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Correlated disordered interactions on Potts models

P. T. Muzy,* A. P. Vieira,† and S. R. Salinas‡
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Using a weak-disorder scheme and real-space renormalization-group techniques, we obtain analytical results
for the critical behavior of variousq-state Potts models with correlated disordered exchange interactions along
d1 of d spatial dimensions on hierarchical~Migdal-Kadanoff! lattices. Our results indicate qualitative differ-
ences between the casesd2d151 ~for which we find nonphysical random fixed points, suggesting the exis-
tence of nonperturbative fixed distributions! and d2d1.1 ~for which we do find acceptableperturbartive
random fixed points!, in agreement with previous numerical calculations by Andelman and Aharony@Phys.
Rev. B 31, 4305~1985!#. We also rederive a criterion for relevance of correlated disorder, which generalizes
the usual Harris criterion.
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I. INTRODUCTION

The effects of disorder on the critical properties of sta
tical models have been the subject of much work in the
decades. In the context of random interactions, Harris@1#
derived a heuristic criterion to gauge the relevance of unc
related disorder to the critical behavior, which is predicted
remain unchanged if the specific-heat exponenta of the un-
derlying pure system is negative. Ifa.0, disorder becomes
relevant and, in the language of the renormalization gro
~RG!, one expects a flow to a new fixed point~characterized
by a nonzero-width fixed distribution of the random va
ables!.

It later became clear that the Harris criterion must be g
eralized in a number of situations@2–6#, sincea is not al-
ways identifiable withf, the crossover exponent of th
width of the distribution of the disorder variables. In partic
lar, random variables correlated alongd1 of the d spatial
dimensions give rise to the scaling relation@2,4#

f5a1d1n, ~1!

wheren is the correlation-length exponent of the pure s
tem. Using a real-space RG approach based on nume
calculations @7#, Andelman and Aharony@4# investigated
various q-state Potts models with random exchange c
stants, finding qualitative differences between the cased
2d1.1 ~which yields finite-temperature fixed distribution!
and d2d151 ~which embodies the McCoy-Wu model@8#
and yields an ‘‘infinite-disorder’’ zero-temperature fixe
point!. An intuitive illustration of the special role of thed
2d151 case is that, for any infinitesimal concentration
zero bonds~with a suitable assignment of the random inte
actions!, the system would break into noninteractingd
21)-dimensional structures, and the RG flows would be
directed to the pure fixed point of the corresponding sys
in d21 dimensions.
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In the present paper, we use a~perturbative! weak-
disorder@9,10# real-space RG scheme to analyze the criti
behavior ofq-state Potts models with correlated disorder
exchange interactions on various hierarchical lattices, wh
exact recursion relations are equivalent to those produce
Migdal-Kadanoff approximations for Bravais lattices. Usin
this weak-disorder scheme, we obtain analytical results
truncating the recursion relations for the moments of the d
order distribution~which are supposed to remain sufficient
small under the RG iterations!. All calculations are per-
formed in the vicinity off50, in a region where disorder i
relevant. Depending on the diference between the dim
sionality of the system~d! and the number of dimensions i
which disorder is correlated (d1), we distinguish two possi-
bilities: ~i! For d2d151, the weak-disorder scheme pro
duces a nonphysical fixed-point probability distributio
characterized by a negative variance, which suggests the
istence of a nonperturbative~‘‘infinite-disorder’’! fixed-
point; ~ii ! For d2d1.1, the scheme yields a physically a
ceptable perturbative fixed-point distribution. Althoug
obtained by an alternative approach, the main results of
paper are in agreement with the numerical findings of And
man and Aharony@4#.

