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Flow properties of driven-diffusive lattice gases: Theory and computer simulation
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We developn-cluster mean-field theories (1<n<4) for calculating theflux and thegap distributionin the
nonequilibrium steady states of the Katz-Lebowitz-Spohn model of the driven diffusive lattice gas, with
attractive and repulsive interparticle interactions, in both one and two dimensions for arbitrary particle densi-
ties, temperature as well as the driving field. We compare our theoretical results with the corresponding
numerical data we have obtained from the computer simulations to demonstrate the level of accuracy of our
theoretical predictions. We also compare our results with those for some other prototype models, notably
particle-hopping models of vehicular traffic, to demonstrate the qualitative features we have observed in the
Katz-Lebowitz-Spohn model, emphasizing, in particular, the consequences ofrepulsiveinterparticle interac-
tions.
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I. INTRODUCTION

The driven-diffusive lattice gas models are of current
terest in nonequilibrium statistical mechanics@1–4#. De-
pending on the nature of the drive, these driven-dissipa
systems can attain steady states that are far from equilibr
The simplest driven-diffusive lattice gas model that incorp
rates interparticle interactions is the Katz-Lebowitz-Spo
model@5# ~from now onwards referred to as KLS!. Some of
the particle-hopping models of vehicular traffic@6# are
closely related to some special limits of the KLS model
one dimension. Therefore, in order to compare and cont
the spatiotemporal organizations and the flow properties
the KLS model with those in the particle-hopping models
vehicular traffic, we calculate here those properties of
KLS model that are important from the perspective of v
hicular traffic.

Over the last decade extensive investigations of vehic
traffic have been made using the so-called particle-hopp
models that represent each vehicle by a particle@6–8#. All
these traffic models are defined on discrete lattices each
of which, in the spirit of the lattice gas models, represent
cell that can accommodate at most one particle at a time
almost all the standard particle-hopping models of vehicu
traffic the only nonvanishing interparticle interaction is t
mutual hard-core repulsion that is usually implemen
through the condition of exclusion principle: no two particl
are allowed to occupy the same lattice site simultaneou
Therefore, a comparison of our results on the KLS mo
with the corresponding results for the particle-hopping m
els of vehicular traffic will show the effects of interpartic
interactions other than mere hard-core repulsion.

The flux~per lane! is defined to be the number of particle
~per lane! crossing a detector site per unit time. In the cont
of vehicular traffic@9#, the most important quantity of inter
est is the so-calledfundamental relationthat depicts the de
pendence of the flux on the density of the vehicles. T
number of empty sites in between a pair of particles is u
ally taken as a measure of the corresponding distance h
way ~DH!.

In this paper we theoretically calculate the DH distrib
1063-651X/2002/65~4!/046126~11!/$20.00 65 0461
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tions and the flux in the steady states of the KLS mod
separately for attractive and repulsive interparticle inter
tions, within the framework of acluster mean-field theory
~MFT! @4,10–14# which has been very successful also in t
theoretical treatment of the particle-hopping models of
hicular traffic @6,15–17#. We also indicate the level of the
accuracy of our cluster-MFT results by comparing these w
the corresponding numerical data obtained from our co
puter simulations of the KLS model.

The organization of this paper is as follows. In Sec. II w
define the KLS model and some related particle-hopp
models that are relevant for our discussion in the subseq
sections. We summarize in Sec. III the methods of the clu
MFT we use for our theoretical calculations as well as tho
of computer simulation. In Secs. IV, V, and VI, we prese
our theoretical results for the one-dimensional KLS mo
~both with attractive and repulsive interactions! in the
1-cluster, 2-cluster, and 4-cluster approximations, resp
tively, together with the corresponding numerical data fro
our computer simulations. We present our results for the tw
dimensional KLS model in Sec. VII. We compare and co
trast the results for the KLS model with the correspond
results for the particle-hopping models of vehicular traffic
Sec. VIII before summarizing the main results in the co
cluding Sec. IX.

II. THE MODELS

A. The KLS model

Suppose the variableci describes the state of occupatio
of the sitei ( i 51,2, . . . ,N) on a discrete lattice;ci is al-
lowed to take one of the only two values, namely,ci51 if
the sitei is occupied by a particle andci50 if it is empty~or,
equivalently, occupied by a ‘‘hole’’!. The Hamiltonian for the
system, in the absence of any external driving field, is giv
by

H524J(̂
i j &

cicj , ~1!

where the summation on the right hand side is to be car
©2002 The American Physical Society26-1
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DEBASHISH CHOWDHURY AND JIAN-SHENG WANG PHYSICAL REVIEW E65 046126
out over all the nearest-neighbor pairs andJ takes into ac-
count the corresponding interparticle interactions.

The KLS model can be recast in the language commo
used in the theory of magnetism by using classical Ising s
variablesSi5(2ci21) whereSi51 andSi521 represent
the particles and holes, respectively, and the correspon
Hamiltonian, in the absence of the external drive, is given

H852J(̂
i j &

SiSj . ~2!

The attractive and repulsive interparticle interactions, cap
tured byJ.0 andJ,0, respectively, in the Hamiltonian~1!
correspond to the ferromagnetic and antiferromagnetic in
actions in the form~2! of the Hamiltonian.

