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Ensemble-based control of evolutionary optimization algorithms

Axel Reimann and Werner Ebeling
Humboldt-University Berlin, Institute of Physics, D-10115 Berlin, Germany
(Received 27 July 2001; published 20 March 2002

This paper presents a study on how the intrinsic search parameters of an evolutionary optimization algorithm
can be automatically controlled. It will be shown that only a small search parameter window ensures good
optimization results. This evolutionary window, enclosing effective values for the mutation rate and tempera-
ture, can be adapted to by carefully steering the ensemble’s fithess dispersion. A control sensor based on an
entropy measure is introduced to achieve this goal. The efficiency of the proposed control method will be
tested by optimizing artificial sequences such as the well-known low autocorrelated binary strings and natural
sequences including RNA.
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[. INTRODUCTION along gradients to reach steepest ascent/descent of thermo-
dynamic functionsii) stochastic processes including ther-
Evolutionary algorithms have proven to be powerful in-mal and hydrodynamic fluctuations leading to random
struments when it comes to complex and high-dimensiona¢hanges; thus avoiding locking in local maxima. In order to
optimization problems. They are still not in widespread useformulate a simple dynamic model of a mixed strategy, let us
however, for the following reasons: Evolutionary algorithmsconsider a numbered set of statesl,2, ... s—each char-
are designed to find good solutions for a large class of prob@cterized by a potential energy; that is to be minimized in

lems, while there is no guarantee that the found solution i§n€ Search and a relative frequency in the populati¢t) at

the best possible. What makes it particularly difficult to useli™e t- Then, the simplest model of a mixed strategy that

evolutionary algorithms is the strong dependence of the sd€nds to find minima oUJ; is described by the following
lution quality on intrinsic search parameters such as encquation:

semble size or mutation rate. So, in order to open a wider

application field for these algorithms, the algorithm-internal 4 N

(nonproblem relatedsearch parameters should be hidden —- x(1)= 7(<U>_Ui)xi(t)+m2 [Aijx;(t) —Ajx;(1)].
from a potential user and automatically controlled to ensure _ Jt
search efficiency. While there are many proposals regarding selection term mutation term
temperature control, for example, in “simulated annealing” (1)
strategies$1,2], this paper focuses on the mutation and selec-
tion rates.

After a short introduction to the mathematical model of a
certain class of mixed evolutionary algorithms, this work - ) o
proposes a possible way to adjust its search parameters aficupation numbers of the statesFor simplicity we de-
presents results obtained for frustrated periodic sequence@,and
the LABS problem, and RNA secondary structures. s

'21 Xi(t)=Xo= const., 2

The matrixA;; describes mutation processes that are mod-
eled as transitions from stagdo statei. Therefore A;; con-
tains the respective transition rates, while thedenote the

IIl. MODELING MIXED EVOLUTIONARY STRATEGIES ] ]
i.e. we set the seeker ensemble size constant throughout the

The mathematical model used has already been intragptimization process. The selection strength in @gis de-
duced in an earlier work3]. Here, a short survey might noted by the parameter and the mutation rate is labeled
suffice. Analyzing the mechanisms of natural evolution WeThe transition ratedy; separate into a symmetrical compo-
find several basic strategi¢4—9]. The most important are nentAﬂ-EAJQi describing a biological strategy and an asym-

biological and thermodynamical strategies. metrical term introducing thermodynamic components:
Biological strategies in the universe appear in the process

of biogenesis only, i.e., about three to four billion years ago. 0 1 if AU=<O,

The basic elements of a Darwin-type strategy [are7] (i) Aij=Ajj exf—BAU] if AUSO. )

self-reproduction of good species that show maximal fitness,

(i) mutation processes due to error reproductions that The introduced termAU depends on the problem type.