The outline of the paper is as follows. We first rederi
Eq. ~1!, and obtain a criterion for relevance of correlat
disorder involving the number of independent random va
ables in the unit cell of the lattice and the first derivative
the recursion relations at the pure fixed point. This is done
Sec. II. In Sec. III, we considerq-state Potts models on var
ous hierarchical lattices withd2d151. Using a weak-
disorder scheme, we obtain a new~random! fixed point forq
larger than a characteristic valueq0, where disorder become
relevant. As in a previous publication@10#, this fixed point is
located in a nonphysical region of the parameter space,
gesting that a nonperturbative fixed point must be presen
Sec. IV we study a similar problem withd151 andd53. In
this case we obtain a physically acceptable, finite-disor
fixed point, forq.q0, as in the fully disordered model stud
ied by Derrida and Gardner@9# ~although in our case the
usual Harris criterion is not satisfied!. In Sec. V, we consider
an Ising model (q52) on a diamond lattice withb52 bonds
and l branches~where l, instead ofq, is the control param-
©2002 The American Physical Society20-1
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eter!, which constitutes another example of ad2d151 sys-
tem. As in Sec. III, weak disorder again predicts a nonphy
cal random fixed point. In the final section we give som
conclusions.

II. CRITERION FOR RELEVANCE OF CORRELATED
DISORDER

Following Andelman and Aharony@4#, we consider a
d-dimensional bond-disordered model in which the disor
variables are correlated alongd1 spatial directions. We as
sume that, under renormalization with a length rescaling f
tor b, the model satisfies a recursion relatio
R(x1 ,x2 , . . . ,xn), connectingn5bd2d1 independent~and
identically distributed! random variables to a renormalize
variablex8. ~In this paper, these variables are related to
duced exchange couplings.! Defining the deviations« i[xi
2xc , wherexc5R(xc ,xc , . . . ,xc) is the critical fixed point
of the pure system, we expandR in a Taylor series aboutxc
to write

«8[x82xc5(
i 51

n
]R

]xi
U

xc

« i1
1

2 (
i , j 51

n
]2R

]xi]xj
U

xc

« i« j1•••,

~2!

«825 (
i , j 51

n
]R

]xi
Uxc

]R

]xj
U

xc

« i« j1 (
i , j ,k51

n
]R

]xi
Uxc

]2R

]xj]xk
U

xc

« i« j«k

1•••, ~3!

and similarly for the higher powers of«8. Averaging over the
random variables we get

^«8&5(
i 51

n
]R

]xi
U

xc

^«&1
1

2 (
i 51

n
]2R

]xi
2 U

xc

^«2&1(
iÞ j

]2R

]xi]xj
U

xc

^«&2

1•••, ~4!

^«82&5(
i 51

n S ]R

]xi
U

xc

D 2

^«2&1(
iÞ j

]R

]xi
U

xc

]R

]xj
U

xc

^«&21•••,

~5!

and corresponding expressions for the higher moments o
deviations. Sincê«& is a measure of the distance to the fix
point, it plays the role of temperature. On the other ha
^«2& is a measure of the strength of disorder.

The critical behavior of the model is related to the eige
values of the matrix

Mrs5
]^«8r&

]^«s&
, ~6!

evaluated at the fixed point. It is clear that the set of rec
sion relations for the moments of the deviations always ha
pure fixed point̂ «&5^«2&5•••50. At that point, it can be
shown@11# that Mrs is a triangular matrix, and that its tw
largest eigenvalues are given by
04612
i-

r

c-

-

he

,

-

r-
a

L15
]^«8&
]^«&

U
pure

5(
i 51

n
]R

]xi
U

xc

~7!

and

L25
]^«82&

]^«2&
U

pure

5(
i 51

n S ]R

]xi
U

xc

D 2

. ~8!

Assuming that, for alli and j,

]R

]xi
U

xc

5
]R

]xj
U

xc

[w, ~9!

and invoking the usual scaling hypotheses

L15byt and L25L1
f5bfyt, ~10!

which define the thermal exponentyt and the crossover ex
ponentf, we get

fyt52yt2~d2d1!. ~11!

