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Statistics of level spacing of geometric resonances in random binary composites
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We study the statistics of level spacing of geometric resonances in the disordered binary networks. For a
definite concentratiop within the interval[0.2,0.7, numerical calculations indicate that the unfolded level
spacing distributiorP(t) and level number variancB?(L) have general features. It is also shown that the
short-range fluctuatio®(t) and long-range spectral correlatia¥(L) lie between the profiles of the Poisson
ensemble and Gaussion orthogonal ensemble. At the percolation thresharbssover behavior of functions
P(t) and=2(L) is obtained, giving the finite size scaling of mean level spadramd mean level number,
which obey the scaling lawsi=1.032 " *%?andn=0.911.%°7°
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. INTRODUCTION ze C(y) means that the joining pointsandy belong to the
impurity metallic cluster and are the nearest neighbors, and
Random matrix theoryRMT) originated from dealing G, , is the Green’s function of Laplace operator on the infi-
with the energy levels of complex many-body quantum sysnjte square, i.e.;- AG, =8y, with G, ,=0. More clearly,
tems has become an independent new statiglicdifferent 1 describes the interaction betweeandy and is closely
from the standard statistics in physics, RMT focuses its atyg|ated to the “environment” or the nearest neighborsyof
tention on the general properties of a number of stochastig, 5 gijute network, there exists a large “environment” dif-

ensembles with common symmetry. The correlation and fluCzg o ce hetween two joining points, hence the elemenks of
tuation of eigenvalues and eigenfunctions in random Ham"%

tonian systems are the central issues in the applications jstribute more uncorrelatively rather than with some sym-
. . etry. However, for a percolating network, due to the self-

RMT. Apart from the nuclear and nuclei fields, it was also . . L T »
employed to study the critical statistics of disordered system§Imllar str ucture,x -and y have the similar enylronment
with various complex interactiof2—7]. Recently, resonant and MX'V IS appro>.<|mately (?qual 0/ y.X Thus, in the per-
properties of composite materials have been studied exteff/aling system, its Green's matrM is analogous to the
sively due to the large linear and nonlinear optical response€ndom matrix of Gaussian orthogonal ensemiB©E), in
[8—12. In a dielectric network, there exist a lot of geometric Which the elements of the Hamiltonian must satify, ,
resonances randomly distributed in the resonant ft8a  =Hnm. So, for a disordered composite, it is expected that
16]. For a specific sample, its resonance spectrum is ver{he correlation and fluctuation of eigenvalues\have the
sensitive to the microstructure. While, for a large number ofgeneral features.
samples, given a parameter, i.e., concentragiothe distri- In the following, statistics of resonance level spacing in
bution of resonances is stable, which implies some generdhe disordered binary composites is studied intensively on
features of resonance spectrum. The aim of this paper is tde unfolded scale. For one sample, there are more than 700
study the level spacing statistics of geometric resonances. levels numerically solved by its Green’s matifit. In the

In this work, a binary network is considered, where theunfolding procedure, we use a fit of the third order polyno-
impurity bonds with admittance, are employed to replace mial to the data. For an arbitragy, 1000 samples, with to-
the bonds in an otherwise homogeneous network of identicdhlly more than 700000 levels, are computed for the sake of
admittancee,. The admittance of each bond is generallythe ensemble averaging. A, we use the samples of size
complex and frequency dependent. All the impurity bonds30x 30. It is reported that, in the dilute anisotropic compos-
construct the cluster subspace. For a binary composite, thte, the size effect of resonance spectrum is not obvious
admittance ratioh (=e¢,/€,) of two components has a [16,18. The difference between using 1000 samples of 30
branch cut on the negative axis when resonance takes place30 system and using a large system, say>3800, is that
[17]. Starting from the Kirchhoff equations, the generalthere is a minor correction in the calculations of resonance
Green's-function formalism{GFFP was developed to deal level spacing distribution and correlation. For a defirgte
with the resonant properties of an infinite binary networkwithin the interval[0.2,0.7,, our numerical calculations in-
[15]. Based on the GFF, the eigenvalyes=1/(1—h) and dicate that the unfolded level spacing distributi(t) and
se[0,1]] of Green’s matrixM are solved, the sequence of level number varianc&?(L) have the general features. It is
which forms the resonance spectridB,15. M maps the also shown that the short-range fluctuatie(t) and long-
geometric configuration of the cluster subspace. Its solutionsange spectral correlatioR?(L) lie between the profiles of
summarize the geometric resonances of the network subjetite Poisson ensemble and GOE.
to the external sources and in the quasistatic limit. The ele- This paper is organized as follows. In the following two
ment of M is defined asM, =2, _c(,)(Gxy—Gyx,), Where  sections, level spacing distributioRgt)’s and level number
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FIG. 1. The typical cumulative spectral functi@{(s) of reso-
nance levels. The small part of the measured spectrum is shown
the staircase function. The smooth pé&(s$) is the third order poly-
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cumulative spectral functio€(s) of its resonance spectrum
is defined ag1]

