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Correlated disordered interactions on Potts models
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Using a weak-disorder scheme and real-space renormalization-group techniques, we obtain analytical results
for the critical behavior of varioug-state Potts models with correlated disordered exchange interactions along
d, of d spatial dimensions on hierarchid@ligdal-Kadanofj lattices. Our results indicate qualitative differ-
ences between the casgs d,;=1 (for which we find nonphysical random fixed points, suggesting the exis-
tence of nonperturbative fixed distributionsnd d—d;>1 (for which we do find acceptablperturbartive
random fixed points in agreement with previous numerical calculations by Andelman and Ahdrimys.
Rev. B31, 4305(1985]. We also rederive a criterion for relevance of correlated disorder, which generalizes
the usual Harris criterion.
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I. INTRODUCTION In the present paper, we use (perturbativé weak-
disorder[9,10] real-space RG scheme to analyze the critical
The effects of disorder on the critical properties of statis-behavior ofg-state Potts models with correlated disordered
tical models have been the subject of much work in the laséxchange interactions on various hierarchical lattices, whose
decades. In the context of random interactions, Hdrtls exact recursion relations are equivalent to those produced by
derived a heuristic criterion to gauge the relevance of uncorMigdal-Kadanoff approximations for Bravais lattices. Using
related disorder to the critical behavior, which is predicted tathis weak-disorder scheme, we obtain analytical results by
remain unchanged if the specific-heat exponemf the un-  truncating the recursion relations for the moments of the dis-
derlying pure system is negative.df>0, disorder becomes order distribution(which are supposed to remain sufficiently
relevant and, in the language of the renormalization groupmall under the RG iterationsAll calculations are per-
(RG), one expects a flow to a new fixed poicharacterized formed in the vicinity of¢=0, in a region where disorder is
by a nonzero-width fixed distribution of the random vari- relevant. Depending on the diference between the dimen-
ables. sionality of the systentd) and the number of dimensions in
It later became clear that the Harris criterion must be genwhich disorder is correlatedd(), we distinguish two possi-
eralized in a number of situatio2—6], since« is not al-  bilities: (i) For d—d;=1, the weak-disorder scheme pro-
ways identifiable with¢, the crossover exponent of the duces a nonphysical fixed-point probability distribution,
width of the distribution of the disorder variables. In particu- characterized by a negative variance, which suggests the ex-
lar, random variables correlated alodg of the d spatial istence of a nonperturbativé“infinite-disorder”) fixed-

dimensions give rise to the scaling relatidh4] point; (i) Ford—d;>1, the scheme yields a physically ac-
ceptable perturbative fixed-point distribution. Although
$p=a+d;v, 1) obtained by an alternative approach, the main results of this

paper are in agreement with the numerical findings of Andel-
where v is the correlation-length exponent of the pure sys-man and Aharony4].
tem. Using a real-space RG approach based on numerical The outline of the paper is as follows. We first rederive
calculations[7], Andelman and Aharony4] investigated Eq. (1), and obtain a criterion for relevance of correlated
various g-state Potts models with random exchange condisorder involving the number of independent random vari-
stants, finding qualitative differences between the cabkes ables in the unit cell of the lattice and the first derivative of
—d;>1 (which yields finite-temperature fixed distributions the recursion relations at the pure fixed point. This is done in
andd—d;=1 (which embodies the McCoy-Wu modg8] Sec. Il. In Sec. Ill, we considag-state Potts models on vari-
and yields an “infinite-disorder” zero-temperature fixed ous hierarchical lattices wittd—d;=1. Using a weak-
point). An intuitive illustration of the special role of theé  disorder scheme, we obtain a némindon) fixed point forq
—d;=1 case is that, for any infinitesimal concentration of larger than a characteristic valgg, where disorder becomes
zero bondgwith a suitable assignment of the random inter-relevant. As in a previous publicati¢a0], this fixed point is
actiong, the system would break into noninteracting ( located in a nonphysical region of the parameter space, sug-
—1)-dimensional structures, and the RG flows would be regesting that a nonperturbative fixed point must be present. In
directed to the pure fixed point of the corresponding systensec. IV we study a similar problem with,=1 andd=3. In
in d—1 dimensions. this case we obtain a physically acceptable, finite-disorder