Then, using the hyperscaling relation

a522
d

yt
522

d ln b

ln~nw!
, ~12!

we obtain

f5a1
d1

yt
5

d2d1

d
a12

d1

d
, ~13!

which clearly shows that the Harris criterion (f5a.0) is
not satisfied in the presence of correlated disorder. As 1/yt is
usually identified with the correlation-length exponentn, this
last result is equivalent to Eq.~1!. It also shows that, for
d1.0, the crossover expoent is larger thana, which indi-
cates that correlated disorder induces stronger~geometrical!
fluctuations than uncorrelated disorder.

The general criterion for relevance of disorder isf.0,
that is,

a.22
d1

d2d1
. ~14!

From Eqs.~7!–~9!, this is equivalent to

nw2.1. ~15!

This last result was also derived in a different context
Mukherji and Bhattacharjee@5# and generalizes a criterio
pointed out by Derridaet al. @3#.

In the case of the fully disordered system analyzed
Derrida and Gardner@9#, for which d150, the requirement
in Eq. ~14! turns out to be equivalent to the usual form of t
Harris criterion (a.0).
0-2
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III. POTTS MODELS WITH CORRELATED DISORDER:
dÀd1Ä1 CASE

The successive generations of a hierarchical lattice
obtained by replacing an existing bond in the previous g
eration by a unit cell of new bonds in the next generation
Fig. 1~a!, we show the first two stages of the construction
the simple diamond lattice~with b52 bonds andl 52
branches!. The necklace hierarchical lattice, withb52 bonds
and l 52 branches, is illustrated in Fig. 1~b!.

We now consider aq-state Potts model, given by th
Hamiltonian

HP52(
( i , j )

Ji j ds i ,s j
, ~16!

where the sum is over nearest-neighbor sites on a hiera
cal lattice, the spin variabless i assumeq values,d is the
Kronecker delta symbol, and$Ji j .0% is a set of independen
and identically distributed random variables. Instead of c
sidering a fully disordered arrangement of interactions,
look at correlated disorder, either along layers@see Figs. 2~a!
and 2~c!# or along branches@see Figs. 2~b! and 2~d!# of the
hierarchical structure.

Introducing the more convenient variablexi5exp(bJi),
whereb is the inverse absolute temperature, it is straightf
ward to decimate the internal degrees of freedom to ob

FIG. 1. ~a! The diamond hierarchical lattice~with b52 and l
52). ~b! The necklace hierarchical lattice~with b52 andl 52).

FIG. 2. Correlated distribution of random interactions on d
mond and necklace hierarchical lattices.
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~Migdal-Kadanoff! recursion relations. In this section w
consider the following models.

~A! Random layered diamond lattice, Fig. 2~a!, whose
recursion relation is

x85RA~x1 ,x2!5S x1x21q21

x11x21q22D 2

. ~17!

~B! Random branched diamond lattice, Fig. 2~b!, with re-
cursion relation

x85RB~x1 ,x2!5S x1
21q21

2x11q22D S x2
21q21

2x21q22D . ~18!

~C! Random layered necklace lattice, Fig. 2~c!, with re-
cursion relation

x85RC~x1 ,x2!5
x1

2x2
21q21

x1
21x2

21q22
. ~19!

~D! Random branched necklace lattice, Fig. 2~d!, with
recursion relation

x85RD~x1 ,x2!5
x1

2x2
21q21

2x1x21q22
. ~20!

Notice that in all these models disorder is correlated alo
only one spatial direction (d151), while the effective di-
mension isd52. According to Eq.~14!, we then expect dis-
order to be relevant fora.22.

We now write x85xc1«8 and xi5xc1« i , to perform
Taylor series expansions about the critical point of the u
form systems, given byxc5R(xc ,xc). For all of these mod-
els, with n52 independent values of the exchange para
eters~along either layers or bonds!, it is straightforward to
write the recursion relation

«85w~«11«2!1m~«1
21«2

2!1 f ~«1«2
21«1

2«2!1p«1«2

1c«1
2«2

21k~«1
31«2

3!1a~«1
41«2

4!, ~21!

where w, m, p, f, c, k, and a are model-dependent Taylo
coefficients~that depend on the topology of the particul
models illustrated in Fig. 2; see Sec. II!.

