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Geometrical properties of avalanches in self-organized critical models of solar flares
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We investigate the geometrical properties of avalanches in self-organized critical models of solar flares.
Traditionally, such models differ from the classical sandpile model in their formulation of stability criteria in
terms of the curvature of the nodal field, and belong to a distinct universality class. With a view toward
comparing these properties to those inferred from spatially and temporally resolved flare observations, we
consider the properties of avalanche peak snapshots, time-integrated avalanches in two and three dimensions,
and the two-dimensional projections of the latter. The nature of the relationship between the avalanching
volume and its projected area is an issue of particular interest in the solar flare context. Using our simulation
results we investigate this relationship, and demonstrate that proper accounting of the fractal nature of ava-
lanches can bring into agreement hitherto discrepant results of observational analyses based on simple, non-
fractal geometries for the flaring volume.
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I. INTRODUCTION

Solar flares are the observational manifestation of sudd
spatially localized energy release in the solar atmosphere
a matter of a few seconds the local coronal temperature
increase to as high as a few 107 K from its average ambien
value of;106 K, before thermal relaxation sets in. Flarin
is accompanied by a rapid increase of emission at m
wavelengths of the electromagnetic spectrum, but is m
spectacular—and readily observed—at short wavelen
~<2000 Å!, corresponding to the ultraviolet~uv!, extreme-
ultraviolet ~euv!, and x-ray regions of the spectrum.

It is now generally agreed that the flare energy sou
comes from the local reconfiguration of the solar coro
magnetic field, with the larger flares originating in regions
strongest fields, such as those overlying sunspots and a
regions. In the high electrical conductivity environment
the solar outer atmosphere and corona, the most viable
reconfiguration mechanism is magnetic reconnection. In
simplest form, reconnection sets in when magnetic fields
opposite polarities are forced together to form a thin elec
current sheet, with the current growing in strength un
plasma instabilities cause a rapid increase in the resistivit
the plasma. This, in turn, leads to local dissipation and to
logical reconfiguration of the magnetic field in the vicinity
the current sheet~see@1#, Chap. 11!.

Flaring has potentially profound implications for coron
heating. It is now generally accepted that the mechan
energy associated with bulk fluid motions in the solar pho
sphere is, ultimately, the source tapped into by the Sun
heat its corona. However, nothing resembling a consen
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currently exists as to the nature of the physical mechanism~s!
responsible for the conversion of this mechanical energy
the thermal energy of the coronal plasma. Since magn
fields are ubiquitous throughout the Sun’s outer atmosph
the magnetic energy dissipated in reconnection-media
flaring events can, in principle, provide a heating sourc1

Estimates of chromospheric and coronal energy losses p
the required average energy deposition rate at ab
107 erg cm22 s21 @2#. This then raises two related que
tions: ~1! are flares frequent and energetic enough to m
this demand? and~2! how is photospheric mechanical energ
converted and stored as available magnetic energy in pre
coronal structures?

Great progress has been made over the years in atte
ing to answer the first of these two questions. Observati
of solar flares by space-borne instruments have gone f
spatially unresolved ‘‘Sun as a Star’’ observations, e.g., fr
the Solar Maximum Mission Hard X-Ray Burst Spectrom
eter ~SMM HXRBS @3#! to those of the Solar and Helio
spheric Observatory~SOHO @4#! Extreme-Ultraviolet Imag-
ing Telescope~EIT @5#! and the high spatial resolutio
Transition Region and Coronal Explorer~TRACE @6#! tele-
scope. Analysis of the many hundreds of thousands of fla
that have been recorded by these various instruments
which Fig. 1 gives an example, have revealed the remark
fact that the frequency distribution of the energy released
flares has the form of a tight power law, spanning at le
eight decades in flare energy. Specifically, iff (E)dE is the
number per unit time of flares dissipating an amount of

tle

1More specifically, the strong electrical fields generated by m
netic reconnection accelerate to superthermal velocities cha
particles located in and around the reconnection site; these fast
ticles then collisionally transfer their energy to other neighbor
particles, thus leading to heating of the plasma surrounding
reconnection site.
©2002 The American Physical Society25-1
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ergy in the rangeE to E1dE, then flare data are well de
scribed by

f ~E!dE5 f 0E2aEdE s21 ~aE.0!. ~1!

Taking Eq.~1! at face value, the total energy per unit tim
released collectively by the ensemble of solar flares is th

dEtot

dt
5E

Emin

Emax
f ~E!EdE5 f 0FE22aE

22aE
G

Emin

Emax

erg s21

~aEÞ2! ~2!

with Emax;1033 erg, andEmin;1024 erg for current uv-euv
detection limits @7#. If aE,2 then the largest flares wil
dominate the energy budget; conversely, ifaE.2 the
smaller flares dominate. Observationally, large flaresE
.1032 erg, say! are hard to miss, and it is now well esta
lished that they are too infrequent to heat the corona, eve
epochs of maximum solar activity~see, e.g.,@8#!.

For close to two decades, Parker has championed the
that coronal heating occurs via numerous small scale re
nection events, which he termed ‘‘nanoflares’’ because
estimate of their total energy release falls about nine ord
of magnitude below that of large flares@9–11#. Parker’s
physical picture of how this takes place also happens to
dress the second question raised above; namely, the co
sion of photospheric mechanical energy to magnetic ene
in preflare coronal structures. Consider a magnetic struc
embedded in the solar corona, for example, a coronal lo
The loop is anchored in the dense plasma of the solar ph
sphere, where its footpoints are subjected to random horiz
tal fluid motions associated with the photospheric manife
tions of convection and granulation. At photospheric lev

