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Flow properties of driven-diffusive lattice gases: Theory and computer simulation
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We developn-cluster mean-field theories €In<4) for calculating thelux and thegap distributionin the
nonequilibrium steady states of the Katz-Lebowitz-Spohn model of the driven diffusive lattice gas, with
attractive and repulsive interparticle interactions, in both one and two dimensions for arbitrary particle densi-
ties, temperature as well as the driving field. We compare our theoretical results with the corresponding
numerical data we have obtained from the computer simulations to demonstrate the level of accuracy of our
theoretical predictions. We also compare our results with those for some other prototype models, notably
particle-hopping models of vehicular traffic, to demonstrate the qualitative features we have observed in the
Katz-Lebowitz-Spohn model, emphasizing, in particular, the consequenaepud$iveinterparticle interac-
tions.
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[. INTRODUCTION tions and the flux in the steady states of the KLS model,
separately for attractive and repulsive interparticle interac-
The driven-diffusive lattice gas models are of current in-tions, within the framework of aluster mean-field theory
terest in nonequilibrium statistical mechanifs—4]. De-  (MFT) [4,10-14 which has been very successful also in the
pending on the nature of the drive, these driven-dissipativéheoretical treatment of the particle-hopping models of ve-
systems can attain steady states that are far from equilibriunficular traffic(6,15-17. We also indicate the level of the
The simplest driven-diffusive lattice gas model that incorpo-&ccuracy of our cluster-MFT results by comparing these with
rates interparticle interactions is the Katz-Lebowitz-Spohrfh€ corresponding numerical data obtained from our com-
model[5] (from now onwards referred to as KLSSome of ~ Puter simulations of the KLS model.
the particle-hopping models of vehicular traff[6] are '!'he organization of this paper is as follows. Ir_1 Sec. we
closely related to some special limits of the KLS model indefine the KLS model and some related particle-hopping
one dimension. Therefore, in order to compare and Contragﬂod.els that are reIevant for our discussion in the subsequent
the spatiotemporal organizations and the flow properties ofections. We summarize in Sec. [l the methods of the cluster
the KLS model with those in the particle-hopping models of MFT we use fc_>r our_theoretlcal calculations as well as those
vehicular traffic, we calculate here those properties of th€f computer simulation. In Secs. IV, V, and VI, we present
KLS model that are important from the perspective of ve-Our theo_reucal res.ults for the one.—dlm.ensmngl K_LS model
hicular traffic. (both with attractive and repulsive interactiong the
Over the last decade extensive investigations of vehiculat-cluster, 2-cluster, and 4-cluster approximations, respec-
traffic have been made using the so-called particle-hoppinﬁvew, together_wnh t_he corresponding numerical data from
models that represent each vehicle by a parfiéleg]. All our computer S|mulat|0ns_. We present our results for the two-
these traffic models are defined on discrete lattices each sifimensional KLS model in Sec. VII. We compare and con-
of which, in the spirit of the lattice gas models, represents 4rast the results for the KLS model with the corresponding
cell that can accommodate at most one particle at a time. IFgSults for the particle-hopping models of vehicular traffic in
almost all the standard particle-hopping models of vehiculaSec. VI before summarizing the main results in the con-
traffic the only nonvanishing interparticle interaction is thecluding Sec. IX.
mutual hard-core repulsion that is usually implemented
through the condition of exclusion principle: no two particles Il. THE MODELS
are allowed to occupy the same lattice site simultaneously. A. The KLS model
Therefore, a comparison of our results on the KLS model . . .
with the corresponding results for the particle-hopping mod- _ SUPPOse the variable; describes the state of occupation
els of vehicular traffic will show the effects of interparticle ©f the sitei (i=1,2,...N) on a discrete latticec; is al-
interactions other than mere hard-core repulsion. lowed to take one of the only two values, namay:=1 if
The flux (per lang is defined to be the number of particles th€ Sitél is occupied by a particle argl=0 if it is empty (or,
(per lang crossing a detector site per unit time. In the contextSauivalently, occupied by a “hole’ The Hamiltonian for the
of vehicular traffic[9], the most important quantity of inter- SYSt€m, in the absence of any external driving field, is given
est is the so-calleuindamental relatiorthat depicts the de- by
pendence of the flux on the density of the vehicles. The
number of empty sites in between a pair of particles is usu-
ally taken as a measure of the corresponding distance head- H= _4‘]<i2.> CiCj, @)
way (DH). .
In this paper we theoretically calculate the DH distribu- where the summation on the right hand side is to be carried
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out over all the nearest-neighbor pairs ahtbkes into ac- sists of updating the position & particles picked up in a
count the corresponding interparticle interactions. random-sequential manner; each randomly chosen particle
The KLS model can be recast in the language commonlynoves forward, with probability, if the lattice site imme-
used in the theory of magnetism by using classical Ising spimiately in front of it is empty. For this model, the simple

variablesS = (2c¢;—1) whereS=1 andS=—1 represent single-site(i.e., 1-cluster MFT [20] gives theexactflux
the particles and holes, respectively, and the corresponding
Hamiltonian, in the absence of the external drive, is given by F=qc(l-c) ()

r—_ : for all densitiesc of the particles.
H J2, SS. 2) P
(p)
C. Comparison between the models
The attractive and repulsive interparticle interactions, cap- P

tured byJ>0 andJ<0, respectively, in the Hamiltoniafl) In the special cas&=0 the KLS model reduces to the
correspond to the ferromagnetic and antiferromagnetic intefcorresponding standard Ising model in thermodynamic equi-
actions in the form2) of the Hamiltonian. librium. Note that ind=1, in the opposite limitE—~ the

