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Estimating probabilities from experimental frequencies
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Estimating the probability distributiog governing the behavior of a certain variable by sampling its value
a finite number of times most typically involves an error. Successive measurements allow the construction of
a histogram, or frequency coufitof each of the possible outcomes. In this work, the probability that the true
distribution beq, given that the frequency couhivas sampled, is studied. Such a probability may be written
as a Gibbs distribution. A thermodynamic potential, which allows an easy evaluation of the mean Kullback-
Leibler divergence between the true and measured distribution, is defined. For a large number of samples, the
expectation value of any function gfis expanded in powers of the inverse number of samples. As an example,
the moments, the entropy, and the mutual information are analyzed.
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I. ESTIMATING PROBABILITIES FROM EXPERIMENTAL frequency counf, as an approximation to that in the true
FREQUENCIES (and unknowhg. Their analysis was made in the same spirit

as above, that is, they have considergdixed, while the

The estimation of probability distributions from a limited value off depended on the particular outcomeNofneasure-
number of samples typically involves an error. Consider, forments. They have obtained a clean analytical result under an
example, a random variable that can be either 0 or 1, botindependence approximation. Their approach may be natu-
values with probability 1/2. An experimenter measures thgally generalized to situations whecgis a probability den-
variable, say, four times. Hg (or n,) is the number of trials ~ Sity, that is, varies in a continuous gef.
the result was Qor 1), the pogsib|e outcomes ar@:] Ny However, what the experimenter knows is not the que
=4—j, wherej may vary between 0 and 4. Each of those but one particulaf, obtained afteN observations. His or her
possibilities has a probability 3j2(4 —j)! of occurring. If ~ &M is to estimate the most probable valuegofor of some
the experimenter estimates the underlying probability fromfunction ofq) from the knowledge of. More generally, the

the frequencies, his or her claim will be that the probability€XPerimenter may be interested in the whole distribution
of getting a zero is,/4. However, in view thah, depends P(qlf), that is, the probability that the true distribution tpe

on the particular outcome of the four trials, only a fraction given that he or she has measufedhis means to settle the

3/16 of the times will this procedure give the correct result,pmblem the (_)ther way round as was studied by Treves and
that is o= qo=1/2. Panzeri and in the example above. It actually corresponds

In the above example, there are three probability distribut0 Wolpert and Wolf's approachi3] in the estimation of

. ) . . . -~ entropies.
tions involved. First, there is thieue underlying probability In the following section, the properties of the distribution

a, actuallly governing the ochome of the experiment. In VECP(q|f) are studied. In Sec. [1IP(g|f) is written as a Gibbs’

tor notationq=(do,q,), and in the particular instance above gjstripution, where the inverse number of samples plays the
q=(1/2,1/2). Then, there is the frequency cotri(fo,1),  role of an effective temperature, and the Kullback-Leibler
wheref; is obtained by dividingn; by the total number of  gjyergence betweehandg is the equivalent of the energy of
measurementsl (four in the example And finally, there is  stateq. As a consequence, a thermodynamic potential is de-
the probability thaf=gq. To define this last probability, one fined, thus allowing the calculation of the mean Kullback-
has to consider all ppssible.samplesl\btrials and evaluate | gipler divergence betweeh and q by simple derivation.
how often the conditiori=q is fulfilled. B This inspires the expansion made in Sec. IV, where the ex-
~ More generally, one can define the probability of measurpectation value of an arbitrary function gfcan be written as
ing a particularf, while the underlyingy remains fixed. This 5 power series in the inverse number of samples. The case of
means to consider a probability distribution of all the pos-ipe entropy, the mutual information, or any moment of the
sible frequency counts. The independent variable is the VeGistribution g is shown in the examples of Sec. V. Next, in
tor f, which varies in a discrete set, and the dependent varigec. v| the analytical results are confronted with numerical

able isp(f|q). _ o ~ simulations. Finally, in Sec. VII, the main results are sum-
The frequency count is an estimation of the underlying marized and discussed.