FIG. 1. The temporal evolution of a small flare as observed
euv by TRACE. This flare was studied in detail in@2,3#. The flaring
pixels are assumed to lie within an ellipse corresponding to
projection of a loop onto the plane of the sky. The size and ori
tation of this ellipse are adjusted in order to enclose all pixels
show a significant variation (>3 standard deviations above bac
ground! over the duration of the nanoflare, as shown on each pa
Successive frames are taken 125 s apart and each shows an a
100 pixels2 ~or ; 502 arc s). To get a better appreciation for th
range of euv nanoflaring morphologies, see also Fig. 2 of@3#.
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the energy density of the plasma greatly exceeds that of
magnetic field, so that field lines cannot resist the motion
the electrically conducting fluid, and consequently a
shuffled around as they each execute a form of random w
The resulting twisting and braiding propagates upward in
form of low frequency Alfvén waves, perturbing the dynam
cal balance of the overlying magnetic structure. In the coro
it is now the energy density of the magnetic field that larg
exceeds that of the plasma, so that the field tends to rap
readjust to a force-free state. However, the high electr
conductivity of the coronal plasma means that the field
‘‘frozen in’’ and the topology of the magnetic structure ca
not change. As a result, the field will relax to a state tha
force-free everywhere except in a large number of sm
electrical current sheets building up in regions where fi
lines are twisted or braided around one another. As pho
spheric fluid motions inexorably increase this twisting a
braiding, the electrical currents build up to the point whe
the onset of magnetic reconnection becomes inevitable,
cally releasing energy in the corona. Parker goes on to sp
late that the observed x-ray corona is nothing more than
collective effect of a large number of such nanoflares c
tinuously occurring throughout the magnetized corona.

In this picture, the coronal magnetic field thus acts both
an upward transport mechanism and as an intermediate
ergy storage medium for the mechanical energy of pho
spheric fluid motions, and magnetic reconnection is resp
sible for converting this stored magnetic energy into therm
energy within the coronal plasma. Although not origina
emphasized by Parker, the magnetic field reconfigura
taking place in the vicinity of reconnecting current sheet w
alter the physical conditions around neighboring curr
sheets, which may trigger further reconnection events
some of these sheets, and so on, leading to an avalanc
reconnection events cascading throughout the tangled m
netic structure. The associated collective energy release
then be interpreted as a large flare. Moreover, the s
similarity typically associated with such avalanche proces
provides a natural interpretation for the observed power
in flare size. Parker’s model in fact includes all the ingre
ents deemed necessary to lead to self-organized critic
~SOC; @12–14#!: a slowly driven ~photospheric footpoint
motions! open system~magnetic structure embedded in th
solar corona! subject to a self-stabilizing local threshold in
stability ~magnetic reconnection! leading to localized trans
port and readjustment of the physical quantity subject to
stability @14–16#.

Clearly, Parker’s conjecture of coronal heating
nanoflares requiresaE.2 in Eq.~1!. At the present time, this
is neither convincingly supported nor refuted by extant o
servational analyses, which placeaE anywhere in the range
1.5–2.6 ~see @16#, and references therein!. Whether
nanoflares heat the corona or not, Parker’s picture still p
vides a sound physical underpinning to the idea that fla
~of all sizes! arise as avalanches of small scale reconnec
events in complexly tangled coronal magnetic structu
driven to criticality by photospheric forcing of their magnet
footpoints.
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GEOMETRICAL PROPERTIES OF AVALANCHES IN . . . PHYSICAL REVIEW E65 046125
To the best of our knowledge, all attempts to date at co
paring flare observations to SOC avalanche models have
cused on the frequency distribution of quantities characte
ing the temporal evolution of flare energy release, such
integrated and peak energy release, flare duration, and i
flare waiting time~see@16#!. This paper aims at establishin
the basis for comparing the geometrical properties of a
lanches in the SOC model, and flare observations at h
spatial and temporal resolution. We first describe~Sec. II! the
procedure whereby total thermal energy release in a flar
extracted from spatially resolved uv-euv observations,
highlight the importance of the assumed geometrical re
tionship between the observed flux-emitting projected a
and the actual volume of flaring plasma. We then introdu
and briefly discuss~Sec. III! a simple and well-studied SOC
avalanche model for solar flares, and define various g
metrical measures used in the discussion that follows
Secs. IV and V we extract these geometrical measures fro
variety of lattice simulations, in the course of which we e
tablish the area/volume fractal relationship characterizing
avalanching regions in terms of the raw simulation resu
their time-integrated equivalent, and/or projected versi
thereof. We then~Sec. VI! examine the consequence of th
fractal nature of the avalanching volume on estimates of
power-law indexaE of the flare energy frequency distribu
tion. We conclude~Sec. VII! by reconsidering some of th
issues raised above in the light of our modeling results.

II. CONVERTING uv-euv FLUXES INTO ENERGIES

The central issue in the analysis of flare data in the c
text of coronal heating is the conversion of uv-euv flux
observed in a finite wavelength range, as in Fig. 1, to
total thermal energyE ~in erg, say! released in the coron
over the duration of the flare. Unfortunately, this therm
energy cannot be directly measured and must, therefore
inferred from the observations. The inference of thermal
ergies from observed uv-euv fluxes is a complex proced
involving a number of assumptions regarding the phys
conditions within the emitting volume, as well as its geom
ric properties. In the following we outline the recipe custo
arily followed to infer the total thermal energies of uv-eu
flare events in order to give the reader an appreciation for
difficulties and assumptions involved.

The total spectral powerP radiated above preflare quie
cent background by an optically thin plasma of volumeV, in
the uv-euv wavelength range of line or bandpassi, can be
expressed as

Pi5E
V
hn iAinu( i )dV erg s21, ~3!

whereh is Planck’s constant,n i is the frequency of the line
Ai(s

21) is the EinsteinA coefficient, andnu( i ) (cm23) is the
population density of the upper level of the atomic transit
u( i ). The first step is to replace the volume integral by
double integral over electron densityne and temperatureTe
@17–19#. In doing so, a common working assumption, du
ous physically but which we nonetheless adopt here sinc
04612
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is also made in most extant observational analyses, is to
glect the electron density dependence. The quantity tha
actually observed, the spectral intensityI i5Pi /(4pA) for
projected emitting areaA, is then given as

I i5E
Te

Ki~Te!j~Te!dTe erg cm22 sr21 s21, ~4!

wherej(Te) is the differential emission measure in tempe
ture ~DEM @20,21#! and Ki(Te) is the line or bandpass
emissivity.2 The emissivity is a complex object~and even
more complex for a wide wavelength bandpass, summ
over the many constituent lines of the bandpass! that can be
expressed in component form as

Ki~Te!5
hn iAi

4p

nu( i )

nionne

nion

nel

nel

nH

nH

ne

3erg cm3 sr21 s21, ~5!

wherenu( i ) /nion , nion /nel , nel /nH , andnH /ne are the rela-
tive population of the upper atomic level of the line, the ion
abundance, elemental abundance, and relative abundan
H to electrons~having a value of 0.8 for the regions of th
solar atmosphere considered in this paper!, respectively.

