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Upper bound for the time derivative of entropy for nonequilibrium stochastic processes
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We have shown how the intrinsic properties of a noise process can set an upper bound for the time derivative
of entropy in a nonequilibrium system. The interplay of dissipation and the properties of noise processes
driving the dynamical systems in presence and absence of external forces, reveals some interesting extremal
nature of the upper bound.
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I. INTRODUCTION

A consequence of the second law of thermodynamic
that the rate of change of entropy with time for a noneq
librium stochastic process is always positive. While in tra
tional classical thermodynamics, the specific nature of a
chastic process is irrelevant, this may play an important r
in understanding the connection between the phase spa
a dynamical system and the related thermodynamically
spired quantities such as entropy production, flux, etc. T
relationship has recently been explored by a number of
thors@1–13#. The object of the present paper is to addres
related issue.

In what follows we shall be concerned with the dissip
tive dynamical systems that are thermodynamically op
@14# in the sense that they can be described by classical
chastic processes with the help of the standard Lang
equations. When a dynamical system is driven by a no
process, e.g, color@15# or cross-correlated processes@16,17#,
the nature of the noise processes may influence the dyn
cal system through the appropriate modification of the ph
space structure of the overall system. In view of the imm
diate connection between information entropy and proba
ity distribution function of the phase space variables, it
worthwhile to enquire about the imprints of the nature
noise on entropy. Our specific aim in this paper is to sh
how the properties of the noise processes can set an u
bound on the rate of entropy change in a nonequlibrium s
tem. By directly extending our earlier treatment on a rela
problem @11# we have examined some interesting extrem
properties of this bound.

The outline of the paper is as follows: In Sec. II we i
troduce the Fokker-Planck description of a dynamical sys
driven by two different kinds of stochastic processes~e.g,
color and cross correlated! and an upper bound for the rate
entropy change based on this formulation. We illustrate
result in Sec. III for the two specific cases. The paper
concluded in Sec. IV.

II. THE FOKKER-PLANCK DESCRIPTION OF NOISE
PROCESSES AND UPPER BOUND FOR THE RATE

OF ENTROPY CHANGE

We consider a dynamical system driven by the exter
Ornstein-Uhlenbeck noise processes. The relevant Lang
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equations of motion can be written as

ẋi5Fi
0~$xi%!1h i , i 51, . . . ,N, ~1!

whereN is the dimension of the phase space.Fi
0(x) corre-

sponds to the dissipative term as well as the external app
deterministic force, if any. The second termh i in Eq. ~1!
refers to an external, Gaussian, color noise for thei th com-
ponent ofx.

The Fokker-Planck equation corresponding to Lange
Eq. ~1! in the extended phase space can be written as@for
details, see Ref.@11##

]r~X,t !

]t
52(

i 51

2N
]

]Xi
~Fir!1(

i 51

2N

Di

]2r

]Xi
2

, ~2!

where

Xi5H xi for i 51, . . . ,N

h i for i 5N11, . . . ,2N,

Fi and Di are drift and diffusion coefficients, respectivel
and have their usual significance as discussed in Ref.@11#.
r(X,t) is the extended phase space probability distribut
function.

As a second example we consider a dynamical sys
driven by both additive and multiplicative noise processesh i
andz i , respectively. The Langevin equation for this proce
in general, can be written as

Ẋi5Li~$Xi%,t !1gi~Xi !z i1h i , i 51, . . . ,N, ~3!

whereLi contains the dissipative term as well as the exter
applied deterministic force, if any.gi(Xi) is the coupling
between the system and the multiplicative processesz i , z i ,
andh i are white, Gaussian noise processes with the follo
ing correlation between them:

^z i~ t !h j~ t8!&5^z i~ t8!h j~ t !&52l i jADi j8 a i j d~ t2t8!d i j ,

~4!

whereDi j8 anda i j correspond to the strength of multiplica
tive and additive noises, respectively andl represents the
cross correlation between them with the limit 0<l<1.

The Fokker-Planck equation corresponding to Lange
Eq. ~3! can be written as
©2002 The American Physical Society18-1
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]r~X,t !

]t
52(

i 51

N
]

]Xi
~Fir!1(

i 51

N

Di

]2r

]Xi
2

. ~5!

