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Upper bound for the time derivative of entropy for nonequilibrium stochastic processes
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We have shown how the intrinsic properties of a noise process can set an upper bound for the time derivative
of entropy in a nonequilibrium system. The interplay of dissipation and the properties of noise processes
driving the dynamical systems in presence and absence of external forces, reveals some interesting extremal
nature of the upper bound.
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I. INTRODUCTION equations of motion can be written as
A consequence of the second law of thermodynamics is x=FX{xhH+n, i=1,... N, 1)

that the rate of change of entropy with time for a nonequi-

librium stochastic process is always positive. While in tradi-whereN is the dimension of the phase spaB@(x) corre-
tional classical thermodynamics, the specific nature of a stosponds to the dissipative term as well as the external applied
chastic process is irrelevant, this may play an important roleleterministic force, if any. The second term in Eq. (1)

in understanding the connection between the phase space reffers to an external, Gaussian, color noise forithecom-

a dynamical system and the related thermodynamically inponent ofx.

spired quantities such as entropy production, flux, etc. The The Fokker-Planck equation corresponding to Langevin

relationship has recently been explored by a number of augq, (1) in the extended phase space can be writtefifars
thors[1-13]. The object of the present paper is to address Yetails, see Ref11]]

related issue.

In what follows we shall be concerned with the dissipa- ap(X,1) 2N 2N Pp
tive dynamical systems that are thermodynamically open = —(Fip)+2, Di—5, 2
[14] in the sense that they can be described by classical sto- at =1 9% =1 9X;

chastic processes with the help of the standard Langevin
equations. When a dynamical system is driven by a noisé&/here
process, e.g, coldi5] or cross-correlated procesgés,17], fori=1 N
the nature of the noise processes may influence the dynami- X = Xp fort=4,...,

cal system through the appropriate modification of the phase "l fori=N+1,... N,

space structure of the overall system. In view of the imme-

diate connection between information entropy and probabilF; and D; are drift and diffusion coefficients, respectively,
ity distribution function of the phase space variables, it isand have their usual significance as discussed in [Ré&f.
worthwhile to enquire about the imprints of the nature ofp(X,t) is the extended phase space probability distribution
noise on entropy. Our specific aim in this paper is to showfunction.

how the properties of the noise processes can set an upper As a second example we consider a dynamical system
bound on the rate of entropy change in a nonequlibrium sysdriven by both additive and multiplicative noise processes

tem. By directly extending our earlier treatment on a relatechnd¢, , respectively. The Langevin equation for this process,
problem[11] we have examined some interesting extremaln general, can be written as

properties of this bound.

The outline of the paper is as follows: In Sec. Il we in- Xi=Li({Xh)+a (XD &+ 7, i=1,... N, 3)
troduce the Fokker-Planck description of a dynamical system
driven by two different kinds of stochastic processes),  whereL; contains the dissipative term as well as the external
color and cross correlatgdnd an upper bound for the rate of applied deterministic force, if anyg;(X;) is the coupling
entropy change based on this formulation. We illustrate théyetween the system and the multiplicative procegses; ,
result in Sec. Il for the two specific cases. The paper isand 7; are white, Gaussian noise processes with the follow-

concluded in Sec. IV. ing correlation between them:
Il. THE FOKKER-PLANCK DESCRIPTION OF NOISE (GO =(L(E) (D)) =2\ ,/Di/jaij s(t—t") sy,
PROCESSES AND UPPER BOUND FOR THE RATE
OF ENTROPY CHANGE (4)

We consider a dynamical system driven by the externaWhereDi’j and «;; correspond to the strength of multiplica-
Ornstein-Uhlenbeck noise processes. The relevant Langeviive and additive noises, respectively andrepresents the
cross correlation between them with the limi@ <1.
The Fokker-Planck equation corresponding to Langevin
*Email: pcbcb@yahoo.com Eq. (3) can be written as
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Ip(XH)

o (5

—(Fip)+ 2 D, —2.

107X

Again F; and D; are drift and diffusion coefficient, re-
spectively, and have same significance as in the BEd3-—
(13) of Ref.[11].

The Fokker-Planck Egs$2) or (5) can be rearranged into
the general form of continuity equation

dp(X,1)
at

(6)

x")

wherej denotes the current andy term the phase space
divergence. Théth component of can be written as

Ji=Fip—D; (7)

'ax

Using Eq.(6) we are now in a position to define the upper
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(Vxp)//p. To find the explicit time dependence of the upper
bound we work out simple examples for each of the noise
processes in the following section.