The various terms on the right-hand side~RHS! of Eq. ~5!
determine the functional form ofKi(Te), which usually ends
up being strongly peaked, and approximately Gaussian
shape due to the assumed Maxwellian electron distribu
and the collisional contribution from the ionic abundan
nion /nel . The intensity can, therefore, be assumed to be p
portional to the value ofj i(Te) in a narrow band~60.1 dex!
~here dex stands for the base 10 logarithm of the temp
ture! about the peak temperature of line formationTe* . For
the purposes of the present discussion we will, for simplic
consider only emission at the peak temperature of the
emissivity, such thatKi(Te)5Kid(Te2Te* ), where d(x
2x0) is the Dirac delta function andKi is the peak magni-
tude atTe* . Now the integral of Eq.~4! becomes, converting
to the integrated intensity fluxf i (5I i /A),

f i'
Kij~Te* !

A erg cm24 s21, ~6!

wherej(Te* ) is the value of the DEM atTe* . Assuming the
form of j(Te)5ne

2dh/dTe of Brown et al. @22# for scale
height h, Eq. ~6! makes it possible to derive an estimate
the electron density3 in terms of the observed fluxf i . This
requires an additional assumption, namely the form of
relation between the plasma scale height and the colu

2The assumption of temperature dependence only is a gross
plification of the real situation since both the line emissivities a
the DEM also depend on the electron densityne of the emitting
plasma.

3This assumes that the atmosphere is plane parallel in form, lik
a reasonable approximation.
5-3
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depth. In the regime of a plasma with filling factor~ratio of
emitting volume to total volume! unity, we havej(Te* )
5ne

2h, so that

ne5Aj~Te* !

h
cm23. ~7!

This estimate ofne for the event allows us to estimate,
last, the thermal energy contentE of the flaring plasma:

E53nekBTe* V erg, ~8!

where kB (510215.86 erg K21) is the Boltzmann constan
andV is, again, the volume of the emitting plasma, the fin
unknown quantity on the RHS of Eq.~8!.4 A geometrical
model for the flaring volume is now introduced, so thatV can
be expressed in terms of the observed projected areaA. Fig-
ure 2 sketches the two geometrical models commonly u

4The electron pressurepe}neTe* is commonly assumed to be con
stant in isolated coronal regions, and determined observational
be approximately at 431014 cm23 K @23#. This then means tha
the thermal energy essentially scales asE'3CV (C
50.055 erg cm23). Note also that Eq.~8! neglects any therma
energy content of the preflaring state, as well as other energy
mechanisms that do not produce a radiative signature, such as
mal conduction, induced bulk flows, hydrogen ionization, gene
tion of magnetohydrodynamic waves, to name but a few. These
all significant modeling assumptions.

FIG. 2. Two simple and commonly used geometrical mod
relating the emitting area as seen in the observational plane (A, in
gray! to the actual volume (V) of the emitting plasma. The observe
is looking at the structures from above. In the cylinder model~left!,
V ends up directly proportional toA under the assumption of con
stant column depthh down to the base of the corona. The loo
model ~right! is characterized by a markedly different scaling:V
}A 3/2.
04612
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in the recent literature@7,24–26#. They lead to markedly
different geometric scalings betweenA andV, in turn lead-
ing to significant differences in estimates of volumetric e
ergy release, namely, the ratioE/V, even when inferred from
the same uv–euv–x-ray observations@7#. One is then natu-
rally led to inquire as to the form of theA-V relationship
characterizing the avalanche model for solar flares, whic
one of the central questions addressed in this paper.

III. AN AVALANCHE MODEL FOR SOLAR FLARES

We use a basic avalanche model for solar flares throu
out. This model was primarily developed a decade ago by
and Hamilton@16,27,28# and is closely related to the class
cal sandpile model@13,14,29#. A ~real-valued! field quantity
B is defined on the nodes of aD-dimensional regular Carte
sian lattice of linear sizeN; this field is subject to a self-
stabilizing local threshold instability that leads to isotrop
transport ofB to neighboring lattice nodes whenever the s
bility threshold is exceeded; and the system is driven
adding small field increments at randomly selected latt
nodes, a process taking place only if all nodes are stable~the
so-called ‘‘slow driving’’ limit!. This avalanche model differs
from the classical sandpile model primarily through its s
bility condition. The latter declares nodek unstable when-
ever the magnitude of the nodal fieldBk exceeds a prese
threshold valueZc :

Bk.Zc~height-triggered instability. ~9!

In contrast, stability is lost in the present model whenever
local curvatureof the field exceeds a preset threshold valu

DZk[UBk2
1

2D (
NN

BNNU.Zc

~curvature-triggered instability!, ~10!

where the index NN stands for the 2D nearest neighbors
the Cartesian lattice, andD is the lattice dimension (D53 is
usually adopted in the flare modeling context!. Whenever a
node is deemed unstable,Bk is redistributed to neighboring
nodes in a manner such that stability is restored at that n
For a given set of such rules, models based on either of E
~9! or ~10! behave in a qualitatively similar manner in th
they are naturally driven to a self-organized critical state,
which the dissipation ofB occurs intermittently via ava-
lanches of redistribution events. The redistribution rules u
to restore local stability in the curvature-triggered model
conservative inB, but lead to a decrease inB2 summed over
the nodes involved in the redistribution. WithB associated
with a magnetic field,B2 becomes a measure of magne
energy, thus implying that energy is ‘‘dissipated’’ locally
each avalanching node, in amounts (ek) that, in general, vary
from node to node:

ek5
6

7 S 2
DZk

Zc
21DZc

2 . ~11!
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GEOMETRICAL PROPERTIES OF AVALANCHES IN . . . PHYSICAL REVIEW E65 046125
The net energy dissipated over the whole lattice at the
rent model iteration~t! is thus simplyEt5(ek , where the
sum extends over all unstable nodes. Let nowt0 denote the
~timelike! iteration number at which an avalanche begi
andT its duration, also measured in timelike iteration uni
The total energy dissipated in the course of the avalanch
then simply

E5 (
t0

t01T

Et , ~12!

while the peak energy dissipation rate~P! is

P5max~Et!, tP@ t0 ,t01T#. ~13!