However, throughout the rest of this paper, we shall
the particle-hole picture, where the instantaneous state~con-
figuration! of the system at timet is completely described by
($c%;t). For example, in case of a system of lengthL in
dimensiond51, ($c%;t)[(c1 ,c2 , . . . ,cL ;t). Similarly, for
the Lx3Ly square lattice ($c%;t)[(c11,c12, . . . ,ci j , . . . ,
cLxLy

;t). The average densityc of the particles is given by

c5 limN→`,L→` N/Ns5 limN→`,L→`(( i
Nsci)/Ns where Ns ,

the total number of available sites, isL for a linear chain and
L2 for a square lattice of sizeL3L. Note that, because of th
conservation of the particles, the densityc is conserved by
the dynamics.

The dynamics of the system is governed by the w
known Kawasaki dynamics: at any nonzero temperatureT, a
randomly chosen nearest-neighbor particle-hole pair is
changed with the probability min@1,e2b(DH1l E)# where b
5(kBT)21 (kB being the Boltzmann constant! and DH
5H($c%new)2H($c%old) is the difference in the energy o
the new and old configurations whilel 5(21,0,11) for
jumps, respectively, along, transverse to, against the di
tion of the driving fieldEW . Throughout this paper we tak
kB51 and express the temperatureT in the units ofJ.

For the KLS model withattractive interparticle interac-
tions (J.0) on a square lattice, there is not only an orde
state at allT,Tc(E), but the critical temperatureTc(E) in-
creases withE, saturating at a valueTc(E→`).1.4Tc(E
50) whereTc(E50) is the critical temperature of the co
responding Ising model in thermodynamic equilibriu
@1,5,18#. On the other hand,Tc(E) decreases withE when
the interparticle interactions arerepulsive ~i.e., J,0); the
ordering is altogether destroyed by sufficiently largeE. How-
ever, there is no ordered structure at any nonzero tempera
in the one-dimensional KLS model, irrespective of the s
of the interactionJ. Because of this intrinsic qualitative dif
ference in the nature of the ordering in the steady state
d51 andd52 we present the corresponding results in se
rate sections.

B. The totally asymmetric simple exclusion process

In the totally asymmetric simple exclusion process~from
now onwards referred to as TASEP! @19#, initially, N classi-
cal particles occupyrandomlythe sites of a one-dimensiona
lattice of lengthL(>N). One time step of the dynamics con
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sists of updating the position ofN particles picked up in a
random-sequential manner; each randomly chosen par
moves forward, with probabilityq, if the lattice site imme-
diately in front of it is empty. For this model, the simp
single-site~i.e., 1-cluster! MFT @20# gives theexactflux

F5qc~12c! ~3!

for all densitiesc of the particles.

C. Comparison between the models

In the special caseE50 the KLS model reduces to th
corresponding standard Ising model in thermodynamic eq
librium. Note that ind51, in the opposite limitE→` the
hopping against the driving field becomes impossible a
moreover, the fieldE dominates so overwhelmingly overDH
at all nonzero temperaturesT that, in this limit, the one-
dimensional KLS model reduces to the TASEP, withq51,
irrespective of the sign of the interactionJ, providedJ re-
mainsfinite. For all the nonvanishing finiteE, in the limit
J50, the one-dimensional KLS model reduces to the AS
with the hopping probabilityq5min$1,e2l E/kBT%. Finally, at
infinitely high temperatures each particle moves complet
randomly, independent of each other, with equal probabi
in all directions.

III. METHODS OF CALCULATION

In this section we briefly outline the methods of our an
lytical as well as numerical calculations.

A. Cluster-mean-field theory

The dynamical cluster MFT has been used successfull
the analytical treatments of several nonequilibrium mod
including, for example, surface-reaction models@10# and
particle-hopping models of vehicular traffic@15–17#. How-
ever, in all the traffic models there is no interparticle inte
action except, of course, the hard-core repulsion. Moreo
unlike the traffic models, the particles in the KLS model c
also move against the drive.

In this paper we extend the approach in appropriate m
ner to calculate the fluxF as a function ofc in the KLS
model for arbitraryJÞ0, 0<T<`, andEW Þ0.

We define ann cluster (n,N) to be a collection ofn sites
each of which is the nearest neighbor of at least another
belonging to the same cluster. For simplicity of notation,
us considerd51. We denote the probability of finding ann
cluster in the state (c1 ,c2 , . . . ,cn) at time t by the symbol
Pn(c1 ,c2 , . . . ,cn ;t). We treat ann cluster exactly and ap
proximate all the (n1m) cluster probabilities by a produc
of n-cluster probabilities in a manner so as to couple
n-cluster to the rest of the system self-consistently~see, for
example,@6# for a pedagogical introduction and the existin
literature!.