The weak-disorder approximation@9,10# consists in as-
suming that

^«&;^«2&;l, ~22!

^«3&;^«4&;l2, ~23!

and in general

^«2p21&;^«2p&;lp, ~24!

where^•••& is a quenched average andl is a suitable small
parameter. Within this approximation, we can use Eq.~21! to
write recursion relations for the moments of the deviation,
to second order inl,

-

0-3
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^«8&52w^«&1p^«&212m^«2&12 f ^«&^«2&1c^«2&2

12k^«3&12a^«4&, ~25!

^«82&52w2^«&212w2^«2&14w~m1p!^«&^«2&

1~2m214 f w1p2!^«2&214wm^«3&

1~4wk12m2!^«4&, ~26!

^«83&53w^«&^«2&13~m1p!^«2&21w^«3&13m^«4&,
~27!

and

^«84&53w2^«2&21w2^«4&. ~28!

It is easy to see that there is always a nonrandom fi
point,

^«&5^«2&5^«3&5^«4&50, ~29!

associated with the critical behavior of the pure model.
we pointed out in the previous section, this fixed point b
comes unstable with respect to disorder for 2w2.1. This can
also be seen by an inspection of the asymptotic behavio
Eq. ~26!, which shows that, up to orderl, the renormalized
second moment depends only on^«2&, with the coefficient
2w2. Thus, we expect the onset of a random fixed point a
critical value q0 of the number of Potts states. From th
expression

xc5R~xc ,xc! ~30!

for the pure fixed point, we can expressq as a function ofxc
and, using the condition 2w251, determine the critical value
xc(q0). For both diamond structures displayed in Figs. 2~a!
and 2~b!, we have

q5~Axc21!~xc21!, ~31!

andxc(q0)52.151 27 . . . ,which leads toq050.537 32 . . . .
For both necklace structures in Figs. 2~c! and 2~d!, we have

q5~xc21!~xc
221!, ~32!

with xc(q0)51.466 72 . . . , which also leads to q0
50.537 32 . . . . Disorder is predicted to be relevant forq
.q0.

We now introduce the small parameter

l5xc~q!2xc~q0!.
dxc

dq U
q0

~q2q0![
dxc

dqU
q0

Dq, ~33!

to investigate aq-state Potts model in the immediate vicini
of the characteristic valueq0. It should be pointed out that
as the symmetry of the order parameter is one of the fac
expected to determine the universality class of the mod
Dq is the appropriate parameter to consider. However,l is
more convenient for the algebraic manipulations. From
spection of Eqs.~25!–~28!, we see that, up to first-orde
terms inl, coefficientsw andm are written as
04612
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2
A21w1l and m5m01m1l. ~34!

It is straightforward to calculatew150.133 25 . . . , for the
diamond structures, andw150.390 88 . . . , for thenecklace
structures. Also, we havem0520.190 88 . . . and m1
50.198 65 . . . , for model ~A!; m050.018 49 . . . andm1
50.007 58 . . . , for model ~B!; m0520.489 35 . . . andm1
51.224 33 . . . , for model ~C!; and m050.027 11 . . . and
m150.020 27 . . . , for model ~D!. In order to obtain the re-
maining coefficients, it is enough to keep the zeroth or
term in l ~see the values, up to five digits, in Table I!.

We are finally prepared to obtain, up to lowest order
Dq, the nonzero values of the moments at the random fi
point. By substituting the weak-disorder assumptions, E
~22! and ~23!, into Eqs.~25!–~28!, and then imposing con
sistency between equal powers ofDq, we obtain the leading
terms for fixed values of the moments as listed in Table

In order to perform a linear stability analysis about t
fixed points, we have to calculate the eigenvaluesL1 to L4
of the matrix

Mrs5
]^«8r&

]^«s&
.