g. In many applications, however, one is interested not quite
in g, but rather in some function of. Treves and Panzelil], | 1 pROBABILITY DISTRIBUTION FOR THE TRUE
for example, have quant|f|eq the mean error that an experi- PROBABILITY DISTRIBUTION
menter makes when evaluating the mutual information in the
Consider the random variab¥etaking values from the set
X=(Xq, ... Xg) with probabilitiesg=(q, . .. ,gg). In prin-
*Electronic address: samengo@cab.cnea.gov.ar ciple, there is no need that, . .. Xg be numerical values, it

1063-651X/2002/6&4)/0461249)/$20.00 65 046124-1 ©2002 The American Physical Society



INES SAMENGO PHYSICAL REVIEW E 65 046124

suffices them to be any exclusive and exhaustive set of cat- HiS: 1qi5—1
egories. Ps(q)= E
An experimenter makeN observations of the value of B

and builds a histogramm=(ny, ... ,ng), wheren; is the 5o s s ;
, , peatedly used, witB,=S[T'(8)]5T (SB) (notice that
number of times the outcome was. The experimenter con- when 0,2, JS). However, as was shown in RdE]

siders the frequencie=(fy, ....f9)=(n/N, ... ns/N) choosing any of these priors results in a surprisingly peaked
as an estimation of the true underlying probability dlstnbu—a priori distribution of the possible entropies. Hence, the

tioant.)_ll_f th? measurements a:]e tahker:j independent(ljy, t@hoice of the prior is a delicate issue and, in any particular
probability of measuring given that the data are sorted ac- 5 pjication, it should be done carefully. Here, no attempt will

cording toq is equal to the probability of observing eakh  |,o made to instruct on the way such a choice should be

a numbem; of times, that is, made, but since the results that follow are strongly grounded
on the Bayesian inference, their validity is, at most, as good

®)

N

B 4  N! as the priof3].
mﬂq)_NlHiﬁ_ I, (NF,)! exp{ NEi filng|. () Replacing Egs(1) and (4) in Eq. (3),
However, the knowledge the experimenter has at harid is P(qlf)= exp{—ND(f,q)]P(q)’ (6)
not g. He or she may, therefore, wonder what is the prob- Z

ability that the true distribution bg, given that the outcome
of the experiment wak This means to evaluate a probability
density P(q|f), whose independent variabtgruns over all 3
the possible distributions of the data. That is, all vectors in D(f,q) =, fﬂn(—'), (7)
RS such that i Ai

whereD is the Kullback-Leibler divergence betwetandq,

and it quantifies the mean information for discriminating in

> =1, favor of f againstg, given the dat@4]. The functionZ reads
I
0<qg,<1Vi. 2 zZ= JDdsqp(q)exq—ND(f,q)]. ®)
The set of allg obeying Egs(2) constitutes the domai®
where P(q|f) is defined. It is a finite portion of an In the remainder of the section, the propertiesPgfy|f)
(S—1)-dimensional plane embedded, and is normal to are studied for the particuld® z(q) defined in Eq.(5). In
the vector (1,1...,1). doing so, the integral
Notice that since eachy is the ratio of two natural num-
bers, the set of possible frequencias discrete. The domain f s q.midsq: /s IT; I (m;+1) )
D, on the contrary, contains a continuum of distributigns =1
Consequentlyp(f|q) is a probability, wherea®(q|f) is a r S+2i mi)
density.
Bayes's rule states that is frequently encountered. Equati¢® was first derived in
[3], and an alternative proof may be found in the Appendix.
p(flq)P(q) For the priors in Eq(5), the functionZ, Eq. (8), may be
P(dlf)= p(f) ' 3 calculated analytically and it reads
whereP(q) is the prior probability distribution fog, and Z— ex{NH(f)] S Hjsrlr(kaJfﬁ), 10
(N+SB)
p(f)= JDP(ﬂCI)P(Q)dSq- (4 whereH is the entropy of a distribution
S
Here,dS,; is a volume element i. H(f)=— E finf;. (11)
The prior P(g) contains all additional pieces of knowl- i=1
edge abouty, apart from the experimental data. Here, the ) )
assumption is made that there is mopriori knowledge. ' NUS. replacing Eql0) in Eq. (6)
However, it turns out to be crucial to specifihatis it that is Nf+ -1
not known[5]. A prior that is uniform overD, as was used P(q|f) = F(NJFS/J’)H' qi (12)
by Wolpert and Wolf{3], is certainly not uniform over any JS 'T(Nfi+p8)’
nonlinear function ofq; for example, the log likelihood.
Thus, not knowing anything abogtimplies knowing some- The most probableq'\"z(qg", . ,qg") is obtained by
thing about Irg, which in turn may result in awkward scaling maximizing Eq.(12) under the normalization constraint. The
properties. In this work, the power prior result is
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FIG. 1. Difference betwee(y;) andf; as a function off; . The
value of B8 has been set to 1. The three lines correspondN to
=3, 6, and 30. HereX may take three valuesSE3). Whenf,
<1/3, the expectation value af; is larger than the measured fre-
quencyf;. As N increases, the effect becomes less important.