The frequency distributions of these avalanche parame
have the form of declining power laws with logarithm
~base 10! slopes5 of order unity. However, the detailed ex
amination of the frequency distributions reveals that
height- and curvature-triggered models belong to differ
universality classes@30#. In addition, the vector-scalar cha
acter ofB has been shown to have no influence on the
tistical behavior of the model, at least for regular lattic
redistribution rules, and driving mechanisms usually cons
ered@31#. Hence, we will proceed with the computational
less intensive scalar version of the model, even though
use of a vector field turns out to be physically preferable.
a complete description of the model, and review of variatio
thereof, see@16#. In the solar flare context, the reasonab
good agreement between the frequency distributions foP
and E in the curvature-triggered model and their obser
tional counterparts reconstructed from time series of s
uv–euv–x-ray emission@27,28# have provided much of the
impetus for further elaborations of SOC avalanche mod
for solar flares.

On the other hand, the geometrical properties of a
lanches in such models remain largely unexplored. Amo
the many possible ways of approaching this issue, the de
mination of fractal dimensions represents an obvious ave
We extract these from the model output in the followi
fashion. Figure 3~a! shows a snapshot of an avalanche at
peak of its energy release, extracted from a simulation o
two-dimensional lattice of size 1283128. Avalanching nodes
are shown in white. Letr i be the position of thei th avalanch-
ing node, measured from some arbitrary but fixed refere
point in the lattice. The center of mass (R0) and radius of
gyration~R! of the cluster of avalanching nodes are given

R05
1

V (
i 51

V

r i , ~14!

R25
1

V (
i 51

V

ur i2R0u2, ~15!

5For brevity, hereafter, we will use logarithm, or log, to expres
base 10 logarithm. Indeed, base 10 logarithms are used exclus
in this paper.
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whereV is the volume of the avalanche cluster, defined si
ply as the number of avalanching nodes6. The radius of gy-
ration is a common measure of linear cluster size used
percolation theory@32# and corresponds to the radius of th
thin annulus in two dimensions~spherical shell in three di-
mensions! having the same ‘‘mass’’ and moment of inertia
the original cluster. The fractal dimension (gVR) of the clus-
ter is then straightforwardly defined through the relation

log10~V/V0!5gVR log10R, ~16!

and is the logarithmic slope, obtained via linear least-squa
fit, of the ~log-log! scatter plot of volumeV versusR for all
avalanches recorded in the course of a given simulation.

Another quantity that is accessible observationally is
logarithmic slope of the power-law frequency distributio
of avalanche parameters. As already introduced in Eq.~1!,
this slope will be denoted by the lettera, subscripted by the
corresponding avalanche parameter (V, R, etc.!:

log10@ f ~V!/ f 0#52aVlog10V. ~17!

Such power laws are found to hold up to an upper cut
which itself scales with the lattice size, indicative of finit
size scaling@29,28#.

In the context of flare observation a practical difficul
immediately arises. The integration time of current solar u
euv imaging instruments is often comparable to the cha
teristic internal time scale for flare evolution. Figure 3~a! is

a
ely

6Strictly speaking, the physical volume~in cm3) is the number of
avalanching nodes times the~unit! volume of a lattice cell. All
geometric quantities assessed in the models (V, R, etc.! are mea-
sured in dimensionless units scaled to the internodal distance in
lattice. Note also that we use ‘‘volume’’ even in theD52 case,
where ‘‘area’’ would be geometrically preferable but notationa
confusing in what is soon to follow in Sec. V.

FIG. 3. The spatial structure of an avalanche in a tw
dimensional 1283128 lattice.~a! shows the avalanche at its pea
when some 329 nodes are unstable and~b! shows the time-
integrated avalanche, where some 4179 nodes have gone unsta
least once over the course of the avalanche. Also shown are
avalanche centers of mass~solid dot!, and the circle mapped by th
radius of gyration for both situations. The fractal indices at t
avalanche peakgVR and of the time-integrated avalanchegVR* are
1.57 and 2.01, respectively. The time-integrated avalanche clust
~b! is a compact object, whereas that of~a!, at the peak, is not.
5-5
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thus a very idealized view of a flare. At the other extrem
one can imagine a situation where the integration time
comparable to the duration of the flare or avalanche. Fig
3~b! shows the cluster of all nodes having gone unstable
least once in the course of the avalanche. One can a
define a radius of gyration and compute a fractal dimens
for this geometrical object, via Eq.~16!, but there is noa
priori reason to expect that the fractal dimension so co
puted will be identical to that obtained from the instan
neous snapshot of Fig. 3~a!.

In the following sections, in order to assess the con
quences of such time-integration effects, we examine
geometrical properties of avalanches in the two extre
cases shown in Fig. 3; namely, the ‘‘highest’’ and ‘‘lowes
temporal resolution. Specifically, we extract avalanche
rameters from a single-iteration snapshot at their peak~high-
est resolution!, and from time integration over the duratio
of the whole avalanche~lowest resolution!. We use an aster
isk to distinguish between the quantities associated with
latter situation, leaving quantities computed from avalan
peak snapshots without superscripts. For example,gVR de-
notes the power-law slope of theV vs R correlation plot for
the avalanche peaks@Fig. 3~a!#, while aV* denotes the power
law index of the size frequency distribution for time
integrated avalanche volumes@Fig. 3~b!#. For quick refer-
ence, Table I compiles a list of the various symbols used
describe avalanche parameters and associated powe
indices.

IV. GEOMETRICAL PROPERTIES OF AVALANCHES

Our first task is to compute fractal dimensions and lo
rithmic slopes of the frequency distributions for the vario
avalanche parameters. We do so for a variety of linear lat
sizes ~N! and spatial dimensions (D, restricted to 2 or 3
here!. Given the natural variability of the SOC state, we a
cumulate statistics for series of independent runs, in orde
extract meaningful Monte Carlo–like error bars~for further
discussion of this point, see@16#, Sec. 2.9!. Results are com-
piled in Table II. Power-law indices for the frequency dist
butions of peak energy releaseP and avalanche durationT
are listed in Table 2 of@16#, for the same curvature-triggere
lattice model, and are not replicated here since they are

TABLE I. A compilation of symbols used in this paper to cha
acterize the spatial and temporal properties of avalanches, an
sociated power-law indices.