However, throughout the rest of this paper, we shall usé'0PPing against the driving field becomes impossible and,
the particle-hole picture, where the instantaneous state- ~ moreover, the fiel& dominates so overwhelmingly ovarH
figuration of the system at timeis completely described by at all nonzero temperatureB that, in this limit, the one-
({c};t). For example, in case of a system of lengthin  dimensional KLS model reduces to the TASEP, witi 1,
dimensiond=1, ({c};t)=(c;,C,, ...,c_;t). Similarly, for ~ irrespective of the sign of the interactial providedJ re-
the L, XL, square lattice {c};t)=(C11,C12, - - - Cij s - - - » mainsfinite. For all thg nonvanishing finit&, in the limit
¢, L;t). The average density of the particles is given by J=0, the one-dimensional KLS model reduces to the ASEP

Xy o N, with the hopping probabilitg=min{1,e~“5eT}. Finally, at
C=lMp ot o N/Ns=liMy_cc 1 (Z;7°Ci)/Ns where N, infinitely high temperatures each particle moves completely

thze total number of availaple sites,lifor a linear chain and randomly, independent of each other, with equal probability
L< for a square lattice of sizeXx L. Note that, because of the j, 5| directions.

conservation of the particles, the densitys conserved by
the dynamics.

The dynamics of the system is governed by the well-
known Kawasaki dynamics: at any nonzero temperatyiae In this section we briefly outline the methods of our ana-
randomly chosen nearest-neighbor particle-hole pair is exytical as well as numerical calculations.
changed with the probability mif,e 4%+ 8] where g
=(kgT) ! (kg being the Boltzmann constanand AH
=H({c}hew — H({C}oiq) is the difference in the energy of ) ,
the new and old configurations whilé=(—1,0+1) for The dyr_1am|cal cluster MFT has been useq ;u_ccessfully in
jumps, respectively, along, transverse to, against the direéhe analytical treatments of several nonequilibrium models

. L . including, for example, surface-reaction mod¢l€)] and
tion of the driving fieldE. Throughout this paper we take . . )
k=1 and expresgs the temperatg'rén the unFi)tspofJ. particle-hopping models of vehicular traffi¢5-17. How-

For the KLS model withattractive interparticle interac- ever, in all the traffic models there is no interparticle inter-
. . erp ction except, of course, the hard-core repulsion. Moreover,
tions (J>0) on a square lattice, there is not only an ordere

state at allT<T,(E), but the critical temperaturé,(E) in- nlike the traffic models, the particles in the KLS model can

. . - also move against the drive.
c_r((a)asei W't_rl_E'Esft(l)”atmt% at i. Vﬁll:é_C(EH:O)_lf"{LC(E In this paper we extend the approach in appropriate man-
=0 w ere C(. =0) is the critical temperature ot thé Cor- o 44 cajculate the fluE as a function ofc in the KLS
responding Ising model in thermodynamic equilibrium

[1,5,18. On the other handT(E) decreases witlE when ~Mmodel for arbitrand#0, 0<T<c, andE#0. _
the interparticle interactions amepulsive (i.e., J<0); the We define am cluster f<N) to be a collection oh sites

ordering is altogether destroyed by sufficiently laEge-ow- each of which is the nearest neighbor of at least another site

ever, there is no ordered structure at any nonzero temperatup€!0nging to the same cluster. For simplicity of notation, let
in the one-dimensional KLS model, irrespective of the signUS consided=1. We denote the probability of finding an

of the interaction). Because of this intrinsic qualitative dif- ClUSter in the statedy,c,, . .. ,c,) at timet by the symbol
ference in the nature of the ordering in the steady states ifn(C1:C2, - - - .Cn;t). We treat am cluster exactly and ap-
d=1 andd=2 we present the corresponding results in sepaProximate all the i+ m) cluster probabilities by a product
rate sections. of n-cluster probabilities in a manner so as to couple the

n-cluster to the rest of the system self-consiste(sige, for
example[6] for a pedagogical introduction and the existing
literature.

In the totally asymmetric simple exclusion procéssm It is straightforward to see that the state of the 2 cluster
now onwards referred to as TASEPRL9], initially, N classi-  (c;,c;,,) at timet+ At depends on the state of the 4 cluster
cal particles occupyandomlythe sites of a one-dimensional (7;_q,7,7.1,7i+») at timet so that the exact master equa-
lattice of lengthL (=N). One time step of the dynamics con- tion

IIl. METHODS OF CALCULATION

A. Cluster-mean-field theory

B. The totally asymmetric simple exclusion process
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dp2(c' vC'+l)
[dltlz > [Pa(7i-1,Ci11,Ci, T D)W 1,Ci+1,Ci Tie2) = Pa(Ti—1,Ci,Cit 1, Tis 2)W(Ti1,Ci,Civ1,Tis2) ]
Ti—1:Ti+2

+ 2 [Pa(7i-2,Ci,7i-1,Ci4 DW(T—2,Ci,Ti—1,Ci+1) — Pa(Ti—2,71-1,C ,Cis DW( T 2,7~ 1,C; ,Ci+1)]

Ti—1:7Ti-2

+ D [Pa(CiyTii2,Cir1,Tisa)W(C,Ti42,Cit1,7i13)— Pa(CiyCis1,Tii2, 71 a)W(Ci ,Cirg,Tisa, Tiss)]