Ill. APPLICATIONS

A. The upper bound for a dynamical system driven
by an external color noise

As a simple illustration, we consider a Langevin equation
of motion for a dissipative dynamical system driven by an
external, Gaussian Ornstein-Uhlenbeck najge

Xi= =YX+t p;. (14

The noise correlation of; is given by
=2 -t 15
(m(t)m(t))=—exp ———], (15

bound for the rate of evolution of entropy. In the microscopicwhere y in Eq. (14) is the dissipative parameter afigis a
picture, the Shannon form of the entropy is connected to theonstant external applied force term that is used to identify

probability density functiorp(X,t) as

—f dXp(X,t)Inp(X,t). (8)

The time evolution equation for entropy can then be writ-

ten as
T =f dXVy-jInp, 9
where Eq.(6) is used.
Integrating Eq.(9) by parts, one obtains
ds 1
g f dX- J Vxp, (10)
where we have used following boundary conditi¢f
jlboundary=0 (11
and
i Inplyoundary=0. (12

In the next step an application of the Schwartz inequality

|fdXgh?<[dX|g|?fdX|h|? to the integral(10) where g

andh can be appropriately identified yields an upper bound

for the rate of entropy change

S<U
T (1),

o[l o

2

1/2
e

specific interplay between and 7.
For the Langevin Eq(14) the Fokker-Planck E¢2) be-
comes(see Ref[11])

1 9Xop D0 (92

T axZ T l?XZ
(16)

gt Y aX,

ap
29X,

ap
€oX,

whereX,= 7.
We now use the following transformation in the Ej6):
U= aXl + X2 y (17)
wherea is a constant to be determined.

Then Eq.(16) reduces into the following one-dimensional
form:

dp(U.1) _ dp 7p
- (FU)p Fuog + D—auz, (18)
where
X 0
2

FU=yaX;—aX;+—, F,=af. and Dg=—

T T
(19

HereT is again a constant to be determined. Using Eq.
(17) in Eq. (19) and comparing the coefficients ¥f andX,
we find

1—vyr

I'=vy and a= (20

T

It is important to note that the second integral is same as We then search for the Green’s function or conditional
the trace of Fisher information matri8] and this inequality  probability solution for the system df at timet for the
is valid if and only if j/\/p is not a constant multiple of initial condition given by
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p(U,t=0)= lim %exp{—e(U—U')z]. 1)

€—®

We now look for a solution of the Eq18) of the form

p(U,tjJU’,00=exd G(t)], (22
where
1
G(t)=—m[u—,8(t)]2+ln v(t). (23

We will see that by suitable choice gft), o(t), v(t) we
can solve Eq(18) subject to the initial condition,

p(U,0/U",0)= lim %exp:—e(U—U’)z].

€— >

(24)

Comparison of this with Eq22) andG(0) shows that

1
o(0)==, B(0)=U", »(0)

(29

If we put Eq.(22) in Eq. (18) and equate the coefficients
of equal powers ofJ we obtain after some algebra the fol-

lowing set of equations:
o(t)=—2Ta(t)+4Dq, (26)

(28T 20— 4BI'Fyo+2F;0+T1%0?+ 4D~ 4Dl o)
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B(t)=—B(t)+F,, (27)
1 . _ .
mv(t)— - mﬂ'(t). (28)

The relevant solutions of(t) and B(t) for the present
problem that satisfy the initial conditions as stated earlier are
given by

cr(t)=%[1—exp(—21“t)]+cr(O)exp(—ZFt) (29
and
Fu
,B(t):?[1—exp(—Ft)]+/3(0)exp(—Ft). (30

Now making use of Eq922), (29), and(30) in Eq. (13
we finally obtain explicit time dependence of the upper
boundUg(t) for the rate of entropy change as

dS<U
T s(1),

where

Ug(t)=

We now examine specifically the long time limit, i.e.,
t—oo of the above resulf31). As t—o EQgs.(29) and (30)
reduce to

T

Ds

r

and B(»)= (32

o) =

? .

It is easy to check that ds—« the numerator of the right

hand side of Eq(31) vanishes both in presence or absence of

F.- Therefore we obtain the equation

ds

qi (33
This equality holds since in the long time linjit=0 [see
Eqg. (18)]. At any other time the time dependence of the
upper boundJy for the rate of entropy change is explicitly

shown in Fig. 1. We choose the initial condition$0)=0,
B(0)=1.0 and parameter valu&’=1.0, f.=1.0, y=1.0,
and 7=1.0. Figure 1 shows that except for an initial short
period Ug(t) decreases almost exponentially with time. In
absence of ; the time dependence &fg follows a similar
pattern. In Fig. 2a) and Zb) we plotUg att=5 vs correla-

(31)

g

f.. As expectedJg increases monotonically with [in Fig.
2(a)], which is a clear signature of the persistence of the
nonequilibrium situation in contrast to the case in Fih)2
where the interplay of with external forcingf. results in a
minimum inUg . The result of Fig. &) is qualitatively same

to that of the Fig. 1 of Refl11] where only entropy produc-

24

-4

FIG. 1. Plot of upper bound for the time derivative of entropy
In Ug(t) vs timet for the Eq.(31) using y=1.0, f;=1.0, D°=1,

tion time 7 in absence and presence of the external forcing=1.0, 8(0)=1.0, ando(0)=0.0 (units are arbitrary
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FIG. 3. Plot ofUg vs dissipative constant att=5.0 for the Eq.
{31 using 7=1.0 and values of other parameters same as in Fig.
2(a) (units are arbitrary (b) Same as in(@ but for f,=1.0 (units
are arbitrary.