Symbol Definition

E Time-integrated energy release
P Peak energy release
T Duration of avalanche
V Avalanche volume ([ number of avalanching nodes!

R Radius of gyration of avalanching cluster
gyx Logarithmic slope ofy vs x correlation plot
ax Logarithmic slope of frequency distribution forx
A Projected area of avalanching cluster
Gyx Similar to gyx , but for projected quantities
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central to the present discussion.
In general, the correlations between pairs of avalan

parameters are rather tight, so that the logarithmic slopes
determined with good accuracy. Figure 4 shows two rep
sentative correlation plots ofV vs R for the peak instanta-
neous~left! and time-integrated~right! distributions of ava-
lanching nodes, from which the corresponding frac
dimensionsgVR andgVR* are obtained. The resolution of th
lattice leads to increased scatter at small values of avalan
parameters, and its finite size imposes an upper cutoff oR,
which translates into the slight upturn visible for the large
avalanches. Nonetheless, Table II shows that the infe
power-law indices remain stable as lattice size is varied.

Examining the third column of Table II also shows th
time-integrated avalanches havegVR* 5D to within the error
bars, i.e., the time-integrated avalanche is a geometric
compact object. On the other hand, avalanches at their p
havegVR,D, and so are fractal objects in the usual sen
Not surprisingly, this geometrical distinction carries throu
to the frequency distributions of avalanche volumes~cf. the
fourth and fifth columns of Table II!.

As might be expected from the self-similar nature of av
lanches, the geometric parametersV and R have frequency
distributions described by well-defined power laws, wheth
one considers the peak or time-integrated distribution of a
lanching nodes. Remarkably, there is no statistically sign
cant difference between theaV indices obtained in two and
three spatial dimensions, unlike those of other avalanc
parameters such as duration and total energy release~cf.
Table 2 of@16#!. We could not construct a simple, intuitivel
obvious explanation as to why it is so, but this is evidently
robust property of the model, judging from the stability
the aV indices with respect to variations in the lattice size

Comparing the sixth and seventh columns of Table II a
reveals thatgPV.gEV* within the error bars. This indicate
that, on average, each avalanching node releases roughl
same amount of energy once the avalanche gets under
even though nodal energy release is not constant in

as-

FIG. 4. A typical power-law relationship between the avalanc
volumeV and its radius of gyrationR for simulations carried out on
an ND5643 lattice, in the course of which approximately 0.2
3106 avalanches were recorded. In~a! we show the distribution of
values at the peak of the avalanche, and those of the time-integ
avalanche in~b!. Both scatter plots are well-fitted, by a power-la
relationship. The least-squares best-fit lines in both cases give l
rithmic slope valuesgVR51.79 andgVR* 52.98 for panels~a! and
~b!, respectively.
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TABLE II. Power-law indices for correlation plots (g) and size frequency distribution (a) for series of
lattice simulation carried out for either two or three spatial dimensions (D), and a variety of linear lattice
sizes (N). These quantities are computed at avalanche peak and for the time-integrated avalanches, t
identified by an asterisk. In particular, we show the avalanche fractal dimensions (gVR , gVR* ), the power-law
exponents of the avalanche total energy and volume frequency distributions (aE , aV , aV* ), and the model
volumetric energy release (gPA , gEA* ).

ND gVR gVR* aE aV aV* gPV gEV*

322 1.6160.02 2.0160.04 1.4260.00 1.0360.06 0.5560.05 1.0660.07 1.0960.08
642 1.6060.02 2.0260.05 1.4160.00 1.0560.07 0.5260.03 1.0460.04 1.0760.05
1282 1.5760.03 2.0160.06 1.4060.00 1.0260.06 0.5560.02 1.0260.03 1.0660.04
2562 1.5560.02 2.0060.04 1.4160.00 1.0160.08 0.5160.04 1.0760.05 1.0560.05
5122 1.5660.04 2.0060.05 1.4260.01 1.0460.04 0.5260.04 1.0560.03 1.0460.03
163 1.7860.03 3.0560.04 1.4560.00 1.0360.05 0.4960.03 1.0260.08 1.1260.09
243 1.7760.04 3.0060.02 1.4660.00 1.0460.03 0.4860.04 1.0160.05 1.0960.06
323 1.8060.03 2.9860.02 1.4660.00 1.0560.04 0.5060.04 1.0060.03 1.0860.06
483 1.7860.03 2.9860.03 1.4760.01 1.0460.04 0.5160.05 1.0060.01 1.0960.05
643 1.7960.02 2.9860.03 1.4760.00 1.0260.04 0.4960.04 1.0060.01 1.0860.05
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present curvature-triggered model. The marginally larger v
ues of gEV* reflect the fact that our definition ofV for the
time-integrated avalanche is such that nodes avalanc
more than once only contribute one ‘‘unit’’ toV, while con-
tributing more toward the total energyE than a node having
avalanched only once. Hence theE vs V correlation is
steeper.

V. PROJECTION EFFECTS

In seeking to compare model results to observations,
must recognize that what is observed is aprojection of the
flaring volume onto the plane of the sky. Figure 5 illustra

FIG. 5. The three-dimensional structure of the time-integra
avalanche in anND5323 lattice. Here 5145 nodes have gone u
stable at least once over the duration of the avalanche. The
hand side of the figure shows direct views of the projections of
time-integrated cluster on the three coordinate planes of the lat
The gray scale in the projected planes indicates the number of
lanching nodes, or column depth, along the projection line of sig
04612
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the situation. The left diagram is a three-dimensional equi
lent of Fig. 3~b!, namely, the three-dimensional cluster com
prised of each node having gone unstable at least once in
course of the avalanche~note already how this bears littl
resemblance to either the cylinder or loop model of Fig.!.
The three panels on the right show the shape of this clus
projected on the three coordinate planes, where the g
scale encodes the number of avalanching nodes along
line of sight. This amounts to saying that all energy relea
by avalanching nodes located along the line of sight is v
ible along that line of sight. We will refer to this as th
‘‘optically thin’’ assumption.7

