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Geometrical properties of avalanches in self-organized critical models of solar flares
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We investigate the geometrical properties of avalanches in self-organized critical models of solar flares.
Traditionally, such models differ from the classical sandpile model in their formulation of stability criteria in
terms of the curvature of the nodal field, and belong to a distinct universality class. With a view toward
comparing these properties to those inferred from spatially and temporally resolved flare observations, we
consider the properties of avalanche peak snapshots, time-integrated avalanches in two and three dimensions,
and the two-dimensional projections of the latter. The nature of the relationship between the avalanching
volume and its projected area is an issue of particular interest in the solar flare context. Using our simulation
results we investigate this relationship, and demonstrate that proper accounting of the fractal nature of ava-
lanches can bring into agreement hitherto discrepant results of observational analyses based on simple, non-
fractal geometries for the flaring volume.

DOI: 10.1103/PhysReVvE.65.046125 PACS nuni)er05.65+b, 95.30.Qd, 45.70.Cc, 52.35.Vd

[. INTRODUCTION currently exists as to the nature of the physical mechaigism
responsible for the conversion of this mechanical energy into

Solar flares are the observational manifestation of suddenthe thermal energy of the coronal plasma. Since magnetic
spatially localized energy release in the solar atmosphere. Ifields are ubiquitous throughout the Sun’s outer atmosphere,
a matter of a few seconds the local coronal temperature cathe magnetic energy dissipated in reconnection-mediated
increase to as high as a few’1& from its average ambient flaring events can, in principle, provide a heating sodrce.
value of ~10° K, before thermal relaxation sets in. Flaring Estimates of chromospheric and coronal energy losses place
is accompanied by a rapid increase of emission at moshe required average energy deposition rate at about
wavelengths of the electromagnetic spectrum, but is mosto’ ergcm? s™! [2]. This then raises two related ques-
spectacular—and readily observed—at short wavelengthions: (1) are flares frequent and energetic enough to meet
(<2000 A), corresponding to the ultraviolgtv), extreme-  this demand? an€®) how is photospheric mechanical energy
ultraviolet (euv), and x-ray regions of the spectrum. converted and stored as available magnetic energy in preflare

It is now generally agreed that the flare energy sourceoronal structures?
comes from the local reconfiguration of the solar coronal Great progress has been made over the years in attempt_
magnetic field, with the larger flares originating in regions ofing to answer the first of these two questions. Observations
strongest fields, such as those overlying sunspots and activg solar flares by space-borne instruments have gone from
regions. In the high electrical conductivity environment of spatially unresolved “Sun as a Star” observations, e.g., from
the solar outer atmosphere and corona, the most viable fagie Solar Maximum Mission Hard X-Ray Burst Spectrom-
reconfiguration mechanism is magnetic reconnection. In itster (SMM HXRBS [3]) to those of the Solar and Helio-
simplest form, reconnection sets in when magnetic fields o§pheric ObservatorgSOHO[4]) Extreme-Ultraviolet Imag-
opposite polarities are forced together to form a thin electrigng Telescope(EIT [5]) and the high spatial resolution
current sheet, with the current growing in strength untilTransition Region and Coronal ExploréFRACE [6]) tele-
plasma instabilities cause a rapid increase in the resistivity o§cope. Analysis of the many hundreds of thousands of flares
the plasma. This, in turn, leads to local dissipation and topothat have been recorded by these various instruments, of
logical reconfiguration of the magnetic field in the vicinity of which Fig. 1 gives an example, have revealed the remarkable
the current sheessee[1], Chap. 1]. fact that the frequency distribution of the energy released by

Flaring has potentially profound implications for coronal figres has the form of a tight power law, spanning at least
heating. It is now generally accepted that the mechanicadight decades in flare energy. Specificallyf (E)dE is the

energy associated with bulk fluid motions in the solar photonymber per unit time of flares dissipating an amount of en-
sphere is, ultimately, the source tapped into by the Sun to

heat its corona. However, nothing resembling a consensus———

IMore specifically, the strong electrical fields generated by mag-
netic reconnection accelerate to superthermal velocities charged
*Corresponding author. particles located in and around the reconnection site; these fast par-
Electronic address: scott@esa.nascom.nasa.gov ticles then collisionally transfer their energy to other neighboring
"Present address: Physics Department, University of Newcastlparticles, thus leading to heating of the plasma surrounding the
upon Tyne, Newcastle upon Tyne, NE1 7RU, United Kingdom. reconnection site.
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TRACE 1714, Date: 02/07/1999, Timestep = 125s, FOV = 1007 Pixels the energy density of the plasma greatly exceeds that of the
Frame O  Frame 1 Frame 2 Frame 3 Frame 4

20 magnetic field, so that field lines cannot resist the motion of

2 Q o the electrically conducting fluid, and consequently are

i shuffled around as they each execute a form of random walk.
160

TSRS FEL % The resulting twisting and, braiding propagates upward in the
oglome S Frome 6 Frome 7 Frome 8 Frome 9 2 I form of low frequency Alfve waves, perturbing the dynami-
320 2 cal balance of the overlying magnetic structure. In the corona
§§8 E E n% &6 it is now the energy density of the magnetic field that largely
460 2 exceeds that of the plasma, so that the field tends to rapidly

1802282012k 1 Frome 12 Frome 13 Sum 38 £ B readjust to a force-free state. However, the high electrical

g conductivity of the coronal plasma means that the field is
300 FQ‘ “frozen in” and the topology of the magnetic structure can-
iggn E E E m not change. As a result, the field will relax to a state that is
195228261294 force-free everywhere except in a large number of small
FIG. 1. The temporal evolution of a small flare as observed inelectrical current sheets building up in regions where field
euv by TRACE. This flarg was studied in detail[y3]. The flaring ggﬁzrijeﬂlj\i,gS:T?gtig;Sbriiledxe:raat;?/ui?irgggea?h?;htevci:‘ﬂigpZ%tg

pixels are assumed to lie within an ellipse corresponding to th%raidin . . .
0, the electrical currents build up to the point where

projection of a loop onto the plane of the sky. The size and orien- . . . .
tation of this ellipse are adjusted in order to enclose all pixels thafN€ Onset of magnetic reconnection becomes inevitable, lo-

show a significant variation=3 standard deviations above back- Cally releasing energy in the corona. Parker goes on to specu-
ground over the duration of the nanoflare, as shown on each panelate that the observed x-ray corona is nothing more than the
Successive frames are taken 125 s apart and each shows an areaoflective effect of a large number of such nanoflares con-
100 pixelé (or ~ 50 arcs). To get a better appreciation for the tinuously occurring throughout the magnetized corona.
range of euv nanoflaring morphologies, see also Fig. [Bpf In this picture, the coronal magnetic field thus acts both as
) an upward transport mechanism and as an intermediate en-
ergy in the rangé: to E+dE, then flare data are well de- ergy storage medium for the mechanical energy of photo-
scribed by spheric fluid motions, and magnetic reconnection is respon-
f(E)dE=f,E “cdE s! (ag>0). 1) sible for c_on_verting this stored magnetic energy into _thermal
energy within the coronal plasma. Although not originally
Taking Eq.(1) at face value, the total energy per unit time emphasized by Parker, the magnetic field reconfiguration
released collectively by the ensemble of solar flares is thertaking place in the vicinity of reconnecting current sheet will
alter the physical conditions around neighboring current