u Nfi+B—1

a; :Wﬁ_l). (13

Thus, if P(q) is uniform inD(B=1), then the most probable
g is f. With the maximum likelihood prior 8—0), the most
probableq is shifted fromf towards lower counts. The
Krichevsky-Trofimov estimator[8] (B8=1/2) and the
Shurmann-Grassb¢®] S=1/S lie in between.

Using Eq.(9) the expectation value of each component
may be calculated,

Nf+g
N+SB”

(i) = (14

For the uniform prior 8=1, this equation reduces to
Laplace’s estimator of probabilities. In Fig. 1 the difference
between(q;) and the frequency courif is shown forg=1.
It is seen that wheffi; is smaller than 13,(q;) is larger than
f;. On the other hand, if;>1/S then{(q;)<f;. That is, the
mean value of; is displaced from the frequency count so as
to approach the flat distribution3./Of course, the larger the
number of sampled, the smaller the effect. Changing the
value of 8 is equivalent to rescaling the vertical axis of Fig.
1.

Typically, one wants to make a guess about the tue
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=g —=(a))(a;—(a;)))

(Nfi+B)(Nf;+8)
(N+SB)2(N+SB+1)

fif,
N

when N>S,

(15
whereas foii =,
(Nfi+B)[N(1-f)+B(S-1)]
(N+SB)?(N+SB+1)

fi(1—"1)
N

Si={(di— ()=

when N>S,

—

(16)

The negative sign in Eq15) derives from the normalization
condition: since the sum of adj; is fixed to unity, if one of
them surpasses its mean, it is to be expected that some other
component will be below. In contrast, Ed.6) shows thak,;;
is always positive.

The expectation value of, Eq. (14), together with the
covariance matrix equatiori4¢5) and(16) are useful for the
Gaussian approximation #®(q|f), centered in its mean:

1 ~
P(qlf)=Kexx{ —5@=(@)2 " Ha—(@)|, 1D

where the superscriptmeans transposed akdis a normal-
ization constant. EquatiofiL?) is only defined in the plane
containingD, normal to the vector (1,1..,1).Actually, X
does not have an inverse in the entire spgce since the
direction (1,1...,1) is one of iteigenvectors with eigen-
value equal to zero. HoweveX, being a symmetric matrix, it
can be diagonalized by an orthogonal basis. Hence Sthe
—1 remaining eigenvectors lie in the plane containig

The restriction o, into that subspace ¥, and its inverse is
the matrix appearing in the exponent of Edj7).

In order to normalize the approximatidt?7) an integral
of a Gaussian function i® is needed. This is certainly not
an easy task. If, however, one can assume that the distribu-
tion is sufficiently peaked so tha(q|f)~0 for q in the
border ofD, then the domai® can be extended to the whole
plane normal to (1,1 . .,1). Inthat caseK ™= y2#II)\|,

where\; are theS—1 eigenvalues oF.. While the calcula-
tion of all the\; is a difficult problem, it is quite straightfor-
ward to show that wheh>S, all the\; are proportional to

Here, two possible estimators have been calculated: th&/N. Therefore, the square root of each eigenvalue is a useful

maximumg" and the meaiq). By using the maximum, one

measure of the width dP(q|f) in the direction of its eigen-

is choosing the value that is most probably correct. But ofvector.

course, eventually one will also make an error. If one mea-

sures the error agl! — q)?, and averages it witRP(q|f), its
mean turns out to be larger than if one had choagn[3].
Hence, althoughg™ is the estimator that gives the correct

answer most frequently, if one cares for the typical size of

the errors(q) is a better choice.