It should be clear from Fig. 5 that the geometrical pro
erties of the actual flaring volume cannot be retrieved una
biguously from the geometrical properties of the projec
areas~and even less so if only one projection is availab
which is the case when analyzing current observational da!.
Consequently, we now examine the geometrical propertie
the three projections onto the orthogonal two-dimensio
lattice planes, as on Fig. 5, which is computationally m
convenient and entails no loss of generality. The analy
follows that carried out in the preceding section, except t
we now introduce the projected avalanche areaA, defined as
the cluster of nodes in the two-dimensional planes for wh
at least one node along the corresponding perpendicular
of sight is avalanching. As before we consider the avalanc
at their peak and as time-integrated objects. Because o
optically thin assumption, the total and peak energy releasE
andP, as well as the avalanche durationT, are unaffected by
the projection, so that the corresponding frequency distri
tions are also unchanged. On the other hand, the distribu
of projected areasA and corresponding radii of gyration ar
now distinct from the truly three-dimensional situation. T
distinguish between these related situations we use an up

7This is also the assumption made when carrying out analyse
the Sun’s uv–euv–x-ray emission.
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TABLE III. Equivalent power-law indices to those listed in Table II, but now computed from the pro
tion of three-dimensional avalanches onto the three orthogonal coordinate planes of the lattice. The l
mic slopes of correlation plots involving projected avalanches are denoted usingG, reservingg for un-
projected quantities.

ND GAR GAR* aA aA* GPA GEA*

163 1.4860.09 1.9660.05 1.1960.05 0.5960.02 1.1260.05 1.6460.12
243 1.5260.07 1.9760.04 1.1760.04 0.6060.04 1.0960.03 1.6260.08
323 1.5260.06 1.9760.05 1.1560.04 0.6260.03 1.0860.02 1.6060.05
483 1.4960.05 1.9860.07 1.2060.04 0.6360.03 1.0760.03 1.5960.04
643 1.5360.06 1.9660.06 1.1260.05 0.6360.03 1.0760.03 1.5960.04
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case gamma (G) to denote logarithmic slopes—includin
fractal dimensions—associated with avalanches seen in
jection.

The results are compiled in Table III and pictorially bu
tressed by Fig. 6, which demonstrate—among other thing
that once again the geometric parameters are related
well-defined power laws. In addition, the inferred power-la
indices exhibit robustness with respect to grid size, w
variations well within the Monte Carlo error bars, except
some cases for the smallest lattice considered (N516). The
projected time-integrated avalanches are again compac

FIG. 6. A sample of various power-law relationships and f
quency distributions formed by combinations of the geometr
properties of three-dimensional avalanches projected onto the
dimensional planes~cf. Fig. 5!, constructed here from anND5643

lattice simulation. Results for avalanche peak snapshots are sh
in ~a!–~c! while those for time-integrated avalanches are shown
~d!–~f!. Many differences are immediately clear between these
sets of plots: the frequency distribution of projected areas is m
flatter in ~d! than in~a!; ~e! demonstrates a large energy release
unit area, compared to that at avalanche peak~b!; the different
fractal dimensions of the avalanches as seen in projection@see, e.g.,
Figs. 5~c! and 5~f!#.
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jects (GAR* 52), which of course was to be expected since
underlying time-integrated three-dimensional avalanche is
self a compact object (gVR* 53). Note also that for the ava
lanche peakGAR(D53).gVR(D52), indicating that the
projected three-dimensional avalanches are geometric
similar to D52 avalanches.

In view of the optically thin assumption, a node of th
projected area now ‘‘accumulates’’ the energy released al
the whole corresponding line of sight. The superposition
nodes along the line of sight leads to an increase in the n
ber of geometrically small avalanches and, therefore, gi
rise to a steeper frequency distribution forA; likewise, the
steepening of theP andE vs A power-law relationships due
to the enhancement of the energy recorded per unit a
Further, we see that these cumulative effects are particul
pronounced for the time-integrated avalanches~compareaA ,
aA* , GPA , andGEA* in Table III to aV , aV* , gPV* , andgEV* in
Table II!.

VI. COMPARISON WITH FLARE OBSERVATIONS

Before we launch in earnest into the comparison betw
model results and flare observations, it is important to cla
the assumptions under which such comparisons are to
made. There is no ‘‘plasma’’ in the avalanche models, o
an idealized representation of a magnetic field–related qu
tity sampled on a finite lattice. We can imagine that th
lattice, and the field defined on it, are embedded in a dyna
cally passive plasma, whose only purpose is to absorb
radiate away the energy dissipated within it by avalanche
we then assume that all of the energy dissipated at avala
ing nodes goes into localized heating of this plasma, then
energy dissipation computed via Eq.~12! becomes directly
proportional to the thermal energy in Eq.~8!, i.e.,E}E. If we
further assume that the energy so dissipated heats the pl
within a volume comparable to the unit lattice cell size, th
a cluster of unstable nodes~e.g., Fig. 5! become a measure o
the emitting volume in Eq.~8!, so thatV}V, and likewise for
the projected areasA}A. Turning these proportionality rela
tions into equalities requires that physical units be introdu
in the lattice model. This is certainly possible~see, e.g.,
@28#!, but actually not required in the comparison of mod
and observed power-law scatter plots and frequency distr
tions, in view of their self-similar character.

