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Targeted free energy perturbation

C. Jarzynski*
Complex Systems, T-13, MS B213 Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 4 June 2001; published 3 April 2002!

In this paper generalization of the free energy perturbation identity is derived, and a computational strategy
based on this result is presented. A simple example illustrates the efficiency gains that can be achieved with this
method.

DOI: 10.1103/PhysRevE.65.046122 PACS number~s!: 05.70.Ce, 05.10.2a
ca
din

n
n-

e

l
e
a
c-

te
in
r
re

ttl

en

Eq

is
a

-

dl

es
ou

nd
ap-
ons

ped

ion.
r-
e
of

to
in-
in
um

in

n

ine

n-
by

rre-
The development of efficient methods for the numeri
estimation of free energy differences remains an outstan
problem in the computational sciences@1#, with applications
as diverse as rational drug design@2#, ab initio prediction of
material properties@3#, and the study of condensates in no
perturbative QCD@4#. Many schemes for estimating free e
ergy differences trace their origins to theperturbation iden-
tity @5#

^e2DE/kT&A5e2DF/kT. ~1!

Here,DF5FB2FA is the Helmholtz free energy differenc
between two equilibrium statesA andB, of a system, defined
at a common temperatureT but different settings of externa
parameters. The variablex ~and latery) denotes a microstat
of the system, e.g., a point in configuration space or ph
space;EA(x) andEB(x) denote the internal energy as a fun
tion of microstate, for the two parameter settings; and

DE~x![EB~x!2EA~x! ~2!

is the energy difference associated with changing the ex
nal parameters from one setting to the other, while hold
fixed the microstate. Finally,̂•••&A denotes an average ove
microstates sampled from the canonical distribution rep
senting stateA.

The traditional perturbation approach to estimatingDF is
a direct application of Eq.~1!: the quantity exp(2DE/kT) is
averaged over microstates sampled from ensembleA @6#.
However, this method converges poorly when there is a li
overlap in configuration space between ensemblesA andB.
Intuitively, this makes sense: if there is a little overlap, th
we very slowly accumulate information about stateB by gen-
erating microstates typical of stateA.

The aim of this paper is to present a generalization of
~1!, as well as a computational method,targeted free energy
perturbation, based on this result. The practitioner of th
method must attempt to construct an invertible transform
tion M, under which ensembleA gets mapped onto an en
sembleA8 that overlaps significantly withB @see Eqs.~13!
and~14!#. The more successful this attempt, the more rapi
the method converges. Indeed, ifA8 andB overlap perfectly,
then convergence is immediate. This strategy thus provid
mechanism for taking advantage of prior knowledge ab

*Email address: chrisj@lanl.gov
1063-651X/2002/65~4!/046122~5!/$20.00 65 0461
l
g

-

se

r-
g

-

e

.

-

y

a
t

statesA andB ~used to construct the mappingM) in order to
speed up the estimation ofDF.

While, to the best of our knowledge the central result a
method derived below are new, the use of invertible m
pings to enhance the efficiency of free energy calculati
has precedents. For simple displacements,x→x1d, the
method proposed herein is closely related to one develo
years ago by Voter@7#, for energy functionsEA and EB ,
which resemble one another apart from a spatial translat
Bruceet al. @8# have proposed the use of invertible transfo
mations as collective Monte Carlo moves—‘‘lattic
switches’’—to enable the sampling of disparate regions
configuration space. Finally, our method is similar in spirit
the metric scaling scheme developed by Miller and Re
hardt @9#, whereby one attempts to ‘‘guide’’ the system
question through a continuous sequence of equilibri
states, by dynamically, and linearly, distorting the space
which the constituent particles evolve.

We now derive our central result, Eq.~10!, below.
Consider an invertible transformation of configuratio

space onto itself:

M:x→y~x!. ~3!