Again Fi and Di are drift and diffusion coefficient, re
spectively, and have same significance as in the Eqs.~11!–
~13! of Ref. @11#.

The Fokker-Planck Eqs.~2! or ~5! can be rearranged int
the general form of continuity equation

]r~X,t !

]t
52“X• j ~6!

where j denotes the current and“X term the phase spac
divergence. Thei th component ofj can be written as

j i5Fir2Di

]r

]Xi
. ~7!

Using Eq.~6! we are now in a position to define the upp
bound for the rate of evolution of entropy. In the microscop
picture, the Shannon form of the entropy is connected to
probability density functionr(X,t) as

S52E dXr~X,t !ln r~X,t !. ~8!

The time evolution equation for entropy can then be w
ten as

dS

dt
5E dX“X• j ln r, ~9!

where Eq.~6! is used.
Integrating Eq.~9! by parts, one obtains

dS

dt
52E dX

1

r
j •“Xr, ~10!

where we have used following boundary conditions@6#:

j uboundary50 ~11!

and

j ln ruboundary50. ~12!

In the next step an application of the Schwartz inequa
u*dXghu2<*dXugu2*dXuhu2 to the integral~10! where g
andh can be appropriately identified yields an upper bou
for the rate of entropy change

dS

dt
<UB~ t !,

UB~ t !5S E dX
j 2

r D 1/2S E dX
~“Xr!2

r D 1/2

. ~13!

It is important to note that the second integral is same
the trace of Fisher information matrix@8# and this inequality
is valid if and only if j /Ar is not a constant multiple o
04611
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(“Xr)/Ar. To find the explicit time dependence of the upp
bound we work out simple examples for each of the no
processes in the following section.

III. APPLICATIONS

A. The upper bound for a dynamical system driven
by an external color noise

As a simple illustration, we consider a Langevin equati
of motion for a dissipative dynamical system driven by
external, Gaussian Ornstein-Uhlenbeck noiseh1,

Ẋ152gX11 f c1h1 . ~14!

The noise correlation ofh1 is given by

^h1~ t !h1~ t8!&5
D0

t
expS 2

ut2t8u
t D , ~15!

whereg in Eq. ~14! is the dissipative parameter andf c is a
constant external applied force term that is used to iden
specific interplay betweeng andt.

For the Langevin Eq.~14! the Fokker-Planck Eq.~2! be-
comes~see Ref.@11#!

]r

]t
5g

]X1r

]X1
2 f c

]r

]X1
2X2

]r

]X1
1

1

t

]X2r

]X2
1

D0

t2

]2r

]X2
2

,

~16!

whereX25h1.
We now use the following transformation in the Eq.~16!:

U5aX11X2 , ~17!

wherea is a constant to be determined.
Then Eq.~16! reduces into the following one-dimension

form:

]r~U,t !

]t
5

]

]U
~GU !r2Fu

]r

]U
1Ds

]2r

]U2
, ~18!

where

GU5gaX12aX21
X2

t
, Fu5a fc and Ds5

D0

t2
.

~19!

Here G is again a constant to be determined. Using E
~17! in Eq. ~19! and comparing the coefficients ofX1 andX2
we find

G5g and a5
12gt

t
. ~20!

We then search for the Green’s function or condition
probability solution for the system atU at time t for the
initial condition given by
8-2
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r~U,t50!5 lim
e→`

e

p
exp@2e~U2U8!2#. ~21!

We now look for a solution of the Eq.~18! of the form

r~U,tuU8,0!5exp@G~ t !#, ~22!

where

G~ t !52
1

s~ t !
@U2b~ t !#21 ln n~ t !. ~23!

We will see that by suitable choice ofb(t), s(t), n(t) we
can solve Eq.~18! subject to the initial condition,

r~U,0uU8,0!5 lim
e→`

e

p
exp@2e~U2U8!2#. ~24!

Comparison of this with Eq.~22! andG(0) shows that

s~0!5
1

e
, b~0!5U8, n~0!5

e

p
. ~25!

