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Statistics of level spacing of geometric resonances in random binary composites
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We study the statistics of level spacing of geometric resonances in the disordered binary networks. For a
definite concentrationp within the interval@0.2,0.7#, numerical calculations indicate that the unfolded level
spacing distributionP(t) and level number variance(2(L) have general features. It is also shown that the
short-range fluctuationP(t) and long-range spectral correlation(2(L) lie between the profiles of the Poisson
ensemble and Gaussion orthogonal ensemble. At the percolation thresholdpc , crossover behavior of functions
P(t) and(2(L) is obtained, giving the finite size scaling of mean level spacingd and mean level numbern,
which obey the scaling laws,d51.032L21.952 andn50.911L1.970.
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I. INTRODUCTION

Random matrix theory~RMT! originated from dealing
with the energy levels of complex many-body quantum s
tems has become an independent new statistics@1#. Different
from the standard statistics in physics, RMT focuses its
tention on the general properties of a number of stocha
ensembles with common symmetry. The correlation and fl
tuation of eigenvalues and eigenfunctions in random Ham
tonian systems are the central issues in the application
RMT. Apart from the nuclear and nuclei fields, it was al
employed to study the critical statistics of disordered syste
with various complex interaction@2–7#. Recently, resonan
properties of composite materials have been studied ex
sively due to the large linear and nonlinear optical respon
@8–12#. In a dielectric network, there exist a lot of geomet
resonances randomly distributed in the resonant area@13–
16#. For a specific sample, its resonance spectrum is v
sensitive to the microstructure. While, for a large number
samples, given a parameter, i.e., concentrationp, the distri-
bution of resonances is stable, which implies some gen
features of resonance spectrum. The aim of this paper
study the level spacing statistics of geometric resonance

In this work, a binary network is considered, where t
impurity bonds with admittancee1 are employed to replac
the bonds in an otherwise homogeneous network of iden
admittancee2. The admittance of each bond is genera
complex and frequency dependent. All the impurity bon
construct the cluster subspace. For a binary composite
admittance ratioh (5e1 /e2) of two components has
branch cut on the negative axis when resonance takes p
@17#. Starting from the Kirchhoff equations, the gene
Green’s-function formalism~GFF! was developed to dea
with the resonant properties of an infinite binary netwo
@15#. Based on the GFF, the eigenvalues@s51/(12h) and
sP@0,1## of Green’s matrixM are solved, the sequence
which forms the resonance spectrum@13,15#. M maps the
geometric configuration of the cluster subspace. Its soluti
summarize the geometric resonances of the network sub
to the external sources and in the quasistatic limit. The
ment of M is defined asM x,y5(zPC(y)(Gx,y2Gx,z), where
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zPC(y) means that the joining pointsz andy belong to the
impurity metallic cluster and are the nearest neighbors,
Gx,y is the Green’s function of Laplace operator on the in
nite square, i.e.,2DGx,y5dx,y with Gx,x50. More clearly,
M x,y describes the interaction betweenx andy and is closely
related to the ‘‘environment’’ or the nearest neighbors ofy.
In a dilute network, there exists a large ‘‘environment’’ di
ference between two joining points, hence the elements oM
distribute more uncorrelatively rather than with some sy
metry. However, for a percolating network, due to the se
similar structure,x and y have the similar ‘‘environment’’
and M x,y is approximately equal toM y,x . Thus, in the per-
colating system, its Green’s matrixM is analogous to the
random matrix of Gaussian orthogonal ensemble~GOE!, in
which the elements of the Hamiltonian must satisfyHm,n

5Hn,m . So, for a disordered composite, it is expected t
the correlation and fluctuation of eigenvalues ofM have the
general features.

In the following, statistics of resonance level spacing
the disordered binary composites is studied intensively
the unfolded scale. For one sample, there are more than
levels numerically solved by its Green’s matrixM. In the
unfolding procedure, we use a fit of the third order polyn
mial to the data. For an arbitraryp, 1000 samples, with to-
tally more than 700 000 levels, are computed for the sake
the ensemble averaging. Atpc , we use the samples of siz
30330. It is reported that, in the dilute anisotropic compo
ite, the size effect of resonance spectrum is not obvi
@16,18#. The difference between using 1000 samples of
330 system and using a large system, say 3003300, is that
there is a minor correction in the calculations of resona
level spacing distribution and correlation. For a definitep
within the interval@0.2,0.7#, our numerical calculations in
dicate that the unfolded level spacing distributionP(t) and
level number variance(2(L) have the general features. It
also shown that the short-range fluctuationP(t) and long-
range spectral correlation(2(L) lie between the profiles o
the Poisson ensemble and GOE.

