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Phase ordering with a global conservation law: Ostwald ripening and coalescence
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Globally conserved phase ordering dynamics is investigated in systems with short range correldtions at
=0. A Ginzburg-Landau equation with a global conservation law is employed as the phase field model. The
conditions are found under which the sharp-interface limit of this equation is reducible to the area-preserving
motion by curvature. Numerical simulations show that, for both critical and off-critical quench, the equal-time
pair correlation function exhibits dynamic scaling, and the characteristic coarsening lengtt @pey$’. For
the critical quench, our results are in excellent agreement with earlier results. For off-critical d@stefald
ripening we investigate the dynamics of the size distribution function of the minority phase domains. The
simulations show that, at large times, this distribution function has a self-similar form with growth exponent
1/2. The scaled distribution, however, strongly differs from the classical Wagner distribution. We attribute this
difference to coalescence of domains. A theory of Ostwald ripening is developed that takes into account binary
coalescence events. The theoretical scaled distribution function agrees well with that obtained in the

simulations.
DOI: 10.1103/PhysReVvE.65.046117 PACS nunider64.75+g, 05.70.Ln, 64.60.Cn
I. INTRODUCTION gated in the context of growth of small platinum particles

supported on alumina substrates in an oxidizing environment

Phase ordering is emergence of order from disordef8]. There are additional examples of cluster growth on sur-
through domain growth and coarsening. The standard settinfig@ces[9], where it was found possible to single out the
when phase ordering occurs is a temperature quench fromiaterface-controlled kinetic§10]. There is also strong evi-
high-temperature disordered phase into a two-phase or dence in favor of globally conserved interface-controlled
multiphase region. Phase ordering has been the subject tfinsport during the coarsening of clusters in granular pow-
extensive research during the last two decddgsAn im-  ders driven by a low-frequency electric fidlil,12.
portant simplifying assumption in phase ordering theory is Part of the theoretical importance of globally conserved
dynamic scale invariance. According to this assumption, thghase ordering lies in the fact that it enables an access to
coarsening system possesses, at late times, a single relevafitcritical quenches in the simpler model A dynamiegth
dynamic length scalé(t) (the characteristic domain size global conservation Thus, it allows one to determine which
that grows with time a(t)~t* [1]. It is by now well estab- characteristics of the system depend on the volionerea
lished that in systems with short range correlatians1/2  fractione and which do not.
for nonconservedmodel A dynamics, whilea=1/3 for lo- Dynamic renormalization group arguments show that glo-
cally conservedmodel B dynamics. bal conservation should not change the growth [|4@)]. This

There is, however, an important additional coarseningearly result was confirmed by particle simulations with short
mechanismyglobally conservecdhase ordering2—7]. Glo- range correlations in the initial conditions: for criticat (
bally conserved dynamics can be thought of as model A dy=1/2) [6,14] and for off-critical <1/2) [4] quench. Recent
namics constrained by global conservation of the order paphase field simulations of systems with long-rarigewer-
rameter: for example, Ising model with fixed magnetization.law) correlations in the initial conditions have also shown
This global conservation law is maintained by an externadynamic scale invariance with the same growth exporent
field (for example, a magnetic fieldvhich depends on time =1/2 [7]. Therefore,a=1/2 independently of. On the
but is uniform in space. The globally-conserved phase ordemther hand, the autocorrelation functip#,15 and persis-
ing is accessible in experiment. Consider the sublimationfence exponeritl5] were found to bes dependent.
deposition dynamics of a solid and its vapor in a small closed Globally conserved dynamics are related to a wide range
vessel kept at a constant temperature below the meltingf multiphase coarsening systems. Sire and Majunjdar
point. As the acoustic time scale in the gas phase is shoghowed that in the largg-limit the dynamics of they-state
compared to the coarsening time, the gas predsun@, con-  Potts model are equivalent to the dynamics of the globally
sequently, densityremain uniform in space, changing only conserved model with an area fractierss 1/q. The largeg
in time. This character of mass transport in the vapor phaskmit of the Potts model is of practical importance as it de-
makes the coarsening dynamics conserved globally rathescribes correctly some of the dynamic characteristics of dry
than locally. An important characteristic of globally con- soap frothd16] and of the coarsening of polycrystalline ma-
served dynamics is interface-controlled kinetics, in contrasterials[17].
to the bulk-diffusion-controlled kinetics typical for locally In the limit of a vanishing volume fraction of the minority
conserved systems. Interface-controlled kinetics was investphase the late stage of coarsening is describable by the mean-
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field theories of Ostwald ripening. Lifshitz and Slyozd8] length and for the effective magnetic field. The results of the
developed such a theory for the bulk-diffusion-controljed  phase field simulations for the critical queneh<0.50) and
locally conservegidynamics. They showed that the size dis- off-critical quench ¢€=0.25) are presented and analyzed in
tribution function of the minority domains approaches, atSec. lll. In Sec. IV, a theory of Ostwald ripening is devel-
large times, a self-similar form. Correspondingly, the averag@®ped. The theory leads to a nonlinear integrodifferential
size of the minority phase domains grows with time "R’é equation for the .Scaled distribution function. The SOlUFion Of
Following the seminal work by Lifshitz and Slyozditg],  this equation is in good agreement with the scaled size dis-
Wagner developed a similar mean-field theory for thetribution function fo_und in the phase field simulations. In
interface-controlled(globally conserved Ostwald ripening S€c. V, we summarize our results.
[19]. The Wagner’s theory yields a growth law/? for the
average domain size, and a differéhtoadey shape of the Il. PHASE FIELD MODEL AND SHARP-INTERFACE
scaled distribution function. We shall refer to this scaled dis- LIMIT
tribution function as the Wagner distribution. More recently,
it was shown that interface-controlled Ostwald ripening ap-
pears in the sharp-interface limit of scalar Ginzburg-Landa
equationgand its modificationswith a global conservation
law [2-5,20.
Although the simple theories of Lifshitz-Slyozov and F[u]:f
Wagner were developed more than 40 years ago, they are
still very useful in phase ordering theory. For example, Sire . . :
and Majumdarf4] employed the Wagner distribution to cal- and the dynamics follow a simple gradient descent,
culate the equal-time pair correlation function. Lee and SF
Rutenberd 15] used the two theories of Ostwald ripening for U= —p— = SV2u+u[u—ud—H(t)]. @)
calculating the autocorrelation exponent and persistence ex- u
ponent for the locally and globally conserved systems.
Many works were devoted to extensions of the Lifshitz-
Slyozov theory to finite volume fractions. Already Lifshitz