If we put Eq.~22! in Eq. ~18! and equate the coefficient
of equal powers ofU we obtain after some algebra the fo
lowing set of equations:

ṡ~ t !522Gs~ t !14Ds , ~26!
.,

t
o
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y

r
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ḃ~ t !52b~ t !1Fu , ~27!

1

n~ t !
ṅ~ t !52

1

2s~ t !
ṡ~ t !. ~28!

The relevant solutions ofs(t) and b(t) for the present
problem that satisfy the initial conditions as stated earlier
given by

s~ t !5
2Ds

G
@12exp~22Gt !#1s~0!exp~22Gt ! ~29!

and

b~ t !5
Fu

G
@12exp~2Gt !#1b~0!exp~2Gt !. ~30!

Now making use of Eqs.~22!, ~29!, and~30! in Eq. ~13!
we finally obtain explicit time dependence of the upp
boundUB(t) for the rate of entropy change as

dS

dt
<UB~ t !,

where
UB~ t !5
~2b2G2s24bGFus12Fu

2s1G2s214Ds
224DsGs!1//2

s
. ~31!
the

-

py
We now examine specifically the long time limit, i.e
t→` of the above result~31!. As t→` Eqs. ~29! and ~30!
reduce to

s~`!5
2Ds

G
and b~`!5

Fu

G
. ~32!

It is easy to check that ast→` the numerator of the righ
hand side of Eq.~31! vanishes both in presence or absence
Fu . Therefore we obtain the equation

dS

dt
50. ~33!

This equality holds since in the long time limitj 50 @see
Eq. ~18!#. At any other time the time dependence of t
upper boundUB for the rate of entropy change is explicitl
shown in Fig. 1. We choose the initial conditionss(0)50,
b(0)51.0 and parameter valuesD051.0, f c51.0, g51.0,
and t51.0. Figure 1 shows that except for an initial sho
period UB(t) decreases almost exponentially with time.
absence off c the time dependence ofUB follows a similar
pattern. In Fig. 2~a! and 2~b! we plot UB at t55 vs correla-
tion time t in absence and presence of the external forc
f

t

g

f c . As expectedUB increases monotonically witht @in Fig.
2~a!#, which is a clear signature of the persistence of
nonequilibrium situation in contrast to the case in Fig. 2~b!
where the interplay oft with external forcingf c results in a
minimum inUB . The result of Fig. 2~b! is qualitatively same
to that of the Fig. 1 of Ref.@11# where only entropy produc

FIG. 1. Plot of upper bound for the time derivative of entro
ln UB(t) vs time t for the Eq.~31! using g51.0, f c51.0, D051,
t51.0, b(0)51.0, ands(0)50.0 ~units are arbitrary!.
8-3
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tion in the stationary state is considered. In the present c
text, however, the upper bound of the sum of entropy p
duction and entropy flux@11# at any arbitrary time is
considered. The relation between entropy flux (EF) and en-
tropy production (EP) in the long time limit for the presen
model @11# is

EP52EF5
~12gt!2f c

2

D0
. ~34!

Using above equation in Eq.~31! at time t→` we have

UB5@2gEP12gEF#1/250. ~35!

Since near equilibriumEP approaches2EF the upper
bound of time derivative of entropy as shown in Fig. 2~b!
mimics the result of Fig. 1 of Ref.@11#.

In Figs. 3~a! and 3~b! we plot the variation ofUB ~at t
55.0) vs dissipative constantg in absence@Fig. 3~a!# and
presence@Fig. 3~b!# of the external forcef c . While an in-
crease ing facilitates the approach to stationarity as evide
from the monotonic decrease of the bound in Fig. 3~a!, its
effect becomes more interesting when the externalf c is
switched on@Fig. 3~b!#. One observes that the bound pass
first through minimum followed by a maximum to sett
down at the vanishing level for the large values of dissi

FIG. 2. ~a! Plot of UB vs correlation timet at t55.0 for the Eq.
~31! using f c50.0 and values of other parameters same as in Fi
~units are arbitrary!. ~b! Same as in Fig. 2~a! but for f c51.0 ~units
are arbitrary!.
04611
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tion. It is thus apparent that in presence of the external c
straint the properties of the noise processes and the dyn
cal characteristics of the system play an important part
the upper bound for the rate of entropy change.