This might be a displacement as in Ref.@7#, or perhaps a
scaling transformation as in Ref.@9#, or it might be a consid-
erably more complicated, nonlinear mapping. Now imag
microstatesx1 ,x2 , . . . sampled from some~so far, arbitrary!
primary ensemble, represented by a distributionr(x); and
construct their images under the transformation:y1 ,y2 , . . . ,
whereyn5M(xn). The y’s are, effectively, sampled from a
secondaryensemble, which is the image of the primary e
semble underM. This secondary ensemble is represented
a distributionh(•), related to the primary distributionr(•)
by

h~y!5r~x!/J~x!, ~4!

where J(x)5u]y/]xu is the Jacobian of the mappingM.
Here and henceforth, when the variablesx andy appear to-
gether, it will be understood that they are related byy
5M(x).

Next, define a function

F~x![EB~y!2EA~x!2kT ln J~x!, ~5!

let the primary ensemble be the canonical distribution co
sponding to stateA
©2002 The American Physical Society22-1
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r~x!5
1

ZA
e2EA(x)/kT, ~6!

and evaluate the average of exp(2F/kT) over points x
sampled from this ensemble

^e2F/kT&A5E dxr~x!e2F(x)/kT ~7!

5
1

ZA
E dxJ~x!e2EB(y)/kT ~8!

5
1

ZA
E dye2EB(y)/kT5

ZB

ZA
, ~9!

whereZA andZB are partition functions.~Note the change in
the variable of integration:*J dx•••5*dy•••.! Invoking
the relationF52kT ln Z, we finally obtain

^e2F/kT&A5e2DF/kT. ~10!

Let us now turn our attention to the application of this res
to the problem of estimatingDF.

Equation ~10! generalizes the free energy perturbati
identity, reducing to the latter in the special caseM:x→x.
However, Eq.~10! is valid for arbitrary invertible transfor-
mationsM. It is plausible that one can take advantage
this generality to enhance the efficiency of computingDF.
That is, there may exist mappingsM for which the average
of exp(2F/kT) converges more rapidly than the average
exp(2DE/kT).

To investigate this possibility, considerp(fuM), the dis-
tribution of values off5F(x), for x sampled fromA @Eq.
~6!#. Equation~10! asserts that

E dfp~fuM!e2f/kT5e2DF/kT, ~11!

for any choice ofM. In practice, we estimateDF by aver-
aging exp(2F/kT) over a finite number of sampled m
crostatesx1 ,x2 , . . . ,xN

1

N (
n51

N

e2fn /kT'e2DF/kT, ~12!

wherefn[F(xn). This approximation becomes an equal
as N→`, but the rate of convergence depends strongly
the choice ofM; roughly speaking, the narrower the distr
bution p(fuM), the faster the convergence. Therefore,
are faced with the practical question, how do we chooseM
so as to maximize the rate of convergence of the left side
Eq. ~12!?

Recall that a poor convergence of the usual perturba
method is a symptom of too little overlap betweenA andB in
configuration space: we then learn little aboutB when sam-
pling from A. Now note that, when generating the sequen
of fn’s, we are effectively harvesting information fromtwo
ensembles; the pointsx sample the primary ensembleA,
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while the pointsy sample the secondary ensembleA8, which
is the image ofA under the transformationM,

A →
M

A8. ~13!

Intuition suggests that, since the primary ensemble rep
sents stateA ~by construction!, we ought to attempt to maxi
mize the overlap between the secondary ensemble and
B

A8'B ~14!

so as to speedily gain information about both of the equi
rium states~A andB) that interest us.

Pursuing this line of intuition, let us first consider th
extreme case, and define aperfecttransformationM* to be
one under whichA maps exactly ontoB,

r~x!5
1

ZA
e2EA(x)/kT ——→

M*
h~y!5

1

ZB
e2EB(y)/kT.

~15!

By Eq. ~4!, this implies

FB2EB~y!5FA2EA~x!2kT ln J~x!, ~16!

in other wordsF(x)5DF for all x. Hence, we have a maxi
mally narrow distribution of values off

p~fuM* !5d~f2DF !. ~17!

Thus,the convergence of Eq. (12) is immediate if the tran
formation is perfect: F(x)5DF for every sampledx.