There are only a few extant observational determinati

-
l
o-

wn
n
o
h
r

5-8



a

in
s

s
-

re
y
to
ls
e
tr

is
o

r

ou
re
fu

la
uv

u

d
es
io
to
r

v

th
s
lo

.
ha

e-
ith

i-
cy-

va-

-
en

d

ue

e
nd-

ls:

l ef-
by
wer
ion

in-
e to
n
y-

lly

-
ea

oop

-

e
nc

ing

GEOMETRICAL PROPERTIES OF AVALANCHES IN . . . PHYSICAL REVIEW E65 046125
of the size frequency distribution of projected flaring are
@7,33–35#. Those studies indicate thatf (A) is a declining
power-law over a bit more than an order of magnitude
projected areaA, at best. The inferred power-law indice
cover a broad range, fromaA.1.3 to 2.7. Our model result
~Fig. 6! yield aA51.1260.05, which is marginally compat
ible with @34#, but the time-integrated indexaA* 50.63 is
much smaller than the presumably equivalent index infer
by @7#. Although a fairer comparison with this latter stud
would require replicating their ellipse fitting procedure
determineA ~as opposed to counting projected model pixe
as done here!, it appears that a real discrepancy betwe
model and observations may exist at the level of the dis
bution of projected areas. How severe a discrepancy th
will likely be hard to estimate, because of the tricky issue
observational detection threshold in deciding whethe
given pixel is part of a flare~see the discussion in@26#!, but
this is an issue that could, in principle, be explored using
model results. At any rate, the logarithmic slope of the a
frequency distribution of flares certainly offers a power
observational test of the avalanche model.

As discussed at the end of Sec. II, a quantity of particu
interest in the context of observational analyses of solar
euv–x-ray emission is the relationship between the~two-
dimensional! observed emitting areaA and the underlying
~three-dimensional! flaring volumeV @cf. Eq. ~8! and Figs. 1
and 2#. We can address this question using our model res
by simply making the assumption thatV[V and A[A, as
discussed earlier. Table IV lists the relevant power-law in
ces, once again, as inferred from a snapshot of avalanch
their peak (gVA), and integrated over the avalanche durat
(gVA* ), with Fig. 7 showing representative correlation plots
demonstrate once again how well defined the power-law
lationships actually are.

That gVA* should be significantly larger thangVA is again
a consequence of the fact that, in the time-integrated a
lanche, far more nodes contribute to a ‘‘unit’’ ofA than in the
peak snapshot. Consequently,V increases more rapidly with
A in the former case. The reader can best appreciate
situation by returning to Fig. 3 and noting how the two clu
ters plotted therein have comparable projected lengths a
the horizontal and vertical axes, yet the cluster in Fig. 3~b!
has a volume ([ number of nodes! nearly 13 times greater

It is indeed remarkable—and entirely unexpected—t
the power-law indices characterizing theV vs A relationships

TABLE IV. The logarithmic slopes of the power-law relation
ships formed by the volumeV and theprojectedareaA subtended
by the avalanches on three-dimensional lattices of various lin
size. Once again values are listed for snapshots at the avala
peak (gVA) and for the time-integrated avalanche (gVA* ).

ND gVA gVA*

163 1.1160.06 1.4460.05
243 1.0960.07 1.4160.04
323 1.0860.08 1.4060.03
483 1.0760.06 1.4260.04
643 1.0760.05 1.4160.04
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for our two extreme cases~instantaneous snapshots and tim
integrated avalanche! are bracketed by those associated w
the two simple geometrical models introduced in Fig. 2~1.0
and 1.5, respectively!. Both are defined in terms of geometr
cally compact objects, namely, a cylinder and an arched
lindrical loop, yet even the compact, time-integrated a
lanches yield a differentV-A scaling.

The analysis carried out in@7# of 281 euv nanoflares ob
served by TRACE leads to a power-law relationship betwe
the released thermal energyE and the observed projecte
areaA with index equal toGEA* 51.44 ~in our notation; see
@7#, Fig. 5!. This is quite close to the corresponding val
listed in in Table III here, namely,GEA* 51.5960.04 ~for our
largest lattice,ND5643). This good agreement should not b
overinterpreted, however, at it is for the most part a seco
ary consequence of the~remarkable! similarity between the
area-volume relationship characterizing the two mode
gVA* 51.44 for the loop model8 versusgVA* 51.41 for the ava-
lanche model.

What then are the consequences of such geometrica
fects for Parker’s conjecture of coronal heating
nanoflares? As already mentioned in Sec. I, the ans
hinges on the logarithmic slope of the frequency distribut
of energy release (aE in our notation!, in which the V-A
relationship of the flaring volume is but one of the determ
ing factors. It is possible to use the results presented her
compute~in a preliminary manner and with all due cautio!
a ‘‘correction’’ to previously published observational anal
ses using different geometrical models.

The crux of the matter is to express the observationa
inferred frequency distributionf (E)dE in terms of a new
energy release variableE8@5s(E)E# corrected for geometri-

8The loop model used in@7# incorporates an observationally de
termined area filling factor, which is found to scale with the ar
itself; this is why the power-law index of the inferredV-A relation-
ship deviates from the value 1.5 associated with the basic l
model of Fig. 2, which assumes a constant filling factor.

ar
he

FIG. 7. Power-law relationships between the volumeV and the
projected areaA of avalanching node clusters on anND5643 lattice
at peak~a! and integrated over time~b!. Both scatter plots define
statistically tight relationships, but the values of the correspond
logarithmic slopesGVA andGVA* are markedly different. As in Fig.
6~e!, the upturn visible in the upper right of~b! is due to the finite
size of the lattice, which here limits the projected area to (N22)2

53844 ~boundary nodes cannot avalanche in our lattice model!.
5-9
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cal rescaling in terms of the fractal dimension of avalanch
The three observational analyses considered below@25,24,7#
work with what corresponds, in the language of the pres
paper, to time-integrated avalanches. Letb be the logarith-
mic slope of theV-A relationship for either one of the geo
metrical models of Fig. 2, andg[gVA* henceforth, to lighten
the notation. The correction factors to the inferred emitting
volume is then

s~A!5Ag2b. ~18!

Under the ~common! assumption of constant pressu
@}neTe in Eq. ~8!#, the only remaining dependence ofE is on
the emitting volumeV. Again, under the ansatzE[E, V
[V, andA[A, this then impliesA}E1/b, and thus

s~E!5E(g2b)/b. ~19!

We now need to expressf (E8)dE8 in terms off (E)dE. With
the latter given by the power lawf (E)5 f 0E2aE, some
straightforward algebra soon leads to

f ~E8!dE85 f ~sE!
dE8

dE
dE} f ~E!dEEDa

5 f 0E2(a1Da)dE, ~20!

where the correction factorDa to the power-law indexaE is
given by

Da5
~12aE!~b2g!

b
. ~21!