It is straightforward to see that the state of the 2 clus
(ci ,ci 11) at timet1Dt depends on the state of the 4 clust
(t i 21 ,t i ,t i 11 ,t i 12) at time t so that the exact master equ
tion
6-2
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FdP2~ci ,ci 11!

dt G5 (
t i 21 ,t i 12

@P4~t i 21 ,ci 11 ,ci ,t i 12!w~t i 21 ,ci 11 ,ci ,t i 12!2P4~t i 21 ,ci ,ci 11 ,t i 12!w~t i 21 ,ci ,ci 11 ,t i 12!#

1 (
t i 21 ,t i 22

@P4~t i 22 ,ci ,t i 21 ,ci 11!w~t i 22 ,ci ,t i 21 ,ci 11!2P4~t i 22 ,t i 21 ,ci ,ci 11!w~t i 22 ,t i 21 ,ci ,ci 11!#

1 (
t i 12 ,t i 13

@P4~ci ,t i 12 ,ci 11 ,t i 13!w~ci ,t i 12 ,ci 11 ,t i 13!2P4~ci ,ci 11 ,t i 12 ,t i 13!w~ci ,ci 11 ,t i 12 ,t i 13!#

~4!
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governing the time evolution of the 2-cluster probabiliti
P2(ci ,ci 11) involves the 4-cluster probabilitie
P4(t i 21 ,t i ,t i 11 ,t i 12) for all those configurations that ca
lead to the 2-cluster configuration (ci ,ci 11 ;t) under consid-
eration

w~t1 ,t2 ,t3 ,t4!5W~t1 ,t2 ,t3 ,t4→t1 ,t3 ,t2 ,t4!

5min~1,exp$bJ@~t1t31t2t4!

2~t1t21t3t4!1~t22t3!E#%! ~5!

are the corresponding transition probabilities. However,
master equation governing the time evolution of the 4-clus
probabilitiesP4(t i 21 ,t i ,t i 11 ,t i 12) involve 6-cluster prob-
abilities, and so on. A few concrete examples of such ex
master equations forn-cluster probabilities are given in th
Appendix A. In the spirit of the cluster-mean-field approac
we truncate this hierarchy of exact master equations by
pressing, albeit approximately, all the (n1m)-cluster prob-
abilities in terms of then-cluster probabilities.

According to the definition of DH, the probability for
DH of j is given by

~6!

We evaluate the right hand side of the Eq.~6! in the 2-cluster
and 4-cluster approximations.

B. Computer simulation

In our computer simulations, we begin with initial cond
tions where the particles are arranged randomly on a la
of linear sizeL ~i.e., the system is a linear chain of sizeL in
d51 and square lattice of sizeL3L in d52). The sys-
tem is then allowed to evolve, following the Kawasaki e
change algorithm with the METROPOLIS probabilities
min@1,e2b(DH1l E)# mentioned above, for time steps of th
order of 104, so as to allow it to reach its steady state a
then, for further 105 steps during which the time-average
flux is measured. Finally, for the same set of values of
parameters, this process is repeated for 100 different in
configurations to compute the configuration-averaged fl
Since we did not observe any significant difference betw
the results forL5104 andL5105 in d51 and between thos
04612
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for L550 andL5100 in d52 all the data presented in thi
paper were generated usingL5104 in d51 and L550 in
d52.

IV. 1-CLUSTER APPROXIMATION IN ONE DIMENSION

It has been realized for some time@1# that the smallest
cluster one must consider in a dynamical cluster MFT
pends on the nature of the dynamics. Since the Kawa
dynamics conserves the number of particles, in principle,
smallest cluster must consist of at least onepair of sites.
However, it is also known that for theE→` limit of the
KLS model, which is exactly identical with the TASEP~with
q51), the single-site MFT gives the exact result. Therefo
in this short section we not only establish explicitly the lim
tations of the 1-cluster MFT at weakE but also demonstrate
how the accuracy of the 1-cluster MFT increases with
creasingE in the KLS model ind51.

The net flux is obtained fromF5F f2Fr where the for-
ward flux ~i.e., flux in the direction ofEW ) is given by

F f5 (
ci 21 ,ci 12

P4~ci 21,1,0,ci 12!w~ci 21,1,0,ci 12!, ~7!

while the reverse flux~i.e., the flux againstEW ) is given by

Fr5 (
ci 21 ,ci 12

P4~ci 21,0,1,ci 12!w~ci 21,0,1,ci 12!. ~8!

In the 1-cluster approximation the 4-cluster probabiliti
P4(ci 21 ,ci ,ci 11 ,ci 12) are approximated by the products
corresponding 1-cluster probabilities. Therefore, utilizing t
facts thatP1(1)5c and P1(0)512c, in the 1-cluster ap-
proximation, the Eqs.~7! and ~8! give, respectively,

F f5 (
ci 21 ,ci 12

P1~ci 21!c~12c!P1~ci 12!w~ci 21,1,0,ci 12!

~9!

and

Fr5 (
ci 21 ,ci 12

P1~ci 21!~12c!cP1~ci 12!w~ci 21,0,1,ci 12!

~10!

for the forward and reverse flux. Hence, the net flux is
6-3
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F5c~12c!$~2c222c11!~min@1,ebE#2min@1,e2bE# !

1c~12c!~min@1,eb(E24J)#2min@1,eb(2E14J)#

2min@1,eb(2E24J)#1min@1,eb(E14J)# !%. ~11!

The expression~11! predicts that the net fluxF is indepen-
dent of the sign of the interactionJ, at all c andT, irrespec-
tive of the strength ofE; this is certainly not true in genera
except at very largeE ~Fig. 1!. A comparison between th
theoretical prediction~11! and the results of our compute
simulations~Fig. 1! exposes not only the quantitative ina
curacy of the 1-cluster MFT but also its failure to account
the qualitative features ofF(c) in the case of repulsive in
terparticle interactions.