fixed point, forq>q, as in the fully disordered model stud-

ied by Derrida and Gardndg®] (although in our case the

*Electronic address: ptmuzy@uol.com.br usual Harris criterion is not satisfiedn Sec. V, we consider
"Electronic address: apvieira@if.usp.br an Ising model ¢=2) on a diamond lattice with=2 bonds
*Electronic address: ssalinas@if.usp.br and| brancheqwherel, instead ofq, is the control param-
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eten, which constitutes another example ofla d,;=1 sys- He') IR
tem. As in Sec. Ill, weak disorder again predicts a nonphysi- A= p =2 @)
cal random fixed point. In the final section we give some (e) pure =1 O%i Xg
conclusions.
and
Il. CRITERION FOR RELEVANCE OF CORRELATED
DISORDER ¥(&'?) s dR| \?2 ®
Following Andelman and Aharony4], we consider a ’ (&%) oure | IXi
d-dimensional bond-disordered model in which the disorder
variables are correlated alorty spatial directions. We as- Assuming that, for all andj,
sume that, under renormalization with a length rescaling fac-
tor b, the model satisfies a recursion relation IR IR
R(X1,X, - .. Xp), connectingn=b% % independent(and x|l Tax| W ©
identically distributed random variables to a renormalized Hx .
variablex’. (In this paper, these variables are related to re-
duced exchange couplingDefining the deviations:;=x,  and invoking the usual scaling hypotheses
—Xc, Wherex.=R(X¢,X¢, - . - X¢) is the critical fixed point
of the pure system, we expaiitiin a Taylor series about, Ay=b" and Ap=AP=b™, (10
to write which define the thermal exponeyt and the crossover ex-
" IR 1M 2R ponent¢, we get
g/ =x'—X.= 2& 52 | EiET
Ll —1 Aol ¢yi=2y1—(d—dy). (12)
2
Then, using the hyperscaling relation
., w OR| 4R +”<9R IR
€ i axi xcaxj Xc8|8J et axi XCanan X08|818k o 222_ dinb , (12)
Yt In(nw)
+..., 3
we obtain
and similarly for the higher powers ef . Averaging over the
random variables we get dl d—d; d;
dp=a+ ” d a-l-ZE, (13
’ . IR 1 : 2 2
(e >_§1 a_xI 32 2 <8 )+ 2 X 0] (&) which clearly shows that the Harris criteriog € a>0) is
Xe Xe not satisfied in the presence of correlated disorder. fsig/

Fon (4) usually identified with the correlation-length exponenthis
last result is equivalent to Ed1). It also shows that, for
d,>0, the crossover expoent is larger thanwhich indi-

<8>2 cates that correlated disorder induces strorigeometrical

X fluctuations than uncorrelated disorder.

(5) The general criterion for relevance of disorderdis-0,
that is,

and corresponding expressions for the higher moments of the

deviations. Sincge) is a measure of the distance to the fixed d,

point, it plays the role of temperature. On the other hand, a>—25— . (14)

(2) is a measure of the strength of disorder. !

The critical behavior of the model is related to the eigen-g.q, Eqs.(7)—(9), this is equivalent to
values of the matrix

IR
i

2=, (

)<82> s

X |, X

nw?>1. (15)
a(g/r> 6
(%) ' © This last result was also derived in a different context by
Mukheriji and Bhattacharjegs] and generalizes a criterion
evaluated at the fixed point. It is clear that the set of recurpointed out by Derridat al. [3].
sion relations for the moments of the deviations always has a In the case of the fully disordered system analyzed by

rs—

pure fixed pointe)=(e?)=---=0. At that point, it can be Derrida and Gardnef9], for which d,=0, the requirement
shown[11] that M is a triangular matrix, and that its two in Eq. (14) turns out to be equivalent to the usual form of the
largest eigenvalues are given by Harris criterion @>0).
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] L (Migdal-Kadanofj recursion relations. In this section we
consider the following models.
(A) Random layered diamond lattice, Figa® whose

- . - . recursion relation is
"—R ( ) X1X2+q_l )2 (17)
X' =Rp(Xq{, %)= | —————
. . ARSI X+ X+ q—2
(a) (b) (B) Random branched diamond lattice, Figb)2 with re-
FIG. 1. () The diamond hierarchical latticevith b=2 andl  CUTSion relation
=2). (b) The necklace hierarchical latti¢evith b=2 andl=2). X§+ q-1 X§+ q-1
X' =Rg(X1,X2) = . (18
lIl. POTTS MODELS WITH CORRELATED DISORDER: 2X1+q—2/\2x,+q—-2

d—d,;=1 CASE _ _ _
(C) Random layered necklace lattice, Fidc2 with re-
The successive generations of a hierarchical lattice areyrsion relation

obtained by replacing an existing bond in the previous gen-

eration by a unit cell of new bonds in the next generation. In X2x2+q—1
Fig. 1(a), we show the first two stages of the construction of X' =Rc(Xq,Xp) = - (19
the simple diamond latticdwith b=2 bonds andl=2 X1t Xx3+0q—2

branches The necklace hierarchical lattice, wibh=2 bonds
andl=2 branches, is illustrated in Fig(d).