Unfortunately, constructing a perfect transformation
likely to be much more difficult than the original problem o
computingDF. However, it stands to reason that ifp(fuM)
is ad function whenA85B, then it will remain narrow when
A8'B. Equation~17! thus gives credence to our earlier in
tuition @Eq. ~14!#: we ought indeed to look for a transforma
tion under whichA8 enjoys good overlap withB. A close
resemblance betweenA8 andB implies a narrow distribution
of f ’s, which in turn implies rapid convergence of our es
mate ofDF.

Let us summarize what has been stated here before. E
tion ~10! suggests a method of estimatingDF: microstatesxn
are sampled from the canonical ensembleA; the value
fn5F(xn) is computed for each sampled microsta
and the estimatorXN[(1/N)(nexp(2fn /kT) converges to
exp(2DF/kT) asN→`. Two ingredients of this scheme ar
~1! an invertible mappingM, and ~2! the imageA8 of the
canonical ensembleA underM. If A8 coincides withB, then
the method converges immediately. Hence, if we choos
transformationM, which significantly improves the overla
with B, without necessarily being ‘‘perfect,’’ thenXN ought
to converge more rapidly withN than the traditional
free energy perturbation~FEP! estimator, XN

FEP[(1/
N)(nexp(2DEn /kT). We will refer to this method astar-
geted free energy perturbation, since its successful imple
2-2
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TARGETED FREE ENERGY PERTURBATION PHYSICAL REVIEW E65 046122
mentation requires finding a transformationM for which the
secondary ensembleA8 comes reasonably close to ‘‘hitting
the target ensemble B.

Several extensions of targeted free energy perturbation
be developed more fully elsewhere, are potentially use
First, for a parameter-dependent energy functionE(x,l), the
application of Eq.~10!, to statesA andB defined by infini-
tesimally different values ofl, leads to the identity

]F

]l
5 K ]E

]l
1u•“E2kT“•uL

l

, ~18!

where u(x) is an arbitrary differentiable vector field o
bounded magnitude@10#. While this result reduces to th
widely used thermodynamic integration identity@11# for u
50, other choices ofu might accelerate convergence of th
average. It is also straightforward to incorporate Eq.~10! into
the umbrella sampling@12# and overlapping distributions
@13# methods. Finally, anonlinear metric scaling scheme—
with particular potential for enhancing the efficiency of fr
energy calculations based on steered molecular dyna
@14#—might result from combining the approach of th
present paper with that of Ref.@9#.

The utility of targeted free energy perturbation depen
critically on our ability to construct a mappingM appropri-
ate to the problem at hand. While intuition will in some cas
reliably suggest a candidate, in others it may be very diffic
or computationally expensive to devise a mapping that
proves the overlap with ensembleB. In the case ofnondiffu-
sive systems, however, a promising and quite general s
egy exists@15#. For a quasirigid system, such as a lar
molecule, the canonical ensemble occupies a strongly lo
ized region of configuration space~assuming that the trans
lational and rotational degrees of freedom of the entire m
ecule have been integrated out, or else pinned down b
constraining potential!. Given two such moleculesA and
B—alchemically different, hence represented by differe
energy functions@16#—we can roughly approximate the a
sociated canonical ensembles by Gaussian distribution
the many-dimensional configuration space@17#. A reasonable
candidate forM is then the linear transformation that co
verts one of these Gaussians into the other. Even if
Gaussian approximation is quite crude, the mapping t
constructed is likely to result in a significantly improve
overlap betweenA8 andB ~relative to that betweenA andB).

We conclude this paper with numerical results illustrati
the targeted free energy perturbation method. The settin
the expansion of a cavity in a fluid. While the aim here
simply a comparison between methods, it bears mention
recent years have seen renewed theoretical interest in
problem of cavity formation in fluids@18#, both as a funda-
mental problem in physical chemistry, and because of
role played by hydrophobicity in determining and stabilizi
protein structure.

Considernp point molecules confined within a cubic con
tainer of volumeL3, but excluded from a spherical cavity o
radiusR located at the center (r50) of the container. As-
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sume periodic boundary conditions and a pairwise inter
tion Vint(r i ,r j ) between molecules. We can write the ener
function for such a fluid as

E~x;R!5Q~x;R!1(
i , j

Vint~r i ,r j !. ~19!