The fact that the 1-cluster MFT works better for strong
E is not surprising as the one-dimensional KLS model
duces to the TASEP~with q51) in the limit E→` and it is
well known that 1-cluster MFT gives exact result for th
TASEP. Thus, Fig. 1 establishes the existence of strong
relations that are neglected by the 1-cluster MFT.

V. 2-CLUSTER APPROXIMATION IN ONE-DIMENSION

In the 2-cluster approximation, we approximate t
4-cluster probabilities, appearing in the exact master eq

FIG. 1. Variation of thenet flux F with the densityc of the
particles in thesteady stateof the one-dimensional KLS model with
~a! attractive~i.e., ferromagnetic! interactionJ51.0 and~b! repul-
sive ~i.e., antiferromagnetic! interaction J521.0, both at T
50.5uJu. In both ~a! and ~b! the discrete data points have be
obtained from our computer simulations withE51.0(d),
2.0(1), 3.0(h), 4.0(,), and 100.0(L), respectively. The lines
represent the predictions of the 1-cluster approximation forE
51.0 ~solid line!, 2.0 ~dotted line!, 3.0 ~dashed line!, 4.0 ~long
dashed!, and 100.0~dot dashed!, respectively.
04612
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tion for the 2-cluster probabilities, by a product of 2-clust
probabilities, i.e.,

P4~t i 21 ,t i ,t i 11 ,t i 12!

}P2~t i 21 ,t i !P2~t i ,t i 11!P2~t i 11 ,t i 12!, ~12!

or, more precisely,

P4~t i 21 ,t i ,t i 11 ,t i 12!

5P2~t i 21ut i !P2~t i ,t i 11!P2~t i 11ut i 12!. ~13!

Next, we parametrize the 2-cluster probabilities as follow

P2~0,0!512c2a, ~14!

P2~1,1!5c2a, ~15!

where

P2~1,0!5P2~0,1!5a. ~16!

This parametrization enables us to satisfy the three c
straints @15#, namely, (ci 1150

1 P2(1,ci 11)5P1(1)5c,

(ci 1150
1 P2(0,ci 11)5P1(0)512c, and P2(1,0)5P2(0,1).

Equivalently, these constraints also imply that

dP2~0,0!/dt5dP2~1,1!/dt52dP2~0,1!/dt

52dP2~1,0!/dt.

So, only one of the four equations represented by Eq.~4! can
be taken as an independent equation. Thus, the calculatio
the four 2-cluster probabilities boils down to the calculati
of the single parametera.

Using MATHEMATICA for an automated generation of th
equations and simplification, we find that, in the steady st
a satisfies the quadratic equation

Aa21Ba1C50, ~17!

where

A5min@1,eb(2E24J)#1min@1,eb(E24J)#2min@1,eb(2E14J)#

2min@1,eb(E14J)#, ~18!

B52~min@1,eb(2E24J)#1min@1,eb(E24J)# !, ~19!

C5c~12c!$min@1,eb(2E24J)#1min@1,eb(E24J)#%,
~20!

and, hence, taking the physical solution that allows
2-cluster probabilities to be between 0 and 1, we get

a5~2B2AB224AC!/~2A!. ~21!

The corresponding form ofP2(1,0) for an alternative choice
of w was derived by Szaboet al. @12#. Both the forms~21!
and the Eq.~13! in Ref. @12# are special cases of the gener
form @21#
6-4
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a5@12A122c~12c!k#/k ~22!

where

k52F12
w~DH,2E!1w~DH,1E!

w~2DH,2E!1w~2DH,1E!G , ~23!

w(DH,6E) being the hopping probabilities against a
along the fieldE, respectively.

Finally, in the 2-cluster MFT, the forward flux and th
reverse flux are given by

F f5 (
ci 21 ,ci 12

P2~ci 21u1!P2~1,0!P2~0uci 12!

3w~ci 21,1,0,ci 12! ~24!

and

Fr5 (
ci 21 ,ci 12

P2~ci 21u0!P2~0,1!

3P2~1uci 12!w~ci 21,0,1,ci 12!, ~25!

respectively; the net flux is obtained fromF5F f2Fr .
In the following few sections we compare the predictio

of this 2-cluster MFT with the corresponding numerical da
obtained from our extensive computer simulations of
KLS model.

A. Fundamental diagrams for arbitrary E at TÌ0

It is straightforward to verify that at an infinitely hig
temperature the expressions~24! and~25! for F f andFr be-
come identical and, therefore, the net flux vanishes; h
temperature not only washes away the effects ofJ, as it is
known to do even in equilibrium, but also the effects ofE
making particle movement in both directions equally pro
able.

In Fig. 2 we plot the flux as a function of the partic
density c, at a fixed nonzero finite temperatureT, for five
different values ofE; the agreement between the theoreti
prediction and computer simulation is very good for bo
attractive@Fig. 2~a!# as well as repulsive@Fig. 2~b!# interac-
tions.