C(s)=f_:f(s’)ds’, (1)

wheref(s’):E,’Llé(s’ —s,) is the spectral function of lev-
els. WhenN—oo, f(s") should be smoothC(s) is the stair-
case function and is used to count the number of levels. To
satisfy thatf(s’) is smooth,sis rescaled by as

C(s)=&+Cyi(s), (2

whereé is the smooth part o€(s) andCy,(s) is the fluctu-
ating part ofC(s). Figure 1 shows the small section of the
measured spectrum. In the following, we use the third order
aolynomial to fit the data. However, wher=0.1 or 0.2, the
ninth or 11th polynomial is not high enough to fit the curve

nomial whose coefficients are found by a fit of the whole measurediue to the large fluctuation of level spacing. So at the dilute

spectrum.

variances=?(L)’s for variousp are calculated on the un-
folded scale. Then, in Sec. IV, at., crossover behavior of
P(t) and=2(L) is obtained, giving the finite size scaling of
mean level spacing and mean level number. Finally, we

summarize the main results in Sec. V.

Il. UNFOLDED LEVEL SPACING DISTRIBUTION

systems, numerical calculations are not accurate.

The level spacing distributioR(t) is the probability den-
sity for neighboring levelg, and¢, .1 having the spacing
It is used to describe the short-range spectral fluctuations. On
the unfolded scale, the functid®(t) and its first moment are
normalized to unity,/;P(t)dt=1 and [,tP(t)dt=1. For
the uncorrelated or Poisson ensemB|gt) = exp(—t), while
for the GOE, or Wigner-Dyson ensemblePp(t)
= 7/2t exp(— 7°t/4). Figure 2 displays the level spacing dis-
tributions P(t)’s for variousp within the interval[ 0.1,0.7.
In this figure, the distribution®,(t) and Py,p(t) are drawn

In order to remove the system-specific mean level densitypy the dashed and solid lines, respectively. The solid curves
or normalize the resonance level spacing of differentwith the filled or opaque circles represent the critical distri-
samples, unfolding procedure is necessary. For a sample, tieitions P(t) at the percolation threshold,. The inset of
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Fig. 2 is used to describe the level spacing distributionspectrum. Long-range correlation is measured by the level
P(t)’s when p>p.. In this case, the calculations of the number varianc&?(L), given by[1]

functionsP(t)’s are not very accurate due to the degeneracy

of resonances. For a specific sample, it is impossiple to esti- S2(L)=(C3(L,&))—(C(L, &), (3)
mate where the next level is due to the complex microstruc-

ture. However, for the disordered composites with a definite ) )

p, when theith level is measured, the spacing between the/nere C(L, &) counts the number of levels in the interval
ith and {+1)th levels satisfies the ensemble averaged distés-€s* L1 on the unfolded scal_e. The_ angular bracket de-
tribution P(t) rather than the Poisson distributiéty(t) or ~ NOteS the average over the starting pofys By the unfold-

GOE casePyp(t). It is seen that the distributior3(t)'s lie N9 (C(L,&5)) should be equal ta. Thus, in the interval of
between the profiles of the Poisson ensemble and GOE fdgngthL, one expects to find thex y2(L) levels on aver-