@_JEmaxf EVEdE=f 27 €] Emax 1 sheets, which may trigger further reconnection events at
dt — Jg, ., (E) O 2-ag - g s some of these sheets, and so on, leading to an avalanche of
min reconnection events cascading throughout the tangled mag-

(ag#2) 2) netic structure. The associated collective energy release can

then be interpreted as a large flare. Moreover, the self-

With Epa~10%2 erg, andE,,,~107* erg for current uv-euv  similarity typically associated with such avalanche processes
detection limits[7]. If ag<2 then the largest flares will provides a natural interpretation for the observed power law
dominate the energy budget; conversely, dgf>2 the in flare size. Parker’s model in fact includes all the ingredi-
smaller flares dominate. Observationally, large flar€& ( ents deemed necessary to lead to self-organized criticality
>10°? erg, say are hard to miss, and it is now well estab- (SOC; [12-14)): a slowly driven (photospheric footpoint
lished that they are too infrequent to heat the corona, even anotions open systen{magnetic structure embedded in the
epochs of maximum solar activitigee, e.g.}8]). solar coronasubject to a self-stabilizing local threshold in-

For close to two decades, Parker has championed the viegtability (magnetic reconnectigrieading to localized trans-
that coronal heating occurs via numerous small scale reconport and readjustment of the physical quantity subject to in-
nection events, which he termed “nanoflares” because histability [14—-16.
estimate of their total energy release falls about nine orders Clearly, Parker's conjecture of coronal heating by
of magnitude below that of large flard9—11]. Parker’s nanoflares requiresg>2 in Eq.(1). At the present time, this
physical picture of how this takes place also happens to ads neither convincingly supported nor refuted by extant ob-
dress the second question raised above; namely, the conveservational analyses, which plaag anywhere in the range
sion of photospheric mechanical energy to magnetic energ$.5-2.6 (see [16], and references thergin Whether
in preflare coronal structures. Consider a magnetic structuneanoflares heat the corona or not, Parker’s picture still pro-
embedded in the solar corona, for example, a coronal loopiides a sound physical underpinning to the idea that flares
The loop is anchored in the dense plasma of the solar photdef all sizes arise as avalanches of small scale reconnection
sphere, where its footpoints are subjected to random horizorevents in complexly tangled coronal magnetic structures
tal fluid motions associated with the photospheric manifestadriven to criticality by photospheric forcing of their magnetic
tions of convection and granulation. At photospheric levelsfootpoints.
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To the best of our knowledge, all attempts to date at comis also made in most extant observational analyses, is to ne-
paring flare observations to SOC avalanche models have faject the electron density dependence. The quantity that is
cused on the frequency distribution of quantities characterizactually observed, the spectral intensity= P;/(4.A) for
ing the temporal evolution of flare energy release, such aprojected emitting areal, is then given as
integrated and peak energy release, flare duration, and inter-
flare waiting time(see[16]). This paper aims at establishing PP
the basis for comparing the geometrical properties of ava- Ii:J Ki(Te)é(Te)dTe ergem “ sr= s+, (4)
lanches in the SOC model, and flare observations at high €

spatial and temporal resolution. We first desc(lsec: I the whereé(T,) is the differential emission measure in tempera-
procedure whereby total thermal energy release in a flare Bire (DEM [20,21)) and K;(T,) is the line or bandpass
] I e,

e b o eSS b e EMISNIY: The emissviy s & complex ojetand ever
gnig P 9 more complex for a wide wavelength bandpass, summed

tionship between the observed flux-emitting projected ared o the many constituent lines of the bandpaiat can be
and the actual volume of flaring plasma. We then introduce

and briefly discus$Sec. Ill) a simple and well-studied SOC expressed in component form as

avalanche model for solar flares, and define various geo-
huiAi Nyiy Nion Nel Ny

metrical measures used in the discussion that follows. In Ki(Te)= _ton_et R
Secs. IV and V we extract these geometrical measures from a 4 NionNe Nei Ny Ne
variety of lattice simulations, in the course of which we es- xergen? srtl sl (5)

tablish the area/volume fractal relationship characterizing the
avalanching regions in terms of the raw simulation results
their time-integrated equivalent, and/or projected version
thereof. We ther(Sec. V) examine the consequence of the
fractal nature of the avalanching volume on estimates of th
power-law indexag of the flare energy frequency distribu-

tion. We concludgSec. VIl by reconsidering some of the

issues raised above in the light of our modeling results.

Wwhereny /Nign s Nign/Ners Nei/Ny, andny/ng are the rela-
Tive population of the upper atomic level of the line, the ionic
abundance, elemental abundance, and relative abundance of
H to electrons(having a value of 0.8 for the regions of the
solar atmosphere considered in this paperspectively.