Ti+2:7Ti+3
4

governing the time evolution of the 2-cluster probabilitiesfor L=50 andL =100 ind=2 all the data presented in this
P,(ci,Ci.1) involves the 4-cluster probabilities paper were generated usihg=10* in d=1 andL=50 in
P4(7,_1,7,7i+ 1.7+ 2) for all those configurations that can d=2.

lead to the 2-cluster configuratio;(,c; ;;t) under consid-

eration IV. 1-CLUSTER APPROXIMATION IN ONE DIMENSION

It has been realized for some tini¢] that the smallest
cluster one must consider in a dynamical cluster MFT de-
=min(1,exd BI[(7173+ T274) pends on the nature of the dynamics. Since the Kawasaki
dynamics conserves the number of particles, in principle, the
—(mimat 7374) + (2= 7)E]}) (5 gmallest cluster must consist of at least qar of sites.
However, it is also known that for thE—-co limit of the
are the corresponding transition probabilities. However, th&KLS model, which is exactly identical with the TASERith
master equation governing the time evolution of the 4-clusteg=1), the single-site MFT gives the exact result. Therefore,
probabilitiesP,(7 1,7, 7i+1,7i+2) involve 6-cluster prob- in this short section we not only establish explicitly the limi-
abilities, and so on. A few concrete examples of such exadtations of the 1-cluster MFT at wedkbut also demonstrate
master equations fan-cluster probabilities are given in the how the accuracy of the 1-cluster MFT increases with in-
Appendix A. In the spirit of the cluster-mean-field approach,creasingt in the KLS model ind=1.
we truncate this hierarchy of exact master equations by ex- The net flux is obtained frorf =F;—F, where the for-
pressing, albeit approximately, all the{ m)-cluster prob-
abilities in terms of then-cluster probabilities.
According to the definition of DH, the probability for a

W(Ty,72,73,74) =W(T1,72,73,T4— T1,73,72,T4)

ward flux (i.e., flux in the direction oﬁ) is given by

DH of j is given by Ff:C Ec P4(Ci-1,1,0€i+2)W(Ci-1,1,08i+2), (7)
i—1%i+2
PU)ZP(UW D). (6) while the reverse fluXi.e., the flux againsﬁ) is given by
J times
We evaluate the right hand side of the E8).in the 2-cluster Ff:CHZCHz Pa(Ci-1,0.1£i+2)W(Ci-1,0,1€i+2). (8)

and 4-cluster approximations.

In the 1-cluster approximation the 4-cluster probabilities
P4(c;_1,Ci,Ci;+1,C;12) are approximated by the products of
) ) o . corresponding 1-cluster probabilities. Therefore, utilizing the
In our computer simulations, we begin with initial condi- ¢5ctg thatP,(1)=c and P;(0)=1—c, in the 1-cluster ap-

tions where the particles are arranged randomly on a latticgximation, the Eqs(7) and (8) give, respectively
of linear sizeL (i.e., the system is a linear chain of sizen ’ ' ’

d=1 and square lattice of sizeXL in d=2). The sys-

tem is then allowed to evolve, following the Kawasaki ex- F¢= Y Pi(Ci1)C(1—C)Py(Cis)W(Ci—1,1,06i4 )
change algorithm with theMETROPOLIS probabilities Ci-1Cit2 )
min[1,e #4"*“B)] mentioned above, for time steps of the

order of 10, so as to allow it to reach its steady state and,gnd

then, for further 1B steps during which the time-averaged

flux is measured. Finally, for the same set of values of the
parameters, this process is repeated for 100 different initial 7r= 23 P1(ci—1)(1—c)cPy(ci;2)W(Ci—1,0,18i )
configurations to compute the configuration-averaged flux. e (10)
Since we did not observe any significant difference between

the results foi. =10* andL = 10° in d=1 and between those for the forward and reverse flux. Hence, the net flux is

B. Computer simulation
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(a) tion for the 2-cluster probabilities, by a product of 2-cluster
probabilities, i.e.,

0.25
02 [ E P4(Ti—llTi!Ti+lvTi+2)
P 015 7
Z o1 b ] %Po(7i—1,7)Pa7i, Tiy )P T4 1, T4 2), (12)
0.05 . poOooOoO0DODODOgDg |:|‘ or, more precisely,
00 o o oe o Y Pa(Ti—1,7i Tiv1,Ti+2)
Density
© :Pz(Ti—1|E)P2(Ti-Ti+1)P2(Ti+1|Ti+2)- (13
0.25 Next, we parametrize the 2-cluster probabilities as follows:
0.2 i ] P,(0,0=1-c—a, (14)
é 0.15 -_ 3
T g4 ] Pa(1,)=c—a, (15
0.05 g o ' where
0 1 1 1 1
0 02 04 06 08 1 P,(1,0=P,(0,1)=a. (16)

Density
FIG. 1. Variati  thenet flux F with the densitve of th This parametrization enables us to satisfy the three con-
. 1. Variation of thenet flux F wi e densityc of the gy oiie 1151 npamely. 31 P.(lc.)=P.(1)=c
particles in thesteady statef the one-dimensional KLS model with [15] Yo Ze4-0 2(1cir1)=Pa(1)=c,
(a) attractive(i.e., ferromagneticinteractionJ=1.0 and(b) repul- ¢, ,-0P2(0.Ci+1)=P1(0)=1-c, and P5(1,0)=P>(0,1).
sive (i.e., antiferromagnetjc interaction J=—1.0, both atT Equivalently, these constraints also imply that
=0.5J]. In both (a) and (b) the discrete data points have been

M

obtained from our computer simulations witlE=1.0(@), dP,(0,0)/dt=dP,(1,1)/dt=—dP,(0,1)/dt

2.0(+), 3.01), 4.0(V), and 100.0¢ ), respectively. The lines

represent the predictions of the 1-cluster approximation For =—dP,(1,0/dt.