We now consider ag-state Potts model, given by the
Hamiltonian

(D) Random branched necklace lattice, Figd)2 with
recursion relation

Xax5+q—1

X'=RD(X1,X2):W-

(20

Hp=—2 380, o (16)
(L. . Notice that in all these models disorder is correlated along
only one spatial directiond;=1), while the effective di-
where the sum is over nearest-neighbor sites on a hierarchinension isd=2. According to Eq(14), we then expect dis-
cal lattice, the spin variables; assumeq values,d is the  order to be relevant fow> —2.
Kronecker delta symbol, and;;>0} is a set of independent We now write x’ =x.+¢’ and x;=x.+¢;, to perform
and identically distributed random variables. Instead of conTaylor series expansions about the critical point of the uni-
sidering a fully disordered arrangement of interactions, We&orm systems, given by.=R(X¢,Xc). For all of these mod-
look at correlated disorder, either along laysee Figs. @)  els, with n=2 independent values of the exchange param-
and 2c)] or along branchepsee Figs. &) and 2d)] of the  eters(along either layers or bongsit is straightforward to
hierarchical structure. write the recursion relation
Introducing the more convenient variabie=exp(BJ;),

wherep is the inverse absolute temperature, it is straightfor- &'=w(e;+e5)+ m(s§+ sg) + f(slg§+s§ez) +peqes
ward to decimate the internal degrees of freedom to obtain

Ji Ji
S I
(© (d) (e3)~(eM~\2, (23)

/i 7y I A and in general
! d (271 ~(e?)~\P, (24)
¥ N J I
where(- - -) is a quenched average ands a suitable small

parameter. Within this approximation, we can use [24) to
FIG. 2. Correlated distribution of random interactions on dia-Write recursion relations for the moments of the deviation, up
mond and necklace hierarchical lattices. to second order in,

+C8§8§+ k(s§+s§)+a(g‘1‘+s‘2‘), (21
@ (b)
wherew, m, p, f, ¢, k, and a are model-dependent Taylor
coefficients(that depend on the topology of the particular
models illustrated in Fig. 2; see Sec). |l
J The weak-disorder approximatidi®,10] consists in as-
suming that

(8)~(e%)~N\, (22)
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(e"y=2w(e)+ p<3)2+ 2m<82> + 2f<8><82> + C<82>2 TABLE |. Coefficients of the weak-disorder expansion for the
models in Fig. 2.

+2k(e3) +2a(e?), (25)

Coefficient Model(A) Model (B) Model (C) Model (D)

(e"?y=2we)2+ 2w (e?) + 4w(m+p){e){e?)

a —0.00926 0.00917 —0.92623 0.02894
+(2m2+ 4fw+ p?)(e2)2+ 4wy e3) c 0.08549  0.00016  1.38173  0.07163
k 0.04676  —0.01302 0.25648 —0.02801
2/ .4
*(4wk+2m%)(e”), (26) f ~0.05370  0.00608 -—0.33156 -—0.04706
(s’3>=3w(s)<82>+3(m+p)(82>2+w(s3>+3m(e4>, p 0.65117 0.23242 1.56929 0.53634
(27)
and 1
w= 5\/§+w1)\ and m=my+m\. (34)
(e"My=3w¥2)2+we%). (28
It ¢ that there is alw nonrandom fix (Ié is straightforward to calculatev;=0.133% ..., for the
oints €asy 1o see that there Is always a nonrando €Qiamond structures, anti;=0.3908 . . ., for thenecklace
point, structures. Also, we haveny=-0.1908... and m;
<8>:<82>=<83>:<84>:O, (29 =0.1986 ..., for model (A); my=0.0184 ... andm;
=0.0078..., formodel(B); my=—0.489% ... andm;
associated with the critical behavior of the pure model. As=1.2243 . .., for model (C); and my=0.027 1 ... and
we pointed out in the previous section, this fixed point be-m;=0.0202 . . ., for model (D). In order to obtain the re-