) _ _12\2 ;i ; R
and Slyozo\18] made an attempt to go beyond their simpleeter field, V(u) =(1/4)(1~u")" is a symmetric double-well

model and account for coalescence. Later it became cle 6cl)roten'ual,als the diffusion coefficienty is the characteristic

: . fate of relaxation of the field to its stable equilibrium val-
that, in the locally conserved systems, the dominant effect : ; . . :

: S . ues, andd is the dimension of space. The effective uniform
unaccounted for by the simple theory is interdomain correla-

tions, rather than coalescence. At small area fractions, th@agnetlc f|eIdH(_t) changes in time so as to impose the
relative role of correlations is of order*? [21], while the global conservation law,

relative role of coalescence is of order Therefore, an ac-

count of coalescence without a proper account of correlations (u(r,t))= L*df u(r,t)d% =const, 3

is an excess of accuracy.

The situation is quite different in globally conserved sys-\\here| is the system size and the integration is carried out
tems, and this fact has not been recognized until now. Corgyer the entire system. Integrating both sides of @yover

relations between neighboring domains aponentially e entire system and using E&) and the boundary condi-
small in this cas¢3,5]. Therefore, coalescence is expected Otions we obtain

give the dominant correction to the theory of Wagh#9].

We shall report numerical simulations that show a strong

effect of coalescence at moderate Specifically, we find H(t)=<U—U3>:|—7df [u(r,—u¥(r,t]der. (4
that, at large times, the size distribution function of the mi-

nority domains has a self-similar form with the “normal” Therefore, Eq(2) takes the form

growth exponent 1/2. The scaled distribution function, how-

Globally conserved phase ordering dynamics are describ-

ree energy functional has the Ginzburg-Landau form,

o
2—(Vu)2+V(u)+Hu ddr, (1)
m

Either no flux or periodic boundary conditions can be used.
In Egs.(1) and(2) u(r,t) is the coarse-grained order param-

ever, strongly differs from the Wagner distribution. We at- du=38V2u+pu(u—ud)—uu—ud), (5)
tribute this difference to coalescence and develop a theory of
Ostwald ripening that takes coalescence into account. a globally constrained Ginzburg-Landau equati@LE).

The outline of the rest of the paper is the following. In From now on we shall concentrate on the two-dimensional
Sec I, we briefly review the phase field model of globally case.
conserved phase ordering: a scalar Ginzburg-Landau equa- At late stages of the coarsening process, the system con-
tion with a global conservation law. The sharp-interfacesists of domains of “phase 1(whereu is close to—1) and
asymptotic limit of this equation is introduced and reduced,’phase 2" (whereu is close to 1) separated by domain walls.
in two dimensions(2D), to a simpler model of area- The domain walls can be treated as sharp interffg@g], as
preserving motion by curvature. The criteria for the validity their characteristic width = (8/x)? is much smaller than
of this reduction are obtained and presented in Appendixthe characteristic domain sizét) that grows with time. At
The model of area-preserving motion by curvature is used tthis stageH(t) is already smallH(t)<1, and slowly vary-
obtain dynamic scaling laws for the characteristic coarseningng in time. The phase field in the phases 1 and 2 is almost
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uniform and rapidly adjusting to the value &f(t), sou Dynamics(12) are known as area-preserving motion by cur-
=—1—H(t)/2 andu=1—H(t)/2 in the phases 1 and 2, vaturein 2D, and as volume-preserving motion by mean cur-
respectively. Under these conditions, the so called“sharpvature in 3D[3,5,24. Due to the presence of the nonlocal

interface theory” holds. The normal velocity of the interface term « this model is different from the Allen-Cahn equation

v, is given by[5] [25] v,= & k, which represents the sharp-interface limit for
1 nonconservedmodel A) dynamics[1].
vn(s,0) = k(s,1)+ (8 u) 2gH(D), (6) A simple example where the area-preserving dynamics

cannotbe used is the dynamics of a single circular domain of
the minority phase in a “sea” of the majority phagg 20].
Another example is the dynamics of a “donut.” a single
domain of the minority phase with an inclusion of a majority
I~l?nase domain26]. Therefore, the first question we need to
address concerns the general conditions under which the
AA(D) area-preserving dynamics, H32), represent an accurate ap-
Nt — et 1 proximation to the more general sharp-interface theory, Egs.
H(D) L2 [5x(s,t)+(2u) gH(D)]. @ (6) and (7). These conditions are derived in Appendix.
Now we employ the area-preserving model and do simple
Here «(s,t) is the interface curvature averaged over thedynamic scaling analysigin the rest of the paper we are
whole interface, using dimensionless variables and put «=1.) For critical
L quench we havél(t) =0 andk(s,t)=0 because of symme-
_ try between the two phasdwe neglect finite-size effedts
K(s,t)= A(t) fﬁ k(s,t)ds, ®) Therefore, the globally conserved dynamics for critical
guench aredentical to the nonconserve@nodel A) dynam-
andA (t)=4¢ ds s the total perimeter of the interface. Equa- ics. Using the Allen-Cahn equatian(s,t) = x(s,t), one ar-
tions (6) and (7) provide a general sharp-interface formula- rives at the well-known scaling law(t) ~t*2 [1].

wheresis a coordinate along the interfaog(s,t) is the local
curvature, andy= —3/,/2. A positivev,, corresponds to the
interface moving towards phase 1, while a positiveorre-

dynamics ofH(t) are described bj5]

tion for the GLE with a global conservation law. Turning to the off-critical quench, we notice that, under
Let us denote byA(t) the total area of phase 2, the scaling assumption, the interface velocity can be esti-
mated a® ,~dl/dt. Each of the two terms on the right-hand
_ 2 side of Eq.(12) is of order 1¥(t). Equating and integrating,
A(t)= d-r. ; . 12 ;
u(r,t)>0 we again obtainl (t)~t*< Therefore, global conservation

does not change the dynamic scaling &y area fraction.