This paper is organized as follows. In the following tw
sections, level spacing distributionsP(t)’s and level number
©2002 The American Physical Society29-1
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variances(2(L)’s for various p are calculated on the un
folded scale. Then, in Sec. IV, atpc , crossover behavior o
P(t) and(2(L) is obtained, giving the finite size scaling o
mean level spacingd and mean level numbern. Finally, we
summarize the main results in Sec. V.

II. UNFOLDED LEVEL SPACING DISTRIBUTION

In order to remove the system-specific mean level den
or normalize the resonance level spacing of differ
samples, unfolding procedure is necessary. For a sample

FIG. 1. The typical cumulative spectral functionC(s) of reso-
nance levels. The small part of the measured spectrum is show
the staircase function. The smooth partj(s) is the third order poly-
nomial whose coefficients are found by a fit of the whole measu
spectrum.
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cumulative spectral functionC(s) of its resonance spectrum
is defined as@1#

C~s!5E
2`

s

f ~s8!ds8, ~1!

wheref (s8)5(n51
N d(s82sn) is the spectral function of lev-

els. WhenN→`, f (s8) should be smooth.C(s) is the stair-
case function and is used to count the number of levels
satisfy thatf (s8) is smooth,s is rescaled byj as

C~s!5j1Cf l~s!, ~2!

wherej is the smooth part ofC(s) andCf l(s) is the fluctu-
ating part ofC(s). Figure 1 shows the small section of th
measured spectrum. In the following, we use the third or
polynomial to fit the data. However, whenp50.1 or 0.2, the
ninth or 11th polynomial is not high enough to fit the cur
due to the large fluctuation of level spacing. So at the dil
systems, numerical calculations are not accurate.

The level spacing distributionP(t) is the probability den-
sity for neighboring levelsjn andjn11 having the spacingt.
It is used to describe the short-range spectral fluctuations
the unfolded scale, the functionP(t) and its first moment are
normalized to unity,*0

`P(t)dt51 and *0
`tP(t)dt51. For

the uncorrelated or Poisson ensemblePp(t)5exp(2t), while
for the GOE, or Wigner-Dyson ensemble,PWD(t)
5p/2t exp(2p2t/4). Figure 2 displays the level spacing di
tributions P(t)’s for variousp within the interval@0.1,0.7#.
In this figure, the distributionsPp(t) andPWD(t) are drawn
by the dashed and solid lines, respectively. The solid cur
with the filled or opaque circles represent the critical dis
butionsPT(t) at the percolation thresholdpc . The inset of

as

d

e

e

FIG. 2. Level spacing distribu-
tion P(t) of resonance spectrum
on the unfolded scale. Herep is
ranged at the interval@0.1,0.7#.
Dashed and solid lines show
P(t)’s of the Poisson ensembl
and GOE. The solid lines with
filled or opaque symbols show th
profiles of various values ofp.
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FIG. 3. Level number variance
(2(L) of resonance spectrum o
the unfolded scale. Herep is
ranged at the interval@0.2,0.7#.
Dashed and solid lines show
(2(L)’s of the Poisson ensemble
and GOE. The solid lines with
filled or opaque symbols show th
profiles of various values ofp.
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Fig. 2 is used to describe the level spacing distributio
P(t)’s when p.pc . In this case, the calculations of th
functionsP(t)’s are not very accurate due to the degener
of resonances. For a specific sample, it is impossible to e
mate where the next level is due to the complex microstr
ture. However, for the disordered composites with a defin
p, when thei th level is measured, the spacing between
i th and (i 11)th levels satisfies the ensemble averaged
tribution P(t) rather than the Poisson distributionPp(t) or
GOE casePWD(t). It is seen that the distributionsP(t)’s lie
between the profiles of the Poisson ensemble and GOE
pP@0.1,0.7#. As discussed in the introductory part, the cri
cal PT(t) approaches thePWD(t) due to the strong interac
tion among the metallic bonds. Whenp is very small,P(t) is
close toPp(t) due to the weak interaction. At last, for a
arbitraryp, P(t) lies between the functionsPp(t) andPT(t).
In this figure, the crossover behavior ofP(t) is also shown.