Here,x5(r1 , . . . ,rnp
) specifies the microstate, andQ(x;R)

is either 0~if all r i.R! or 1` ~otherwise!, thus enforcing
the exclusion of molecules from the spherical cavity. Tre
ing the cavity radiusR as an external parameter, let u
choose two values,RA and RB , satisfying 0,RA,RB
,L/2, and letA andB denote the corresponding equilibrium
states~canonical ensembles!, at a given temperatureT. We
want to compute the associated free energy differenceDF
5FB2FA . Physically, this is the reversible, isothermal wo
required to expand the cavity radius fromRA to RB .

The quantity exp(2DF/kT) is equal to the probabilityP
that, given a microstatex sampled from ensembleA, the
regionRA,r<RB will be devoid of molecules. This can b
viewed as a consequence of Eq.~1!, noting thatDE is equal
to either 0 or1`, depending on whether or not this region
vacant. The application of the traditional perturbati
method amounts to evaluating this probability by straig
sampling.

Let us now try to construct a transformationM that im-
proves the efficiency of estimatingP5exp(2DF/kT). With
the traditional method, poor convergence arises ifP!1, i.e.,
if for nearly every microstatexPA, there will be molecules
located in the regionRA,r<RB . Therefore, let us choos
M so as to vacate this region. A candidate transformat
@19#, acting on each particle independently, is

r i→g~r i !r i , i 51, . . . ,np , ~20!

where

g~r !5F11
~RB

32RA
3 !~L328r 3!

~L328RA
3 !r 3 G1/3

~21!

if RA,r<L/2, andg(r )51 otherwise. Under this transfor
mation, the region of space defined byRA,r<L/2 gets uni-
formly compressed into the regionRB,r<L/2. For anyx
sampled fromA, the quantity EB(y)2EA(x) is just the
change in the total interaction energy ((Vint) resulting from
this compression, and

J~x!5@~L328RB
3 !/~L328RA

3 !#n(x), ~22!

where n(x) is the number of molecules in the regionRA
,r<L/2.

We simulated 125 molecules inside a container of si
L522.28 Å, atT5300 K. A Lennard-Jones interaction be
tween molecules was used, with parameters correspondin
argon@20# (s53.542 Å, e50.1854 kcal/mol). The values
of RA and RB were taken to be 9.209 Å and 9.386 Å, r
spectively.

Sampling from ensembleA was achieved with the Me
tropolis algorithm. Three independent runs were carried o
2-3
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FIG. 1. ~Color! Traditional and targeted free energy perturbation estimates ofP5exp(2DF/kT), as a function of the number of MC
sweeps.
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each consisting of 500 initial relaxation sweeps followed
23105 production sweeps. These runs were used to estim
P5exp(2DF/kT), using both the traditional perturbation a
proach~i.e., observing the frequency with which the regio
RA,r<RB is spontaneously vacant! and targeted perturba
tion @Eq. ~12!#. In Fig. 1, each red curve shows the tradition
perturbation estimate ofP for a single run, accumulating as
function of number of production sweeps,N ~plotted in in-
crements ofDN51000!. The blue curves show the targete
perturbation estimates for the same runs. It is evident tha
latter converge much faster than the former. Combining
data from all three runs, the two methods yield the estima
Ptrad

est 5(4.8360.49)31024 and Ptarg
est 5(5.8160.05)31024.

The error bars are 1s, and their ratio suggests that efficienc
-

,
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in this case is improved by about two orders of magnitude
using targeted~rather than traditional! free energy perturba
tion.

Note added. Since the original submission of this pape
has come to my attention that an equivalent method has b
developed for the estimation of ratios of normalizing co
stants~e.g., likelihood ratios! of probability models@21#.
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Angel Garcia, Gabriel Istrate, Lawrence Pratt, and Nig
Wilding. This research is supported by the Department
Energy, under Contract No. W-7405-ENG-36, and by t
Polish-American Maria Skłodowska-Curie Joint Fund II, u
der project PAA/DOE-98-343.
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