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Targeted free energy perturbation
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In this paper generalization of the free energy perturbation identity is derived, and a computational strategy
based on this result is presented. A simple example illustrates the efficiency gains that can be achieved with this
method.
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The development of efficient methods for the numericalstatesA andB (used to construct the mapping) in order to
estimation of free energy differences remains an outstandingpeed up the estimation &fF.
problem in the computational scienddd, with applications While, to the best of our knowledge the central result and
as diverse as rational drug desi], ab initio prediction of method derived below are new, the use of invertible map-
material propertie$3], and the study of condensates in non- pings to enhance the efficiency of free energy calculations
perturbative QCO4]. Many schemes for estimating free en- has precedents. For simple displacememts;x+d, the
ergy differences trace their origins to tperturbation iden- method proposed herein is closely related to one developed
tity [5] years ago by Votef7], for energy functionsE, and Eg,
which resemble one another apart from a spatial translation.
(e AF/KT) =@ AFKT, (1) Bruceet al.[8] have proposed the use of invertible transfor-
mations as collective Monte Carlo moves—*“lattice
Here,AF =Fz—F, is the Helmholtz free energy difference switches"—to enable the sampling of disparate regions of
between two equilibrium statesandB, of a system, defined configuration space. Finally, our method is similar in spirit to
at a common temperatufiebut different settings of external the metric scaling scheme developed by Miller and Rein-
parameters. The variable(and latery) denotes a microstate hardt[9], whereby one attempts to “guide” the system in
of the system, e.g., a point in configuration space or phasguestion through a continuous sequence of equilibrium
spaceE(x) andEg(x) denote the internal energy as a func- states, by dynamically, and linearly, distorting the space in

tion of microstate, for the two parameter settings; and which the constituent particles evolve.
We now derive our central result, EGLO), below.
AE(X)=Eg(x) —Ea(X) (2 Consider an invertible transformation of configuration

space onto itself:
is the energy difference associated with changing the exter-
nal parameters from one setting to the other, while holding MiX—=y(X). (€)
fixed the microstate. Finally, - - ), denotes an average over
microstates sampled from the canonical distribution repre
senting staté\.
The traditional perturbation approach to estimatiig is

This might be a displacement as in RgT], or perhaps a
scaling transformation as in R¢B], or it might be a consid-
erably more complicated, nonlinear mapping. Now imagine

; it ; ; : i tatexy,X,, ... sampled from somgso far, arbitrary
a direct application of Eq(1): the quantity exp¢ AE/KT) is ~ MICTOS 1:72 o A
averaged over microstates sampled from ensembfg].  Primary ensemble, represented by a distributiofx); and

However, this method converges poorly when there is a ”meconstruct_their images u,nder the transformatipnys, . . .,
overlap in configuration space between ensemblemdB.  Whereyn=M(x,). They's are, effectively, sampled from a
Intuitively, this makes sense: if there is a little overlap, thenS€condaryensemble, which is the image of the primary en-
we very slowly accumulate information about stBtby gen- semble undemM. This secondary ensemble is represented by
erating microstates typical of stafe a distributionn(-), related to the primary distributiop(-)

The aim of this paper is to present a generalization of Eqby
(1), as well as a computational methddrgeted free energy _
perturbation based on this result. The practitioner of this 7(¥)=p()1X), @
r_nethod must attempt to construct an invertible tranSformaWhereJ(x):|ay/(9x| is the Jacobian of the mapping!.
tion M, under which ensemblé gets mapped onto an en- pere and henceforth, when the variableandy appear to-

sembleA’ that overlaps significantly witB [see Eqs(13) ~ gether, it will be understood that they are related yoy
and(14)]. The more successful this attempt, the more rapidly_ M(X).

the method converges. IndeedAif andB overlap perfectly, Next. define a function
then convergence is immediate. This strategy thus provides a '
mechanism for taking advantage of prior knowledge about D (X)=Eg(y) —EA(X)—kTInJ(x), (5)

let the primary ensemble be the canonical distribution corre-
*Email address: chrisj@lanl.gov sponding to staté
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while the pointsy sample the secondary ensemlle which