In Fig. 2, we find that the probability of small spacing
much less than the uncorrelated Poisson distribution
means that some repulsion exists between neighboring
els. The repulsion in Gaussian ensembles comes from
symmetry of matrix elements. Here, the property of mat
elements is described by the Green’s matrixM of the GFF.
So the repulsion of resonance levels is caused by the in
action of metallic bonds. The repulsion becomes stron
with decreasingup2pcu. For the GOE, we notice the impor
tance of the repulsion lawP(t)}tb with b51 for small
spacing@1#. While for the composite materials with variou
p, when t→0.0, P(t).tb. When t.2.002, where 2.002 is
the second intersection point ofPp(t) andPWD(t), the long
tails of all functions approach the values of the Poisson
semble.

III. UNFOLDED LEVEL NUMBER VARIANCE

The above nearest neighbor level spacing distribut
contains the information of short scales about the resona
04612
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spectrum. Long-range correlation is measured by the le
number variance(2(L), given by@1#

(2~L !5^C2~L,js!&2^C~L,js!&
2, ~3!

whereC(L,js) counts the number of levels in the interv
@js ,js1L# on the unfolded scale. The angular bracket d
notes the average over the starting pointsjs . By the unfold-
ing, ^C(L,js)& should be equal toL. Thus, in the interval of
lengthL, one expects to find theL6A(2(L) levels on aver-
age. For the Poisson spectrum without correlation, one
tains(p

2(L)5L, while for the GOE, the analytical result is

(WD
2 ~L !5

2

p2 F ln~2pL !1g112
p2

8 G , ~4!

whereg50.5772 . . . is theEuler’s constant. Figure 3 show
the numerical results of level number variances(2(L)’s for
pP@0.1,0.7#. The same lines and symbols are used as th
in Fig. 2, namely, the profiles of the Poisson ensemble
GOE are represented by the dashed and solid lines, and
critical level number variance(T

2(L) is plotted by the solid
line with the circles. It is obvious that the correlation amo
levels is greater than the Poisson case and less than the
case. We could not collect the data forp.0.7 due to the
degeneracy of eigenvalues. Whenp50.1 orp50.2, the level
number variance(2(L) is out of the boundary of the Poisso
ensemble. The reason is that the data cannot be fitted
well by the third or higher order polynomial in the unfoldin
procedure. ForpP@0.3,0.7#, (2(L)’s lie between the pro-
files (p

2(L) and (T
2(L). As shown in Fig. 3, the curves al

most overlap forp50.4 andp50.6, as well as forp50.3
and p50.7. So, at the percolation threshold, the crosso
behavior of the level number variance is numerically o
tained.
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IV. CROSSOVER AND FINITE SIZE SCALING
AT PERCOLATION THRESHOLD

For a percolating network, level spacing distribution lim
ited in the intervalsP@0.25,0.75# has been investigated b
Jonckheere and Luck@14#. Recent numerical calculations in
dicate that the resonances within@0,0.25# and @0.75,1# are
important because the high values of the inverse partic
tion ratios in those regions correspond to the strongly
hanced optical responses@16#. In order to study the criticality
of level spacing distributionP(t) and level number varianc
(2(L) in a two-dimensional network, the duality of leve
spacing for binary model is discussed. We consider an i
nite binary network with concentrationp. The admittance of
the impurity bonds and matrix bonds is set toe1 and e2,
respectively. We get the admittance ratioh5e1 /e2 and s
51/(12h). The resonance spectrum is given by the
$s1 ,s2 , . . . ,sn%. Then the set$t% of level spacing can be
written as $t1 ,t2 , . . . ,tn21% with tn215sn2sn21. For a
large network,G is a typical configuration of the concentra
tion p. A binary model is invariant under the simultaneo
interchangep↔12p and e1↔e2. So G8 is also a typical
configuration of the concentration 12p and we get the new
admittance ratioh851/h and s8512s. The spectrum of
resonance is replaced by the set$s18,s28, . . . ,sn8% with s1851
2s1 , s28512s2, andsn8512sn . The new level spacing se
$t8% is just the original set$t%. So the duality of level spacing
exists for the binary model and it is self-dual atp5pc50.5.
The functionsP(t) and (2(L) are computed based on th
same set$t% for p and 12p.