The F(c) curves are the analogues of the fundamen
relations for the traffic models. The shape of the curveF(c)
in the KLS model withattractive (J.0) is qualitatively
similar to those observed in the particle-hopping models
vehicular traffic. In sharp contrast, we find a qualitative
different shape of the curveF(c) in the KLS model with
repulsive interactions (J,0); there is a minimum, rathe
than maximum, atc51/2 provided the strength ofJ is com-
parable to that ofE. Moreover, for the sameT andE, the flux
is higher in the case ofrepulsive interparticle interactions
than that in the case ofattractive interparticle interactions
Nevertheless, because of the particle-hole symmetry,
curves in both the Figs. 2~a! and 2~b! are symmetric abou
c51/2 irrespective of the sign of the interparticle intera
tions.
04612
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Also note that in both the Figs. 2~a! and 2~b! F(c
51/2,E)→1/4 asE→`. This is a consequence of the fa
that, as stated before, the KLS model reduces to the TAS
with q51, in the limit E→` ~in both the cases of attractiv
and repulsive interparticle interactions! as long asJ and T
remain finite. In fact, in all the Figs. 1~a!, 1~b! and 2~a!, 2~b!,
the full curve F(c,E→`) is given by exact expressio
F(c,E→`)5c(12c).

Thus, unlike the 1-cluster MFT, the 2-cluster MFT repr
duces the qualitative features of theF(c) curves for allE and
for both attractive as well as repulsive interactions. Mo
over, the flux predicted by the 2-cluster MFT is also in go
quantitative agreement with the corresponding compu
simulation data, except for a narrow range ofc about c
51/2. This indicates that the predictions of 2-cluster MF
although quite accurate for arbitraryE, is not exact~except,
of course,E→`) for the KLS model ind51. We shall
improve our theory further by developing a 4-cluster MFT
the following section.

In order to get a deeper insight into the dependence of
flux F(c,E,T) on c,E,T as well as on the sign ofJ we
analyze the results of the 2-cluster MFT in detail in a fe
special limits in the following sections.

B. Flux at TÄ0

Let us investigate the dependence of the fluxF(c,E,T
50) on the driving fieldE at T50 for arbitrary values ofc.
For repulsiveinterparticle interactions, the 2-cluster expre

FIG. 2. Variation of thenet flux F with the densityc of the
particles in thesteady stateof the one-dimensional KLS model with
~a! attractive interactionJ51.0 and~b! repulsive interactionJ5
21.0, both atT50.5uJu. In both~a! and~b! the discrete data points
have been obtained from our computer simulations withE
51.0(d), 2.0(1), 3.0(h), 4.0(,), and 100.0(L), respec-
tively. The lines represent the corresponding predictions of
2-cluster approximation.
6-5
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sions~18!–~20! for A, B, andC reduce to the simple form
A52, B522, C52c(12c) for all E,4uJu, A51, B5
22, C52c(12c) at E54uJu, and to the formsA50, B
521, C5c(12c) for all E.4uJu. Substituting the zero-
temperature values ofA, B, andC into the Eq.~21!, we find
that, at T50, for all E,4uJu a[P2(1,0)5c for c,1/2,
and a[P2(1,0)512c for c.1/2; physically, this means
that when less than half of the sites are occupied by parti
~holes!, both the nearest neighbors of each particle~hole! are
certainly holes~particles! because of the repulsive nature
the interparticle interaction. On the other hand, atT50, for
all E.4uJu, a[P2(1,0)5c(12c) for any arbitraryc; this
implies that atT50 the effects of allE.4uJu is equivalent
to those of infinitely largeE at all finite nonzeroT so that
1-cluster MFT becomes exact. Moreover, atT50, for E
54uJu, a[P2(1,0)512A122c(12c) for all c.

Substituting the appropriate expression ofa, derived
above for T50, into the limiting form of the net flux
F(c,E,T50), obtained from the 2-cluster expressions~24!
and ~25!, we get

F~c,E,T50!5H F,
r ~c! for E,4uJu

F5
r ~c! for E54uJu

F.
r ~c! for E.4uJu,

~26!

for the KLS model withrepulsiveinterparticle interactions a
T50, where

F,
r ~c!5u~0.52c!F c

12c
~122c!G

1u~c20.5!F12c

c
~2c21!G , ~27!

F5
r ~c!5

2$2c~12c!21%12A122c~12c!$12c~12c!%

c~12c!
,

~28!

and

F.
r ~c!5c~12c!, ~29!

u(x) being the step function, namely,u(x)50 for all x,0
andu(x)51 for all x.0.

In the special case of half-filling, the particles rema
‘‘pinned’’ to their respective positions by the interpartic
interactionsJ and noE,4uJu is strong enough to cause an
‘‘depinning.’’ Such ‘‘switching’’ of the flux from zero to a
nonzero valuediscontinuously, in response to the driving
field E, has been reported earlier for the KLS model on
linear chain@12# as well as on a square lattice@10#.

In sharp contrast to thec dependence ofF,
r (c) in the case

of repulsiveinterparticle interactions, we haveF,
a (c)50 for

all c when the interparticle interaction isattractive; therefore,
in the latter case,
04612
es
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F~c,E,T50!5H F,
a ~c! for E,4uJu

F5
a ~c! for E54uJu

F.
a ~c! for E.4uJu,

~30!

for the KLS model withattractive interparticle interactions
at T50, where

F,
a ~c!50, ~31!

F5
a ~c!5

$2c~12c!11%2A114c~12c!

2c~12c!
, ~32!

and

F.
a ~c!5c~12c!. ~33!

At T50, all E.4uJu is equivalent toE→`, irrespective of
the sign ofJ and, hence, the corresponding flux isc(12c).

C. Temperature dependence of flux

In this section we consider the dependence ofF on T at a
few special values ofc. As demonstrated in the Figs. 3–7
the predictions of the 2-cluster theory agree very well w
the corresponding numerical data obtained from our co
puter simulations.