comes unstable with respect to disorder far’2-1. This can  maining coefficients, it is enough to keep the zeroth order
also be seen by an inspection of the asymptotic behavior derm in\ (see the values, up to five digits, in Table |
Eq. (26), which shows that, up to ordear, the renormalized We are finally prepared to obtain, up to lowest order in
second moment depends only ¢?), with the coefficient Aq, the nonzero values of the moments at the random fixed
2w?. Thus, we expect the onset of a random fixed point at @0int. By substituting the weak-disorder assumptions, Egs.
critical value g, of the number of Potts states. From the (22) and(23), into Egs.(25)—(28), and then imposing con-
expression sistency between equal powers/ff, we obtain the leading
terms for fixed values of the moments as listed in Table II.
Xe=R(X¢ Xc) (30 In order to perform a linear stability analysis about the

. ) ) fixed points, we have to calculate the eigenvaliigsto A,
for the pure fixed point, we can expregas a function ok, o the matrix

and, using the condition®®>= 1, determine the critical value

Xc(qgg). For both diamond structures displayed in Fig&) 2 e
and 2b), we have M,s= .
(&%)
a=(c—1)(x.~ 1), (3D)

As it should be anticipated from universality, it turns out that
andx.(qo)=2.1512 ... ,which leads ta,=0.537 2. . .. the eigenvaluegand so the critical exponentare the same

For both necklace structures in FiggcRand 2d), we have for models(A) to (D). We always have two eigenvaluesg
and A 4, whose absolute values are smaller than unity. About

q=(x.—1)(x5-1), (32)  the pure fixed point, we have
with x.(qo)=1.4662..., which also leads toq, AP =2+0.31018q, (35)
=0.5372.... Disorder is predicted to be relevant fqr
>do- AP =1+0.4386@q, (36)

We now introduce the small parameter
with a specific heat exponent

dx dx
A=Xc(0) _XC(QO)ZE (a- q0)=d—q Ag, (33 TABLE Il. Moments of the deviations defining the random fixed
%o 9o points of the models in Fig. 2 according to the weak-disorder ex-
pansion.

to investigate a-state Potts model in the immediate vicinity
of the characteristic valug,. It should be pointed out that,
as the symmetry of the order parameter is one of the factors

Moment Model(A) Model (B) Model (C) Model (D)

expected to determine the universality class of the modelge)/Aq —14.904 1.0208 —4.4401  0.34798
Aq is the appropriate parameter to consider. HoweNels  (s2)/Aq -16.170 —11.434 —1.8791 —2.6575
more convenient for the algebraic manipulations. From in<z3)/(Aq)2 14445 325.73 46.390 39.946

spection of Eqs(25—(28), we see that, up to first-order (z4y/(Aq)2 784.41 392.21 10.593 21.187
terms in\, coefficientsw andm are written as
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* Qo=4+2+2, and x.(qo)=1++/2. Performing again the
7 A weak-disorder expansidiand truncatiop and taking the av-
erage over the disorder variables, we obtain the set of recur-
, —_ |y sion relations
J3 J4 (e"Y=4W(e)+2(p1+2py){(e)2+4m(e?)+ 4(f,+2f,)(e)
~o ] X(£2)+2(c1+2¢,)(e2)2+4k(e3 +4a(e?), (42
FIG. 3. The hierarchical lattice with=3 andd,;=1 considered

i Seq 1v (8'%)=12W*(e)?+4wWX(&?) +8w(3m-+p;+2p,)(e)(e?)
+[12m%+ 8w(f,+2f,) +2(p2+2p3)](e2)?

ap,=—2+2.5314Nq. . o 4

+8wm(e®) + (8wk+4m-)(e*), (43

At the random fixed point we have 5 -~
("3 =9w(e)(e?)+3(3m+py+2p,y)(e?)2+w(e>)

A{D=2+0.836 7(Aq, (37) +3m(e?), (44)
Af)=1-0.4386@\q, (39 and
which lead to the exponent (&' =9wXe?)>+w(e"). (45)

It should be noted that, due to the smaller symmetry of the
lattice, we now have a larger set of coefficients. Also, notice

: that in this casey, is determined from the conditionwf
From Eq.(36), we see that disorder becomes relevant for: 1. About the critical valugy, and to leading order ing,