Equations(6) and (7) can be used to calculate the rate of This result was previously obtained by dynamic renormaliza-
change ofA(t), tion group arguments applied to E(p) (with a Gaussian

white noise term[13], and by particle simulationst]. For

the off-critical dynamics of H(t) we have: [H(t)]

=|(k(s,t))g|~1N(t)~t~ 2
C) Though the dynamic exponent is independent of the area
) ) fraction, other characteristics can depend on it. In the follow-
Using Egs.(7) and (9) we obtain:H=4A/L?, which yields ing section we report numerical simulations that address

A(t)= 5£un(s,t)ds=A(t)[5K(s,t)+(5u)1’2gH(t)].

the global conservation law: area-fraction-dependent quantities.
L2H(t)
A(t) — —,—=const (10) IIl. NUMERICAL SIMULATIONS

We performed extensive simulations by directly solving

The second term in Eq10) corresponds to the bulk order Eq. (5) with initial conditions in the form of “white noise.”
parameteru being biased byH(t). One can use Eq(10) The simulations were done for two different values of the
instead of Eq(7) in the general sharp-interface formulation area fraction of the minority phase:=0.50, ande =0.25,
of the problem. corresponding to a critical and off-critical quench, respec-

In some important cases this formulation can be simplitively. In both cases the results were averaged over ten dif-
fied further[5,7,23. When the two terms on the right-hand ferent samples. Equatid) was discretized and solved on a
side of Eq.(9) approximately balance each other, 1024x 1024 domain, with mesh siz&x=Ay=1 and peri-
odic boundary conditions. The coarsening process was fol-
lowed up to a timet=3000. An explicit Euler integration
scheme was used to advance the solution in time, and the
Laplace operator was discretized by second-order central dif-
the area of each of the two phases remains constant. In thisrences. A time stejAt=0.1 was required for numerical

1/6 v
H(t)z——<—> k(s,1), (11
gl\u

case Eq(6) takes the form stability. The accuracy of the numerical scheme was moni-
tored by checking théapproximate conservation law(10)
Ua(S,t) =] k(s,t) — k(S,1)]. (12 of the general sharp-interface theory. It was found that this
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FIG. 3. Scaled correlation function obtained by numerical simu-
lations with the GLE subject to a global conservation law for times
t>15. The solid line i<C(x) for critical quench, and the dashed line
is C(x) for off-critical quench with area fractioa=0.25. The dot-

FIG. 1. Snapshots of globally conserved coarsening for criticakeq (dashed-dottedine represent€(x) obtained in particle simu-
quench. The upper row corresponds +05.2 (left) and 32.3right),  |ations of globally conservefB] (nonconservedi30]) dynamics for
the lower row tot=204.8(left) and 1305.5right). critical quench.

conservation law is obeyed with an accuracy better thaghology is that of Ostwald ripenin®7]: larger domains of
0.02% fort>4 and better than 0.008% for-30 in the criti-  the minority phase grow at the expense of smaller ones. As
cal quench case. In the off-critical quench the approximatéhe minority phase area fraction is not very small, binary
conservation law10) is obeyed with an accuracy better than (and even triplg coalescence events are clearly seen in Fig.
1% fort>30. To avoid any misunderstanding here and in the2. Overall, the coarsening morphologies resemble those ob-
following we notice that, in all cases, thetegrated order served for locally-conserved system: in numerical solutions
parameter{see Eq(3)] is conserved exactly by the numeri- of the Cahn-Hilliard equatiof28] and in particle simulations
cal scheme. [29]. An important difference is an apparent absence of cor-
It is convenient to introduce an auxiliary density field relations between neighboring domains in Fig. 2.
p(r,t)=(1/2)u(r,t)+1]. The minority phase is identified To analyze the coarsening dynamics, the following quan-
as the locus wherg(r,t)=1/2. Typical snapshots of the tities were sampled and averaged over the ten initial condi-
coarsening process are shown in Fig. 1 for the criticakions.
quench, and in Fig. 2 for the off-critical quench. For the (1) The area of phase 2.
critical quench the system consists of interpenetrating do- (2) The circularly averaged equal-time pair correlation
mains of the two phases. For the off-critical quench the morfunction,

(p(r' Dp(r' +1.0) = (p(r" 1)
(P?(r . 0)=(p(r')?

C(r,t)= (13

(3) The characteristic coarsening length sddlg, deter-
mined from the conditiorC(l,t)=1/2.

(4) The effective magnetic fielti (t) computed from Eq.
(4).

(5) The size distribution function of the minority phase
domains(for the off-critical quench

For critical quench we found that the area of the minority
phase is constant with an accuracy better than 0.03% at all
times. The situation is quite different for the off-critical
quench. Here there is a systematic trend in the area fraction
of the minority phase. Still, with time this quantity ap-
proaches a constant value. Deviations from this constant
value become less than 3% for-100. This approximate
area conservation plays a crucial role in the theory of Ost-

FIG. 2. Snapshots of globally conserved coarsening for off-wald ripening(see Sec. IV.

critical quench with area fraction=0.25. The upper row corre- Figure 3 shows, on a single graph, the scaling forms of
sponds ta=5.2 (left) and 32.3(right), the lower row tot=204.8  the correlation functior€(x), wherex=r/I(t), for the criti-
(left) and 1305.5right). cal and off-critical quench. Tht) dependence is presented
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FIG. 5. 1/H(t)| vs time for an off-critical quench with area
quench (circles, and off-critical quench with area fraction fractions=0.25a(cir(.:le9.The solid line is a corrected power-law fit
=0.25 (squares The two solid lines are corrected power-law fits :_L/|H_(t)|:?/j ct® with a=7.4, c=2.3, anda=0.51. The dotted
I(t)=lo+bt* with «=0.50, I,=0.5, andb=1.2 for the critical IN€ s 2.37% power law.

quench, anda=0.51, 1,=1.3, and b=0.9 for the off-critical

quench. The dotted line shows a put& power law. As we have shown, the scaled correlation function only
o ) ) ) weakly depends on the area fraction. A much more sensitive
in Fig. 4. A comparison of the scaling forni(x) with those  giagnostics of the off-critical quench dynamics is provided
obtained in particle simulations of globally conservi] .y the size distribution function of the minority phase do-
and nonconserve[B0] dynamics for critical quench is also \naing \We found that, at late times, this function exhibits

shown. The three curves for the critical quench almost coin- ; . ;
. o o ; dynamic scaling. Figure 6 shows the scaled fdpip,,, of the
cide. For off-critical quench, th€(x) curve is slightly dif- distribution function obtained in the simulations with the

ferent from the curves for the critical quench. A similar weak . : . X ;
dependence of the scaled correlation function on the areg'LE' The scaled variable on the horizontal axis of Fig. 6 is

fraction of the minority phase was observed in locally con-
served systemf28,29,31. A
Figure 4 shows corrected power-law fitét)=1,+bt* °-12-' 0.5 (I)w(g)