The nonmonotonic variation of the flux with temperatu
at small and intermediate values ofE is an interesting phe-

FIG. 3. Variation of thenetflux F with the temperatureT in the
steady stateof the one-dimensional KLS model with~a! attractive
interactionJ51.0 and~b! repulsive interactionJ521.0, both at
c50.5. In both ~a! and ~b! the discrete data points have bee
obtained from our computer simulations withE51.0(d),
2.0(1), 3.0(h), 4.0(,), and 100.0(L), respectively. The lines
represent the corresponding predictions of the 2-cluster approx
tion.
6-6
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FIG. 4. Same as in Fig. 3, except that the density of the parti
is c50.25.

FIG. 5. The distance-headway distribution in thesteady stateof
the one-dimensional KLS model with~a! attractive interactionJ
51.0 and~b! repulsive interactionJ521.0, both atc51/2 andT
50.5uJu. In both ~a! and ~b! the discrete data points have be
obtained from our computer simulations withE51.0(d),
2.0(1), 3.0(h), 4.0(,), and 100.0(L), respectively. The lines
represent the corresponding predictions of the 2-cluster approx
tion.
04612
nomenon. So long asT is nonzero but much smaller thanE,
it works againstJ and helps in ‘‘depinning’’ the particles tha
can move forward under the influence of the driving fieldE.
However, whenT becomes much larger thanE, then it
washes out the effect ofE allowing particles to move agains
EW as often as alongEW .

D. DH distribution

In the 1-cluster approximation, the DH distribution
given by

P1c~ j !5c~12c! j . ~34!

However, in the 2-cluster approximation, we write

P2c~ j !5P2~1u1! for j 50 ~35!

and

P2c~ j !5P2~1u0!$P2~0u0!% j 21P2~0u1! for j >1.
~36!

Hence, in the 2-cluster approximation, we get

P2c~ j !512
a

c
for j 50 ~37!

whereas

s

a-

FIG. 6. The distance-headway distribution in thesteady stateof
the one-dimensional KLS model with~a! attractive interactionJ
51.0 and~b! repulsive interactionJ521.0, both forE54.0 and
T50.5uJu. In both ~a! and ~b! the discrete data points have bee
obtained from our computer simulations with c
50.1(d), 0.25(h), and 0.5(,), respectively. The lines represen
the corresponding predictions of the 2-cluster approximation.
6-7
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P2c~ j !5
a2

c~12c! F12
a

12cG j 21

for j >1. ~38!

The variations of the DH distribution withE ~for fixed c)
and withc ~for fixed E), as predicted by Eqs.~37! and ~38!
of the 2-cluster approximation, are compared with the co
sponding computer simulation data in Figs. 5 and 6, resp
tively. Note that forc50.5, in the absence ofE, the most
probable DH isj 50 or j 51 depending on whether the in
teraction is attractive~i.e., ferromagnetic, in the language
magnetism! or repulsive~i.e., antiferromagnetic!. This type
of spatial organization of the particles persists even in
presence ofE as long asE is much weaker than the streng
of the interactionJ ~see Fig. 5!. However, deviation from this
spatial organization increases gradually with increas
strength ofE. In the limit E→`, for all finite uJu, the DH
distribution approaches the exact DH distribution of t
TASEP and, as expected, is independent of the sign of
interactionJ. For a givenE, which is comparable with the
strengthuJu of the interaction, increasingc leads to more
congestion and, therefore, the probability of having a D
50 becomes larger for higherc ~see Fig. 6!.

VI. 4-CLUSTER APPROXIMATION IN ONE DIMENSION

The exact master equation for the 4-cluster probabili
~given in the Appendix B!, as expected on general ground
involve 6-cluster probabilities. In the 4-cluster approxim

FIG. 7. Comparison of the predictions of 2-cluster and 4-clus
MFTs on the variation of thenetflux F with ~a! the density and~b!
temperature in thesteady-stateof the one-dimensional KLS mode
with repulsive interactionJ521.0. The parameters in~a! are T
50.5,E53.0 while those in~b! arec50.5,E54.0. The dashed and
solid lines are the theoretical results obtained in the 2-cluster
4-cluster approximations, respectively, whereas the discrete
points are the numerical data obtained from our computer sim
tions.
04612
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tion we break up the 6-cluster probabilities in terms of t
products of the 4-cluster probabilities using the prescript

P6~t i 22 ,t i 21 ,t i ,t i 11 ,t i 12 ,t i 13!

5P4~t i 22 ,t i 21ut i ,t i 11!P4~t i 21 ,t i ,t i 11 ,t i 12!

3P4~t i ,t i 11ut i 12 ,t i 13!. ~39!

Due to the constraints of conditional probabilities a
conservation of total probabilities, at 4-cluster level, we ha
seven independent equations and the same number of
ables. The solution is obtained by solving a set of nonlin
equations. We find that although the 4-cluster results
clearly, an improvement over the 2-cluster results, the diff
ence in the actual numerical values of the flux in the t
approximations, for the same set of parameters, is extrem
small. The flux obtained in these two approximations fo
typical set of values of the parameters are compared in Fi
~the corresponding differences in the DH distributions a
too small to be shown in a figure!.

