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Ensemble-based control of evolutionary optimization algorithms

Axel Reimann and Werner Ebeling
Humboldt-University Berlin, Institute of Physics, D-10115 Berlin, Germany

~Received 27 July 2001; published 20 March 2002!

This paper presents a study on how the intrinsic search parameters of an evolutionary optimization algorithm
can be automatically controlled. It will be shown that only a small search parameter window ensures good
optimization results. This evolutionary window, enclosing effective values for the mutation rate and tempera-
ture, can be adapted to by carefully steering the ensemble’s fitness dispersion. A control sensor based on an
entropy measure is introduced to achieve this goal. The efficiency of the proposed control method will be
tested by optimizing artificial sequences such as the well-known low autocorrelated binary strings and natural
sequences including RNA.
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I. INTRODUCTION

Evolutionary algorithms have proven to be powerful i
struments when it comes to complex and high-dimensio
optimization problems. They are still not in widespread u
however, for the following reasons: Evolutionary algorithm
are designed to find good solutions for a large class of pr
lems, while there is no guarantee that the found solutio
the best possible. What makes it particularly difficult to u
evolutionary algorithms is the strong dependence of the
lution quality on intrinsic search parameters such as
semble size or mutation rate. So, in order to open a w
application field for these algorithms, the algorithm-intern
~nonproblem related! search parameters should be hidd
from a potential user and automatically controlled to ens
search efficiency. While there are many proposals regard
temperature control, for example, in ‘‘simulated annealin
strategies@1,2#, this paper focuses on the mutation and sel
tion rates.

After a short introduction to the mathematical model o
certain class of mixed evolutionary algorithms, this wo
proposes a possible way to adjust its search parameters
presents results obtained for frustrated periodic sequen
the LABS problem, and RNA secondary structures.

II. MODELING MIXED EVOLUTIONARY STRATEGIES

The mathematical model used has already been in
duced in an earlier work@3#. Here, a short survey migh
suffice. Analyzing the mechanisms of natural evolution
find several basic strategies@4–9#. The most important are
biological and thermodynamical strategies.

Biological strategies in the universe appear in the proc
of biogenesis only, i.e., about three to four billion years a
The basic elements of a Darwin-type strategy are@4–7# ~i!
self-reproduction of good species that show maximal fitne
~ii ! mutation processes due to error reproductions
change the phenotype’s properties of the species.

Thermodynamical strategies rely on the second law. M
roscopic physical systems optimize certain thermodyna
functions in their course of evolution. Simplifying, we wi
call this strategy the Boltzmann strategy. The Boltzma
strategy has the following two basic elements:~i! motion
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along gradients to reach steepest ascent/descent of the
dynamic functions;~ii ! stochastic processes including the
mal and hydrodynamic fluctuations leading to rando
changes; thus avoiding locking in local maxima. In order
formulate a simple dynamic model of a mixed strategy, let
consider a numbered set of statesi 51,2, . . . ,s—each char-
acterized by a potential energyUi that is to be minimized in
the search and a relative frequency in the populationxi(t) at
time t. Then, the simplest model of a mixed strategy th
tends to find minima ofUi is described by the following
equation:

~1!

The matrixAi j describes mutation processes that are m
eled as transitions from statej to statei. Therefore,Ai j con-
tains the respective transition rates, while thexi denote the
occupation numbers of the statesi. For simplicity we de-
mand

(
i 51

s

xi~ t !5x05const., ~2!

i.e. we set the seeker ensemble size constant throughou
optimization process. The selection strength in Eq.~1! is de-
noted by the parameterg and the mutation rate is labeledm.
The transition ratesAi j separate into a symmetrical comp
nentAi j

0 [Aji
0 describing a biological strategy and an asy

metrical term introducing thermodynamic components:

Ai j 5Ai j
0 H 1 if DU<0,

exp@2b DU# if DU.0.
~3!

The introduced termDU depends on the problem type
For maximization tasks it is defined asDUªU j2Ui . For
minimization problems on the other hand it is defined
DUªUi2U j . Thus, the asymmetric term ensures that ind
ferent transitions and transitions leading to a solution i
provement are always carried out—whereas ‘‘mis-steps’’
cur only with a small probability decreasing exponentia
©2002 The American Physical Society06-1
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with the threshold’s height. It is easy to see that Eq.~1!
contains the pure Boltzmann strategy forg50 as a specia
case. The Darwin strategy on the other hand is obtained
m51, b→0.

