinetic potentialL or to transformation of physical con- pe=—V-¥' — at

straints in the way ensuring physical equivalence of original

and transformed constraints. Gauging thermal potentials is 3 @ 3°Q 1 90

_ _ " 2
partly similar to that in the theory of electromagnetic field, =—V-y ot _Cgatz + c2r ot +V20
where the Lagrange multipliers of inhomogeneous Maxwell
equations, or the potentials of electromagnetic fiédfl and B 72Q 1 900 v2Q 56
A), are gauged by addition of the partial time derivative of a “Pem cZot? + % ot * : (56)

scalar function toA° and subtraction of the gradient of the

same function fromA (Jackson 28]). A number of general This means that the energy density transforms invariantly
issues associated with gauge invariant field theories are nainly for (restricted scalars() that satisfy the conditio53).
discussed here as there are many sources to which the readdtus the invariance of the whole model of heat transfer re-
can be referred29,32,35,36 The significance of gauge fers to the case 2. In other words, the theory assboéis p..
groups is also shown in continuum mechani83]. When andq as physical fields provided that conditi¢s3) is sat-
dealing with thermal potentials we focus on the linear ther4isfied by gauge scalafd. Interestingly, the structure of Lor-
mal model considered rather than on possible nonlinear gerentz condition, well known in the theory of electromagnetic
eralizations. fields (Jacksorn 28]), appears in the potential representation
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of p.. However, in electromagnetic field ttiermal counter- ~ energy form that yields inertial properties of heat, and results
part of our density, vanishes, i.e., Lorentz gauge condition in the theory satisfying the second law of thermodynamics.
holds in its classical form, the property that is consistent with I the variational method developed in Secs. IlI-VI di-
the vanishing mass of the photon. In the thermal case con/€rSe kinetic potentials can be applied to produce an infi-
sidered here, the quantipy, is nonvanishing as it represents Nite number of different, still correct, representations of
the density of the nonequilibrium internal energy. In fact, allPhysical variables andp, in terms of field potentialg) and
analogies we have noted here are weak and formal. They: Yet, as shown in Secs. VIl and VIII, the physics of the
result from the field description accepted in both cases rathdtroblem of correspondence with Noether's energy and mo-
than from any serious physical similarities. mentum formulas and the satisfaction of second law implies

Equations (54)—(56) prove that the restricted gauging restricting to the kinetic potentiah), which is the Hamil-
based on scala®, which satisfy Eq(53), leaves both fields tonian structure in the framework of the linear theory con-
q and p., Egs.(25) and (6), invariant. In effect, each nar- Sidered. Indeed, in view of the tests in Secs. VIl and VI, the
rowed gauge transformatia®0)—(53) of thermal potentials kinetic potential of Eq.(4) may be regarded as a properly
#, K, and ¢ preserves the same potential representations fogauged- that not only yields the Cattaneo dynamics but also
g and p, in the form assuring Cattaneo model of heat trans-sfit'_Sf'eS t_he a_bove phys_|cal requirements. “_Nonautonomous”
fer, Eqs.(1) and(2). This transformation also ensures invari- LS involving time explicitly by an exponential ter8,39
ance of actiong\ under transformation0) —(52) in which ~ areé excluded from considerations as they violate Noether's
the scalar) satisfied Eq(53). conservation law$34]. Comparing with earlier approaches,
our method is closer to those of Bil@0] and Lebor{40], as
they both work with Biot’s thermal potentials that are gener-
alized in our Egs(6) and(25).

This work shows that the problem of thermal energy At the present time too little is known about physics of
transfer can be broken down to the problem of related potenronlinear generalizations for Cattaneo equatibnin order
tials, similar to problems of electromagnetic and gravita-to experiment with proposals of nonlinear theories with vari-
tional fields. We have found inhomogeneous equations deable p, ¢, 7, and\. Note that, by its own nature, our varia-
scribing dissipative process of heat transfer with a finitetional method is relevant tgiven constraints and kinetic
propagation speed in terms of thermal potentigland .  potentialL. Therefore, in nonlinear generalizations, technical
These equations show that heat fgand energy density,  difficulties are on the side dproper physical generalization
are sources of the field. For heat transfer theory, our resultsf) Cattaneo constraint rather than on that involving the
yield a situation similar to that in electromagnetic gravita-variational method itself. In some nonlinear cases the method
tional field theories, where specification of sourcekectric  can still assure simplicity of potentiais and ¢ for a suitably
four current or the matter tensor, respectiyetiefines the chosenL; in others, getting explicit potentials is not a trivial
behavior of the field potentials. The approach adjoiningtask. Some of our earlier results for reversible heat fIgliv$
physical constraints to a kinetic potential by Lagrange mul-seem to imply that entropy flux=q/T may be better vari-
tipliers, has thus proven its power and usefulness in the corable than heat flux in nonlinear cases. The progress in this
text of quite complicated transfer phenomena in which bottrespect will be reported.
reversible and irreversible effects accompany each other. Our
analysis proves that thermod_ynamic i.rreversibility dc_:es not ACKNOWLEDGMENTS
influence the form of the kinetic potential, which remains the
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