_ —EA()/KT
p(x)= Z_Ae ALIIT, 6) s the image ofA under the transformation,
and evaluate the average of ex{/kT) over points x M
sampled from this ensemble A—A" (13
ok DOk Intuition suggests that, since the primary ensemble repre-
CRRIN J dxp(x)e~ POIKT (7)  sents staté\ (by constructiol, we ought to attempt to maxi-
mize the overlap between the secondary ensemble and state
B
1
=— f dxJ(x)e~ EsW/KT (8
Z A'~B (14)
:i dye~ Es(/KT— é ) S0 as to speedily gain infqrmation about both of the equilib-
Za Zy' rium stateSA andB) that interest us.

Pursuing this line of intuition, let us first consider the
whereZ, andZg are partition functions(Note the change in extreme case, and defingparfecttransformationM* to be
the variable of integrationfJ dx---=/dy---.) Invoking  one under whichA maps exactly ontds,
the relationF= —kTIn Z, we finally obtain

1 M 1
<e—<IJ/kT>A: e AF/KT (10) p(X)= Z_Ae* EACO/KT | n(y)= Z_Be* Eg(y)/kT
Let us now turn our attention to the application of this result (15)
to the problem of estimating F.

Equation (10) generalizes the free energy perturbation
identity, reducing to the_ latter in _the sp_emal_ca&ﬁx-»x. Fa—Eg(y)=Fa—EA(X)—KTInJ(x), (16)
However, Eq.(10) is valid for arbitrary invertible transfor-
mations M. It is plausible that one can take advantage of iy other wordsb (x) = AF for all x. Hence, we have a maxi-

this generality to enhance the efficiency of computie. mally narrow distribution of values ob
That is, there may exist mappingsl for which the average

of exp(—®/kT) converges more rapidly than the average of p( | M*)=8(¢p— AF). (17)
exp(—AE/KT).

To investigate this possibility, considp{#| M), the dis-  Thus, the convergence of Eq. (12) is immediate if the trans-
tribution of values of¢=®(x), for x sampled fromA [Eq.  formation is perfect®(x)=AF for every samplec.

By Eq. (4), this implies

(6)]. Equation(10) asserts that Unfortunately, constructing a perfect transformation is
likely to be much more difficult than the original problem of
d M)e~ #KT= g AFIKT 11 computingAF. However, it stands to reason thapif¢| M)
f $p(IM) (D is a é function whenA’ =B, then it will remain narrow when

] . ) A'~B. Equation(17) thus gives credence to our earlier in-
for any choice ofM. In practice, we estimataF by aver-  yition [Eq. (14)]: we ought indeed to look for a transforma-
aging expf-@/kT) over a finite number of sampled mi- tion under whichA’ enjoys good overlap witlB. A close

crostates<; Xz, . . . Xy resemblance betweeXi andB implies a narrow distribution
N of ¢'s, which in turn implies rapid convergence of our esti-
i z e ¢n/KT— o= AF/KT (12) mate ofAF. -
N &4 ’ Let us summarize what has been stated here before. Equa-

tion (10) suggests a method of estimatiag : microstate,

where ¢, =®(x,). This approximation becomes an equality are sampled from the canonical ensemBg the value
asN—co, but the rate of convergence depends strongly onp,=®(x,) is computed for each sampled microstate;
the choice ofM; roughly speaking, the narrower the distri- and the estimatoXy=(1/N)X,exp(— ¢,/kT) converges to
bution p(¢| M), the faster the convergence. Therefore, weexp(—AF/KT) asN— . Two ingredients of this scheme are
are faced with the practical question, how do we chad$e (1) an invertible mapping\, and(2) the imageA’ of the
so as to maximize the rate of convergence of the left side ofanonical ensemblé underM. If A" coincides withB, then
Eq. (12)? the method converges immediately. Hence, if we choose a