B. The upper bound in a cross-correlated noise-driven system

We now turn to the second case where a simple diss
tive system is driven by both additive and multiplicativ
noises,

Ẋ152gX12z1X11h1 . ~36!

Equation~5! for this system reduces to~for details, see Ref.
@11#!

]r~X1 ,t !

]t
52

]~F1r!

]X1
1D1

]2r

]X1
2

, ~37!

where the drift term is

F152~g12D118 2n!X11 l ~38!

with

l 5~22n!l11AD118 a11, ~39!

and

1

FIG. 3. Plot ofUB vs dissipative constantg at t55.0 for the Eq.
~31! using t51.0 and values of other parameters same as in
2~a! ~units are arbitrary!. ~b! Same as in~a! but for f c51.0 ~units
are arbitrary!.
8-4
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D15
@a11g

21~22n!D118 a11$~22n!D118 12g22gl11
2 2l11

2 ~22n!D118 %#

G82
, ~40!
e
n

ated
pper
where

G85g12D118 2n. ~41!

Here D118 and a11 are the multiplicative and additive nois
strength, respectively.l11 is the cross correlation betwee
the noise processes.n51 stands for the Startonovich andn
50 for the Ito convention, respectively.

The Eq.~37! is very much similar to Eq.~18!. Hence, the
-
th

s

th

e
u

e
n
a
s
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upper bound for the rate of entropy change can be calcul
as in the previous case and the final expression for the u
boundUB is given by

dS

dt
<UB~ t !,

where
UB~ t !5
~2b1

2G82s124b1G8ls112l 2s11G82s1
214D1

224D1G8s1!1/2

s1
. ~42!
ss-
own

an
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Here the time evolution ofs1(t) andb1(t) can be written as

s1~ t !5
2D1

G8
@12exp~22G8t !#1s1~0!exp~22G8t !

~43!

and

b1~ t !5
l

G8
@12exp~2G8t !#1b1~0!exp~2G8t !. ~44!

The initial conditions fors1(0) andb1(0) can be chosen
as in Eq.~25!. l, D1, and G8 are determined by Eqs.~39!,
~40!, and ~41!. Again it is easy to check that for the corre
lated noise process under stationary condition we obtain
usual equality

dS

dt
50. ~45!

The time dependence ofUB for a correlated noise proces
@we fix the parameter values asg51.0,D1151.0, l1150.5,
a1151.0 and the initial conditionss1(0)50, b1(0)50# is
more or less same as that of Fig. 1. In Fig. 4 we exhibit
variation of UB ~at t55.0) with the strength of correlation
l11. It is interesting to note that although both multiplicativ
and additive noises are independently and instantaneo
correlated their mutual strength of correlationl11 drives the
system away from stationarity more strongly@as compared to
the case corresponding to the variation of correlation timt
in Fig. 2~b!#. No minimum, however, is obtained. We me
tion, in passing, that since the models considered here
linear and are exactly solvable by Green’s function of Gau
ian form the computed upper bound is an exact one.
e

e

sly

re
s-

IV. CONCLUSIONS

Based on Fokker-Planck description of color and cro
correlated noise-driven dynamical systems we have sh
how the intrinsic properties of a noise process can set
upper bound for the rate of entropy change in a nonequi
rium system. Since the dissipative forces tend to equilibr
the system while an increase in the noise correlation time
a color noise process or an increase in the strength of co
lation in cross-correlated noise processes acts in the opp
direction, an interplay of them makes the dynamical syst
exhibit interesting extremum properties of this upper bou
This is manifested in the maxima and minima of the bou
for the time derivative of Shanon entropy as a function of
strength of dissipation, correlation time, or strength of cor
lation in presence or absence of the external forces actin

FIG. 4. Plot ofUB vs noise correlation strengthl11 at t55.0 for
the Eq. ~42! using g51.0, D1151, a1151.0, b1(0)51.0, and
s1(0)50.0 ~units are arbitrary!.
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the dynamics. Since the color and cross-correlated noise
cesses occur in many situations in physics and chemistry
observation made in this paper, we hope, will be useful
understanding the close connection between irreversible t
modynamics and dynamical systems in many related iss
i,
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