FIG. 4. Characteristic coarsening lengt¥s time for the critical

that yield «=0.50, 1,=0.5, andb=1.2 for the critical
qguench, andv=0.51,1,=1.3, andb= 0.9 for the off-critical 010 i i
quench. A pure'? power-law line serves as a reference for P
the expected late-time dynamic behavior. Therefd(e)
obeys the expectett’” dynamical scaling law, in agreement
with the predictions of the dynamic renormalization group
analysig 13] and area-preserving sharp-interface theory. The
difference in the values of the amplitudesgain indicates a - :
dependence on the minority phase area fraction. Py
The time history of JH(t)| for the off-critical quench is iy
presented in Fig. 5. The data is fitted by a corrected power [
law: 1/H(t)|=a+ct® with a=7.4, c=2.3, anda=0.51. 0.02: il
Also shown is a 2.8/? power law, serving as a reference to 1
the expected late-time dynamics. We conclude {i(t)| 0.00 i
~1t712 as predicted by the sharp-interface theory. The sig-
nificance of the value of the amplitudewill be discussed in f
Sec. IV in the context of our theory of Ostwald ripening with o ) .
coalescence. One can distinguish in Fig. 5 small “fluctua- FIG: 6. Scaled distribution function of domain siz€x(¢),
tions” of 1/|H(t)| around a smooth trenfiThis is in contrast  "/N€"€¢=R/1"" The diamonds represefity,q(£): the scaled dis-
to thel(t) dependence where no fluctuations are obse]vedmbunon obtained in the smulatlons W|_th the GLE for t|me§
To interpret these fluctuations we use EG) and (A5) to >120. The error bars shofiwice) the variance of the scaled dis-

. . . . tribution functions for 13 time moments in the interval ¥20
obtain: 1/H(t)[~A(t)/N(t). A(t) is a continuous function <2900. The dotted line is the Wagner distributidg,(£), Eq. (14),

of t, whereadN,(t) behaves discontinuously at the time mo- ¢y the same area fraction=0.25. In order to show it on the same
ments when domains disappear due to shrinking and mergingaph withd,,, we had to multiply it by 0.5. The dashed and solid
events. Thugi(t) serves as a “domain counter.” lines show the distributions(£) and ®,(&), respectively, pre-

For critical quench,H(t) exhibits very small irregular dicted by the theory of Ostwald ripening with coalescence, pre-
fluctuations around zero. The typical valuestbft) in this  sented in Sec. IV. These distributions represent the zero and first
case are of the order of 18, and we interpret these fluctua- iterations of the iteration procedufsee Sec. IV, Eq(44)] for 8
tions as finite-size effects. =0.93 that corresponds to=0.25.

008 i i

(&)

0.06 ;i i .
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£=RI/tY? where the effective radius of each domain is de-for coalescence. One of our assumptions is that each domain
fined asR=(A4/7)*? and A4 is the domain area. Function can be represented by an equival@itcular domain, or
®,,.m Was obtained, at each moment of time, by multiplyingdroplet, the area of which is equal to the area of the domain.
the values of the distribution function, found in the simula-We shall denote byf(R,t) the distribution function of the
tions, by t¥2 The dynamic exponents 1/2 and 3/2 are thedroplets with respect to their radii(R,t) is normalized by
same as in the classical theory of WaghE9)]. the conditionff(R,t)dR=n(t), wheren(t) is the number
Here is a more detailed account of our calculation of thedensity of the droplets. We start with a brief review of the
scaled distribution function. We chose for sampling 13 time“classical” theory that neglects coalescence and goes back to
moments in the interval 120t<<2900. The domain statistics Wagne{19]. Then we derive a kinetic equation that accounts
is obviously better at earlier times of this interval, and it of coalescence. We shall focus on the long-time, self-similar
deteriorates at later times, as many domains shrink and dissymptotic solutions to that kinetic equation, find the solu-
appear. On the other hand, the dynamic exponent 1/2 show®n by an iteration procedure and compare it with the result
up, with a good accuracy, only at relatively late timlese  of the phase-field simulations.
Figs. 4 and b Therefore, we had to include the relatively
late times in our sampling, which led to relatively big error  A_ Ostwald ripening without coalescence: A brief review

bars in Fig. 6. ) )
The area fractions=0.25, used in our simulations, is At & late stage of coarsening (t)|<1, so there is no

moderately large. Therefore, one could expect significant dg2ucléation of new domains. Then, neglecting coalescence,
viations of the scaled distribution function, found numeri- ©N€ can writé a simple continuity equationRrspace for the

cally, from the Wagner distributiofL9] corresponding to the size distribution function of domains, or droplets,
same area fractiotthat is, having the same second moment

The Wagner distribution has the following form: dif + Ir(RT)=0. (15
£ 2 \/5 When criterion(A6) is satisfied, the dynamics are describ-
dbw(g):Cs—exp( - _) (14) able by the area-preserving motion by curvat{ir® (where
(6=2)* V2-¢ we puts=1). This leads immediately to
for £<2, and ®(£)=0 for £=2. The normalization _ 1 1
constant R= R R’ (16)
C= 1 ~16.961, where the time-dependent critical radiusR.(t)
w[(2€?) "1+ Ei(—2)] = \/5/(3|H(t)|) is determined, at a late stage of coarsening,

by the conservation of the total area of the minority phase:
where Ei(. . .) is theexponential integral functiof32]. y yP