When using(q) as an estimator, the covariance matix
may be of interest. By means of E) it is easy to show
that fori#j,

However, the Gaussian approximati@hv) is not useful

for other purposes, as for instance, calculating mean values,
since it lacks from analytical expressions such as(Bg.As

a consequence, in what follows, the full EG2) is used.
Equation (9) allows the evaluation of all moments of

P(ailf),

T (N, +k+ B)T(N+SB)
T(Nf,+B)[(N+SB+K)

(o= (19)
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5 The exponential factor in Eq6) depends om andf only
N =30 in the combinatiorD (f,q), diminishing exponentially as the
N N divergence between the two distributions grows. Its maxi-
o ] 32 mum is attained wheB = 0. It can be showi] that for any
- A f andq_, .D(f,q)zo, and the equality hqlds only whégq.
"ol Defining the thermodynamic potential
& 1 F=—Inz, 21)
o
0- it follows that
0:0 0:2 0:4 0:6 0:8 1:0 JF
q, (D)=-\" (22)
FIG. 2. Probability distributionP(q,|f;) for the casef; 2
=1/3, B=1, andS=2. Different curves correspond to several val- o= (DZ— <D>2> __ E (23)
ues of the number of samplés The full line depicts the analytical o IN2’
result Eq.(19), while the dots are the numerical simulatiofsee
Sec. V). where the mean valueg(-)) are defined by [,
(1)P(alf)ds;.

Since the moments are the coefficients of the Taylor expan- For example, when the prior is given by E§),
sion of the Fourier transform of a distribution, the single-

component distribution reads (D)=H(f)—\If(N+S,8)+Z FU(NE+B), (24

gVt A=1(1— q)NA-T)+A(S-1)-1

B[Nfi+8,N(1-f)+B(S-1)]" whereW (x)=d In T'(x)/dx is the digamma functiofiL0]. It is
(19 easy to show that

P(qilf)=P(q;|f) =

where B(x,y)=T'(x)I'(y)/T'(x+y). Figure 2 displays the ' S—1
distribution P(q;|f;) for three different values oN and 8 lim(D)= WJFO(UNZ)- (25
=1. In all cases, whel is large, the distribution is sym- N>S

metrical, and reaches its maximum valuegf f;=1/3. In

fact, it may be shown analytically that whéds 1, Here, bothN and Nf; have been supposed large for all

Sincef; is of the order of 1%, the above limit holds when

N>S. Equation (25) states that for a large number of
lim P(q;|f;) = exd —(q;—f)%20%], (200 samples, the expected value of the divergence between the
N>1 V2ma? experimental frequencies and the true distribution does not

depend on the measurédt grows linearly with the number

whereo=[f;(1—f;)/N]Y2 That is, the distribution tends to of items and decreases as\L/

a Gaussian function centered at the experimental frequency, Accordingly,

and with a mean dispersion that diminishes with the square

root of the number of samples. Notice that in this limit, S

P(q|f) does not depend of. ob=—THN+Sp)+ >, FAULNf+p), (26)

It may be seen in Fig. 2 that for smaller valuesNyfthe =t
distribution is no longer symmetrical. In fact, sinBe-2 and
f,=1/3<1/S, the tail in P(q|f,) extends to the right, re-
sulting in a positive(q;)—f;, as predicted by Eq18).

where W1(x) =dW¥(x)/dx is the first polygamma function
[10]. Taking the limit of a large number of samples,