The various terms on the right-hand si@RHS) of Eq. (5)
determine the functional form d€;(T.), which usually ends
up being strongly peaked, and approximately Gaussian in
Il. CONVERTING uv-euv FLUXES INTO ENERGIES shape due to the assumed Maxwellian electron distribution

The central issue in the analysis of flare data in the con@nd the collisional contribution from the ionic abundance

text of coronal heating is the conversion of uv-euv quxesniO”_/ne" The intensity can, th_erefore, be assumed to be pro-
observed in a finite wavelength range, as in Fig. 1, to thé)ort'Orlall to the value of;(Te) in a harrow band+0.1 dey
total thermal energy (in erg, say released in the corona (here dex stands for the base 10 Ioganthm of the tempera-
over the duration of the flare. Unfortunately, this thermaltur® about the peak temperature of line formatioh. For
energy cannot be directly measured and must, therefore, BB€ Purposes of the present discussion we will, for simplicity,
inferred from the observations. The inference of thermal enconsider only emission at the peak temperature of the line
ergies from observed uv-euv fluxes is a complex procedur8Missivity, such thatk;(T¢)=K;8(Te—Tg), where 5(x
involving a number of assumptions regarding the physical—Xo) is the Dirac delta function anl; is the peak magni-
conditions within the emitting volume, as well as its geomet-tude atTg . Now the integral of Eq(4) becomes, converting
ric properties. In the following we outline the recipe custom-to the integrated intensity fluk (=1;/.4),

arily followed to infer the total thermal energies of uv-euv

flare events in order to give the reader an appreciation for the KGETE) 4

difficulties and assumptions involved. i~ T4 egem s (6)

The total spectral powd? radiated above preflare quies-
cent background by an optically thin plasma of voluen
the uv-euv wavelength range of line or bandpgssan be
expressed as

where&(TY) is the value of the DEM al} . Assuming the
form of &(T.)=n2dh/dT, of Brown et al. [22] for scale
heighth, Eq. (6) makes it possible to derive an estimate of
the electron densifyin terms of the observed fluk . This
Pizf hyAinyydVerg st (3)  requires an additional assumption, namely the form of the
v relation between the plasma scale height and the column

whereh is Planck’s constanty; is the frequency of the line,

Ai(s™") is the EinsteimA coefficient, andh, (Cmils) isthe  2The assumption of temperature dependence only is a gross sim-
population density of the upper level of the atomic transitionyjitication of the real situation since both the line emissivities and
u(i). The first step is to replace the volume integral by athe DEM also depend on the electron densityof the emitting
double integral over electron density and temperaturd,  plasma.

[17-19. In doing so, a common working assumption, dubi- 3This assumes that the atmosphere is plane parallel in form, likely
ous physically but which we nonetheless adopt here since # reasonable approximation.
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in the recent literatur¢7,24—2€. They lead to markedly
different geometric scalings betweehand V), in turn lead-
Scdling |5 Voo e st/z ing to significant differences in estimates of_volumetric en-
ergy release, namely, the ratih), even when inferred from
the same uv—euv—x-ray observatidig. One is then natu-
rally led to inquire as to the form of thel-V relationship

Model > Cylinder Loop

g?iil;fved R characterizing the avalanche model for solar flares, which is
radiation one of the central questions addressed in this paper.
Apparent | lll. AN AVALANCHE MODEL FOR SOLAR FLARES

emitting

area . We use a basic avalanche model for solar flares through-

out. This model was primarily developed a decade ago by Lu
and Hamilton[16,27,28 and is closely related to the classi-
cal sandpile moddl13,14,29. A (real-valued field quantity
B is defined on the nodes ofB-dimensional regular Carte-
sian lattice of linear sizé; this field is subject to a self-
stabilizing local threshold instability that leads to isotropic
transport ofB to neighboring lattice nodes whenever the sta-
bility threshold is exceeded; and the system is driven by
FIG. 2. Two simple and commonly used geometrical moolelsadding small field in_crements at randomly selected lattice
relating the emitting area as seen in the observational planén( nodes, a Brocess _tgkln"g_plf'ice OT"V if all nodes are s‘(#h%
gray) to the actual volumeY) of the emitting plasma. The observer so-called SIOW driving “r_n't)' This avalan(_:he model d_'ﬁers
from the classical sandpile model primarily through its sta-

is looking at the structures from above. In the cylinder matist), = e
V ends up directly proportional tal under the assumption of con- Pility condition. The latter declares nodeunstable when-

stant column deptth down to the base of the corona. The loop €ver the magnitude of the nodal fiel) exceeds a preset
model (right) is characterized by a markedly different scaling:  threshold valueZ,:
ocA3I2_

Emitting |,
volume V

Base of |
Corona

B> Z.(height-triggered instability. 9)
depth. In the regime of a plasma with filling fact@atio of
emitting volume to total volumeunity, we have&(T%) In contrast, stability is lost in the present model whenever the

=nZh, so that local curvatureof the field exceeds a preset threshold value:
§T8) 1
Ne= P om 3, 7) AZ= By~ 55 % Ban| > Ze
This estimate ofn, for the event allows us to estimate, at (curvature-triggered instability (10

last, the thermal energy contefitof the flaring plasma:
where the index NN stands for the 2D nearest neighbors on
E=3nkgTiV erg, (8) the Cartesian lattice, arfd is the lattice dimensionl¥=3 is
usually adopted in the flare modeling conjexVhenever a
wherekg (=10"158¢ erg K™1) is the Boltzmann constant node is deemed unstablB, is redistributed to neighboring
andV is, again, the volume of the emitting plasma, the finalnodes in a manner such that stability is restored at that node.
unknown quantity on the RHS of E48).* A geometrical For a given set of such rules, models based on either of Egs.
model for the flaring volume is now introduced, so tiatan  (9) or (10) behave in a qualitatively similar manner in that
be expressed in terms of the observed projected.drdéig-  they are naturally driven to a self-organized critical state, in
ure 2 sketches the two geometrical models commonly usedhich the dissipation oB occurs intermittently via ava-
lanches of redistribution events. The redistribution rules used
to restore local stability in the curvature-triggered model are
“The electron pressug,=n.TZ is commonly assumed to be con- conservative irB, but lead to a decrease Bf summed over
stant in isolated coronal regions, and determined observationally tthe nodes involved in the redistribution. With associated
be approximately at % 10** cm 3 K [23]. This then means that with a magnetic fieldB? becomes a measure of magnetic
the thermal energy essentially scales as~3CV (C  energy, thus implying that energy is “dissipated” locally at