The two distributions® (&) and®d, (&), are shown in S
Fig. 6. One can see that the difference between them is enor- TFJ R°fdR=¢=const. (17)
mous(in order to show the Wagner distribution on the same 0
graph with®,,,,, we had to multiply it by a factor of 0)5 ations (15)—(1
Therefore, at moderate area fractions, the Wagner’s theory Fqu I (15-(17)

inapplic_able. . mulated by Wagnef19] by analogy with the theory of Lif-
It is instructive to compare the zero momeMs of the  gpi; ang Slyozoy18] developed for the locally conserved

two distributions. The zero moment is the amplitude of the it sion-controlled dvnamics. Usina Eas(15)—(17). one
scaling law for the number density of domains at large timeS'( d dy ' 9 Eqsil9-(17),

represent the classical model of
Nterface-controlled Ostwald ripening. This model was for-

n(t)=Mot 1. We obtainedM ,=4.72x 102 for ®,,, and obtains

Mo=1.43x 10! for ®,,. Therefore, fors =0.25 the Wag- %

ner distribution overestimates the number of domains at late RfdR

times by a factor of 3. An additional difference is the pro- R.(t)= 0—=(R(t)>, (18)
nounced tail ind,,,,, that extends much further than the edge j“’f dRrR

of the compact support of the Wagner distribution. Coales- 0

cence provides a natural explanation to these two facts: coa-
lescence events reduce the total number of domains and prechere (R(t)) is the time-dependent average radius of the
duce domains of progressively larger size. We shall see in théroplets.
next section that an account of coalescence leads to a good Droplets withR>R_(t) grow at the expense of droplets
quantitative agreement between theory and simulations.  with R<R(t) that shrink. The late-time asymptotic behavior
described by Eq915)—(17) is the following[19]. The criti-
IV. THEORY OF OSTWALD RIPENING cal radius grows with timéthis corresponds to the decrease
WITH COALESCENCE with time of the effective magnetic field that plays the role of
supersaturationAs a result, a droplet that was growing at an
In this section we present a theory of the globally con-early time begins to shrink at a later time. Since all the quan-
served(interface-controllef Ostwald ripening that accounts tities are position independent, this model represents a mean-
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field theory. It should be noticed that the mean-field approxi-Extended solutions fall off lik¢ 3 asé—«. As a result, the
mation is much more accurate for the globally conservedntegral in Eq.(21) diverges logarithmically, so the extended
(interface-controlled Ostwald ripening than for the locally solutions are non-normalizable. Still, as we shall see, they

conserveddiffusion-controlled Ostwald ripenind5]. First,
in the globally-conserved case, the “mean field{t) is the

actual field in the system. This is in contrast to the diffusion-

play a crucial role in the theory of Ostwald ripening with
coalescence.
Which of the similarity solutions is selected by the dy-

controlled Ostwald ripening18], where a mean-field de- namics (that is, represents a long-time asymptotics of the
scription of the supersaturation is an approximation validinitial value problem? It turns out that selection is “weak,”
only when the typical distances between the droplets are verthat is, determined by the initial conditions. The Wagner dis-
large compared to the typical droplet radius. The second diftribution is selected fofnormalizable extendednitial distri-
ference concerns the role of correlations. In the locally conbutions. On the contrary, if the initial distribution(R,t
served case, correlations between droplets result from the 0) has compact support, one of theealizeddistributions
Laplacian screening effect, and their relative contribution tais selected. The selection is determined by the asymptotics of

the size distribution function is of order*? (see, e.g., Ref.
[21]). The effect of coalescence scales likésee below so,

f(R,t=0) near the upper edge of its supp[®120,33.
However, this weak selection rule was obtained in the

at smalle, correlation effects should be much less signifi-framework of the classical formulation of the problem, Egs.
cant. By contrast, in the interface-controlled case direct cor¢15)—(17). One can expect thatrongselection(independent
relations between droplets are exponentially small, and sigef the initial condition$ can be obtained if one goes beyond
nificant correlations can be caused only by coalescencthe classical formulation. Indeed, it was shown in R&#]
events. Therefore, in the interface-controlled case, it is legiti{see alsq35]) that an account of fluctuations leads to strong
mate to account for coalescence while neglecting correlaselection. Fluctuations produce a tail in the time-dependent

tions.
Wagner{19] obtained a self-similar solution to Eq4.5)—

distribution function and drive the solution towards the Wag-
ner distribution. We shall see in the following that an account

(17) (the Wagner distributionthat corresponds to a long- of coalescence also leads to strong selection, even in the
time asymptotics of the initial-value problem. The similarity absence of fluctuations.

ansatz is

1/2

1 R
f(R,t)=tT/2‘I'5 ) Rc(t)=7, (19

whereg is a constant number. The scaled distributibp(£)
obeys an ordinary differential equation,

¢ 1
( - W4(£)=0. (20)

)\If;g(g)+ —§+?

The total area conservatiq7) leads to normalization con-

dition
m f :gzqf p(§)dé=e=const. (21)

Formally solving Eq.(20), one actually obtains tamily of
solutions parametrized hg. For \2< g=<2./2/3 these solu-

B. Kinetic equation with coalescence

We shall now take into account the processes of binary
coalescence. Coalescence events occur when two droplets
contact each other. Within the framework of the GLE, the
positions of the droplet centers remain fixed. Therefore, for
coalescence to happen, at least one of the droplets must be
expanding. Consider a droplet of radiRs<R<R;+AR;.

The number density of such dropletsfigR;,t)AR;. Now
consider another droplet of radis<R<R,+ AR, in the

vicinity of the first droplet. IfR;+R,>0 then, during the
time interval At, the distance between the boundaries of
these droplets will decrease bR{+ R,) At. If the distance
between the centers of the droplets obeys the double inequal-
ity

(Ry+Ry)=<r=<(Ry+Ry)+(Ry+Ry)AL (23

(which assumes that the conditiét +R,>0 is fulfilled),
then these two droplets will collide during the time interval

tions have compact support: they are positive on an intervaht. Therefore, for the two droplets to collide, the center of
0<é<émaxB), and zero elsewhere. Similar solutions in 3D the second droplet should be located within a circular ring,
were investigated in Ref§5,20,33. We call these solutions concentric with the first droplet, with radiug;+R, and

localized. For B<3< 2 the solutions of Eq(20) are ex-

width (R;+R,)At. The area of this ring is equal to

tended: they have an infinite tail. These solutions can be

written as consk W 4(¢), where

3
(-2B¢+2)?