Aqg>0. Thus, as shown in Table I, the weak-disorder expan-
sion gives negativéand thus nonphysicalalues of the sec- we have
ond moment at the random fixed point for mod@s to (D). 1 17\/5_ 24
This suggests that the random fixed point in these systems w=—-+———Aq
(for which d—d;=1) is nonperturbative, in agreement with 2 4
numerical calculationg4] that predict an infinite-disorder an
fixed point. Another odd feature of the weak-disorder results
is that the predicted value of the specific-heat exponent in the _ _
presence of disorderef) is larger than the corresponding = V2-2 + 133-94/2
quantity (ap) for the pure model, in disagreement with the
general belief that disorder should weaken the transition.

a,=—2+6.82843q. (39)

(46)

The values for the remaining coefficients are listed in Table

1.

IV. APOTTS MODEL WITH CORRELATED DISORDER: The moments of the deviations at the random fixed point
d—d;>1 CASE are written as

In order to examine thd—d;>1 case, we now consider 1
a Potts model on a necklace hierarchical latfi¢keshown in (e)==(5-342)Aq,
Fig. 3, withd=3 andd;=1. The unit cell containsi=4 7
independent random variables and, in terms of the variables L
Xj=exp(BJ;), the recursion relation is given by (£2)= 7(4_ \/E)Aq,

X1 XoX3Xa+Qq—1

R(X1,X2,X3,X4) = . (40) 3
X1X2+X3X4+q_2 <83>:4—9(95\/§—128)(AQ)2,
Following the same steps as in Sec. lll, we have
6
A _ 2
4= (X~ 1)(:C—1), (41) (%)= 2509 42)(A0)?. (48

TABLE lll. Values of the weak-disorder coefficients for the model in Sec. IV.

P1 P2 Cy Cz fy f, k a
342 1 2 109y2—-144 27y2-38 25-18J2 11-8y2 3-2\2 7\2-10
4 - 1 32 32 16 16 16 64
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4 Using the standard Ising Hamiltonian,

H|:—(2) Ji,jG'iO'j. (55)
_ 1,)
with o;= =1, and introducing the more convenient transmis-
sivity variablet;=tanhpgJ;, the decimation of the intermedi-
® ate spins leads to the recursion relation

Y t'=R(t1,t,) =tankl tanh (t,t,)}. (56)

[ branches

As in Sec. Ill, we now writd’ =t.+ e andt;=t.+¢;, where
FIG. 4. A diamond hierarchical lattice with=2 bonds and ch® i~ e Ei

branches. te=R(t¢,tc) (57
Performing a linear stability analysis about the pure fixedis the critical transmissivity of the uniform model. We then
point we obtain perform quenched averages, and use the weak-disorder as-
sumption, to obtain Eq425) to (28).
(P) = _
AP =2+(17V2-24)Aq, (49) The critical parameters for relevance of disordgy,

(o) =1.449® ... andt.(lg)=0.7994 ..., come from Egs.
A3 :1+(17\/§_ 24)Aq, (50) (57) and(15). The small parametex can be chosen as

with a specific-heat exponent

N=te(1) —te(l )—dx° (I-1 =25 g (59)
3172-24 ¢ ST ’ o dl ’ :
ap=—1t5 g A (5D
Again we usex as a convenient parameter for algebraic ma-
while about the random fixed point we have nipulations, although\l is the physically relevant variable.
1 The Taylor coefficients in Eqg25) to (28) are given byw
A(lr)=2— ~ (92— 65\/§)Aq, (52) =\/§/2—0.545 24, m=—0.496 98- 0.654 24, a
7 =0.11520, c=—1.64903, k=—0.12543, f=—-1.619 24,
and p=—0.10953. We then calculate the leading values of
AP =1-(172-24)Aq, (53 the moments at the random fixed point,
with (e)=—0.6497AAl,
3 92-65\2 (%)= —0.270 7\
ap=— —ﬂTAq (54)

. (e3)=—0.30084Al)?,
These results show that once more disorder becomes rel-

evant forAq>0, but now we obtain a positivéand thus (e%)=+0.219 93A1)2, (59)
physically acceptabjevalue of the second moment of the

deviations at the random fixed point. We also have A linear stability analysis leads to the eigenvalu&$®
<ap. So, as in the fully disordered modedy(=0) studied — 240718841 and AP =1+1.0165Ql, for the pure
by Derri_da and Gardnég], f_;md in agreement wit_h numerical fiyaq point, and A(lr): J2+1.205321 and A(Zr): 1
calculationd 4], the weak-disorder scheme predictpartur- 4 g165a\|, for the random fixed point. From these values,

bative finite-disorder fixed point, with values of the critical e see that disorder is relevant fdt>0, but we again have
exponents continuously approaching those of the pure mod<\é\f92><o in this case '

asAg—0. We then obtain the specific heat critical exponents
V. AN ISING MODEL WITH CORRELATED DISORDER ap=— 1.07163+2.514 7l (60)