=0.055 ergcm®). Note also that Eq(8) neglects any thermal each avalanching node, in amoungg)(that, in general, vary
energy content of the preflaring state, as well as other energy lo$8om node to node:
mechanisms that do not produce a radiative signature, such as ther-

mal conduction, induced bulk flows, hydrogen ionization, genera- 6/ AZ
tion of magnetohydrodynamic waves, to name but a few. These are e=< ( 2 — 1) zz. (11)
all significant modeling assumptions. 7 Z;
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The net energy dissipated over the whole lattice at the cur- Avalanche Peak Time—Integrated Avalanche
rent model iteration(t) is thus simplyE;=Xe,, where the
sum extends over all unstable nodes. Let rigudenote the
(timelike) iteration number at which an avalanche begins,
andT its duration, also measured in timelike iteration units.
The total energy dissipated in the course of the avalanche is
then simply

to+T
E= 2 Et’ (12)
to
while the peak energy dissipation r&f) is FIG. 3. The spatial structure of an avalanche in a two-
dimensional 128 128 lattice.(a) shows the avalanche at its peak
P=maxE,, te[ty,to+T]. (13 when some 329 nodes are unstable dby shows the time-

integrated avalanche, where some 4179 nodes have gone unstable at
The frequency distributions of these avalanche parameterlgaSt once over the course'of the avalanch_e. Also shown are the
have the form of declining power laws with logarithmic avalanche centers of ma&®lid do), and the circle mapped by the
(base 10 slope§ of order unity. However, the detailed ex- radius of gyration for both situations. The fractal indices at the
amination of the frequency distributions reveals that theAvalanche pealyy and of the time-integrated avalanchgy are
height- and curvature-triggered models belong to differen .57 and 2.01, respectively. The time-integrated avalanche cluster in
universality classef30]. In addition, the vector-scalar char- () IS @ compact object, whereas that(ef, at the peak, is not.

acter of B has been shown to have no influence on the sta- hereVis th | f th lanche cluster. defined si
tistical behavior of the model, at least for regular Iattices,W erev 1S the volume ot the avalanche cluster, defined sim-

redistribution rules, and driving mechanisms usually considply as the number of avalanching notieBhe radius of gy-

ered[31]. Hence, we will proceed with the computationally ration is a common measure of linear cluster size used in
less intensive scalar version of the model, even though th ei;col;]':\:oln tr}ﬁot?vESZ(:jli;ndnciorr:(;s%or:ids Ito ghﬁ :r?(?[lhurs of dtit]e
use of a vector figld_tums out to be physically preferab_le._ Fo en?ion; rl::\vin tt?e sarﬁes“r%asz" gngamcs)meent of inzertia as
a completeec{Jes]crlptlon of the model, and review of variation he original clus%er The fractal dimensio) of the clus-
thereof, sed16]. In the solar flare context, the reasonably . N X .
good agreement between the frequency distributionsPfor ter is then straightforwardly defined through the relation
and E in the curvature-triggered model and their observa-
. - . I VIV,) = I R 1
tional counterparts reconstructed from time series of solar 0910(V/V0) = 7vrl0g1oR, (16)
uv—euv—x-ray emissiof27,28 have provided much of the i the logarithmic slope, obtained via linear least-squares
impetus for further elaborations of SOC avalanche model$; ¢ the (log-log) scatter plot of volume/ versusR for all
for solar flares. _ _ avalanches recorded in the course of a given simulation.

On the other hand, the geometrical properties of ava- - apgiher quantity that is accessible observationally is the
lanches in such models remain largely unexplored. Amongq o ithmic slope of the power-law frequency distributions
the many possible ways of approaching this issue, the deteft 5\ ajanche parameters. As already introduced in (Eg.

mination of fractal dimensions represents an obvious avenug,;q slope will be denoted by the letter subscripted by the
We extract these from the model output in the following corresponding avalanche paramet‘e‘ré etc):

fashion. Figure @) shows a snapshot of an avalanche at the

peak of its energy release, extracted from a simulation on a logyd f(V)/ o] = — avlogygV. (17)

two-dimensional lattice of size 128128. Avalanching nodes

are ShOWI’] in Wh|te Let| be the pOSitiOI’l Of theth aVaIanCh' Such power Ia.WS are found to ho'd up to an upper Cutoﬁ'

ing node, measured from some arbitrary but fixed referencghich itself scales with the lattice size, indicative of finite-

point in the lattice. The center of masB¢) and radius of  sjze scaling29,29.

gyration(R) of the cluster of avalanching nodes are given by |n the context of flare observation a practical difficulty
immediately arises. The integration time of current solar uv-

v ) S .
R _1 Z 14 euv imaging instruments is often comparable to the charac-
07y < i (14) teristic internal time scale for flare evolution. Figur@)3is
i=1
1 \%
R2:v 2 |ri — R0|2, (15) 6Strictly_speaking, the physica! voluntm cn?) is thtfa number of
i=1 avalanching nodes times tHenit) volume of a lattice cell. All

geometric quantities assessed in the mod€ls (R, etc) are mea-
sured in dimensionless units scaled to the internodal distance in the
SFor brevity, hereafter, we will use logarithm, or log, to express alattice. Note also that we use “volume” even in tiiz=2 case,
base 10 logarithm. Indeed, base 10 logarithms are used exclusivelyhere “area” would be geometrically preferable but notationally
in this paper. confusing in what is soon to follow in Sec. V.
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TABLE I. A compilation of symbols used in this paper to char- Avalanche Peak Time—Integrated Avalanche
acterize the spatial and temporal properties of avalanches, and a;__ 10° A ' (8) '
sociated power-law indices. 2105t L
£ 10*F 7w = 1.79 1 [ 7w =298
Symbol Definition 3 ;
> 10%F
E Time-integrated energy release i; 162k
P Peak energy release 5 1
T Duration of avalanche 2 195 64% Lattice
\Y, Avalanche volume £ number of avalanching nodes 101 o 161 s 1(‘)1
R Radius of gyration of avalanching cluster Radius of Gyration [R] Radius of Gyration [R]
Yyx Logarithmic slope ofy vs x correlation plot
ay Logarithmic slope of frequency distribution far FIG. 4. Atypical power-law relationship between the avalanche
A Projected area of avalanching cluster volumeV and its radius of gyratioR for simulations carried out on
Ty, Similar to y,,, but for projected quantities an NP=64° lattice, in the course of which approximately 0.27

x 10° avalanches were recorded. (& we show the distribution of
values at the peak of the avalanche, and those of the time-integrated
thus a very idealized view of a flare. At the other extremeavalanche inb). Both scatter plots are well-fitted, by a power-law
one can imagine a situation where the integration time igelationship. The least-squares best-fit lines in both cases give loga-
comparable to the duration of the flare or avalanche. Figuréthmic slope valuesyyr=1.79 andy;z=2.98 for panelsa) and

3(b) shows the cluster of all nodes having gone unstable at?): respectively.

least once in the course of the avalanche. One can again

define a radius of gyration and compute a fractal dimensioif€Ntra! to the present discussion. .
for this geometrical object, via Eq16), but there is noa In general, the correlations between pairs of avalanche

priori reason to expect that the fractal dimension so comParameters are rather tight, so that_ the logarithmic slopes are
puted will be identical to that obtained from the instanta-dmermInecj with 9°°d accuracy. Figure 4 ShOWS. two repre-
neous snapshot of Fig(a. sentative correla.tlon _plots of vs R for'th_e peak instanta-