The selection is certainly not required to be linear~e.g.,
fitness proportional!. In fact, hard selection as described b
low has turned out to yield better results in our simulations
equal simulation time and for the respective optimal para
eter settings~mutation rate, temperature, and ensemble si!.

In a generalization, we substitute the quasilinear selec
term in Eq.~1! by a nonlinear selection and postulate:

d

dt
xi~ t !5g(

j 51

s

F~DU !xi~ t !xj~ t !

1m(
j 51

s

@Ai j ~b!xj~ t !2Aji ~b!xi~ t !#. ~4!

Here, the nonlinear selection functionF(DU) is mono-
tonically decreasing. For numerical simulations we use

F~DU !5const2Q~DU !, ~5!

whereQ(DU) is the step function. This equation describe
selection scheme we calltournament selectionsince, in a
selection process, the worst seeker in a randomly drawn t
nament ensemble of size 2 gets replaced by the best on
the tournament ensemble.1

III. MODEL PROBLEMS

In order to make statements about an optimization st
egy’s efficiency it needs to be applied to test problems. H
we will use the same test problems already introduced
Ref. @3#; so we will only briefly recall them again.

A. Frustrated periodic sequences

Frustrated periodic sequences~proposed by Engel@4#! are
built using an alphabet of four letters, e.g.,l iP$A,B,C,D%. A
certain fitness value can be assigned to a given sequenc
crediting alphabetic pairs, i.e.,

l aPˆ$A,B%,$B,C%,$C,D%,$D,A%‰

or, additionally, periodic occurrencesnp of the same letter
with periodp:

f 5(
i

~ l i
a1b ni

p!. ~6!

The problem becomes maximally frustrated—that is,
have two contradictory optimization goals—if the parame
b is chosen to beb51/p. In our simulations these paramete
were chosen to bep55 andb51/5.

1In our simulations we use a generalization to four seekers.
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B. Low autocorrelation binary strings

This model is well known in literature and has alrea
been studied by Golayet al. @10–12#. The binary stringsS
are composed of11 and21 bits

S5$s1 ,s2 , . . . ,sL%, siP$21,11%. ~7!

The autocorrelation coefficientR for distancek is given by

Rk5 (
i 51

L2k

si si 1k . ~8!

The aim is to minimize the quadratic sumE of all autocor-
relation coefficients

E5 (
k51

L21

Rk
2 ~9!

or equivalently maximize the so-called merit factorF,

F5
L2

2 E
. ~10!

For most~but not all! odd length sequences, the highest me
factor is achieved by skew symmetric configurations. Sk
symmetric sequences fulfill the relation

sm1 i5~21! ism2 i , m5
L11

2
~11!

and therefore haveRk50 for all oddk.

C. RNA secondary structure

We investigate four-letter$A,C,G,U% RNA sequences.
The different bases can form pairings known as Cric
Watson pairs (A,U), (G,C) and a so-called wobbled pa
(G,U). The minimum free-energy formation of pairings
sought after as the ‘‘optimal’’ secondary structure.~A de-
tailed introduction to RNA landscapes can be found e.g.
Ref. @13#.! To evaluate foldings we make use of the RNAev
subroutine contained in the publicly availableVIENNA-RNA

package, version 1.4. The sequence used for testing are
first 100 base pairs of polio virus type 1 Mahone
(AC V01148) as used e.g. in Ref.@14#.

The mutation operator used in the numerical simulatio
was designed to allow single, as well as multiple, conne

TABLE I. The mutation operator used for RNA secondary stru
ture optimization implements and allows single as well as multi
bind/dissolve operations.

Mutation operator Operation

Connect . . . . . . . . . .→ . . . ( . . . ) . . .
Disconnect . . . ( . . . ) . . .→ . . . . . . . . . .
Zip . . . ( . . . ) . . .→.((( . . . )))
Unzip .((( . . . )))→ . . . . . . . . . .
6-2
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ENSEMBLE-BASED CONTROL OF EVOLUTIONARY . . . PHYSICAL REVIEW E65 046106
disconnect operations at once~cf. Table I!, while avoiding
the generation of not yet tractable pseudoloops.