=1.0 (solid line), 2.0 (dotted ling, 3.0 (dashed ling 4.0 (long .

dashed] and 100.0(dot dashey respectively. So, only one of the four equations represented by(Eqcan

be taken as an independent equation. Thus, the calculation of
the four 2-cluster probabilities boils down to the calculation

F=c(1—c){(2c?—2c+1)(min[1,*F]—min[1,e #E]) of the single parametex
+c(1—c)(min[1,efE4)]—min[ 1,e8(-E+49)] Using MATHEMATICA for an automated generation of the
equations and simplification, we find that, in the steady state,
—min[1,efCE=4) ]+ min[1,efET4I)L. (11)  a satisfies the quadratic equation
Aa?+Ba+C=0, (17)

The expressiorill) predicts that the net fluk is indepen-

dent of the sign of the interactiah at allc andT, irrespec-  \ypere

tive of the strength oE; this is certainly not true in general,

except at very largé& (Fig. 1). A comparison between the A=min[1,ef"E~4)]+min[1,efE~4*)]—min[ 1, E*49)]
theoretical prediction(11) and the results of our computer

simulations(Fig. 1) exposes not only the quantitative inac-  —min[1,e#E**)], (18
curacy of the 1-cluster MFT but also its failure to account for ) B E—a3) _ S(E—a3)
the qualitative features df(c) in the case of repulsive in- B=—(min[1e J+min[1e D, (19

terparticle interactions. . B(—E-43) _ S(E—43)
The fact that the 1-cluster MFT works better for stronger ~ C=c(1—c){min[1e J+min[1e 1
E is not surprising as the one-dimensional KLS model re- (20

duces to the TASERWith g=1) in the limitE—c and itis and, hence, taking the physical solution that allows the

well known that 1-cluster MFT gives exact result for the o_cluster probabilities to be between 0 and 1. we get
TASEP. Thus, Fig. 1 establishes the existence of strong cof- P ' 9

relations that are neglected by the 1-cluster MFT. a=(—B— JBZ_4AC)/(2A). 21)

The corresponding form d?,(1,0) for an alternative choice
of w was derived by Szabet al.[12]. Both the forms(21)

In the 2-cluster approximation, we approximate theand the Eq(13) in Ref.[12] are special cases of the general
4-cluster probabilities, appearing in the exact master equderm [21]

V. 2-CLUSTER APPROXIMATION IN ONE-DIMENSION
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a=[1—+1-2c(1-c)«]/« (22) @
0-25 45 ~$ T
where 02 e AR
3 S . E
W(AH,—E)+w(AH,+E 045 = 2 e T TV Eeg w
=2 1- o @ 5 e Rt
w(—AH,—E)+w(—AH,+E) Lot v y\;% ]
2~ \
w(AH,*=E) being the hopping probabilities against and 0.05 'gﬂﬂﬂnnnuntr:r:r:ru-u—n—gﬁg\'
along the fieldg, respectively. N e
Finally, in the 2-cluster MFT, the forward flux and the 0 02 o‘gensig'e 08 !
reverse flux are given by
(b)
Fi= X Py(ci-1|DPo(LOP(0lci,) 0.25 AR D
Ci—1:Ci+2 02 [ ﬁﬁ; Y 1
P faguirey o
Xw(ci-1,1,0€i+2) (24) 5 015 /,ﬁ"@"gﬂ D”“jﬁﬁ}a\ﬁ
and oot N v
+
0.05 | ]
Fr= 2 Pa(ci_1|0)P,(0,1) 08 o2 04 o6 o8 1
Ci-1:Ci+2 .
Density
X Po(1]ci2)W(ci—1,0,16i 1), (29

FIG. 2. Variation of thenet flux F with the densityc of the
respectively; the net flux is obtained frof=F—F, . particles in thesteady statef the one-dimensional KLS model with

In the following few sections we compare the predictions(® attractive interaction)=1.0 and(b) repulsive interaction) =
of this 2-cluster MFT with the corresponding numerical data}: 1.0, both aff =0.5J]. In both(a) and(b) the discrete data points,
ave been obtained from our computer simulations wih

EbLtgr:neoddgom our extensive computer simulations of the:l.O(.), 20(+), 3.00), 40(V), and 100.00), respec-

tively. The lines represent the corresponding predictions of the
2-cluster approximation.

A. Fundamental diagrams for arbitrary E at T>0

. . . e . Also note that in both the Figs.(® and 2b) F(c

It is straightforward to verify that at an infinitely high —1/2E)—1/4 asE—. This is a consequence of the fact

temper_ature_ the expressiof&) and(25) for Fy and_Fr b?' . that, as stated before, the KLS model reduces to the TASEP,
come identical and, therefore, the net flux vanishes; high

temperature not only washes away the effects), s it is with q=1, in the limitE—« (in both the cases of attractive
known to do even in equilibrium, but also the effectskof and repulsive interparticle interactignas long asj and T

) : X S remain finite. In fact, in all the Figs.(4), 1(b) and Za), 2(b),
;nbeilémg particle movement in both directions equally prob—the full curve F(c,E—) is given by exact expression