In the following sections, in order to assess the conseneous(left) and time-integratedright) distributions of ava-

quences of such time-integration effects, we examine thinching nodes, fro*m which the corresponding fractal
geometrical properties of avalanches in the two extrem&imensionsyyg and yyg are obtained. The resolution of the
cases shown in Fig. 3; namely, the “highest” and “lowest” lattice leads to increased scatter at small values of avalanche
temporal resolution. Specifically, we extract avalanche paParameters, and its finite size imposes an upper cutoR,on
rameters from a single-iteration snapshot at their fbah- which translates into the slight upturn visible for the largest
est resolution and from time integration over the duration @valanches. Nonetheless, Table Il shows that the inferred
of the whole avalanch@owest resolution We use an aster- power-law indices remain stable as lattice size is varied.

isk to distinguish between the quantities associated with the EXamining the third column of Table Il also shows that
latter situation, leaving quantities computed from avalanchdime-integrated avalanches hay§z=D to within the error
peak snapshots without superscripts. For examplg, de-  bars, i.e., the time-integrated avalanche is a geometrically
notes the power-law slope of théevs R correlation plot for ~ compact object. On the other hand, avalanches at their peak
the avalanche peakBig. 3(@)], while o denotes the power- Naveyyr<D, and so are fractal objects in the usual sense.
law index of the size frequency distribution for time- Not surprisingly, this geometrical distinction carries through
integrated avalanche voluméBig. 3(b)]. For quick refer- to the frequ_ency distributions of avalanche voluntefs the
ence, Table | compiles a list of the various symbols used tdourth and fifth columns of Table )I

describe avalanche parameters and associated power-lawAS Might be expected from the self-similar nature of ava-
indices. lanches, the geometric parametétsand R have frequency

distributions described by well-defined power laws, whether
one considers the peak or time-integrated distribution of ava-
lanching nodes. Remarkably, there is no statistically signifi-
Our first task is to compute fractal dimensions and loga-cant difference between the, indices obtained in two and
rithmic slopes of the frequency distributions for the variousthree spatial dimensions, unlike those of other avalanches
avalanche parameters. We do so for a variety of linear latticparameters such as duration and total energy reléase
sizes (N) and spatial dimensionsD(, restricted to 2 or 3 Table 2 of[16]). We could not construct a simple, intuitively
here. Given the natural variability of the SOC state, we ac-obvious explanation as to why it is so, but this is evidently a
cumulate statistics for series of independent runs, in order teobust property of the model, judging from the stability of
extract meaningful Monte Carlo-like error bafer further  the ay indices with respect to variations in the lattice size.
discussion of this point, sg&6], Sec. 2.9. Results are com- Comparing the sixth and seventh columns of Table Il also
piled in Table Il. Power-law indices for the frequency distri- reveals thatypy,= yg, within the error bars. This indicates
butions of peak energy relea®and avalanche duratiofi  that, on average, each avalanching node releases roughly the
are listed in Table 2 df16], for the same curvature-triggered same amount of energy once the avalanche gets underway,
lattice model, and are not replicated here since they are naiven though nodal energy release is not constant in the

IV. GEOMETRICAL PROPERTIES OF AVALANCHES
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TABLE Il. Power-law indices for correlation plotsyj and size frequency distributionx for series of

lattice simulation carried out for either two or three spatial dimensi@s @nd a variety of linear lattice

sizes (N). These quantities are computed at avalanche peak and for the time-integrated avalanches, the latter

identified by an asterisk. In particular, we show the avalanche fractal dimensigrs §%r), the power-law

exponents of the avalanche total energy and volume frequency distributignsaf,, o), and the model

volumetric energy releaseypa, ven)-

NP YVR WR e ay ay Ypv Yev

322 1.61+0.02 2.0x0.04 1.42-0.00 1.03x0.06 0.55-0.05 1.06:0.07 1.09:0.08
64° 1.60£0.02 2.02:0.05 1.4%0.00 1.05-0.07 0.52:0.03 1.04-0.04 1.0720.05
128 1.57£0.03 2.0x0.06 1.4G:0.00 1.02-0.06 0.55-0.02 1.02-0.03 1.06:0.04
256 1.55+0.02 2.00:0.04 1.4x+0.00 1.0x*-0.08 0.5x*0.04 1.0720.05 1.05-0.05
512 1.56+0.04 2.00:0.05 1.42-0.01 1.04-0.04 0.52:0.04 1.05-0.03 1.04-0.03
16° 1.78+0.03 3.05-0.04 1.45-0.00 1.03:0.05 0.49-0.03 1.02-0.08 1.12:0.09
242 1.77+£0.04 3.00:0.02 1.46-0.00 1.04-0.03 0.48:0.04 1.0x0.05 1.09:0.06
32 1.80+£0.03 2.98-0.02 1.46:0.00 1.05-0.04 0.50-0.04 1.06-0.03 1.08:0.06
48° 1.78£0.03 2.98-0.03 1.470.01 1.04-0.04 0.510.05 1.06-0.01 1.09:0.05
64° 1.79£0.02 2.980.03 1.470.00 1.02-0.04 0.49-0.04 1.06:0.01 1.08:0.05

present curvature-triggered model. The marginally larger valthe situation. The left diagram is a three-dimensional equiva-
ues of y£, reflect the fact that our definition of for the lent of Fig. 3b), namely, the three-dimensional cluster com-
time-integrated avalanche is such that nodes avalanchingrised of each node having gone unstable at least once in the
more than once only contribute one “unit” td, while con-  course of the avalanch@ote already how this bears little
tributing more toward the total enerdythan a node having resemblance to either the cylinder or loop model of Fig. 2
avalanched only once. Hence tite vs V correlation is  The three panels on the right show the shape of this cluster,
steeper. projected on the three coordinate planes, where the gray
scale encodes the number of avalanching nodes along the
line of sight. This amounts to saying that all energy released
by avalanching nodes located along the line of sight is vis-
In seeking to compare model results to observations, onple along that line of sight. We will refer to this as the
must recognize that what is observed iprajection of the “optically thin” assumption’
flaring volume onto the plane of the sky. Figure 5 illustrates |t should be clear from Fig. 5 that the geometrical prop-
erties of the actual flaring volume cannot be retrieved unam-
biguously from the geometrical properties of the projected