As it should be anticipated from universality, it turns out th
the eigenvalues~and so the critical exponents! are the same
for models~A! to ~D!. We always have two eigenvalues,L3
andL4, whose absolute values are smaller than unity. Ab
the pure fixed point, we have

L1
(p)5A210.310 18Dq, ~35!

L2
(p)5110.438 66Dq, ~36!

with a specific heat exponent

TABLE I. Coefficients of the weak-disorder expansion for th
models in Fig. 2.

Coefficient Model~A! Model ~B! Model ~C! Model ~D!

a 20.00926 0.00917 20.92623 0.02894
c 0.08549 0.00016 1.38173 0.07163
k 0.04676 20.01302 0.25648 20.02801
f 20.05370 0.00608 20.33156 20.04706
p 0.65117 0.23242 1.56929 0.53634

TABLE II. Moments of the deviations defining the random fixe
points of the models in Fig. 2 according to the weak-disorder
pansion.

Moment Model~A! Model ~B! Model ~C! Model ~D!

^«&/Dq 214.904 1.0208 24.4401 0.34798
^«2&/Dq 216.170 211.434 21.8791 22.6575
^«3&/(Dq)2 1444.5 325.73 46.390 39.946
^«4&/(Dq)2 784.41 392.21 10.593 21.187
0-4
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CORRELATED DISORDERED INTERACTIONS ON POTTS . . . PHYSICAL REVIEW E 65 046120
ap52212.531 41Dq.

At the random fixed point we have

L1
(r )5A210.836 70Dq, ~37!

L2
(r )5120.438 66Dq, ~38!

which lead to the exponent

a r52216.828 43Dq. ~39!

From Eq. ~36!, we see that disorder becomes relevant
Dq.0. Thus, as shown in Table II, the weak-disorder exp
sion gives negative~and thus nonphysical! values of the sec-
ond moment at the random fixed point for models~A! to ~D!.
This suggests that the random fixed point in these syst
~for which d2d151) is nonperturbative, in agreement wi
numerical calculations@4# that predict an infinite-disorde
fixed point. Another odd feature of the weak-disorder resu
is that the predicted value of the specific-heat exponent in
presence of disorder (a r) is larger than the corresponding
quantity (ap) for the pure model, in disagreement with th
general belief that disorder should weaken the transition

IV. A POTTS MODEL WITH CORRELATED DISORDER:
dÀd1Ì1 CASE

In order to examine thed2d1.1 case, we now conside
a Potts model on a necklace hierarchical lattice@4# shown in
Fig. 3, with d53 and d151. The unit cell containsn54
independent random variables and, in terms of the varia
xi[exp(bJi), the recursion relation is given by

R~x1 ,x2 ,x3 ,x4!5
x1x2x3x41q21

x1x21x3x41q22
. ~40!

Following the same steps as in Sec. III, we have

q5~xc21!~xc
221!, ~41!

FIG. 3. The hierarchical lattice withd53 andd151 considered
in Sec. IV
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q05412A2, and xc(q0)511A2. Performing again the
weak-disorder expansion~and truncation!, and taking the av-
erage over the disorder variables, we obtain the set of re
sion relations

^«8&54w^«&12~p112p2!^«&214m^«2&14~ f 112 f 2!^«&

3^«2&12~c112c2!^«2&214k^«3&14a^«4&, ~42!

^«82&512w2^«&214w2^«2&18w~3m1p112p2!^«&^«2&

1@12m218w~ f 112 f 2!12~p1
212p2

2!#^«2&2

18wm^«3&1~8wk14m2!^«4&, ~43!

^«83&59w^«&^«2&13~3m1p112p2!^«2&21w^«3&

13m^«4&, ~44!

and

^«84&59w2^«2&21w2^«4&. ~45!