><exp( — \/2_,6)2:;rct:51.".\/2_132 . (22

Wop(§)=

27(R+Ry) (R + Ry)AL. (24)

Hence, the average number of such second droplets is equal
to

2M(Ry,Ro) F(Ry ) ARAL,

where
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M(Ry,Ry) = m(R;+Ry) (Ry+Ry) B(R,+Ry). _ While deriving Eq.(27), we neglected effects of interac-

tions of three droplets. By this we refer to cases where there
The total number of the collision events per unit area is equadre three closely lying droplets. In these cases triple coales-
to cence events may occur. In addition, an excluded area in the
ring (23) appears. The effects of this excluded area, and of
[2M(R1,Ro)f(Ry, ) ARALIF(Ry, ARy (29 the triple coalescence events were not taken into account in

- L aur theory. These effects are expected to be of oeder
Each collision leads to coalescence: disappearance of a dro hile the effects of bi | i f ord
let of radiusR; and a droplet of radiuR,, and creation of a while the eflects ot binary coalescence events are ot order

new droplet 2. Therefore, Eq(27) is expected to be valid for small area
Now we .make two assumptions that will enable us tofractionse. We shall see, however, that a very good accuracy

construct a closed theory. First, we assume that the area ofi® Obtained even for the moderate valuesot 0.25 used in
new droplet, formed by a binary coalescence event, is equ&ur smulaﬂons, when triple coalescence events do occur
to the sum of the areas of the two merging droplets. Secondsee Fig. 2 _

we assume that new droplietstantaneouslypecomes circu-  Another limitation of our theory concerns the largesail

lar [36], so its radius isR?+ R2)¥2 The kinetic equation for ©f f(R;t). The tail shape is affected by higher-order coales-
the size distribution function includes the rates of gains an¢€NCce events unaccounted for in our theory. This limitation is
losses of droplets by coalescence. This leads to the followin§Ot Very important in practice. The main contribution to the

equation: critical radiusR; comes, for normalizable distributions, by
the “body” of the distribution function, rather than by the
] 1 (= (= tail.
df+ dr(Rf)=— Ef f {2M(Ry,Ry) We conclude this subsection by a brief discussion of a
070 different type of coalescence: Brownian coalescence. Fol-
X[8(R—R;)+ 8(R—R,)— 8(R lowing the pioneering work of Smoluchowsks7], Binder

and Stauffel{ 38] suggested a mean-field scenario of phase
—VRI+RY)IX (R, f(Ry,HHdRyd Ry}, separation in alloys in which clusters of the minority phase

(26) are regarded as Brownian particles: they perform random
walk in space. When two clusters collide, they merge into a
whered( . . .) is theDirac’s delta function and the factor 1/2 larger single cluster. The corresponding kinetic equation in-
is introduced in order to avoid counting each coalescencéludes an integral term whose general structure resembles
event twice. Performing integration wit(R—R;) and that of the integral term in Eq(27), but with a different
8(R—R,) and taking into account the symmetry of kernelM(R,R,). If the cluster diffusivity is a power-law
M(R;,R,) under a transposition of its arguments, function of the cluster size, one arrives at a self-similar so-
lution for the size distribution function of the droplets. An
M(R;,R)=M(R5,Ry), important further development was the work of Sigps8)]
who considered hydrodynamic interactions between ran-
we obtain domly moving and coalescing droplets in phase separating
binary fluids. Following the work of Siggia, the Brownian
a,f+ on(RF)= — 2f(R t)fwM(R Ryf(R;, AR coalesqence in binary fluids has been e>_<tensively _studied
! R " Jo T b ! theoretically and experimentally. Among important issues
here is a crossover from Ostwald ripeniiitne Lifshitz-
1 _ [p2ip? Slyozov-Wagner mechanigmto Brownian coalescence
- fo fo M(R1,Ro) S(R=VR;+Ry) [1,39,44Q, plethora of hydrodynamic interactions in the pro-
cess of coalescend@®9,41,43, scaling violationg43], etc.
Xf(Ry,DF(Rp,1)dR dR,. (27) " In parallel, Brownian coalescence has been investigated in

. f the right-hand side of 24 the context of coarsening of clusters of atoms or vacancies
Integration of the right-hand side of E@27) over R°dR  iff,qing on surfaces, following particle depositip#d]. It is

yields zero, so the new kinetic equation preserves the CONkjaar that Brownian coalescence is different in its nature
servation law(17) as it should. In addition, the simple rela- g5 the coalescence process considered in this work. In

tion (18) continues to hold. Integrating t_he right-hand side of ., \ast 1o Brownian coalescence, droplets in our system do
Eq.(27) overdR, and overR dR respectively, one can show o+ ova- they coalesce only because they grow.
that the coalescence term reduces the number density of the

droplets and the total interface length. Moreover, the new
equation preserves the dynamic scaling. Indeed, if some
f(R,t) andR.(t) give a solution to Eqs27), (17), and(18), _ _ o
then f'(R,t) = 7°f (4R, 7%t) and R.(t) = 7 'R 7?t) give Equations(27) and(17) admit the same similarity ansatz
another solution to the same equations. This invariance und&® Eds{15) and(17):

a stretching transformation implies the existence of a self- 1 R

similar solution that will be considered in the next = p| —

i f(R,t) b (28

subsection. 32\ Y2

C. Self-similar solution with coalescence
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and

Re(t)=p""t"2 (29)

where B is again an unknown yet constant number. The

scaled distribution functiod (&) obeys the following inte-
grodifferential equation:

2o

— 3B @

3 1
—§+? e (¢)

——20(¢) f:w@,gl)@(gl)dgl

+ fox f:W(§1a§2)5(§_ VE+E)D (&) D(&,)dEdE,

(30)
subject to normalization condition

w | “Eoaee. 31

0

In Eq. (30) we denoted

~n(erre)| 28— 5 | <ol o8- - 1)

W(&r1,6)=m(611&2)| 2B & AL
(32

where 6( . ..) is thetheta function. It is convenient to re-
write Eq.(30) in a symbolic form

where
¢ 1 3 1
£g¢(§)=(—§+ﬁ—g)®’(§)+ S+ ]ew,
(34)
and
NAD](£)= - 20(£) f:w@,gl)cb(fl)dfl
" fwjxw(gl.gzw(g— JE+E)
0 0
XO(E)D(&)dEdE,. (35

One important property of Eq30) can be noticed imme-
diately: the coalescence term vanishes identically &t£0

<1/(2B). As a result, the scaled distribution function at 0

< ¢<1/(2B) should coincidgup to aé-independent multi-

plier) with one of the solutions of the classical Wagner's

problem. A simple argument shows that paramgteparam-
etrizing this solution, should be less thg@. Indeed, invert-
ing the linear operatof;, we rewrite Eq(33) as an integral
(rather than integrodifferentinbquation,