_ Ss-1
lIl. THE INVERSE NUMBER OF SAMPLES AS AN limog= N2 +O(1IN3). (27)
EFFECTIVE TEMPERATURE N>$

Equation(6) states thaP(q|f) is completely analogous to In the limit N>S, the mean quadratic dispersion does not
a Gibbs distribution, where the number of samdieplays  depend on the measurépl
the role of the inverse of the temperatui2(f,q) is the
equivalent to the energy of the stajeandP(q) is the den- IV. ESTIMATION OF FUNCTIONALS OF g, FOR A
sity of states. This analogy was first pointed out in the con- LARGE NUMBER OF SAMPLES.
text of machine learninf6], and since then, several times in . o }
learning theory(see, for example7]). In these cases, when  Many times, one is interested in the value of some func-
fluctuations were neglected, the probability distribution un-tion W(q). For instance, iX takes numerical value§y may
der study had the form of E@6). In the present context, no be the mearX=2,;x;q;. Or, in some other applicatioryy
approximations are needed to write down E). may be the entropy of the distributiap[see Eq(11)]. If the
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setX is the Cartesian product of two other séts Z'x Z? (gi— (g —f))
v — (ol 2 1_-1 2 _ 52 SR
such thatVx; e X:x;=(z3,z,), wherez,eZ* and zje Z7,
thenW may be the mutual informationbetweerz® andz?, __ Nfifj— BB+ (1+SE)(Shifj—fi—fj)]
(N+SB)(N+SB+1)
Qab
fif
Z Gapln Uab (28) - ﬁ when N> S, (33
where L
whereas whemn=j,
0a.= 2 Gab, (g 2y = VA=) + L1+ B 114 SB)(SE-2)]
G T= (N+SB)(N+SB+1)
fi(1—f,
q.f% ab - (29 —>¥ when N>S. (34)
Sinceq is unknown, an interesting guess 1f(q) is its Summarizing, to first order in I,
Bayesian estimation
OW/| B(1—-Sf) 1. °W| fi(1—f)
W)~W(f)+ —_—+ =D, —| —
(W)=L)W(q)P(q|f), (30 (W)=W(h) E 190 |, N 2 2‘1 997 . N
S PW | fif;
which has the appealing property of minimizing the mean —E E 4 (35)
square errof3]. The zero-order guess fgW) is W(f). In =1 {<i 99i9q;); N

what follows, a systematic method to improve this value is
derived. This general formula allows the calculation of the first cor-
In the preceding section the expectation value of the direction of the expectation value of an arbitrary function
vergence between the true and the measured distribution w&8(q), whenever the prior is given by E¢).
calculated, as well as the size of the fluctuations, for the Now, consider the more general case of an arbitrary prior.
priors in Eq.(5). As the number of samples increases, bothif P(q) is not given by Eq(5), then one can still proceed as
the expected divergence and the fluctuations diminishMs 1/ above, but by replacing/(q) by the producW(q)P(q), and
Since a small divergence means that the two distributions areetting8=1.
necessarily very similar, only the that are very neafr have
a nonvanishing probability—foD sufficiently small, this ar-
gument holds for any definition of similarity.
As a consequence, it is reasonable to expéffd) in its Here, the expansiof35) is applied to a few particular
Taylor series in the neighborhood ofHence, Eq(30) reads  cases. Wolpert and Wo[B] have already calculated the first
two examples exactlySecs. V A and V B in the particular
)k | > case of@=1. Their results, once expanded up to first order
Wit

V. EXAMPLES

o0

<W>=< 2 i (2 (gi— (3D in 1/N are now compared to Eq35) for verification. The
advantage of EQq(35) is that, in contrast to Wolpert and
Wolf’'s approach, it applies to any functioN. The counter-
part, of course, is that it gives no more than the first correc-
tion to (W). Section V C deals with the calculation of

moments.

SinceP(q|f) decreases dramatically gsdeparts fronf, the
higher-order termglargek) in Eq. (31) should become neg-
ligible, at least, for large\N.

In the first place, the mean values of E§1) are evalu-
ated for the special case of the power law priors. This in-
volves, basically, the computation of integrals i of A. The mean value of the entropy

2 ,(g—f)% for a set of non-negative indices  First, the functionW(q) is taken to be the entropy of
(ki kz, . . .kg) that sum up td<. This can be done using Eq. the distributiong, defined in Eq(11), for g=f. It is easy to
(9). Of course, the terrk=0—that is, the raw guess—does verify that JH/dq;=—(1+Ingq), whereasazH/aqiaqj:
not depend orN. It may be shown that onlk=1 andk  —§,/q;, wheres; is Kroeneker delta functions;;=1 if i
=2 are proportional to N. Specifically, =j and §;=0 if i#]. Replacing in Eq(35) and keeping
only up to the first order in N one arrives at
_ B(1-Sf)  B(1-Sf)

when N>S. (32

BS Ba (1) S
<H>=<1— W)H(m N ;1 |n(f—i TR
In the same way if #j, (36)