It is worth pointing out that the 4-cluster approximation
not only aquantitativeimprovement over the 2-cluster ap
proximation. The 4-cluster approximation can account
the forward-backward symmetry breaking, an interest
phenomenon@12,13#, which the 2-cluster approximation fail
to capture.

VII. CLUSTER APPROXIMATIONS IN TWO DIMENSION

It is well known @1# that, usually, the cluster MFT fails to
account for the properties of the driven-diffusive lattice ga
below the ordering temperatureTc(E). Therefore, we con-
fine our discussions in this section to temperaturesT
.Tc(E).

As in d51, for the same set of parameters, the flux in t
two-dimensional KLS model with attractive interparticle in
teractions@Fig. 8~a!# is lower than that in the same mod
with repulsive interparticle interactions@Fig. 8~b!#.

A comparison of the predictions of the cluster MFT wi
the computer simulation data@Fig. 8# establishes that, in the
case ofattractiveinteractions both the 1-cluster and 2-clust
MFT overestimate the flux, although the prediction of t
2-cluster theory is closer to the computer simulation data.
the other hand, in the case ofrepulsive interactions, the
1-cluster MFT gives an underestimate whereas the 2-clu
MFT provides an overestimate of the flux. The level of a
curacy of the 2-cluster MFT can be estimated from the pl
in Fig. 9; a close inspection, thus, reveals that the 2-clu
MFT does not reproduce the dip in the flux aroundc51/2 in
the case of repulsive interparticle interactions.

VIII. COMPARISON WITH THE RESULTS
FOR OTHER MODELS

It is well established@20# that the 1-cluster MFT resul
@Eq. ~3!# is theexactexpression for the flux in TASEP. If the
random-sequential updating of the TASEP is replaced by
parallel updating it becomes identical with the Nag
Schreckenberg~NS! model @22# of vehicular traffic with

r

d
ta

a-
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Vmax51, whereVmax is the largest~integer! speed allowed
for each of the vehicles@6,23#.

In the case of the NS model the 1-cluster MFT makes
underestimate of the flux but the 2-cluster MFT treatmen
adequate to take into account the correlations introdu
purely by the parallel dynamics and, therefore, it gives
exact result@15#.

The KLS model can be regarded as an extension of
TASEP by incorporating nonvanishing interparticles inter
tions through nonzeroJ. Our results reported in this pape
show that neither the 1-cluster MFT nor the 2-cluster M
yield exact flux in the KLS model; although the 2-clust
results are accurate to order 1023 it is the 4-cluster results
that are practically indistinguishable from the correspond
computer simulation data. Although it is possible that t
results of the 4-cluster MFT might be exact for the KL
model we refrain from making such a claim as we do n
have any rigorous proof.

Note that in the special case,

E50,

bJ5~1/4!ln p ~with 0<p,1!, ~40!

we haveA52q, B522, and C52c(12c) where q51
2p. In this case, the quadratic Eq.~18! reduces to the form
qa22a1c(12c)50 that was derived@15# directly from the

FIG. 8. Variation of thenet flux F with the densityc of the
particles in thesteady stateof the two-dimensional KLS model with
~a! attractive interactionJ51.0 and~b! repulsive interactionJ5
21.0, both atT51.5Tc(E50). In both~a! and~b! the discrete data
points have been obtained from our computer simulations withE
51.0(d) and 4.0(,), respectively. In both~a! and ~b! the dotted
and dashed lines represent the predictions of the 1-cluster MFT
E51.0 and 4.0, respectively, while the long-dashed and solid li
represent the corresponding predictions of the 2-cluster MFT.
04612
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2-cluster MF treatment of the NS model withVmax51. In-
terestingly, the 2-cluster result is not exact for the KL
model, but it gives exact result for the NS model. This is
consequence of the fact that the 2-cluster MFT gives, in g
eral exact results for the one-dimensional Ising model
equilibrium.

Since p,1, the relation~40! maps the NS model, with
Vmax51, onto anantiferromagnetic Ising model,~or, equiva-
lently, to the KLS model, withrepulsiveinterparticle inter-
actions, in the absence of external drive! so that the steady
state of the former is identical to the equilibrium state of t
latter. Consequently, for all densitiesc, we observe perfec
agreement of the DH distributions in the NS model and t
in the KLS model withE50, bJ5(1/4)lnp ~Fig. 10!.

Since the relation~40! maps the NS model~with Vmax
51) onto the KLS model only forE50, this mapping can-
not relate the properties of the KLS model for any nonzeroE
with those of the NS model. Interestingly, in the NS mod
with Vmax51 the flux is maximumat c51/2 for all q. In
sharp contrast, the flux isminimumat c51/2 in the KLS
model with repulsive~antiferromagnetic! interactions so long
asE is not much stronger thanuJu; asE increases the depth
of the well atc51/2 in Fig. 2 decreases and, eventually, f
sufficiently largeE the flux exhibits its maximum atc51/2.
Moreover, the location of the maximum in the DH distrib
tion depends crucially on the sign of the interactionJ pro-
vided E is not much larger thanuJu.