Recall that a poor convergence of the usual perturbatiotransformationM, which significantly improves the overlap
method is a symptom of too little overlap betweandBin  with B, without necessarily being “perfect,” theKy ought
configuration space: we then learn little ab&when sam- to converge more rapidly withN than the traditional
pling from A. Now note that, when generating the sequencdree energy perturbation(FEP estimator, X F=(1/
of ¢,’s, we are effectively harvesting information fromwo  N)X,exp(—AE,/kT). We will refer to this method asar-
ensembles; the points sample the primary ensembkis geted free energy perturbatipisince its successful imple-
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mentation requires finding a transformatiar for which the ~ sume periodic boundary conditions and a pairwise interac-
secondary ensemble’ comes reasonably close to “hitting” tion Viy(r;,r;) between molecules. We can write the energy

the target ensemble B function for such a fluid as

Several extensions of targeted free energy perturbation, to
bg developed more fully elsewhere, are potentially useful. E(x; R)=®(x;R)+E Vil T1.T7). (19)
First, for a parameter-dependent energy funcigr,\), the i<

application of Eq.(10), to statesA and B defined by infini-
tesimally different values ok, leads to the identity Here,x=(ry, ... .ry ) specifies the microstate, afi{(x;R)
is either O(if all r;>R) or +« (otherwise, thus enforcing
the exclusion of molecules from the spherical cavity. Treat-
i=<E+U-VE—kTV-u> ’ (18) ing the cavity radiusR as an extern'al parameter, let us
IN |\ I\ N choose two valuesR, and Rg, satisfying 0<R,<Rg
<L/2, and letA andB denote the corresponding equilibrium
states(canonical ensemblgsat a given temperaturé. We
where u(x) is an arbitrary differentiable vector field of want to compute the associated free energy differehEe
bounded magnitud¢l0]. While this result reduces to the =F,—F,. Physically, this is the reversible, isothermal work
widely used thermodynamic integration ident[ty1] for u required to expand the cavity radius frdRy to Rg.
=0, other choices oti might accelerate convergence of the  The quantity expt AF/KT) is equal to the probability
average. Itis also straightforward to incorporate @€) into  that, given a microstate sampled from ensembld, the
the umbrella samplind12] and overlapping distributions regionR,<r=<Rg will be devoid of molecules. This can be
[13] methods. Fina”y, anonlinear metric Scaling scheme— viewed as a conseguence of Em’ noting thatAE is equa|
with particular potential for enhancing the efficiency of free g either 0 or+ , depending on whether or not this region is
energy calculations based on steered molecular dynamiggcant. The application of the traditional perturbation
[14}—might result from combining the approach of the method amounts to evaluating this probability by straight
present paper with that of R€D]. sampling.
The utility of targeted free energy perturbation depends | et us now try to construct a transformatiovt that im-
critically on our ability to construct a mappindt appropri-  proves the efficiency of estimating=exp(—AF/kT). With
ate to the problem at hand. While intuition will in some casese traditional method, poor convergence arisé3<1, i.e.,
reliably suggest a candidate, in others it may be very difficultf for nearly every microstate e A, there will be molecules
or computationally expensive to devise a mapping that imjgcated in the regioR,<r<Rg. Therefore, let us choose
proves the overlap with ensemtBe In the case ohondiffu- x4 5o as to vacate this region. A candidate transformation

sive systems, however, a promising and quite general straf1 9], acting on each particle independently, is
egy exists[15]. For a quasirigid system, such as a large

molecule, the canonical ensemble occupies a strongly local- r—g(rory, i=1,...np, (20)
ized region of configuration spad¢assuming that the trans-

lational and rotational degrees of freedom of the entire molwhere

ecule have been integrated out, or else pinned down by a

constraining potential Given two such moleculeé and (RI-RA)(L®—8r3)|*
B—alchemically different, hence represented by different g(r)=|1+ (L3—8R‘°,;)r3
energy functiong16]—we can roughly approximate the as-

sociated canonical ensembles by Gaussian distributions it R,<r<L/2, andg(r)=1 otherwise. Under this transfor-
the many-dimensional configuration sp&t&]. A reasonable mation, the region of space defined Ry<r=<L/2 gets uni-
candidate forM is then the linear transformation that con- formly compressed into the regidRg<<r<L/2. For anyx
verts one of these Gaussians into the other. Even if theampled fromA, the quantity Eg(y)—Ea(X) is just the