O(1IN?).
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For the case of3=1, this same expression is obtained by In particular, for theg, considered above, this is the first-

expanding the exact result obtained in R&f, order correction to all moments of
S
(M)z1= Z [‘P(l)(Nf +2)—dM(N+S+1)], VI. NUMERICAL SIMULATIONS
(37 In this section, Eq(35) is confronted with the result of
numerical simulations. Once again, and just to follow previ-
where®®)(x) =d InT'(x)/dx is the digamma functiofl0]. ous studiesW(q) is set equal to the mutual information.

However, in contrast to what was done up to ndw-3|, the

simulations are performed strictly within the present frame-

work. That is, the measured frequerfdg kept fixed, and the
Now Wis taken to be the mutual information between two probability for the trueq is evaluated.

sets, as defined by E8). Replacing in Eq(35), The procedure to measure numericaffq|f) is now ex-

plained. As beforeX takes values in a set & elements.

B. The mean value of the mutual information

(=1 (f)( 1_53132) + S5 17575 Hence,f andq are S-dimensional vectors. The value bis
N 2N fixed. The domairD is discretized into a numbek of cells.
,8 Each cell corresponds to a vectpthat will be visited by the
N 2 ( : ) (38 program. The larger the number of cells the better the
ab a. b

sampling of the domairD. For each one of these cells, the
value of X is measured\ times. The outcomes are sorted
whereS,; and$S, are the number of elements in the s&fs  with the distributiong of the actual cell. If the frequency
andZ® Wheng=1, Eq.(38) coincides with the expansion count thus obtained equdisthe counter of the selected cell
up to first order in I of the exact result derived i8], is increasedthere is a counter for each cell ). The com-
parison between the frequency count and(thed) f is done
Nfp+1 " (1) with precisione. The procedure is repeatéd times (M
<|>[3]:% m[‘b (Nfap+2) = @H(N+S,S,+1)] largg in order to have enough counts. This algorithm allows
to construct a histogram for the probability that a giwen
e D generates the selectéd

2 SZ OD(Nf, +S,+1)—DdD(N

N+ S 52 For simplicity, in the results below, the number of trids
is the same for all cells. This is equivalent to using a uniform
(1) prior in D(B=1). A simulation with a nonuniform prior can
+S55+1)]- 2 N+S 52 [q) (Nfp+S+1) be carried out by choosing a differeit for each cell.

The two parameters that determine the precision of the
—dM(N+S;S,+1)]. (390  simulations are] ande. If D} is the Kullback-Leibler diver-
gence between two neighboring cells, whenever 1M
The quantitied, andf , in Egs.(38) and(39) are defined as <D, then the only vectoq that produces frequency counts
in EqQ. (29). equal tof is g=f. That is, forN sufficiently large, the dis-
In contrast to the result obtained [d], the first-order cretized system behaves ad\if=c. Notice that for large],
correction to the mutual information does bear a dependendao neighboring cells correspond ¢pandqg+ dq, with each
on the values of the individual probabilitiés,. There is no  8g;*J°"*. Thus, the Kullback-Leibzig distance between the
conflict, however, between the two results, since the meatwo is ~S/J5 1. This means that wheN reaches)S /S,
value in Eq.(38) involves the distributionP(qg|f). The ap- the simulation starts to behave as\ifwere actually infinite.

proach in[1], instead, usep(f|q), while the trueq is fixed. On the other hand, it is not small enough, one mistak-
In the present approach, the mean va{lig can be either enly counts coincidences with just because the criterion
higher or lower thari (). used in the comparison is too brute. In other words, a large

allows cellsq too far away fromf to give rise to frequency
counts equal td. That is, the system behaves adNifvhere
smaller than its actual value.