change the phenotype’s properties of the species. For maximization tasks it is defined aJ:=U;—U;. For
Thermodynamical strategies rely on the second law. Macminimization problems on the other hand it is defined as

roscopic physical systems optimize certain thermodynamiaU:=U;—U;. Thus, the asymmetric term ensures that indif-

functions in their course of evolution. Simplifying, we will ferent transitions and transitions leading to a solution im-

call this strategy the Boltzmann strategy. The Boltzmanrprovement are always carried out—whereas “mis-steps” oc-

strategy has the following two basic elemenfig: motion  cur only with a small probability decreasing exponentially
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with the threshold’s height. It is easy to see that Eb. TABLE I. The mutation operator used for RNA secondary struc-
contains the pure Boltzmann strategy fo=0 as a special ture optimization implements and allows single as well as multiple
case. The Darwin strategy on the other hand is obtained fd¥ind/dissolve operations.

m=1, 8—0. i -

The selection is certainly not required to be lingarg.,  Mutation operator Operation
fithess proportional In fact, hard selectio'n as dgscribed be-  connect U S
low has turned out to yield better results in our simulations at  5.connect ()
equal simulation time and for the respective optimal param- Zip C..) (...
eter settinggmutation rate, temperature, and ensemble)size Unzip '('('( )))H e

In a generalization, we substitute the quasilinear selection T o
term in Eqg.(1) by a nonlinear selection and postulate:

. B. Low autocorrelation binary strings
d . . -
—x(t)= . . This model is well known in literature and has already
g (D=72, FAUX(OX(®)

been studied by Golagt al. [10—12. The binary stringsS
are composed of-1 and—1 bits

S
+mj§1 [A(BX (D =Ai(BX (D] (4) S={s1,5 ... 5} Se{-1+1L. @)
Here, the nonlinear selection functigf(AU) is mono- The autocorrelation coefficiemR for distancek is given by
tonically decreasing. For numerical simulations we use L—k
Ry= Si Si k- (8
F(AU)=const-®(AU), (5) = S

where® (AU) is the step function. This equation describes alhe aim is to minimize the quadratic sunof all autocor-

selection scheme we calburnament selectiosince, in a  relation coefficients

selection process, the worst seeker in a randomly drawn tour- L1

nament ensemble of size 2 gets replaced by the best one in E=S Ri
k=1

the tournament ensemble. ©)
Il. MODEL PROBLEMS or equivalently maximize the so-called merit factr
In order to make statements about an optimization strat- L?
egy’s efficiency it needs to be applied to test problems. Here, F= SE (10

we will use the same test problems already introduced in

Ref. [3]; so we will only briefly recall them again. For most(but not al) odd length sequences, the highest merit

factor is achieved by skew symmetric configurations. Skew

A. Frustrated periodic sequences symmetric sequences fulfill the relation
Frustrated periodic sequendgsoposed by EngdH]) are L1
built using an alphabet of four letters, elgs {A,B,C,D}. A Suri=(— 1)islri L (11)

certain fitness value can be assigned to a given sequence by
crediting alphabetic pairs, i.e.,

l“e{{A,B}.{B,C},{C,D},{D,A}}

and therefore havk,=0 for all oddk.

C. RNA secondary structure
or, additionally, periodic occurrence® of the same letter

with periodp: We investigate four-lettefA,C,G,U} RNA sequences.

The different bases can form pairings known as Crick-
Watson pairs A,U), (G,C) and a so-called wobbled pair
f:E (I*+DbnP). (6) (G,U). The minimum free-energy formation of pairings is
[ sought after as the “optimal” secondary structufé de-
tailed introduction to RNA landscapes can be found e.g., in
The problem becomes maximally frustrated—that is, weRef.[13].) To evaluate foldings we make use of the RNAeval
have two contradictory optimization goals—if the parametersubroutine contained in the publicly availablENNA-RNA
b is chosen to bé=1/p. In our simulations these parameters package, version 1.4. The sequence used for testing are the
were chosen to bp=5 andb=1/5. first 100 base pairs of polio virus type 1 Mahoney
(AC V01148) as used e.g. in Ré¢fL4].
The mutation operator used in the numerical simulations
In our simulations we use a generalization to four seekers. was designed to allow single, as well as multiple, connect/
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disconnect operations at on¢ef. Table ), while avoiding =7
the generation of not yet tractable pseudoloops.