PHYSICAL REVIEW B5 046117

N[ ®(£)1dg’
¢ 1
2 Py

+Cy |,

D)=V (&) L(
V(&)

(36)

where functionsV ;(¢) were introduced in Sec. IV A an@,

is a constant. Unlesg< /2, the integral ovedé’ diverges.
Therefore, ¥ 4(&) should be one of thextendedsolutions
Wos(€), given by Eq.(22). In addition, since the second
term in the square brackets of E®6) would lead to diver-
gence of the integral appearing in the normalization condi-
tion (31), we must choos€,=0. Hence, Eq(36) reads

B = Ngl®(¢&)]d¢’
CD(%)—‘I’OB(%)L 7 1 n (37
7—,34'? Wos(€')

Integral equatiori37) and normalization conditio(81) make

a complete set. For a given the scaled distribution function

® =P 4(£) and parametgB= S(&) are uniquely deter_mined.
Therefore, an account of coalescence does provide strong
selection to the problem of Ostwald ripening.

D. Solving Egs.(37) and (32)

Our procedure for solving Eq§37) and(31) employs the
one-to-one correspondence betweeand 8. Therefore, one
can fix 8 and solve Eq(37) by iterations for®=® 4(¢).
The normalization conditior§31) is not used at this stage.
After a sufficiently accurate estimate fdr=® 4(§) is ob-
tained, one employs E@31) to calculates that corresponds
to this B. Repeating this procedure for differe@t one ob-
tains the family of solutionsb(§) and the dependence
=¢(B). Inverting this dependence, one arrivesBat B(¢)
and finds the correspondence betweesnd scaled distribu-
tions @ 5(&) =P g,y ().

Now we introduce an iteration scheme that implements
this idea. The scheme exploits the fact that, for the exact
solution of Eq.(37),

1
D(&)=xWop(é) at 0$§<ﬁ,
where y= x(B) is & independent and unknown in advance.
Let us introduce an auxiliary unknown functiog(&)
=x"1® (&) [45]. By definition,

(39

1
d(E)=Wop(§) at 0$§<ﬁ' (39
In terms of the new functio, Eq. (37) becomes
o N ’ d ’
B(£)=xVop(é) L ; M(f de (40
(§—ﬁ+ E)‘l’og(?)

The iteration scheme for E@40) is the following:
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Nl pi(§7)]dE’
B (O =XV os(£) f ‘ @D
( =B+ | Vop(§')
&
fork=0,1,2 . ... We use tharbitrariness ofy, and demand
that, at each iteration, E¢39) is satisfied, ual
1
brra(E)=Vop(§) at0sé< 5 25 (42)
This implies
1 0.9 P N [ SR W T T T [ T W I N
_ f‘” Nol $(6)1dé 3 10" 10" 10°  10°  10® 1
v(zp)( § 1 ' €
——B+ =¥
2 B g Oﬁ(é) . T . T . T
1.4 .
for k=0,1,2 .. .,. Equations(43) and (41) define the itera- i
tion process explicitly. If the sequencg,, k=0,1,2 ..., 13 i
converges to a finite limitp(&), then the sequencg, .k )
=0,1,2 ..., converges to a finitépositive numbery, and T
we can find® (&)= y#(&). What is left is to use Eq(31) o 12 1
and compute the correspondiagIf the convergence of the .
iteration scheme is fast enough, then 1.1 .
P ()= xuhu( &) (44) 0 ]
and 7
0.9
5 0.0 0.1 0.2 0.3
Sk(ﬂ):’”')(kf &P (§dé, k=12,..., (49 e

FIG. 7. Parameteg versuse (solid lineg as predicted by the
ory of Ostwald ripening with coalescence. This dependence was
obtained by a single iteration applied to E437) and (31). The
dashed line shows the limiting valy@= 2 expected at—0. The

solid circle is the point found in our phase-field simulatiofe.
showse in a logarithmic scale(b) in a linear scale.

give a good approximation to the solution already after e
small number of iterations.

We implemented this iteration procedure numerically. As
it is clear from Eqs(41), (43), (44), and(45), the numerics
involve only calculations ofdouble and triplgdefinite inte-
grals. We started with the trial functiapy(§) =W os(§). The
advantage of this trial function is that it already satisfies Eqthe result of the first iteratiod,(£). This result agrees well
(39). We performed a detailed investigation of the conver-with the phase field simulations, even at the moderately large
gence of this scheme for different values®iip to iteration  value ofe=0.25. This is a strong evidence in favor of the
k=8. The results of this investigatidiand proofs of conver- major role of coalescence in the interface-controlled Ostwald
gence of the integrals at infinityvill be presented in a sepa- ripening. The dashed line is the trial functidny(£). One
rate publication. The main result is that, with this choice ofcan see that this trial functiofwith 8=0.93) already gives a
the trial function, the convergence is very fast in the body offairly accurate estimate to the solution in the body of the
the scaled distribution function. For example, in the case ofcaled distribution. Therefore, the non-normalizable ex-
£=0.25 the first iteration already gives an accurate resulttended distribution$22) do play a special role in the theory.
Convergence in the tail is a more subtle issue that will bgn the tail region the solution falls off more rapidly than
addressed separately. Wog, so there is no problem with normalization condition

The B(e) dependence, found by this procedure is shown(31). The zero momentM, corresponding to the once-
in Fig. 7. One can see that, as~0, 8— 2 from below. iterated numerical solutiotthe solid line in Fig. §is equal
Overall, this behavior is expected. Coalescence effects bdo 5.08X 107 which is in good agreement with the value
come small at small area fractions and,sas0, the scaled 4.72x10°2 obtained in the simulations.
distribution function should approach the Wagner distribu- An independent estimate gf at £ =0.25 is provided by
tion. It is surprising, however, that for quite small (for ~ the dynamics of the effective “magnetic field4(t). The
example, 0.01), the value ¢ is still significantly different —area-preserving dynamics, Edq12), imply that [H(t)]
from 2. =|\/2«/3|. Assuming that all droplets have circular shape

Figure 6 shows the scaled distribution function f6r (an assumption already used in our thepmnye have||
=0.93(which corresponds te=0.25). The solid line shows =1/R(t)). Employing the similarity solution, we arrive at
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|K|=,3/t1/2- Therefore, jl,H(t)|~ct1/2, where c=3/( \/5,3)_ experiments on globally conserved interface-controlled sys-
For the corrected power-law fit shown in Fig.&5:2.3. This  tems.