The set of recursion relations given by E¢85) to (28),  gpq
with a suitable redefinition of parameters, can also be used to

analyze an Ising model on a more general diamond structure a,=—1.07163+5.563 7AI. (61)
with b=2 bonds and branches, and correlated disordered
ferromagnetic exchange interactions along the layeee For Al<0, which corresponds tae<—1.071@..., the

Fig. 4). For this structure we also have-d;=1. While in  pure fixed point is stable and the random model displays the
the Potts models we have a natural parameeior varying  same critical behavior as its pure counterpart. Bér-0,
a, we now change the topology of the lattice, by varyingp ~ which corresponds tax>—1.0713 ... (yielding againa,
obtain the same effect. >ap), we anticipate a novel class @fandom critical be-
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havior, but the fixed point must be nonperturbative, as sugdisordered model analyzed by Derrida and Gard(eds
gested by the nonphysical character of the weak-disorder réhough in our case the usual expression of the Harris crite-
sults. rion is not fulfilled. Also, we considered an Ising model
(g=2) on a diamond lattice witb=2 bonds and branches
VI. CONCLUSIONS (wherel, instead ofqg, is the control parametgrwhich is

another example of @—d;=1 system. Again, the weak-

We have used a weak-disorder scheme and real-spaggsorder expansion predicts a nonphysical random fixed
renormalization-group techniques to look at the effects Ofpoint.
correlated disorder on the critical behavior of somistate To summarize the results of this paper, we point out that
Potts models with correlated disordered ferromagnetic intery, the vicinity of the point where disorder becomes relevant
actions alongnll out ofd spatial_dimensions. We have V\_/ritten the weak-disorder scheme always produces a perturbative
exact recursion relations on diamond and necklace hierarchizndom fixed point, but there are two distinct possibilities
cal structures, which are equivalent to Migdal-Kadanoff ap-depending on the difference betwegrandd. (i) If d—d,
proximations for the corresponding Bravais lattices. =1, the perturbative fixed point is characterized by a nega-

Thelweak-d|sorde'r schem_e leads to analytical results _bﬁve variance, and is thus nonphysical, suggesting the exis-
truncating the recursion relations for the moments of the disgance of another nonperturbative fixed poifit) If d—d,
tribution function. We first used scaling arguments to red-~. 1 he scheme predicts a physically acceptable perturbative
erive a general expression for the Harris criterion t0 gauggiyeq point. It should be mentioned that this same picture
the relevance of disordeand show that it is related to the 1545 for fairly general hierarchical lattices, in particular

number of independent random variables in the unit cell o qse with noniterating bonds, as considered by Griffiths and
the lattice and the first derivative of the recursion relations ak aufiman [12]. Furthermore, in the case of the quantum

the pure fixed point We then performed a number of calcu- \ging model with bond disorder, which corresponds to the
lations to compare with numerical findings by Andelman a”dextreme—anisotropy limit of the two-dimensional McCoy-Wu
Aharony. , , , . _model d—d;=1), Fishel{13] was able to obtain gpresum-
_For g-state Potts models on various hierarchical latticesyp\, exact fixed-point probability distribution with infinite
with ferromagnetic random exchange interactions correlate(fariance. It is certainly interesting to investigate whether

alongd, =1 out ofd=2dimensions, we obtained a né@n-  gimijar conclusions still hold for other modefas the prob-
dom) f|x¢d point forq larger than a ch'arallcterlstlc': valgg, lem of directed polymers in random environmef) on
where disorder becomes relevant. This fixed point, howevekiiner hierarchical or Bravais lattices.

is located in a nonphysical region of parameter space, which
suggests that a nonperturbatiefinite-disordey fixed point
must be preserias pointed out by the calculations of Andel-
man and Aharony For ag-state Potts model on a diamond
lattice with d;=1 andd=3, we obtained a physically ac- This work was partially financed by the Brazilian agen-
ceptable, finite-disorder fixed point, fqe>qg, as in the fully  cies CNPg and Fapesp.
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