: . . F(c,E—»)=c(1—c).
In Fig. 2 we plot the flux as a function of the particle .
densityc, at a fixed nonzero finite temperatufe for five du;r::tsﬁeuntgfitgﬁ/;}zlgireésl\g?; (;I‘;)e czu-r(i/lgztgr I\;IIIIZETarr?(;)ro—
different values ofg; the agreement between the theoretical quat A .
prediction and computer simulation is very good for bothfor both attractive as well as repulsive interactions. More-
attractive[Fig. 2] as well as repulsiveFig. 2Ab)] interac- over, Fhe. flux predicted by t'he 2-cluster MFT is also in good
tions. quantitative agreement with the corresponding computer

imulation data, except for a narrow range @fabout c
The F(c) curves are the analogues of the fundamentaﬁI Co .
relations for the traffic models. The shape of the cuf{e) z; t%]/gﬂ -I;whIsuli?edI;?éi?attza;otrh;rtzr{ggti‘grr]1sot0;x25;§:(ues>:§; '\tAFT’
in the KLS model withattractive (J>0) is qualitatively gn q PL

-~ . . : f course,E—o0) for the KLS model ind=1. We shall
similar to those observed in the particle-hopping models of ’ . .
vehicular traffic. In sharp contrast, we find a qualitativelyIrnprove our theory further by developing a 4-cluster MFT in

different shape of the curvE(c) in the KLS model with the following section. L
L X ) ; . In order to get a deeper insight into the dependence of the

repulsive interactions §<0); there is a minimum, rather .

. n . . flux F(c,E,T) on c,E, T as well as on the sign ol we
than maximum, at=1/2 provided the strength dfis com- . o

analyze the results of the 2-cluster MFT in detail in a few

parable to that oE. Moreover, for the sam& andE, the flux A ! .
o : g L . special limits in the following sections.
is higher in the case ofepulsiveinterparticle interactions
than that in the case ddttractive interparticle interactions. B
Nevertheless, because of the particle-hole symmetry, the B. Flux at T=0
curves in both the Figs.(8) and 2b) are symmetric about Let us investigate the dependence of the fiic,E, T
c=1/2 irrespective of the sign of the interparticle interac-=0) on the driving fieldE at T=0 for arbitrary values o€.
tions. For repulsiveinterparticle interactions, the 2-cluster expres-
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sions(18)—(20) for A, B, andC reduce to the simple forms @

A=2, B=—2, C=2c(1-c) for all E<4|J|, A=1, B= 0.25 IR DDE DD

—2, C=2c(1—c) at E=4|J|, and to the formsA=0, B 02 - ]
=—1, C=c(1—c) for all E>4|J|. Substituting the zero- levg

temperature values @, B, andC into the Eq.(21), we find 50180 e ]
that, atT=0, for all E<4|J| a=P,(1,0)=c for c<1/2, o0 eTmeesg [TReg .
and a=P,(1,0)=1—c for ¢>1/2; physically, this means 005 L/ _.+"+W+"+'+"‘*"+'~+-+.#ii’ifﬁﬁzg
that when less than half of the sites are occupied by particles i ) ‘ . ‘ P
(holes, both the nearest neighbors of each partiblale) are 0 0o 2 4 6 8 10
certainly holes(particles because of the repulsive nature of Temperature

the interparticle interaction. On the other handTatO0, for
all E>4|J|, a=P,(1,0)=c(1—-c) for any arbitraryc; this
implies that afT=0 the effects of alE>4|J| is equivalent
to those of infinitely largeE at all finite nonzerol so that
1-cluster MFT becomes exact. Moreover, &0, for E
=4|J|, a=P,(1,00=1—-y1—-2c(1—c) for all c.

Substituting the appropriate expression af derived
above for T=0, into the limiting form of the net flux
F(c,E,T=0), obtained from the 2-cluster expressiq2g)
and(25), we get

(b)

Flux

Temperature

F_(c) for E<4/|J] o _ _
FIG. 3. Variation of thenetflux F with the temperaturd@ in the

F(c,E,T=0)=1 FL(c) for E=4{J] (26)  steady stat@f the one-dimensional KLS model witfa) attractive
F;(c) for E>4|J|, interactionJ=1.0 and(b) repulsivg interactiorﬂzf_l.o, both at
¢=0.5. In both (a) and (b) the discrete data points have been
] o o ] obtained from our computer simulations witlE=1.0(@),
for the KLS model withrepulsiveinterparticle interactions at  2.0(+), 3.000), 4.0(V), and 100.0¢ ), respectively. The lines

T=0, where represent the corresponding predictions of the 2-cluster approxima-
tion.
; c
F-(¢)=6(0.5-¢)| 7—;(1-2c) F2(c) for E<4|J|
1-c F(c,E,T=0)=1 F2(c) for E=4/J| (30)
+9(C—0-5)[?(20—1)}, (27) F2(c)  for E>4|J|,

for the KLS model withattractive interparticle interactions

2{2c(1-c)—1}+2y1-2c(1-c){l—c(1—c)} atT=0, where

F_(c)= c(1-c) o8 F2(c)=0, (31)

and Fa(c)= {2e1-¢) ;igl__\/cl;r%m (32
Fl(c)=c(1—c), (29  and

6(x) being the step function, namelg(x)=0 for all x<0 F2(c)=c(1-c). (33

and #(x) =1 for all x>0.