It should be noted that, due to the smaller symmetry of
lattice, we now have a larger set of coefficients. Also, not
that in this caseq0 is determined from the condition 4w2

51. About the critical valueq0, and to leading order inDq,
we have

w5
1

2
1

17A2224

4
Dq ~46!

and

m5
A222

8
1

133294A2

16
Dq. ~47!

The values for the remaining coefficients are listed in Ta
III.

The moments of the deviations at the random fixed po
are written as

^«&5
1

7
~523A2!Dq,

^«2&5
1

7
~42A2!Dq,

^«3&5
3

49
~95A22128!~Dq!2,

^«4&5
6

49
~924A2!~Dq!2. ~48!
TABLE III. Values of the weak-disorder coefficients for the model in Sec. IV.

p1 p2 c1 c2 f 1 f 2 k a

3A2
4

21
A2

2
21

109A22144
32

27A2238
32

25218A2
16

1128A2
16

322A2
16

7A2210
64
0-5
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Performing a linear stability analysis about the pure fix
point we obtain

L1
(p)521~17A2224!Dq, ~49!

L2
(p)511~17A2224!Dq, ~50!

with a specific-heat exponent

ap5211
3

2

17A2224

ln 2
Dq, ~51!

while about the random fixed point we have

L1
(r )522

1

7
~92265A2!Dq, ~52!

L2
(r )512~17A2224!Dq, ~53!

with

a r5212
3

14

92265A2

ln 2
Dq. ~54!

These results show that once more disorder becomes
evant for Dq.0, but now we obtain a positive~and thus
physically acceptable! value of the second moment of th
deviations at the random fixed point. We also havea r
,ap . So, as in the fully disordered model (d150) studied
by Derrida and Gardner@9#, and in agreement with numerica
calculations@4#, the weak-disorder scheme predicts a~pertur-
bative! finite-disorder fixed point, with values of the critica
exponents continuously approaching those of the pure m
asDq→0.

V. AN ISING MODEL WITH CORRELATED DISORDER

The set of recursion relations given by Eqs.~25! to ~28!,
with a suitable redefinition of parameters, can also be use
analyze an Ising model on a more general diamond struc
with b52 bonds andl branches, and correlated disorder
ferromagnetic exchange interactions along the layers~see
Fig. 4!. For this structure we also haved2d151. While in
the Potts models we have a natural parameter,q, for varying
a, we now change the topology of the lattice, by varyingl, to
obtain the same effect.

FIG. 4. A diamond hierarchical lattice withb52 bonds andl
branches.
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Using the standard Ising Hamiltonian,

HI52(
( i , j )

Ji , js is j , ~55!

with s i561, and introducing the more convenient transm
sivity variablet i5tanhbJi , the decimation of the intermedi
ate spins leads to the recursion relation

t85Rl~ t1 ,t2!5tanh$ l tanh21~ t1t2!%. ~56!

As in Sec. III, we now writet85tc1« andt i5tc1« i , where

tc5Rl~ tc ,tc! ~57!

is the critical transmissivity of the uniform model. We the
perform quenched averages, and use the weak-disorde
sumption, to obtain Eqs.~25! to ~28!.

The critical parameters for relevance of disorder,l 0
51.449 76 . . . and tc( l 0)50.799 51 . . . , come from Eqs.
~57! and ~15!. The small parameterl can be chosen as

l5tc~ l !2tc~ l 0!5
dxc

dl U
l 0

~ l 2 l 0![
dxc

dl U
l 0

D l . ~58!

Again we usel as a convenient parameter for algebraic m
nipulations, althoughD l is the physically relevant variable
The Taylor coefficients in Eqs.~25! to ~28! are given byw
5A2/220.545 22l, m520.496 9820.654 22l, a
50.115 20, c521.649 03, k520.125 43, f 521.619 24,
and p520.109 53. We then calculate the leading values
the moments at the random fixed point,

^«&520.649 71D l ,

^«2&520.270 76D l ,

^«3&520.300 84~D l !2,

^«4&510.219 93~D l !2. ~59!