V. PROJECTION EFFECTS
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areas(and even less so if only one projection is available,
which is the case when analyzing current observationa) data
Consequently, we now examine the geometrical properties of
the three projections onto the orthogonal two-dimensional
lattice planes, as on Fig. 5, which is computationally most
convenient and entails no loss of generality. The analysis
follows that carried out in the preceding section, except that
we now introduce the projected avalanche akedefined as

the cluster of nodes in the two-dimensional planes for which
at least one node along the corresponding perpendicular line
of sight is avalanching. As before we consider the avalanches
at their peak and as time-integrated objects. Because of the
optically thin assumption, the total and peak energy rel&ase

andP, as well as the avalanche duratibpare unaffected by

the projection, so that the corresponding frequency distribu-

tions are also unchanged. On the other hand, the distribution
FIG. 5. The three-dimensional structure of the time-integrated®’ Projected areaé and corresponding radii of gyration are

avalanche in aiN®=32 lattice. Here 5145 nodes have gone un- NOW distinct from the truly three-dimensional situation. To

stable at least once over the duration of the avalanche. The rigiifistinguish between these related situations we use an upper-

hand side of the figure shows direct views of the projections of the

time-integrated cluster on the three coordinate planes of the lattice.

The gray scale in the projected planes indicates the number of ava-'This is also the assumption made when carrying out analyses of

lanching nodes, or column depth, along the projection line of sightthe Sun’s uv—euv—x-ray emission.

0 4 8121620242832
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TABLE lll. Equivalent power-law indices to those listed in Table I, but now computed from the projec-
tion of three-dimensional avalanches onto the three orthogonal coordinate planes of the lattice. The logarith-
mic slopes of correlation plots involving projected avalanches are denoted Lsireservingy for un-
projected quantities.

NP Tar iR an an Ioa TEa

16 1.48+0.09 1.96-0.05 1.19-0.05 0.59-0.02 1.120.05 1.64:0.12
24 1.52+0.07 1.970.04 1.17#0.04 0.66:0.04 1.08-0.03 1.62-0.08
328 1.52+0.06 1.970.05 1.15-0.04 0.62£0.03 1.08-0.02 1.6G6-0.05
48 1.49+0.05 1.98-0.07 1.26-0.04 0.63-0.03 1.070.03 1.59-0.04
64° 1.53+0.06 1.96-0.06 1.12-0.05 0.63-0.03 1.070.03 1.59-0.04

case gammal{) to denote logarithmic slopes—including jects ([sg=2), which of course was to be expected since the
fractal dimensions—associated with avalanches seen in pramderlying time-integrated three-dimensional avalanche is it-
jection. self a compact object);r=3). Note also that for the ava-
The results are compiled in Table Il and pictorially but- |anche peakI’ zz(D=3)=yyr(D=2), indicating that the
tressed by Fig. 6, which demonstrate—among other things—projected three-dimensional avalanches are geometrically
that once again the geometric parameters are related VE&milar toD=2 avalanches.
well-defined power laws. In addition, the inferred power-law  |n view of the optically thin assumption, a node of the
indices exhibit robustness with respect to grld size, Withprojected area now “accumulates” the energy released a|0ng
variations well within the Monte Carlo error bars, except inthe whole corresponding line of sight. The superposition of
some cases for the smallest lattice considei¢e {6). The  nodes along the line of sight leads to an increase in the num-
projected time-integrated avalanches are again compact oBer of geometrically small avalanches and, therefore, gives
rise to a steeper frequency distribution fay likewise, the
Avalanche Peak Time—Integrated Avalanche steepening of th® andE vs A power-law relationships due
) to the enhancement of the energy recorded per unit area.

(A

107" 12 xa =083 Further, we see that these cumulative effects are particularly
2 10 pronounced for the time-integrated avalancteesnparex, ,
- ax, Lpp, andl'g, in Table lll to vy, ay, vpy, andygy in

Table II).

s1(8) ’
10°F 7 ey = 1.07 1 F M= 1.59

10*F 4
102k / Before we launch in earnest into the comparison between

10'F . 64° Lottice model results and flare observations, it is important to clarify
10° : ‘ ; : ‘ the assumptions under which such comparisons are to be
[ L ST A U SR made. There is no “plasma” in the avalanche models, only
jected Area [A] Projected Area [A] . i 8 o
10*F (o) G an idealized representation of a magnetic field—related quan-
10°F T =153 1L tity sampled on a finite lattice. We can imagine that this
lattice, and the field defined on it, are embedded in a dynami-
cally passive plasma, whose only purpose is to absorb and
radiate away the energy dissipated within it by avalanches. If
. we then assume that all of the energy dissipated at avalanch-
1 10 1 10 ing nodes goes into localized heating of this plasma, then the
Radius of Gyration [R] Radius of Gyration [R] energy dissipation computed via Ed.2) becomes directly
. i . proportional to the thermal energy in E®), i.e.,Ex<E. If we
FIG. 6. A sample of various power-law relationships and fre-g o 25 me that the energy so dissipated heats the plasma
quency distributions formed by combinations of the geometrical

properties of three-dimensional avalanches projected onto the twélylthln a volume comparable to the unit lattice cell size, then

dimensional plane&f. Fig. 5), constructed here from axP =643 a clustgr_of unstable_nodés.g., Fig. 3 become a_ megsure of
lattice simulation. Results for avalanche peak snapshots are shovjfi€ €Mitting volume in Eq8), so thafV<V, and likewise for

in (a)—(c) while those for time-integrated avalanches are shown int'€ Projected aread=A. Turning these proportionality rela-
(d)—(f). Many differences are immediately clear between these twdiONS into equalities requires that physical units be introduced
sets of plots: the frequency distribution of projected areas is mucd the lattice model. This is certainly possibisee, e.g.,
flatter in (d) than in(a); (6) demonstrates a large energy release pel28]), but actually not required in the comparison of model
unit area, compared to that at avalanche péak the different —and observed power-law scatter plots and frequency distribu-
fractal dimensions of the avalanches as seen in projefsies, e.g., tions, in view of their self-similar character.