In the special case of half-filling, the particles remain
“pinned” to their respective positions by the interparticle
interactions] and noE<4/|J| is strong enough to cause any
“depinning.” Such “switching” of the flux from zero to a C. Temperature dependence of flux
nonzero valuediscontinuously in response to the driving In this section we consider the dependenc& @ T at a
field E, has been reported earlier for the KLS model on afew special values o€. As demonstrated in the Figs. 3—7,
linear chain[12] as well as on a square latti¢0]. the predictions of the 2-cluster theory agree very well with

In sharp contrast to thedependence df_ (c) in the case the corresponding numerical data obtained from our com-
of repulsiveinterparticle interactions, we hawe (c)=0 for  puter simulations.
all cwhen the interparticle interaction gtractive therefore, The nonmonotonic variation of the flux with temperature
in the latter case, at small and intermediate values Bfis an interesting phe-

At T=0, all E>4|J| is equivalent toE—, irrespective of
the sign ofJ and, hence, the corresponding fluxcigl —c).
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(@ nomenon. So long &k is nonzero but much smaller thé&h
0.95 . . it works againstl and helps in “depinning” the particles that
can move forward under the influence of the driving fiEld
02 L o oooot0t00s00o0oso0] However, whenT becomes much larger thaB, then it
x 015 5o ] washes out the effect & allowing particles to move against
= R > >
Lo04 YR ] E as often as along.
*! / ’Eﬂﬂﬂﬂzggz‘ﬁvvﬂW% &
0.05 - T +---+-+r+,+.+..33335»DE‘{;
B o3 D. DH distribution
0 1 L 1 L
o 2 4 6 8 10 In the 1-cluster approximation, the DH distribution is
Temperature given by
(b) i i
Pic(j)=c(1-c)l. (39
0.25 . .
L ] However, in the 2-cluster approximation, we write
39—.@\—%\4}@-@(}—@—0—06-6&0—@—0@-6-6
5 Pac(i)=P(1]1) for j=0 (35
and
P2c(i)=P2(1]0){P2(0|0)}) "*P,(0[1)  for j=1.
Temperature (36)

FIG. 4. Same as in Fig. 3, except that the density of the particleyence’ in the 2-cluster approximation, we get
is c=0.25.

. a .
Pao(j)=1- ¢ for j=0 37
whereas
(a
(a
06 ¢ .

3 > )
g = 04 a@ E
[<} Qo E \
a kS y

o

o

Distance headway
(b)
0.6 .

2
5 204 k. E
[ | kR
o '8 =

a 0.2 i ’ i g B

V-

Distance headway
Distance headway

FIG. 5. The distance-headway distribution in gteady statef

the one-dimensional KLS model witfa) attractive interaction FIG. 6. The distance-headway distribution in Steady statef
=1.0 and(b) repulsive interactiod=—1.0, both att=1/2 andT  the one-dimensional KLS model witfa) attractive interaction)
=0.4J|. In both (a) and (b) the discrete data points have been =1.0 and(b) repulsive interactio=—1.0, both forE=4.0 and
obtained from our computer simulations witlE=1.0(@®),  T=0.5J|. In both (a) and (b) the discrete data points have been
2.0(+), 3.0@), 4.0(V), and 100.0¢ ), respectively. The lines obtained from our computer simulations  withc
represent the corresponding predictions of the 2-cluster approxima=0.1(®), 0.25(), and 0.5{/), respectively. The lines represent
tion. the corresponding predictions of the 2-cluster approximation.
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(a) tion we break up the 6-cluster probabilities in terms of the
0.185 . . . products of the 4-cluster probabilities using the prescription
0475 Po(Ti—2,Ti—1:7i: Ti+1:Ti+2,Ti+3)
x
z =Pa(7i—2, il T, Tir DPA(Ti o1, T Ti k1, Tk 2)
0.165
XP4(7i,7is1|Tiv2:Tiv3)- (39
0.155 . : :
03 04 05 06 07 Due to the constraints of conditional probabilities and
Density conservation of total probabilities, at 4-cluster level, we have
(b) seven independent equations and the same number of vari-
0.245 . . . ables. The solution is obtained by solving a set of nonlinear
777777777777 equations. We find that although the 4-cluster results are,
0.24 . clearly, an improvement over the 2-cluster results, the differ-
5 005 S P ] ence ir_] the_ actual numerical values of the flux .in the two
o o\ approximations, for the same set of parameters, is extremely
023 [ o ] small. The flux obtained in these two approximations for a
BN typical set of values of the parameters are compared in Fig. 7
0.225 05 y Y S (the corresponding differences in the DH distributions are
Temperature too small to be shown in a figure

It is worth pointing out that the 4-cluster approximation is

FIG. 7. Comparison of the predictions of 2-cluster and 4-clustemot only aquantitativeimprovement over the 2-cluster ap-
MFTs on the variation of theetflux F with (a.) the density an(ﬂb) proximation_ The 4-cluster approximation can account for
temperature in theteady-statef the one-dimensional KLS model the forward-backward symmetry breaking, an interesting

with repulsive interaction)=—1.0. The parameters i@ are T phenomenoiil2,13, which the 2-cluster approximation fails
=0.5E=3.0 while those inb) arec=0.5E=4.0. The dashed and to capture.