IV. SEARCH PARAMETERS
AND ENSEMBLE DISPERSION =

The mixed evolutionary algorithms introduced in Sec. Il
basically have three intrinsic search parameters: ensemblzZ. -
sizeN (a.u), temperaturd (a.u), and a mutation probability &
Pmut (%0). The latter is a translation of the selection pressure %W
v and mutation raten as introduced in Eqg1) and(4). For =
infinite computation time both parameters are truly indepen-
dent. For real world applications, however, long simulation
times are costly, and often a quickly obtained suboptimal
solution is valued higher than the optimal solution gained in
an indefinite time span. For short simulation times we have
to take into account that basically all common computing
deviceg work sequentially and can thus execute algorithms
only one step at a time. <

Since the total number of steps is fixéoly the limited 2
simulation time, it is obvious that, for example, an increased S
number of mutation steps necessarily allows fewer selectior -0
operations and vice versa. We define, therefore, the mutatiol % a
rate as follows: -

<

g IS

L\

Pou(%)=100m, m+y=1. (12)

As one possible numerical realization, the algorithm used in
our simulations follows these three stejparameter control
switched ofj:

(1) Initialize theN seekers with random initial conditions.  giG. 1. Frustrated periodic sequence of length 15: Fre-

(2) Set temperatur@. quency histogram for the different fitness levels depending on the
(3) while [run time < final time]. mutation ratem, simulation timet =500, temperatur@= 1, tourna-
(i) Draw a uniformly distributed random numb&r  ment selectionr=4, ensemble sizeN=25, random initial se-
e[0,1]. quences, averaged over 1000 runs.

i) if [€<m]— mutation step:
(i (a)[i/lutale randomly dravSn seeker. While the ensemble size is practically limited by time and

(b) Decide about mutant’s acceptance according tFomputer resources, temperature and mutgtion probability
Eq. (3). can be chosen at will. As laid out in our previous WO,
both parameters have a strong influence on the ensemble
dispersion in search space and, henceforth, on the search
efficiency. A good parameter choice ensures that the seekers
will cover a certain area of the search space. We will show
now that controlling the ensemble’s fitness dispersion can

(c) If accepted, replace original with mutant. Dis-
card mutant otherwise.
(iii) else— selection step:
(a) Pick some 2n<N seekers at randore.g.,

n=4). . . . ;
(b) Deteamine the best and the worst from these drastically improve the search efficiency, since very low mu-
seekers tation rates cause a strategy to resemble gradient search

methods (thus leading to a higher likelihood of getting
stuck, and too high mutation rates turn the search into a
As can be seen here, mutation and selection operate diffelandom walk, destroying information already gathered while
ently on the seeker ensemble. In contrast to genetic algsearching. Figure 1 shows the seeker ensemble distribution
rithms, both operations cannot be carried out simultaneouslyo illustrate this problem for frustrated periodic sequences. At
causing the initially independent parameterandy [cf. Eq.  low mutation rates Ry, ,,<20%) the ensemble is centered
(4)] to be coupled as stated above. around mediocre fitness values. The ensemble mean im-
proves with an increasing mutation rate—until beyond a cer-
tain threshold P,,,~>70%) the ensemble completely dete-
2This statement holds with respect to the underlying principle offiorates.
Turing machines and does not refer to technical implementations An efficient adaptive optimization algorithm needs a nu-
such as multiprocessor machines or SIMD instruction sets e.g., oferical measure capable of detecting this error threshold in
single processor machines. A true exception would be quanturerder to drive the running optimization process as close as
computing devices that are explicitly not considered here. possible to the threshold. The ensemble variability intro-

(c) Replace the worst seeker by the best one.
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duced in Ref[3], defined as the ratio of the number of dif-
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lau]