Consider a functiong:{x,, ... Xgt—9 that maps the The dots in Fig. 2 show the result of the above procedure
possible values oK into real numbers. For example, ¥  for a single componerd;. As observed, there is very good
takes numerical values, thegy can be such thag.(x;))  agreement with the full line, showing the analytical result,
=xik. For each sucly, another functiorG:D— is defined, Eq. (12).
namely,G(q) =2;9(x;)q; . In the example abové&, is thek To evaluate the expectation value of a certain function,
moment of the distributiomm. The expectation valuéG) is  one simply needs to calculate the sum
easily calculated using E@35) and reads

C. The mean value of functions ofX

S
éz (40) <W>|numencal_ Z W(q q|f) (41

(G)=G f)(l——
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0,02 It may be seen that for larg¥, all the dots concentrate in
(Iy=1(f). This is, as pointed out before, due to the discreti-
zation of D. If the number of cellg] is increased, one needs

- ¢ to go to a largeN to find such a saturation. On the contrary,
A 001 for smaller N, the simulated(l) lies below its theoretical
b value. This is a manifestation of the finite natureepfand
the phenomenon becomes less evident &slowered.
" o 3 o 504 VII. DISCUSSION
(@) 1/N

In this work, the probability density?(qg|f) for the true
distribution q given the experimental frequenciéss ana-
lyzed. Such a density, it is shown, may be written as a Gibbs
O1ee o distribution, where the inverse number of samples plays the
role of an effective temperature, and the Kullback-Leibzig
divergence betweeinandq is the equivalent of the energy of
-1x10° . stateq. Its study is not only for academic purposes, but even-
. tually also practical. In the ideal situation, it would be valu-
able to calculatd®(qg|f) while an experiment is being carried
. out, in order to know when the number of samples is already
enough. The experimenter may thus decide to give an end to

1x10° 2x40° the sampling process when the widthR(fq|f) reaches some
) 1/N acceptable value. For example, someone interested in mea-
suring the public opinion prior to an election may wonder
how many subjects need to be polled in order to have a
reliable estimation of the forthcoming result. Many times,
however, experiments comes to an end because of other fac-
lations. In(a), f1= f1,= 1= f,— 1/4 andl () =0. For each cellin  10'S (& deadline or a floor in the the amount of money, pa-
D, 30000 sets ofN samples have been sorted. (), fy tience, or studgnlsAn estimation of the W|ch oP(qlf) is
=04, f,,=0.1, f,=0.1, and f,,=0.4, so(f)=0.192 745. For valuable even in t_hese cases, just to provide error bars.
each cell inD, 10 000 sets oN samples have been sorted. In both ~ One possibility is to write down the ful(q|f). However,
cases, each axis ig space has been divided into 20 intervals, in P€iNg a function of many variables, this may not be very
order to discretizeD, while the parametee was set to 0.0125. practical. A convenient parameter measuring the width of
P(q|f) in several directions is the square root of the corre-
sponding eigenvalues & . These have been shown to di-
"minish asymptotically as N. From the information-
theoretical point of view, a more appealing parameter is the
computational time required to evalu@éq|f) increases ex- mean divergenc® and its mean quadratic fluctuations. As is
ponentially with the number of dimensios Hence, in the ~SNOWn in EQ.(24), for smallN, such a width depends on the
present comparison it is desirable to ke®ps small as pos- value off. If N>S, however, both D) and oy, become in-
sible. However, in order to define a mutual information, twodependent of and decrease asN/Eq. (25)]. Yet another
setsz! andz? are needed witls, andS, elements each. In route is to work with the functiofV(q) one is interested in.
Fig. 3, S;=2 andS,=2, thus making a three-dimensional By means of Eq(35), it is possible to decide whether the
domain®D. term proportional to M is only a small correction taV(f)

In (a) the selected had no mutual information:(f)=0. or, on the contrary, the two terms are comparable. In the
The graph shows that the expectation valué ©f positive.  latter case, more measurements should be carried out.
With the chosen parametefsee the caption of the figure Although some of the expressions presented here are valid
the analytical resulf38) coincides exactly with that derived for an arbitrary prior, much of the work deals with the par-
by Treves and Panzer[1l], that is, ({I)=(S;—1)(S, ticular case of Eq(5). The use of a prior that is essentially a
—1)/2N. Since forl(f)=0, Eq. (38) reduces to(I)=S,S, linear combination of functions of the forrts) has been
+1-S;,—S,/2N for some particular choices & andS;, proposed 5], specifically, to be used in the inference of en-
the two expressions may coincide. It should be kept in mindfropies. For this case, the partition function should be con-
however, that this is just a coincidence, and the two measstructed by applying the same linear superposition to Eg.
values have different meanings. (10), and the same holds for Eq4.3)—(19). The calculation