Figs. Hc) and 5f)]. There are only a few extant observational determinations

VI. COMPARISON WITH FLARE OBSERVATIONS

Avalanche Energy [E]
2

Me = 1.96

102,

10"

Projected Area [A]

10°
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TABLE IV. The logarithmic slopes of the power-law relation- Avalanche Peak Time—Integrated Avalanche
ships formed by the volum¥ and theprojectedareaA subtended ~ __ 10° S ' ' (8) '
by the avalanches on three-dimensional lattices of various lineai= 10°} L
size. Once again values are listed for snapshots at the avalancl ¢ 10*h Tw = 1.07 11 mw= 1.4
peak (yya) and for the time-integrated avalanchg,). § i
10%¢
[0}
NP YvA Wa é 10%F
O
16° 1.11+0.06 1.44-0.05 g 10
0
28 1.09+0.07 1.41+0.04 e e R R A
10 10 10 10
2233 18%882 13;882 Projected Area [A] Projected Area [A]
+0. . .
64° 1.07=0.05 1.41-0.04 FIG. 7. Power-law relationships between the voluvhand the

projected ared of avalanching node clusters on BR =643 |attice

of the size frequency distribution of projected flaring areasat peak(a) and integrated over timeb). Both scatter plots define

ST . e statistically tight relationships, but the values of the corresponding
E)Z\?Vi?lsaaw -I(-)r:/(()a?eaStgti{[d:’ﬁzrg]%c;r:ea;hi(rg()arlsofar‘:aegl’lllirt]llﬂjge inIogarithmic sloped’y, and T, are markedly different. As in Fig.

. . L 6(e), the upturn visible in the upper right ¢b) is due to the finite
projected areaA, at best. The inferred power-law indices ;¢ of the lattice, which here limits the projected areaNo-@)2

cover a broad range, from,=1.3 to 2.7. Our model results  _ 3844 (houndary nodes cannot avalanche in our lattice model
(Fig. 6) yield ap=1.12+0.05, which is marginally compat-
ible with [34], but the time-integrated indexx=0.63 is  for our two extreme casdstantaneous snapshots and time-
much smaller than the presumably equivalent index inferredhtegrated avalanchere bracketed by those associated with
by [7]. Although a fairer comparison with this latter study the two simple geometrical models introduced in Fig12D
would require replicating their ellipse fitting procedure to and 1.5, respectivelyBoth are defined in terms of geometri-
determineA (as opposed to counting projected model pixels,cally compact objects, namely, a cylinder and an arched cy-
as done hepe it appears that a real discrepancy betweerindrical loop, yet even the compact, time-integrated ava-
model and observations may exist at the level of the distrilanches yield a differenv-A scaling.
bution of projected areas. How severe a discrepancy this is The analysis carried out if¥] of 281 euv nanoflares ob-
will likely be hard to estimate, because of the tricky issue ofserved by TRACE leads to a power-law relationship between
observational detection threshold in deciding whether ahe released thermal energyand the observed projected
given pixel is part of a flargsee the discussion {26]), but  areaA with index equal tol'§ ,=1.44 (in our notation; see
this is an issue that could, in principle, be explored using ou[7], Fig. 5. This is quite close to the corresponding value
model results. At any rate, the logarithmic slope of the areasted in in Table IIl here, namely £ ,= 1.59+ 0.04 (for our
frequency distribution of flares certainly offers a powerful |grgest latticeN® = 64%). This good agreement should not be
observational test of the avalanche model. overinterpreted, however, at it is for the most part a second-
As discussed at the end of Sec. Il, a quantity of particulayry consequence of theemarkablg similarity between the
interest in the context of observational analyses of solar uvgrea-volume relationship characterizing the two models:
euv—x-ray emission is the relationship between (tveo- y¥ x=1.44 for the loop mod&ersusy? ,=1.41 for the ava-
dimensional observed emitting areal and the underlying |3nche model.
(three-dimensionafflaring volume) [cf. Eq. (8) and Figs. 1 What then are the consequences of such geometrical ef-
and 2. We can address this question using our model resultgcis for Parker's conjecture of coronal heating by
by simply making the assumption th&t=V and A=A, 85  panoflares? As already mentioned in Sec. I, the answer
discussed earlier. Table IV lists the relevant power-law indi-yjnges on the logarithmic slope of the frequency distribution
ces, once again, as inferred from a snapshot of avalanches Gt energy releasedz in our notation, in which the V-A
their peak ), and integrated over the avalanche durationye|ationship of the flaring volume is but one of the determin-
(¥3), with Fig. 7 showing representative correlation plots tojng factors. It is possible to use the results presented here to
demonstrate once again how well defined the power-law recompute(in a preliminary manner and with all due caution
lationships actually are. a “correction” to previously published observational analy-
That yy, should be significantly larger tham, is again  ses using different geometrical models.
a consequence of the fact that, in the time-integrated ava- The crux of the matter is to express the observationally
lanche, far more nodes contribute to a “unit” Afthan inthe  inferred frequency distributiori(E)dE in terms of a new
peak snapshot. ConsequenWincreases more rapidly with energy release variable [ = s(E)E] corrected for geometri-
A in the former case. The reader can best appreciate this
situation by returning to Fig. 3 and noting how the two clus-
ters plotted therein have comparable projected lengths alon®Tthe loop model used ifi7] incorporates an observationally de-
the horizontal and vertical axes, yet the cluster in Fidp) 3  termined area filling factor, which is found to scale with the area
has a volume £ number of nodesnearly 13 times greater. itself; this is why the power-law index of the inferrad.A relation-
It is indeed remarkable—and entirely unexpected—thaship deviates from the value 1.5 associated with the basic loop
the power-law indices characterizing tWess A relationships  model of Fig. 2, which assumes a constant filling factor.
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TABLE V. Geometrical “corrections” to three recent analyses lease, and thus to potentially distinct conclusions regarding

of uv-euv flare energy release.

Reference  Geometrical model B ag agtAa
[25] Cylinder, constanh 1.0 2.3-2.6 1.77-1.94
[24] Cylinder, constanh 1.0 2.42 1.84
[7] Loop? 1.44 1.7%0.08 1.81-0.09

aSee footnote 7.

the contribution of nanoflares to solar coronal heating.
While the focus of this paper has been on the geometric
properties of avalanches, other factors also significantly in-
fluence the determination of the frequency distribution of
energy release by small flares observed in uv—euv—x-ray re-
gions. It has now been amply demonstratede, e.g9.[7])
that the selection criteria adopted to select “flares” from
other brightness variations also have a marked influence on
the inferred value ot . In addition, as outlined in Sec. VI

cal rescaling in terms of the fractal dimension of avalancheshere, the vast majority of observational analyses published to

The three observational analyses considered bgR&24,7

date make a number of simplifying assumptions in relating

work with what corresponds, in the language of the presenthe observed fluxes to volumetric energy release, notably the

paper, to time-integrated avalanches. |Bebe the logarith-

mic slope of theV-A relationship for either one of the geo-

metrical models of Fig. 2, angi=y{ 4 henceforth, to lighten
the notation. The correction factsrto the inferred emitting
volume is then