100 135
ferent seekers to ensemble sie 13.0
=0 125
Ngitt 80 120
v ::TI’ (13 11.5
70 1.0
. - 29 60 10.5
though easy to calculate, has turned out to be insufficient foig~, 10.0
a number of applications. The main problem here is the = 50 9.5
strong bias towards small ensemble sizes. The relative dis. E 49 :-g
persion measure introduced in Réil5] circumvents this - 8.0
problem but requires problem-dependent parameter tuning. 75
In this paper, we are introducing a nonlinear sensor that 20 7.0
avoids bias and the necessity of problem-dependent exhaus 10 gg
tive parameter scans in order to determine optimal control 0 55
values: The entropi, as defined e.g., in information theory 0 10 20 30 40 50 60 70 80 90 100
can be calculated as @) ensemble size N
H=— EI P, InP;. (14) 100 [aul |
90 0.9
By gathering information from the seeker ensemble by 8
generating a histogram as seen in Fig. 1, it is straightforwarc ’
to derive a normalized entropy measure: 7
X 60
Xi Xi —_—
H=>, — logy~. (15) 5 50
™ N N £
o 40
As shown in Fig. 2, the ensemble entropy, varying from 30
zeroto one marks areas of different fitness values indifferent 5
of the ensemble size. This behavior is observed for all model
problems investigated. Now it is easy to pick an ensemble
entropy value that accompanies best optimization regaits 0

0 10 20 30 40 50 60 70 80 90 100

optimal entropy, that is The optimal entropy interval reads (b) aficarmibla siza N

Hop=0.17+0.05 (16)

FIG. 2. Mean fitness and ensemble entropy for a frustrated pe-
for all tested model problems. This value is even fairly inde-fiodic sequence of length=15; The entropy measure nicely re-
pendent of the temperature parameter, as can be seen draws the areas of different fitness values independent of the en-
Table Il. We are not yet sure about the causes for the opsemble size and may thus server as a numerical sensor. The
served temperature independence temperature was kept constantTat 1; random initial sequences

How sensitive this measure indeed is to mutation rateVere used; the simulation time was-500; the results averaged

variations can be seen in Fig. 3. The gradient within thePVer 1000 runs. The best fitness values are obtained for an entropy

interesting region (50% P, ,~100%) is very high, so that around 0.20.

small deviations from the optimal interval can easily be de-

tected. As stated above, the optimal mutation rate is found

close below the error threshold. Comparing Fig. 1 with Fig.

2(a) and 2b) for example, one can clearly see that indeed for TABLE II. Optimal entropies for the different model problems

the N=25 seekers used in Fig. 1 the ensemble distributioR, gependence of the temperature. All entropy values have a toler-
suddenly spreads for mutation rates abd¥g,>70% as  gnce of about- 0.05.

predicted by the optimal ensemble entrdgy,~0.2. This

coincides with the upper bound of the search parameter in-

Engel

LABS

RNA

terval yielding best resultsthe evolutionary window as

shown in Fig. 2a). T Optimal entropy ~ Optimal entropy ~ Optimal entropy
0 0.15 0.12 0.12
V. OPTIMIZATION WITH ADAPTIVE 1 0.20 0.10 0.12
PARAMETER CONTROL 2 0.14 0.13 0.15
3 0.14 0.10 0.12
It is intuitively clear that one constant mutation/selection: : : :
ratio cannot be optimal for all given simulation times. If the 19 0.15 0.12 0.16

computer time is clearly insufficient, the best optimization
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FIG. 3. Frustrated periodic sequence of length

L=15; ensemble entropy in dependence of the
mutation ratem; simulation timet=500, tem-

peratureT=1; ensemble sizé&=20; and aver-
aged over 1000 runs.
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FIG. 4. RNA sequence of length=100; The temperature was
kept constant af=1; the simulation time wa$=150; random

initial secondary structures; the results are averaged over 200 runs.

The best fitness values are obtained for an entropy ardiyg
=0.20-0.40.

100

strategy surely is to guess possible solutions. This corre-
sponds to missing selection steps, i 1.