corresponds tg3=0.92, which is remarkably close to the

value of 0.93 obtained by the iteration procedure. ACKNOWLEDGMENTS
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namics in systems with short range correlations. The numeri-

c_al simulations were done with a two—Qimengional phase- AppENDIX: CRITERIA FOR THE AREA-PRESERVING

field model: a Ginzburg-Landau equation with a global DYNAMICS

conservation law. The sharp-interface limit of this equation:

the area-preserving motion by curvature was introduced, and Let us find the general conditions under which the area-

a criterion for its validity formulated. Assuming dynamic preserving dynamic$Eq. (12)] represent an accurate ap-

scaling within the model of area-preserving motion by cur-proximation to the more general sharp-interface th¢&us.

vature, we obtained the 1/2 dynamic exponent for the char6) and(7)]. We first notice that in the general sharp-interface

acteristic coarsening length scafer critical and off-critical ~ theory it is the quantityA(t) —L2H(t)/4, rather thanA(t),

quench, and for the effective “magnetic field(for off-  that is conserved5]. Hence, a necessary condition for the

critical quench. Our numerical simulations for critical Validity of the area-preserving dynamics is simply

guench and for an off-critical quench with area fraction

=0.25 confirm these scaling laws. The results for critical H(t)«A(t) (A1)

guench coincide with earlier results, obtained by particle L2 -

simulations. The scaled form of the equal-time pair-

correlation function is found to weakly depend on the aregdditional criteria are found in the following manner. We

fraction, similar to the locally conserved systems. notice that Eq.(7) includes the same combinatiodk
Recently, dynamic scale invariance and “normal” scaling + (Su)Y“gH(t) as the one that appears on the right-hand

have been reported in the same globally conserved coarseside of Eq.(9). Therefore, a constancy or, more precisely,

ing system, but folong-range (power-law correlations in  slow variation ofA(t) implies a slow variation oH(t). Cor-

the initial conditiong 7]. Our present results, combined with respondingly, the term on the left-hand side of Et).should

those of Ref.[7], indicate “normal” scaling properties of be small in this case compared to each of the two terms on

globally conserved systems for any generic initial conditionsthe right-hand side. We can exploit this fact and formally
The main focus of this work was on the dynamics of thesolve Eq.(7) perturbatively: H(t)=H©)(t)+h(t), where

size dlstr_li_Jutlon function of the mmonty_phas:_a domains fOI’H(O)(t): — g~ Y(8/) Y%, is the leading term, anti(t) is

th_e off_-cn_tlca_l quench._Our phz_is_e field S|mulat!ons show thatye subleading term. Substitutif(t) into Eq.(7) and keep-

thls_ distribution function elxh|_b|ts,_ at Iargg times, a sel_f— ing terms up to ordeh(t) we obtain

similar form. The scaled distribution function, however, is

dramatically different from the well-known Wagner distribu- L2 . L2 .
tion, despite the fact that correlations between domains are h(t)= 7H(°)(t)= —————«(st).
negligible in globally conserved systems. We attributed this 49(8p) ™A () 49°pA(1)

strong deviation to coalescence that provides, at smadl (A2)

leading correction to the Wagner's theory. We developed ghe perturbation expansion is valid as long as
theory of Ostwald ripening that takes into account binary

coalescence events. The theory possesses dynamic scale in- o [h(t)] [h(t)]
variance and yields a nonlinear integrodifferential equation  |h(H[<[H® ()| and 7 <—
for the scaled distribution function. For a given area fraction, (8p) A1) L
the problem has a unique solution. Therefore, coalescenqgsing the expressions fd#(©)(t) andh(t) we see that the
renders a strong selection rule to the problem of Ostwal@iynamics described by Eqgs) and (7) are (approximately

ripening: the scaled distribution is selected by the area fracyrea preserving if the following two inequalities hold:
tion of the minority domains. The scaled distribution func-

tion predicted by the theory is in good agreement with the -

scaled distribution obtained from the phase field simulations | k(s < | k(s (A3)

for a moderate area fraction of 0.25. In addition, the theory (S)Y2A (1) Lz -’

accurately predicts the amplitude of the late-time power law

of the effective magnetic fieldH(t). Deviations from the and

classical Wagner’s theory remain significant even for very

low area fractions. Therefore, coalescence plays a major role — —

in the interface-controlled Ostwald ripening. E k(s.t) < [k(s.t)]
We hope that the results of this work will stimulate further dt| (su)Y?A(t) Lz

(A4)
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Now we can see why the area-preserving dynamics do nddizel(t) is the only relevant length scale. For an off-critical
apply to a single circular droplet. In this case the zero ordeguench, the phase-ordering morphology is that of Ostwald
of the perturbation theory would give(s,t)=1/R=const, ripening: competition of droplets of the minority phase, see
whereR is the droplet radius. Therefore, criterigA4) is  below. This implies the following scaling relationg(s,t)
violated. .
For a “donut” one hask(s,t)=0. Therefore, neither of
the two criteria(A3) and (A4) is obeyed, and the dynamics
are not area preserving. If the system consistsldft) do-
mains of the majority phase ard, (t) domains of the mi-
nority phase, the Gauss-Bonet theorgtfi] yields I(Lt)<8' (AB)

~1A(t), k(s,t)~&/13(t), and A(t)~N,(t)I(t)~eL?/I(t).
In addition,H(t)~\/I(t) andA= & L2. Using these relations
in any of the inequalitie$Al), (A3), or (A4), we arrive at

2a[N1(t) = Np(1)]

A(t) ' (AS)  That is, the more general sharp-interface theory is reducible

to the area-preserving motion by curvature as long as the
whereN,(t) does not include the large “sea” of the majority ratio between the interface width and the coarsening length
phase. We shall employ this relation in the following. scale is much smaller than the area fraction of the minority
Let us check criteridAl), (A3), and (A4) for the “stan-  phase. If the coarsening system remains a two-phase system,

dard problem” of phase ordering, when the initial conditionsand if the system size is big enough, this condition holds, at
describe a disordered state with short-ranged correlationate times, for any nonzero area fractigtv]. Notice that, at
We assume that the system exhibits, at late times, dynamie<1 it takes more time for the system to reach the area-
scale invariance. In other words, the characteristic domaipreserving regime.
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