solid lines are the theoretical results obtained in the 2-cluster and
4-cluster approximations, respectively, whereas the discrete data
points are the numerical data obtained from our computer simula-Vll- CLUSTER APPROXIMATIONS IN TWO DIMENSION

tions. It is well known[1] that, usually, the cluster MFT fails to

account for the properties of the driven-diffusive lattice gases

P,.(j)= 2 _ . a o for j=1 (39) below the ordering temperatuie,(E). Therefore, we con-
2¢ c(l-c) 1- ' fine our discussions in this section to temperaturies
>T.(E).
The variations of the DH distribution witk (for fixed c) As ind=1, for the same set of parameters, the flux in the

and withc (for fixed E), as predicted by Eq$37) and(38)  two-dimensional KLS model with attractive interparticle in-
of the 2-cluster approximation, are compared with the correteractions[Fig. 8@a)] is lower than that in the same model
sponding computer simulation data in Figs. 5 and 6, respeawith repulsive interparticle interactiori&ig. 8b)].

tively. Note that forc=0.5, in the absence &, the most A comparison of the predictions of the cluster MFT with
probable DH isj=0 or j=1 depending on whether the in- the computer simulation daf&ig. 8] establishes that, in the
teraction is attractivéi.e., ferromagnetic, in the language of case ofattractiveinteractions both the 1-cluster and 2-cluster
magnetism or repulsive(i.e., antiferromagnetjc This type  MFT overestimate the flux, although the prediction of the
of spatial organization of the particles persists even in the-cluster theory is closer to the computer simulation data. On
presence oE as long as€ is much weaker than the strength the other hand, in the case oépulsive interactions, the

of the interactiond (see Fig. 5. However, deviation from this 1-cluster MFT gives an underestimate whereas the 2-cluster
spatial organization increases gradually with increasingMFT provides an overestimate of the flux. The level of ac-
strength ofE. In the limit E—oo, for all finite |J|, the DH  curacy of the 2-cluster MFT can be estimated from the plots
distribution approaches the exact DH distribution of thein Fig. 9; a close inspection, thus, reveals that the 2-cluster
TASEP and, as expected, is independent of the sign of th®FT does not reproduce the dip in the flux around1/2 in
interactiond. For a givenE, which is comparable with the the case of repulsive interparticle interactions.

strength|J| of the interaction, increasing leads to more

congestion and, therefore, the probability of having a DH VIIl. COMPARISON WITH THE RESULTS

=0 becomes larger for higher(see Fig. 6. FOR OTHER MODELS

It is well established 20] that the 1-cluster MFT result
[Eq. (3)] is theexactexpression for the flux in TASEP. If the

The exact master equation for the 4-cluster probabilitiesandom-sequential updating of the TASEP is replaced by the
(given in the Appendix B as expected on general grounds, parallel updating it becomes identical with the Nagel-
involve 6-cluster probabilities. In the 4-cluster approxima-SchreckenbergNS) model [22] of vehicular traffic with

VI. 4-CLUSTER APPROXIMATION IN ONE DIMENSION
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FIG. 9. Comparison of the predictions of 1-cluster and 2-cluster

FIG. 8. Variation of thenet flux F with the densityc of the MFTs on thenetflux F in the steady-statef the two-dimensional
particles in thesteady stat®f the two-dimensional KLS model with  KLS model with (a) attractive interactiod= 1.0 and(b) repulsive
(a) attractive interaction]=1.0 and(b) repulsive interaction)= interactiondJ=—1.0, all forE=1.0. In both(a) and(b) the discrete
—1.0, both aff=1.5T.(E=0). In both(a) and(b) the discrete data data points have been obtained from our computer simulations at
points have been obtained from our computer simulations ®with T=1.25T (E=0)(O) and T=1.5T,(E=0)(®), respectively. In
=1.0(®) and 4.0{), respectively. In boti{a) and (b) the dotted  both (a) and(b) the dotted and solid lines represent the predictions
and dashed lines represent the predictions of the 1-cluster MFT faof the 2-cluster MFT aff=1.25T (E=0) and T=1.5T,(E=0),
E=1.0 and 4.0, respectively, while the long-dashed and solid linesespectively.
represent the corresponding predictions of the 2-cluster MFT.

2-cluster MF treatment of the NS model with,,,=1. In-

Vimax=1, whereV,,, is the largestintege) speed allowed terestingly, the 2-cluster result is not exact for the KLS
for each of the vehiclegs,23). model, but it gives exact result for the NS model. This is a

In the case of the NS model the 1-cluster MFT makes atonsequence of the fact that the 2-cluster MFT gives, in gen-
underestimate of the flux but the 2-cluster MFT treatment iSera| exact results for the one-dimensional |Sing model in
adequate to take into account the correlations introducegquilibrium.
purely by the parallel dynamics and, therefore, it gives the Sincep<1, the relation(40) maps the NS model, with
exact resul{15]. Vmax= 1, onto amantiferromagnetic Ising modelor, equiva-

The KLS model can be regarded as an extension of thgsntly, to the KLS model, withrepulsiveinterparticle inter-
TASEP by incorporating nonvanishing interparticles interac-actions, in the absence of external djiee that the steady
tions through nonzerd. Our results reported in this paper state of the former is identical to the equilibrium state of the
show that neither the 1-cluster MFT nor the 2-cluster MFT|atter Consequenﬂy, for all densiti@ we observe perfect
yield exact flux in the KLS model; although the 2-cluster agreement of the DH distributions in the NS model and that
results are accurate to order TOit is the 4-cluster results i the KLS model withE=0, BJ=(1/4)Inp (Fig. 10.
that are practically indistinguishable from the corresponding  sjnce the relation40) maps the NS modelwith V,ay
computer simulation data. Although it is possible that thezl) onto the KLS model only foE=0, this mapping can-
results of the 4-cluster MFT might be exact for the KLS not relate the properties of the KLS model for any nonZero
model we refrain from making such a claim as we do notyjth those of the NS model. Interestingly, in the NS model

have any rigorous proof. with V=1 the flux ismaximumat c=1/2 for all g. In
Note that in the special case, sharp contrast, the flux iminimumat c=1/2 in the KLS
model with repulsivéantiferromagneticinteractions so long
E=0, asE is not much stronger thad|; asE increases the depth
of the well atc=1/2 in Fig. 2 decreases and, eventually, for
BI=(1/4Inp (with 0<p<1), (400 sufficiently largeE the flux exhibits its maximum at=1/2.