pe[0.1,0.7. As discussed in the introductory part, the criti- 29€- F(Z)r the Poisson spectrum without correlation, one ob-
cal P(t) approaches th@,,p(t) due to the strong interac- tains= (L) =L, while for the GOE, the analytical result is
tion among the metallic bonds. Wheris very small,P(t) is
close toP,(t) due to the weak interaction. At last, for an 2 2
arbitraryp, P(t) lies between the functior,(t) andP+(t). E\z,VD(L)= - In(27L)+ y+1— 5| (4)
In this figure, the crossover behavior Bft) is also shown. 77
In Fig. 2, we find that the probability of small spacing is
much less than the uncorrelated Poisson distribution. livherey=0.577 ... is theEuler’s constant. Figure 3 shows
means that some repulsion exists between neighboring lethe numerical results of level number varian&%L)’s for
els. The repulsion in Gaussian ensembles comes from thee[0.1,0.7. The same lines and symbols are used as those
symmetry of matrix elements. Here, the property of matrixin Fig. 2, namely, the profiles of the Poisson ensemble and
elements is described by the Green’s maiixof the GFF.  GOE are represented by the dashed and solid lines, and the
So the repulsion of resonance levels is caused by the integritical level number varianc&2(L) is plotted by the solid
action of metallic bonds. The repulsion becomes strongeline with the circles. It is obvious that the correlation among
with decreasingp—p,|. For the GOE, we notice the impor- |evels is greater than the Poisson case and less than the GOE
tance of the repulsion lawP(t)t? with B=1 for small  case. We could not collect the data for-0.7 due to the
spacing[1]. While for the composite materials with various degeneracy of eigenvalues. Whes 0.1 orp=0.2, the level
p, whent—0.0, P(t)>t#. Whent>2.002, where 2.002 is number varianc&2(L) is out of the boundary of the Poisson
the second intersection point Bf,(t) andPyyp(t), the long  ensemble. The reason is that the data cannot be fitted very
tails of all functions approach the values of the Poisson enwell by the third or higher order polynomial in the unfolding
semble. procedure. Fope[0.3,0.7, 2%(L)’s lie between the pro-
files £2(L) and S%(L). As shown in Fig. 3, the curves al-
most overlap forp=0.4 andp=0.6, as well as fop=0.3
and p=0.7. So, at the percolation threshold, the crossover
The above nearest neighbor level spacing distributiorbehavior of the level number variance is numerically ob-
contains the information of short scales about the resonandained.

Ill. UNFOLDED LEVEL NUMBER VARIANCE

046129-3



Y. GU, K. W. YU, AND Z. R. YANG PHYSICAL REVIEW E 65 046129

0.8 1.1
0.7 1.0 1
(X
0.6
0.8
0.5
_ =
= 0.7
=
0.4 1
0.6 1
0.3 1
0.5
024 0.4
0.1 T T T T T T T 0.3 T T T T T T
0.0 0.1 0.2 03 04 0.5 0.6 07 08 0.1 02 03 04 05 8.6 0.7 0.8
p p
FIG. 4. Dependence of on the concentratiop. The lines are FIG. 5. Dependence of the spectral compressibilityon the
guides to the eyes. concentratiomp. The lines are guides to the eyes.

first interaction point oP,(t) andPyyp(t) [2,3]. In this way,
IV. CROSSOVER AND FINITE SIZE SCALING n varies from TP(t)= Pp(t)] to O[P(t)=Pwo(t)]. We
AT PERCOLATION THRESHOLD note that»;=0.2162 at the transition is close to the value

For a percolating network, level spacing distribution lim- 7a=0-215, which corresponds tBA(t) at the Anderson

ited in the intervalse [0.25,0.79 has been investigated by fransition[19]. As observed in Fig. 4y(p) is closer to the
Jonckheere and Ludk4]. Recent numerical calculations in- \If_’“u%l of thhe P?'SSO(;‘ (ra]ns?mble Wl'th. mc}rsefzail_mg P%" In
dicate that the resonances withi@,0.25 and[0.75,1] are 9. 3, we have found the linear relation Bf(L) with re-

2 _ .
important because the high values of the inverse participas—peCt toL as 2(L)=xL, wherey is called the spectral

tion ratios in those regions correspond to the strongly eng:ompre53|t_)|llty[6]. When_the unfolded numb_e.r is larger,
hanced optical responsgks]. In order to study the criticality the Vii'“eX is 1 for the Poisson fansemble: while for the GOE
of level spacing distributio?(t) and level number variance or ngner-Dyson ensembley ',S approxmatt_a-ly .eq“a' 0
S2(L) in a two-dimensional network, the duality of level Zero. For variousp, the slopesy’s are plotted in Fig. 5. At
spacing for binary model is discussed. We consider an infiPc: X=0-395 is close to zero, rather than the value 1 of the
nite binary network with concentration The admittance of P0|ssqn ensemble. In 2F|gs. 4 and 5, we observg the crossover
the impurity bonds and matrix bonds is setdp and ey, beha_wor ofP(t) and=<(L), as well as the duality of level
respectively. We get the admittance ratie-€;/€, and s spacing. : :