Gaussian approximation is quite crude, the mapping thughange in the total interaction energy\(;,) resulting from
constructed is likely to result in a significantly improved this compression, and

overlap betweed\’ andB (relative to that betweeA andB).
We conclude this paper with numerical results illustrating J(X)=[(L®—8R3)/(L—8R3)]*X, (22)
the targeted free energy perturbation method. The setting is
the expansion of a cavity in a fluid. While the aim here iswhere v(x) is the number of molecules in the regidty
simply a comparison between methods, it bears mention thatr<L/2.
recent years have seen renewed theoretical interest in the We simulated 125 molecules inside a container of sides
problem of cavity formation in fluid§18], both as a funda- L=22.28 A, atT=300 K. A Lennard-Jones interaction be-
mental problem in physical chemistry, and because of théween molecules was used, with parameters corresponding to
role played by hydrophobicity in determining and stabilizing argon[20] (0=3.542 A, e=0.1854 kcal/mol). The values
protein structure. of R, and Rg were taken to be 9.209 A and 9.386 A, re-
Considem, point molecules confined within a cubic con- spectively.
tainer of volumel3, but excluded from a spherical cavity of ~ Sampling from ensembl& was achieved with the Me-
radius R located at the center €0) of the container. As- tropolis algorithm. Three independent runs were carried out,

(21)

046122-3



C. JARZYNSKI

PHYSICAL REVIEW E 65 046122
U-DUE T T T T ] L] L) L) ¥
Traditional FEP
; Targeted FEP ——
IIll'llI
0.0015 + \ -
o \
5 W
UL L A
® B
% 0.001 | N VN e g
= W e
E e Ty
R —— — -
0.0005 N L P o Ty A Ease M
:V\:.' / n:h»f o o iy T e |
u 1 1 1 1 L 1 L ]
40000 80000 120000 160000 200000

Number of Monte Carlo sweeps

FIG. 1. (Color) Traditional and targeted free energy perturbation estimated®=oéxp(—AF/KkT), as a function of the number of MC
sweeps.

each consisting of 500 initial relaxation sweeps followed byin this case is improved by about two orders of magnitude by
2% 10° production sweeps. These runs were used to estimatgsing targetedrather than traditionalfree energy perturba-
P=exp(—AF/KT), using both the traditional perturbation ap- tion.

proach(i.e., observing the frequency with which the region ~ Note added. Since the original submission of this paper, it
R,<r=<Rg is spontaneously vacanand targeted perturba- has come to my attention that an equivalent method has been
tion [Eq.(12)]. In Fig. 1, each red curve shows the traditional developed for the estimation of ratios of normalizing con-
perturbation estimate &f for a single run, accumulating as a Stants(€.g., likelihood ratiosof probability modelq21].

function of number of production sweeps, (plotted in in- It is a pleasure to acknowledge stimulating discussions
crements' ofANflooo. The blue curves shpw the targeted 5 correspondence with Graeme Ackland, Alastair Bruce,
perturbation estimates for the same runs. It is evident that thRnge| Garcia, Gabriel Istrate, Lawrence Pratt, and Nigel
latter converge much faster than the former. Combining th&yjilding. This research is supported by the Department of

data from all three runs, the two methods yield the estimategnergy, under Contract No. W-7405-ENG-36, and by the
Phad— (4.8310.49)x10™* and Pg;,=(5.81+0.05)x 10~ *.

Polish-American Maria Sktodowska-Curie Joint Fund Il, un-
The error bars ared, and their ratio suggests that efficiency der project PAA/DOE-98-343.
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