S(A)=A”"A. (18)

Under the (common assumption of constant pressure

[«neT¢ in EQ.(8)], the only remaining dependence&is on
the emitting volumeV. Again, under the ansatg=E, V
=V, and A=A, this then impliesAxEY#, and thus

S(E)=E(~AVE, (19
We now need to expres$E’)dE’ in terms off (E)dE. With
the latter given by the power law(E)=fy,E~“E, some
straightforward algebra soon leads to

!

dE
f(E’)dE’=f(sE)EdEocf(E)dEEA“

=f,E~(eTAagE, (20)

where the correction facta « to the power-law indexyg is
given by

_ (1—ag)(B—7)

Aa B . (21)

lack of dependence of the DEM on the electron density, and
the assumed pressure distribution in the flaring volume.
These are also issues of critical importance in assessing
whether or not nanoflares can be held responsible for coronal
heating. Indeed, by introducing additioreed hoc(but plau-
sible) dependencies o, for example, on the column depth
and/or the DEM itself, it is certainly possible to produce a
wide range of logarithmic slopes for the mod¢E) [36].

The (simplistic) attempt made in Sec. VI to correct for the
fractal geometry of avalanches in the SOC flare model has
led to the interesting result that widely varying estimates of
ag inferred by recent observational analyses have been
brought into closer agreement. This should serve to reempha-
size that geometrical assumptions play a critical role in the
determination of the frequency distribution of energy release
events from solar observations. On the other hand, this
should not blind us to the fact that a significant discrepancy
still remains, namely, the fact that the valueaf extracted
directly from the avalanche modekf=1.5, cf. Table Il
here remains significantly lower than even the “corrected”
observationally inferred values listed in Table V. One pos-
sible solution to this dilemma invokes the unavoidable tem-
perature bias associated with narrowband observations. A re-
cent Monte Carlo simulatiof87] aimed at correcting for this
observational bias indicates that this can bring the observa-
tionally inferred ag into much better agreement with the
prediction of the avalanche model. Alternately, various
mechanisms have been proposed to steepefi(tk distri-
bution produced by the flare avalanche modete [16],

Table V lists theag values inferred from these three recentSecs. 3.2, and 3.3, and references therditowever, the
observational ana|yses of uv-euv data, together with théractal dimensions of avalanches in these modified models

“corrected” values obtained by adding«, as computed

above. It is quite remarkable that this simple-minded correc-

remain to be determined.
Nonetheless, the high spatial resolution and temporal ca-

tion for purely geometrical effects brings all three inferencesdence observations provided by the latest generation of solar

into much better agreement than in their original form.

VIl. SUMMARY AND DISCUSSION

observing space-borne instruments such as those on SOHO
and TRACE allow us to “see” avalanches in progress. This
offers a hitherto unexplored point of comparison between
observations and SOC models. This paper has barely

We have examined in some detail the geometric properscratched the surface of this comparison, but has already

ties of avalanches in an established SOC model for soladentified a potential discrepancy between model and obser-
flares [15,16,27,28 The fractal structure of avalanches, vations, namely, that the former predict much flatter power-

coupled with projection effects, is found to yield a distinctly law frequency distributions of projected areas than those in-
different volume/projected area relationship than nonfractaferred observationally. How severe this discrepancy actually
geometrical models routinely used in the analysis of flards is hard to estimate, given the wide range of observational
data. This leads to a different observationally inferred powerw,’s. Two aspects relevant to this problem, which we plan to

law index ag for the frequency distribution of energy re- pursue in due course, are the issues of the spatial fragmen-
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tation of avalanches and the effects of noise and detectiocal electric current¢ VA for a suitable choice of electro-
thresholds, both of which have important consequences fastatic gauge exceeds a threshold value, which fits nicely
observational analyses. with current ideas about magnetic reconnection under solar
The avalanche model of solar flares provides an attractiveoronal conditions; local redistribution & does lead to re-
and thus far quite successful framework within which to in-duction of the local electric currents and associated energy
terpret observed flare statistics. However, at first glance sudtelease; addition of small increments amounts to localized
models have little to say about the microphysics of the reincreases in the twist of the magnetic field; the separation of
connection process itself, since the statistical behavior of thime scale between driving and avalanching is also well jus-
model does not depend sensitively on the numerical detail dified in the coronal context, with photospheric fluid motions
the stability and redistribution rule formulatiofprovided  (driving) operating on time scales of hours to days, while
certain general constraints are satisfied, such as the preserjgiernal field readjustment and reconnecti@valanching
of a finite instability threshold, and locality and isotropy in (@K€ place in seconds to minutes under typical solar coronal
the redistribution, for exampleHowever, interesting aspects conditions. Indeed, energy release in solar flares represents a
of the relevant microphysics can still be recovered. It is posye_ry convincing physical eX"%‘mp'e of SOC, well on a par
sible to “reverse-engineer” a continuum partial differential with seismic energy release in e?rthquakes. Mpreover, ava-
equation(PDE) from the discrete stability and redistribution Ianche models based on Parkers nanoflare picture can, in
rules, and to relate this PDE to the magnetohydrodynami@”nc'plef addfes.s the physical r_1at'ure of both flares and coro-
(MHD) equationg16,38,39. In particular, recent work39)] nal heating within the _sar_ne_un_lfylng framework, a truly re-
along these lines indicates that the field transport occurs Vig1arkable state of affairs if vindicated.
a diffusivelike process mathematically akin to MHD turbu-
lence, suggesting in turn that, under solar coronal conditions,
magnetic reconnection at single flaring sites becomes turbu- This paper is a by-product of the activities of the SOC
lent shortly after onset. working group at HAO/NCAR. S.W.M. is currently sup-
In closing, it is worth reiterating that, unlike many other ported by the ESA at NASA/GSFC, and was formerly sup-
applications of sandpile models to complex physical sysported at NCAR(HAO and ASP divisionswhere this work
tems, here Parker’s picture of a photospherically anchoredias initiated. H.L.L. is partly supported through NASA
and driven, complexly tangled coronal magnetic fields pro-Grant No. S-97239-E to NCAR. J.P.N. acknowledges the
vides a sound physical underpinning to the SOC picturéhospitality at HAO during a visit. We also wish to to thank
[10,15,16,38,4D With the field quantityB identified with a  Dawn Myers for her assistance in handling the TRACE data
measure of the magnetic vector potentidl, (such that the presented. The National Center for Atmospheric Research is
magnetic fieldB=V X A), the instability sets in once the sponsored by the National Science Foundation.
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