—1/(1—h). The resonance spectrum is given by the set Finite size scaling of mean level spacifgnd mean level

S.S,. ... s.). Then the seft! of level spacing can be npmbern are computed when the percolating sample is in
\{/vrlittezn as {tz}tz t 4} vgit}h t_,=s _IOS 1g For a Size from 16<16 to 32<32. For each case, more than
) y v raatn— n— n n—1-

large networkG is a typical configuration of the concentra- 700000 levels are calculated for the ensemble averaging.

: : e ; ; The results are shown in Figs. 6 and 7. Finite size scaling
tion p. A binary model is invariant under the simultaneous > ~ 1,052 -~ 1970 .
interchangep—1—p and e, ¢,. So G’ is also a typical laws §=1.031L andn=0.911 are obtained. Note

configuration of the concentration-1p and we get the new -23
admittance ratioh’=1/h and s’=1—s. The spectrum of
resonance is replaced by the $s},s,, ... s} with s;=1 247

—S;, S5=1-s5,, ands;,=1-s,. The new level spacing set
{t'} is just the original seft}. So the duality of level spacing
exists for the binary model and it is self-dualgt p,=0.5. A
The functionsP(t) and 2?(L) are computed based on the 8
same seft} for p and 1-p. -2.7 ]
In the calculations, we cannot find the strict duality of
level spacing. One reason is that the binary sample is no 28]
large enough. Another is that the degeneracy of resonance d=1.032 _"1-952
affects the accuracy dP(t) and =?(L) whenp>p.. Nu- 97
merical results indicate the crossover of level spacing distri- . : . ‘ . . .
bution P(t) and level number variancB?(L), as shown 116 12 125 130 135 140 145 150 155
in Figs. 4 and 5. To characterize this behavior, for each log,oL

L _ ot
distribution P(tt)’ we compute the valuen—foo[P(t) FIG. 6. Finite size scaling of the mean level spacihat p. .
—Pwo(t) 1dt/ [ [ P,(t) — Pywp(t) Jdt with t,=0.4729, the The sample is in size from 2616 to 32< 32.

w
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30 (1) For a definitep, the unfolded level spacing(t) and
level number varianc&?(L) have general features.

(2) For an arbitraryp, the short-range spectral fluctuation
28 4 P(t) and long-range spectral correlatiaf(L) lie between
the profiles of the Poisson ensemble and critical ensemble.
27 4 (3) The functionsP+(t) and 2%(L) at the transition ap-
proach the profiles of the GOE, rather than the profiles of the
Poisson ensemble.

25 (4) The crossover behavior and duality®t) and=2(L)

are found wherp approache®..

24 (5) At p,, finite size scaling lawss=1.032.~ %2 and

n=0.911.1°"%are obtained.

2'31_15 120 125 130 135 140 145 180 155 Here a few discussions are in order regarding the above
logol. results. RMT originated from dealing with the quantum sys-

tems is now employed to study the resonant properties of

classical composite material, where the random Hamiltonian

matrix H is replaced by the Green’s mati. In the perco-

that here the meaning df is different from that in Fig. 3. lating composite, the position of resonance was found to be

The scaling exponents 1.952 and 1.970 are universal an nsitive t_o t_he geometric structufe2). Now .it s shown
closely related to the spatial dimensioB £ 2) of the net- that the distribution of resonance level spacing has general
work. features. At the percolation threshqid, the finite size scal-

ing exponents 1.952 and 1.970 approach the spatial dimen-
sion (D=2) of the network.
In summary, statistics of eigenvalues of the Green’s ma-
In this paper, we have investigated the fluctuation andrix M has been studied and the general distribution and cor-
correlation of geometric resonance level spacing in the ranrelation of resonance level spacing have been obtained. Sta-
dom binary composites by RMT. The main results includetistics of eigenvectors dfl, which are closely related to the
the following. local electric fields, will be published elsewhere.

z9{ n=0911L1970

logsgn

26

FIG. 7. Finite size scaling of the mean level numbeat p. .
The sample is in size from 2616 to 32< 32.
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