In contrast, in caséb) the value ofl (f) is large(see the of (D) andop as derivatives oF is still valid, whereas Eq.
caption for details In this case, the simulations confirm the (12) should also be averaged.
phenomenon that was pointed out in the preceding section, The analysis ofP(qg|f) carried out in Sec. Il, and the
namely, that the expectation val(le may be lower than the statistical mechanical description of Sec. Il are valid even
measured (f). for smallN. The fact tha{D)— 1/N for largeN inspires the

<I>-If)

-2x10°4

information(l) and the measured(f) as a function of the inverse
number of samples W. The =1 prior was considered. The full
line represents the analytical result, E88), and the dots the simu-

using the P(q|f) obtained with the algorithm explained
above. Figure 3 depicts the result for the mutual informatio
with B=1. The dots represent the simulations, E4l),
whereas the full line shows the analytical res(d8). The
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expansion of W) of Sec. IV. It should be clear, nevertheless,

that such an expansion aly convergent whemN>S. Ac-

tually, Eq.(12) is the first-order term in powers &N, and

there is no reason to think that the higher-order terms will be Now, the hypothesis is made for arbitra®y
negligible, if such a condition does not hold. Moreover, it is

necessary to hawd f;>1 for all i. WhenN is large enough,

one can always define the number of categoies to have 1 Hiszlmi!

them all well populated. But foN~S this may well not be == S : (A3)
the case. The consequences may, in fact, be quite dramatic. S (S— 1+, m-) !

For instance, in the example of the entra8ec. V A one =

can explicitly see that; appears in the denominator of Eq.

(36). In other words, the result is meaningless if there are

empty categories. To prove it, one proceeds by complete induction. Equation
However, when the conditioh>S does hold, Eq(12)  (A3) is assumed true for a givem=(m,, ...mg) and the
may serve to draw nontrivial conclusions. For instance, it isaim is to prove it for (n;, ... ,mg, ). Hence

usually supposed that limited sampling, on average, flaws the
data introducing false correlations. This work shows that this
is not necessarily the case: limited sampling may sometimes, ., si1 m
on average, lower the correlations. This is clear in the simu- !(m,. ... mg, )= jD(Hizl dagia;")
lations of Sec. VI, where finite sampling results, on average,

in a downward bias of the mutual information. Ns
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_As s mg! Mg, ¢!
APPENDIX: INTEGRATING A POWER DISTRIBUTION Napg MMy ms mstms, 1 +1 (M me 1 1)1
IN D
(AS5)
Here EQ.(9) is derived. An alternative and more general
line of reasoning may be found [13]. o1
The aim is to calculate 1 2 my!
“Nsi1 o ’ (A6)
; S+1)—1+ m; |!
In= fpﬂrlldqiqim (S+1) ;1 J}

1 1
= fo dqqulfo dapg,? . . . dgsae®s

S
7\5( 1- 2 q; ) } where® (x) is Heaviside step functior® (x) =1 if x=1 and
=1 0 (x)=0 if x<0. When passing from EqA4) to Eq. (A5),
(A1) use was made of the resuih2). Accordingly, Eq.(A6) de-
rives from the inductive hypothesi@A3). Since Eq.(A6)
where\ g is a constant ensuring that when @il vanish,I5is  coincides with Eq.(A3) when S is replaced byS+1, the
the volume ofD. The superscript irhﬁ indicates the dimen-  hypothesig/A3) is proved true.
sion of the vectorsn andg. Finally, to determine\ s one evaluates
If X can only take two values, theS¥ 2. In this cas¢11],

1 1
I2=f dg qr"lJ da,a5 28 N2(1— 01— 0y)], s. 1
m 0 1M1 0 2M2 2 1 2 IO_)\S(S—_]_)!' (A7)

1

fld ms(q e 1 mq!m,!
== daq(1—qyme=
r2Jo A (my+my+1)! The volume ofD is YS/(S—1)!, as can beverified, once

(A2)  again, by complete induction. Thery= 1/4/S.
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