The time interval between the arrivals~or departures! of

or
s

FIG. 9. Comparison of the predictions of 1-cluster and 2-clus
MFTs on thenet flux F in the steady-stateof the two-dimensional
KLS model with ~a! attractive interactionJ51.0 and~b! repulsive
interactionJ521.0, all forE51.0. In both~a! and~b! the discrete
data points have been obtained from our computer simulation
T51.25Tc(E50)(s) and T51.5Tc(E50)(d), respectively. In
both ~a! and~b! the dotted and solid lines represent the predictio
of the 2-cluster MFT atT51.25Tc(E50) and T51.5Tc(E50),
respectively.
6-9
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the successive particles at a detector site is defined to be
corresponding time-headway (TH). The exact TH distrib
tion for the NS model withVmax51 has been calculate
@17#. However, because of the possibility of hopping of t
particles againstE in the KLS model, the analytical calcula
tion of TH distribution is extremely difficult and will not be
reported here.

IX. CONCLUSION

In this paper we have reported the results of cluster-me
field theoretic treatments of a driven-diffusive lattice g
model to calculate the flux of the particles under the infl
ence of the driving field. Although we have considered
standard model, namely, the Katz-Lebowitz-Spohn mode
this paper, our technique is sufficiently general that it can
used, in principle, to calculate the flow properties of a
other driven-diffusive lattice gas.

The flux-density relations of the KLS model computed
this paper, as well as those of some closely related mo
@24,25#, exhibit interesting double-peaked structure when
interparticle interactions arerepulsivewhereas only a single
peak is observed if the interparticle interactions are attr

FIG. 10. The discrete data points represent the distan
headway distribution in the steady-state of the one-dimensio
KLS model with repulsive interactionJ521.0, for c51/2 at three
different values ofT54J/( ln p) corresponding, respectively, top
50.1 (d), p50.25 (h), and p50.5 (,), all for E50.0. The
lines are merely guides to the eye connecting the dots corresp
ing to the DH distributions in the NS model withVmax51 andp
50.1 ~solid line!, p50.25 ~dotted line! and p50.5 ~dashed line!,
respectively. All the results in this figure have been obtained in
2-cluster approximation.
04612
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tive. We have compared our predictions, based on clus
mean-field theories, with the corresponding Monte Ca
data; thequantitativeagreement is excellent ind51. Our
investigation has helped in elucidating the roles of interp
ticle interactionsJ, temperatureT and the driving fieldE in
determining the trend of variation of the flux with the dens
of the particles in the driven-diffusive lattice gas models.
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APPENDIX A

Concrete examples of exact master equations forn-cluster
probabilities in the one-dimensional KLS model,

dP2~0,0!

dt
52min@1,e2b(E14J)#P4~0,0,1,1!

1min@1,eb(E14J)#P4~0,1,0,1!

1min@1,eb(2E14J)#P4~1,0,1,0!

2min@1,eb(E24J)#P4~1,1,0,0!, ~A1!

dP3~0,0,0!

dt
52min@1,e2bE#P5~0,0,0,1,0!

2min@1,e2b(E14J)#P5~0,0,0,1,1!

1min@1,e2bE#P5~0,0,1,0,0!

1min@1,ebE#P5~0,0,1,0,0!

1min@1,eb(E14J)#P5~0,0,1,0,1!

2min@1,ebE#P5~0,1,0,0,0!

1min@1,eb(2E14J)#P5~1,0,1,0,0!

2min@1,eb(E24J)#P5~1,1,0,0,0!. ~A2!

APPENDIX B

Exact master equations for the 4-cluster probabilities
the one-dimensional KLS model,

e-
al

d-

e

FdP4~ci 21 ,ci ,ci 11 ,ci 12!

dt G5 (
t i 22 ,t i 13

@P6~t i 22 ,ci 21 ,ci 11 ,ci ,ci 12 ,t i 13!w~ci 21 ,ci 11 ,ci ,ci 12!

2P6~t i 22 ,ci 21 ,ci ,ci 11 ,ci 12 ,t i 13!w~ci 21 ,ci ,ci 11 ,ci 12!]

1 (
t i 22 ,t i 13

@P6~t i 22 ,ci 21 ,ci ,ci 12 ,ci 11 ,t i 13!w~ci 21 ,ci ,ci 12 ,ci 11!
6-10
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2P6~t i 22 ,ci 21 ,ci ,ci 11 ,ci 12 ,t i 13!w~ci 21 ,ci ,ci 11 ,ci 12!]

1 (
t i 22 ,t i 13

@P6~t i 22 ,ci ,ci 21 ,ci 11 ,ci 12 ,t i 13!w~ci ,ci 21 ,ci 11 ,ci 12!

2P6~t i 22 ,ci 21 ,ci ,ci 11 ,ci 12 ,t i 13!w~ci 21 ,ci ,ci 11 ,ci 12!#

1 (
t i 13 ,t i 14

@P6~ci 21 ,ci ,ci 11 ,t i 13 ,ci 12 ,t i 14!w~ci 11 ,t i 13 ,ci 12 ,t i 14!

2P6~ci 21 ,ci ,ci 11 ,ci 12 ,t i 13 ,t i 14!w~ci 11 ,ci 12 ,t i 13 ,t i 14!#

1 (
t i 22 ,t i 23

@P6~t i 23 ,ci 21 ,t i 22 ,ci ,ci 11 ,ci 12!w~t i 23 ,ci 21 ,t i 22 ,ci !

2P6~t i 23 ,t i 22 ,ci 21 ,ci ,ci 11 ,ci 12!w~t i 23 ,t i 22 ,ci 21 ,ci !#. ~B1!
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