A linear stability analysis leads to the eigenvaluesL1
(p)

5A210.718 84D l and L2
(p)5111.016 59D l , for the pure

fixed point, and L1
(r )5A211.205 37D l and L2

(r )51
21.016 59D l , for the random fixed point. From these value
we see that disorder is relevant forD l .0, but we again have
^«2&,0 in this case.

We then obtain the specific heat critical exponents

ap521.071 6312.514 71D l ~60!

and

a r521.071 6315.563 79D l . ~61!

For D l ,0, which corresponds toa,21.071 63 . . . , the
pure fixed point is stable and the random model displays
same critical behavior as its pure counterpart. ForD l .0,
which corresponds toa.21.0713 . . . ~yielding againa r
.ap), we anticipate a novel class of~random! critical be-
0-6
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havior, but the fixed point must be nonperturbative, as s
gested by the nonphysical character of the weak-disorde
sults.

VI. CONCLUSIONS

We have used a weak-disorder scheme and real-s
renormalization-group techniques to look at the effects
correlated disorder on the critical behavior of someq-state
Potts models with correlated disordered ferromagnetic in
actions alongd1 out of d spatial dimensions. We have writte
exact recursion relations on diamond and necklace hierar
cal structures, which are equivalent to Migdal-Kadanoff a
proximations for the corresponding Bravais lattices.

The weak-disorder scheme leads to analytical results
truncating the recursion relations for the moments of the
tribution function. We first used scaling arguments to re
erive a general expression for the Harris criterion to ga
the relevance of disorder~and show that it is related to th
number of independent random variables in the unit cel
the lattice and the first derivative of the recursion relations
the pure fixed point!. We then performed a number of calc
lations to compare with numerical findings by Andelman a
Aharony.

For q-state Potts models on various hierarchical lattic
with ferromagnetic random exchange interactions correla
alongd151 out ofd52dimensions, we obtained a new~ran-
dom! fixed point forq larger than a characteristic valueq0,
where disorder becomes relevant. This fixed point, howe
is located in a nonphysical region of parameter space, wh
suggests that a nonperturbative~infinite-disorder! fixed point
must be present~as pointed out by the calculations of Ande
man and Aharony!. For aq-state Potts model on a diamon
lattice with d151 andd53, we obtained a physically ac
ceptable, finite-disorder fixed point, forq.q0, as in the fully
04612
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disordered model analyzed by Derrida and Gardner~al-
though in our case the usual expression of the Harris cr
rion is not fulfilled!. Also, we considered an Ising mode
(q52) on a diamond lattice withb52 bonds andl branches
~where l, instead ofq, is the control parameter!, which is
another example of ad2d151 system. Again, the weak
disorder expansion predicts a nonphysical random fi
point.

To summarize the results of this paper, we point out th
in the vicinity of the point where disorder becomes releva
the weak-disorder scheme always produces a perturba
random fixed point, but there are two distinct possibilitie
depending on the difference betweend andd1. ~i! If d2d1
51, the perturbative fixed point is characterized by a ne
tive variance, and is thus nonphysical, suggesting the e
tence of another, nonperturbative fixed point.~ii ! If d2d1
.1, the scheme predicts a physically acceptable perturba
fixed point. It should be mentioned that this same pictu
holds for fairly general hierarchical lattices, in particul
those with noniterating bonds, as considered by Griffiths a
Kauffman @12#. Furthermore, in the case of the quantu
Ising model with bond disorder, which corresponds to t
extreme-anisotropy limit of the two-dimensional McCoy-W
model (d2d151), Fisher@13# was able to obtain a~presum-
ably exact! fixed-point probability distribution with infinite
variance. It is certainly interesting to investigate wheth
similar conclusions still hold for other models~as the prob-
lem of directed polymers in random environments@5#! on
either hierarchical or Bravais lattices.
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