Table V lists theaE values inferred from these three rece
observational analyses of uv-euv data, together with
‘‘corrected’’ values obtained by addingDa, as computed
above. It is quite remarkable that this simple-minded corr
tion for purely geometrical effects brings all three inferenc
into much better agreement than in their original form.

VII. SUMMARY AND DISCUSSION

We have examined in some detail the geometric prop
ties of avalanches in an established SOC model for s
flares @15,16,27,28#. The fractal structure of avalanche
coupled with projection effects, is found to yield a distinct
different volume/projected area relationship than nonfra
geometrical models routinely used in the analysis of fl
data. This leads to a different observationally inferred pow
law index aE for the frequency distribution of energy re

TABLE V. Geometrical ‘‘corrections’’ to three recent analyse
of uv-euv flare energy release.

Reference Geometrical model b aE aE1Da

@25# Cylinder, constanth 1.0 2.3–2.6 1.77–1.94
@24# Cylinder, constanth 1.0 2.42 1.84
@7# Loop a 1.44 1.7960.08 1.8160.09

aSee footnote 7.
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lease, and thus to potentially distinct conclusions regard
the contribution of nanoflares to solar coronal heating.

While the focus of this paper has been on the geome
properties of avalanches, other factors also significantly
fluence the determination of the frequency distribution
energy release by small flares observed in uv–euv–x-ray
gions. It has now been amply demonstrated~see, e.g.,@7#!
that the selection criteria adopted to select ‘‘flares’’ fro
other brightness variations also have a marked influence
the inferred value ofaE . In addition, as outlined in Sec. V
here, the vast majority of observational analyses publishe
date make a number of simplifying assumptions in relat
the observed fluxes to volumetric energy release, notably
lack of dependence of the DEM on the electron density, a
the assumed pressure distribution in the flaring volum
These are also issues of critical importance in asses
whether or not nanoflares can be held responsible for cor
heating. Indeed, by introducing additionalad hoc~but plau-
sible! dependencies onE, for example, on the column dept
and/or the DEM itself, it is certainly possible to produce
wide range of logarithmic slopes for the modelf (E) @36#.

The~simplistic! attempt made in Sec. VI to correct for th
fractal geometry of avalanches in the SOC flare model
led to the interesting result that widely varying estimates
aE inferred by recent observational analyses have b
brought into closer agreement. This should serve to reemp
size that geometrical assumptions play a critical role in
determination of the frequency distribution of energy relea
events from solar observations. On the other hand,
should not blind us to the fact that a significant discrepan
still remains, namely, the fact that the value ofaE extracted
directly from the avalanche model (aE.1.5, cf. Table II
here! remains significantly lower than even the ‘‘corrected
observationally inferred values listed in Table V. One po
sible solution to this dilemma invokes the unavoidable te
perature bias associated with narrowband observations. A
cent Monte Carlo simulation@37# aimed at correcting for this
observational bias indicates that this can bring the obse
tionally inferred aE into much better agreement with th
prediction of the avalanche model. Alternately, vario
mechanisms have been proposed to steepen thef (E) distri-
bution produced by the flare avalanche model~see @16#,
Secs. 3.2, and 3.3, and references therein!. However, the
fractal dimensions of avalanches in these modified mod
remain to be determined.

Nonetheless, the high spatial resolution and temporal
dence observations provided by the latest generation of s
observing space-borne instruments such as those on SO
and TRACE allow us to ‘‘see’’ avalanches in progress. Th
offers a hitherto unexplored point of comparison betwe
observations and SOC models. This paper has ba
scratched the surface of this comparison, but has alre
identified a potential discrepancy between model and ob
vations, namely, that the former predict much flatter pow
law frequency distributions of projected areas than those
ferred observationally. How severe this discrepancy actu
is is hard to estimate, given the wide range of observatio
aA’s. Two aspects relevant to this problem, which we plan
pursue in due course, are the issues of the spatial fragm
5-10
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GEOMETRICAL PROPERTIES OF AVALANCHES IN . . . PHYSICAL REVIEW E65 046125
tation of avalanches and the effects of noise and detec
thresholds, both of which have important consequences
observational analyses.

The avalanche model of solar flares provides an attrac
and thus far quite successful framework within which to
terpret observed flare statistics. However, at first glance s
models have little to say about the microphysics of the
connection process itself, since the statistical behavior of
model does not depend sensitively on the numerical deta
the stability and redistribution rule formulation~provided
certain general constraints are satisfied, such as the pres
of a finite instability threshold, and locality and isotropy
the redistribution, for example!. However, interesting aspec
of the relevant microphysics can still be recovered. It is p
sible to ‘‘reverse-engineer’’ a continuum partial differenti
equation~PDE! from the discrete stability and redistributio
rules, and to relate this PDE to the magnetohydrodyna
~MHD! equations@16,38,39#. In particular, recent work@39#
along these lines indicates that the field transport occurs
a diffusivelike process mathematically akin to MHD turb
lence, suggesting in turn that, under solar coronal conditio
magnetic reconnection at single flaring sites becomes tu
lent shortly after onset.

In closing, it is worth reiterating that, unlike many oth
applications of sandpile models to complex physical s
tems, here Parker’s picture of a photospherically ancho
and driven, complexly tangled coronal magnetic fields p
vides a sound physical underpinning to the SOC pict
@10,15,16,38,40#. With the field quantityB identified with a
measure of the magnetic vector potential (A, such that the
magnetic fieldB5“3A), the instability sets in once th
-
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e

local electric current (}¹2A for a suitable choice of electro
static gauge! exceeds a threshold value, which fits nice
with current ideas about magnetic reconnection under s
coronal conditions; local redistribution ofA does lead to re-
duction of the local electric currents and associated ene
release; addition of smallA increments amounts to localize
increases in the twist of the magnetic field; the separation
time scale between driving and avalanching is also well j
tified in the coronal context, with photospheric fluid motio
~driving! operating on time scales of hours to days, wh
internal field readjustment and reconnection~avalanching!
take place in seconds to minutes under typical solar coro
conditions. Indeed, energy release in solar flares represe
very convincing physical example of SOC, well on a p
with seismic energy release in earthquakes. Moreover, a
lanche models based on Parker’s nanoflare picture can
principle, address the physical nature of both flares and c
nal heating within the same unifying framework, a truly r
markable state of affairs if vindicated.
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