In the calculations, we cannot find the strict duality
level spacing. One reason is that the binary sample is
large enough. Another is that the degeneracy of resona
affects the accuracy ofP(t) and (2(L) when p.pc . Nu-
merical results indicate the crossover of level spacing dis
bution P(t) and level number variance(2(L), as shown
in Figs. 4 and 5. To characterize this behavior, for ea
distribution P(t), we compute the valueh5*0

t0@P(t)

2PWD(t)#dt/*0
t0@Pp(t)2PWD(t)#dt with t050.4729, the

FIG. 4. Dependence ofh on the concentrationp. The lines are
guides to the eyes.
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first interaction point ofPp(t) andPWD(t) @2,3#. In this way,
h varies from 1@P(t)5Pp(t)# to 0@P(t)5PWD(t)#. We
note thathT50.2162 at the transition is close to the valu
hA50.215, which corresponds toPA(t) at the Anderson
transition@19#. As observed in Fig. 4,h(p) is closer to the
value 1 of the Poisson ensemble with increasingup2pcu. In
Fig. 3, we have found the linear relation of(2(L) with re-
spect toL as (2(L)5xL, where x is called the spectra
compressibility@6#. When the unfolded numberL is larger,
the valuex is 1 for the Poisson ensemble, while for the GO
or Wigner-Dyson ensemble,x is approximately equal to
zero. For variousp, the slopesx ’s are plotted in Fig. 5. At
pc , x50.395 is close to zero, rather than the value 1 of
Poisson ensemble. In Figs. 4 and 5, we observe the cross
behavior ofP(t) and (2(L), as well as the duality of leve
spacing.

Finite size scaling of mean level spacingd and mean level
numbern are computed when the percolating sample is
size from 16316 to 32332. For each case, more tha
700 000 levels are calculated for the ensemble averag
The results are shown in Figs. 6 and 7. Finite size sca
laws d51.032L21.952 andn50.911L1.970 are obtained. Note

FIG. 5. Dependence of the spectral compressibilityx on the
concentrationp. The lines are guides to the eyes.

FIG. 6. Finite size scaling of the mean level spacingd at pc .
The sample is in size from 16316 to 32332.
9-4
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that here the meaning ofL is different from that in Fig. 3.
The scaling exponents 1.952 and 1.970 are universal
closely related to the spatial dimension (D52) of the net-
work.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have investigated the fluctuation a
correlation of geometric resonance level spacing in the r
dom binary composites by RMT. The main results inclu
the following.

FIG. 7. Finite size scaling of the mean level numbern at pc .
The sample is in size from 16316 to 32332.
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~1! For a definitep, the unfolded level spacingP(t) and
level number variance(2(L) have general features.

~2! For an arbitraryp, the short-range spectral fluctuatio
P(t) and long-range spectral correlation(2(L) lie between
the profiles of the Poisson ensemble and critical ensemb

~3! The functionsPT(t) and (T
2(L) at the transition ap-

proach the profiles of the GOE, rather than the profiles of
Poisson ensemble.

~4! The crossover behavior and duality ofP(t) and(2(L)
are found whenp approachespc .

~5! At pc , finite size scaling lawsd51.032L21.952 and
n50.911L1.970 are obtained.

Here a few discussions are in order regarding the ab
results. RMT originated from dealing with the quantum sy
tems is now employed to study the resonant properties
classical composite material, where the random Hamilton
matrix H is replaced by the Green’s matrixM. In the perco-
lating composite, the position of resonance was found to
sensitive to the geometric structure@12#. Now it is shown
that the distribution of resonance level spacing has gen
features. At the percolation thresholdpc , the finite size scal-
ing exponents 1.952 and 1.970 approach the spatial dim
sion (D52) of the network.

In summary, statistics of eigenvalues of the Green’s m
trix M has been studied and the general distribution and
relation of resonance level spacing have been obtained.
tistics of eigenvectors ofM, which are closely related to th
local electric fields, will be published elsewhere.
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