Moreover, the location of the maximum in the DH distribu-
we haveA=2q, B=—-2, andC=2c(1—-c) whereq=1 tion depends crucially on the sign of the interactibpro-
—p. In this case, the quadratic E(L8) reduces to the form vided E is not much larger thahJ|.
qa’—a-+c(1—c)=0 that was derivefil5] directly from the The time interval between the arrivalsr departuresof
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tive. We have compared our predictions, based on cluster-
mean-field theories, with the corresponding Monte Carlo
data; thequantitativeagreement is excellent id=1. Our
investigation has helped in elucidating the roles of interpar-
ticle interactions], temperaturel and the driving fieldE in
determining the trend of variation of the flux with the density
of the particles in the driven-diffusive lattice gas models.
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APPENDIX A

=01 (@), p=0.25 (), andp=0.5 (V), all for E=0.0. The Concrete examples of exact master equations-duster
lines are merely guides to the eye connecting the dots Co"eSponf)'robabilities in the one-dimensional KLS model

ing to the DH distributions in the NS model wiM,,,=1 andp

=0.1 (solid ling), p=0.25 (dotted ling and p=0.5 (dashed ling dP,(0,0 ] — B(E+43)
respectively. All the results in this figure have been obtained in the T min[1.e JP4(0,0,1,)
2-cluster approximation.
+min[1,e#E*4)1P,(0,1,0,2
the successive particles at a detector site is defined to be the )
corresponding time-headway (TH). The exact TH distribu- +min[ 1/ E*491P,(1,0,1,0
tion for the NS model withV,,,=1 has been calculated e E—4J
[17]. However, because of the possibility of hopping of the min{ 1% 1P4(1.1,0.0, (AD)
particles againsk in the KLS model, the analytical calcula- dP4(0,0,0
tion of TH distribution is extremely difficult and will not be —qr = min[1,e #5]P5(0,0,0,1,0
reported here.
—min[1,e AE*41P.(0,0,0,1,)
IX. CONCLUSION . _
+min[1,e #€]P(0,0,1,0,0
In this paper we have reported the results of cluster-mean- ) BE
field theoretic treatments of a driven-diffusive lattice gas +min[1,6”7]P5(0,0,1,0,0
model to calculate the flux of the particles under the influ- ; B(E+4J)
ence of the driving field. Although we have considered the tmin(le 1P5(0,0,1,0.3
standard model, namely, the Katz-Lebowitz-Spohn model in —min[ 1,e5]1P4(0,1,0,0,0
this paper, our technique is sufficiently general that it can be ) B(—E+4)
used, in principle, to calculate the flow properties of any +min[1e 1Ps(1,0,1,0,0
other driven—difquive Ia’gtice gas. . —min[l,eB(E*‘”)]P5(1,1,0,O,Q. (A2)
The flux-density relations of the KLS model computed in
this paper, as well as those of some closely related models APPENDIX B
[24,25, exhibit interesting double-peaked structure when the
interparticle interactions amepulsivewhereas only a single Exact master equations for the 4-cluster probabilities in

peak is observed if the interparticle interactions are attracthe one-dimensional KLS model,

dP4(Ci*11Ci 1Ci+lyci+2)
dt = 2

Ti—2:Ti+3

[Pe(7i—2,Ci-1,Ci+1,Ci,Ci+2,Ti+3)W(Ci_1,Ci+1,Ci,Ci;2)

—Ps(7i-2,Ci-1,Ci,Ci+1,Ci 42, Ti+3)W(Ci_1,Ci ,Ci +1,Ci12)]

+ 2 [Pe(7i-2,Ci-1,€i,Ci12,Ci+1,Ti+3)W(Ci—1,Ci,Cis2,Cit1)

Ti-2:7Ti+3
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—Pe(7i-2,Ci-1,Ci,Ci+1,Ci+2,Ti+3)W(Ci_1,Ci,Ci+1,Ci12)]

+ D [Pe(7-2,Ci,Ci_1,Ci+1,Cit2,Ti+a)W(Ci,Ci_1,Ci41,Cis2)
Ti—-2:Ti+3
—Pe(7i-2,Ci-1,Ci,Ci+1,Ci4+2,Ti+3)W(Ci_1,Ci,Ci+1,Ci12)]

+ D [Pe(Ci1,Ci,Cis1,7i+3:CirarTisa)W(Ci 1,7i43,Cis2,Tisa)
Ti+3:Ti+4
—Pg(Ci—1,Ci,Ci+1:Ci+2,Ti+3, Ti+ a)W(Ci+1,Ci12,Ti13,Ti+4) ]

+ D [Pe(7i-3,Ci-1,71-2,Ci ,Ci+1,Cis2)W(Ti_53,Ci_1,7_2,C})
Ti—2:Ti-3

—Pe(7i-3,7-2,Ci-1,Ci,Ci+1,Ci1 2)W(Ti_3,7—2,Ci—1,Ci) ] (B1)
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