FIG. 2. (a) Plot of Ug vs correlation timer att=5.0 for the Eq.
(31) usingf,=0.0 and values of other parameters same as in Fig.
(units are arbitrary (b) Same as in Fig. (@) but for f,=1.0 (units
are arbitrary.

tion in the stationary state is considered. In the present corfion- Itis thus apparent that in presence of the external con-
text, however, the upper bound of the sum of entropy Ioro_stramt the properties of the noise processes and the dynami-

duction and entropy flu{1l] at any arbitrary time is cal characteristics of the system play an important part for

considered. The relation between entropy flé) and en- the upper bound for the rate of entropy change.

tropy production Ep) in the long time limit for the present
model[11] is B. The upper bound in a cross-correlated noise-driven system

We now turn to the second case where a simple dissipa-

252
Eo—_ _a Y7) fc' (34 tive system is driven by both additive and multiplicative
P F DO noises,
Using above equation in E¢31) at timet—o we have Xy= = yXi= iaXat . (36)
Ug=[2yEp+2yEL]"?=0. (35) Equation(5) for this system reduces tdor details, see Ref.

[11))

Since near equilibriunEp approaches—Eg the upper

2
bound of time derivative of entropy as shown in Figb)2 Ip(X1.1) - _ d(F1p) +Dlﬁ_p (37)
mimics the result of Fig. 1 of Refl1]. ot dXq ax3’
In Figs. 3a) and 3b) we plot the variation olUg (at t
=5.0) vs dissipative constant in absencdFig. 3(@)] and  where the drift term is
presencegFig. 3(b)] of the external force,. While an in- Fi=—(y+2D}— v)X, 41 (39

crease iny facilitates the approach to stationarity as evident
from the monotonic decrease of the bound in Figp)3its :

. ) ) with
effect becomes more interesting when the exterhals
switched onFig. 3(b)]. One observes that the bound passes |=(2—v)\11VD a1y, (39)
first through minimum followed by a maximum to settle
down at the vanishing level for the large values of dissipa-and
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:[a1172+(2— v)Dyjaq{(2—v)
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Diy+2y—2y\—A(2-v)Diyt]

1

where
I'=vy+2Dy;—v. (41

Here D1, and a;; are the multiplicative and additive noise
strength, respectively\;; is the cross correlation between
the noise processes=1 stands for the Startonovich and
=0 for the Ito convention, respectively.

The Eq.(37) is very much similar to Eq(18). Hence, the

Ug(t)=

(28T "201— 4B N0+ 21201+ T 205+ 4D2— 4D T 04) 12

2 (40

upper bound for the rate of entropy change can be calculated
as in the previous case and the final expression for the upper
boundUg is given by

dS<U .
T s(1),

where

Here the time evolution of(t) andB4(t) can be written as

2D,
o1(t)= T [1-exp =2 ") [+ oy(O)exp—2I"D)
(43

and

I
Bi(t)= F[l—exp(—l“’t)]+,81(0)exp(—1“’t). (44)

The initial conditions foro;(0) andB4(0) can be chosen
as in Eq.(25). |, D,, andI'" are determined by Eq$39),
(40), and(41). Again it is easy to check that for the corre-

(42
01

IV. CONCLUSIONS

Based on Fokker-Planck description of color and cross-
correlated noise-driven dynamical systems we have shown
how the intrinsic properties of a noise process can set an
upper bound for the rate of entropy change in a nonequilib-
rium system. Since the dissipative forces tend to equilibrate
the system while an increase in the noise correlation time in
a color noise process or an increase in the strength of corre-
lation in cross-correlated noise processes acts in the opposite
direction, an interplay of them makes the dynamical system
exhibit interesting extremum properties of this upper bound.
This is manifested in the maxima and minima of the bound
for the time derivative of Shanon entropy as a function of the

lated noise process under stationary condition we obtain th&réngth of dissipation, correlation time, or strength of corre-

usual equality

OIS—O 45
The time dependence bf for a correlated noise process

[we fix the parameter values 3s=1.0D;=1.0, A1;=0.5,

a11=1.0 and the initial conditions;(0)=0, 8,(0)=0] is

more or less same as that of Fig. 1. In Fig. 4 we exhibit the =

variation of Ug (at t=5.0) with the strength of correlation
\11. Itis interesting to note that although both multiplicative

and additive noises are independently and instantaneously

correlated their mutual strength of correlatiog, drives the
system away from stationarity more stronf@s compared to
the case corresponding to the variation of correlation time
in Fig. 2(b)]. No minimum, however, is obtained. We men

lation in presence or absence of the external forces acting on

0.0124

0.010+

m

0.008+

0.0 0.2 0.4 0.6 0.8 1.0

A
11

tion, in passing, that since the models considered here are FIG. 4. Plot ofUg vs noise correlation strengihy; att=>5.0 for
linear and are exactly solvable by Green’s function of Gaussthe Eq. (42 using y=1.0, D;;=1, ay;=1.0, 8,(0)=1.0, and

ian form the computed upper bound is an exact one.

01(0)=0.0 (units are arbitrary
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the dynamics. Since the color and cross-correlated noise pro- ACKNOWLEDGMENTS
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