Contrary to what we expected, however, the optimal en-
semble entropy is robust, even against variations of the com-
putation time. Taking, for example, the RNA folding prob-
lem, too short computation times simply widen the optimal
entropy interval. As can be seen in Fig. 4, the best results are
achieved for large ensembles with>50 seekers for a com-
putation time of onlyt=150—while for long computation
timest>1000 ensembles di~20 are much more efficient.
course, the best optimization result of=
—32.0 kcal/mol is not yet reached, but as Fig. 4 demon-
strates the best results gained so far are still achieved with
ensemble entropies of 0.2MH,,<0.40, i.e., well belowH
=1. Itis also interesting to note that above this interval the
functional correspondence between mutation Rjg; and
entropyH is lost.

Using the information laid out so far, it is possible to
derive an advanced adaptive optimization schedule based on
our work published in Ref[15]. Extending the procedure
introduced in the previous section, we propose the following
algorithm:

(1) Initialize theN seekers with random initial conditions.
(2) Start with a high temperaturg8&1; e.g., T=10%.
(3) Initially, disable selectionri=1).
(4) while [run time < final time]
(i) Draw a uniformly distributed random numbeér
e[0,1].
(i) if [€<m]— mutation step:
(a) Mutate randomly drawn seeker.
(b) Decide about mutant’s acceptance according to
Eq. (3).
(c) If accepted, replace original with mutant. Dis-
card mutant otherwise.

(iii ) else— selection step:

(a) Pick some 2n<N seekers at randorte.g.,
n=4).
(b) Determine the best and the worst from these
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seekers. 45 ]
(c) Replace the worst seeker by the best one. o 0 1
(iv) After a short computation time, the ensemble sta- *°F i ]
tistics yields enough information to increase and C T 1
control the s_electioni.e., reduce the mutation rate 3'5; —J B
m<1), keeping the ensemble entropyHag;. 20l e A
(v) Follow a standard deviation schedul¢SDS to § T i L @ ]
adapt the temperature parameter: & 55 _
dg(t) ¢ - ]
ﬁ_ =— (17) 2.0 .
dt (o L - ]
sl & e ]
The small constant in Eq. (17) determines the annealing F ]
speed; the ternv; denotes the ensemble fitness’ standard jofov v 1 L R A I
deviation. 0 20 40 60 80 100
ensemble size
VI. SUMMARY FIG. 5. Expectation value for the ensemble’s best seeker; LABS

In thi . tinated mixed luti | problem of lengthL=32; comparison between exhaustive param-
. hn IS pap(_ar, IW? |n|\/e_s Igate ml'xﬁ eyo u |ona;y ago'liter scan and automatic parameter adaption with random initial
rithms. Numerical simulations reveal the existence of a sma trings and initial conditionsn=1 and T=10®; computation time

search parameter interval—the evolutionary window—uwhich, _ 509, averaged over 1000 runs; absolutely best result found is the

the algorithm needs to adapt to in order to be efficient. Thisying s=01010100000111111011011001110011 with fitn€ss
paper introduces an entropy-based control sensor, which en-g

ables mixed evolutionary algorithms to automatically adapt
themselves as necessary. -

The numerical resultsyobtained while using the proposednuch better than the expected reséit{3.6+0.5) indicates
schedule are convincing, as they are absolutely comparabif@t one can achieve better optimization results, granting
to manually tuned search parameters following an exhaustiv@ore simulation time t500). It still remains to be seen,
parameter scan. In Fig. 5 the comparison is shown for th&owever, how our results can be generalized with respect to
LABS problem. Within the standard deviation interval, the other optimization problems. Also, a profound theoretical
adaptive optimization gives the best possible results anghotivation for the entropy-based sensor is still missing and
definitely surpasses the ensemble dispersion-based adaptionist be subject to future investigations. To our disappoint-
schedule published in Ref15]. The fact that the absolutely ment we did not yet succeed to use a simple test function to
best result found in one particular single r@inessF=8) is  analytically verify our findings. The well-known, linear one-

max problem for example is simple, but not appropriate to
study ensemble-based search strategies. A slight modification
3The SDS was inspired by AndresE2], used in a previous work Of the problem to switch from a linear to a parabolic poten-
[3] and also by Mahnig and Muenbein[16]. tial, however, has already rendered it unsolvable.
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