IV. SEARCH PARAMETERS
AND ENSEMBLE DISPERSION

The mixed evolutionary algorithms introduced in Sec.
basically have three intrinsic search parameters: ensem
sizeN ~a.u.!, temperatureT ~a.u.!, and a mutation probability
Pmut ~%!. The latter is a translation of the selection press
g and mutation ratem as introduced in Eqs.~1! and~4!. For
infinite computation time both parameters are truly indep
dent. For real world applications, however, long simulati
times are costly, and often a quickly obtained suboptim
solution is valued higher than the optimal solution gained
an indefinite time span. For short simulation times we ha
to take into account that basically all common comput
devices2 work sequentially and can thus execute algorith
only one step at a time.

Since the total number of steps is fixed~by the limited
simulation time!, it is obvious that, for example, an increas
number of mutation steps necessarily allows fewer selec
operations and vice versa. We define, therefore, the muta
rate as follows:

Pmut~%!5100m, m1g5
!

1. ~12!

As one possible numerical realization, the algorithm used
our simulations follows these three steps~parameter contro
switched off!:

~1! Initialize theN seekers with random initial conditions
~2! Set temperatureT.
~3! while @run time, final time#.

~i! Draw a uniformly distributed random numberj
P@0,1#.

~ii ! if @j,m#→ mutation step:
~a! Mutate randomly drawn seeker.
~b! Decide about mutant’s acceptance according

Eq. ~3!.
~c! If accepted, replace original with mutant. Di

card mutant otherwise.
~iii ! else→ selection step:

~a! Pick some 2<n!N seekers at random~e.g.,
n54).

~b! Determine the best and the worst from thesen
seekers.

~c! Replace the worst seeker by the best one.

As can be seen here, mutation and selection operate d
ently on the seeker ensemble. In contrast to genetic a
rithms, both operations cannot be carried out simultaneou
causing the initially independent parametersm andg @cf. Eq.
~4!# to be coupled as stated above.

2This statement holds with respect to the underlying principle
Turing machines and does not refer to technical implementat
such as multiprocessor machines or SIMD instruction sets e.g
single processor machines. A true exception would be quan
computing devices that are explicitly not considered here.
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While the ensemble size is practically limited by time a
computer resources, temperature and mutation probab
can be chosen at will. As laid out in our previous work@3#,
both parameters have a strong influence on the ensem
dispersion in search space and, henceforth, on the se
efficiency. A good parameter choice ensures that the see
will cover a certain area of the search space. We will sh
now that controlling the ensemble’s fitness dispersion
drastically improve the search efficiency, since very low m
tation rates cause a strategy to resemble gradient se
methods ~thus leading to a higher likelihood of gettin
stuck!, and too high mutation rates turn the search into
random walk, destroying information already gathered wh
searching. Figure 1 shows the seeker ensemble distribu
to illustrate this problem for frustrated periodic sequences
low mutation rates (Pmut,20%) the ensemble is centere
around mediocre fitness values. The ensemble mean
proves with an increasing mutation rate—until beyond a c
tain threshold (Pmut.70%) the ensemble completely det
riorates.

An efficient adaptive optimization algorithm needs a n
merical measure capable of detecting this error threshol
order to drive the running optimization process as close
possible to the threshold. The ensemble variability int

f
s

on
m

FIG. 1. Frustrated periodic sequence of lengthL515: Fre-
quency histogram for the different fitness levels depending on
mutation ratem, simulation timet5500, temperatureT51, tourna-
ment selectionr 54, ensemble sizeN525, random initial se-
quences, averaged over 1000 runs.
6-3
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AXEL REIMANN AND WERNER EBELING PHYSICAL REVIEW E65 046106
duced in Ref.@3#, defined as the ratio of the number of di
ferent seekers to ensemble sizeN:

vª
Ndi f f

N
, ~13!

though easy to calculate, has turned out to be insufficient
a number of applications. The main problem here is
strong bias towards small ensemble sizes. The relative
persion measure introduced in Ref.@15# circumvents this
problem but requires problem-dependent parameter tuni

In this paper, we are introducing a nonlinear sensor t
avoids bias and the necessity of problem-dependent exh
tive parameter scans in order to determine optimal con
values: The entropyH, as defined e.g., in information theor
can be calculated as

H52(
i

Pi ln Pi . ~14!

By gathering information from the seeker ensemble
generating a histogram as seen in Fig. 1, it is straightforw
to derive a normalized entropy measure:

H5(
i

xi

N
logN

xi

N
. ~15!

As shown in Fig. 2, the ensemble entropy, varying fro
zeroto one, marks areas of different fitness values indiffere
of the ensemble size. This behavior is observed for all mo
problems investigated. Now it is easy to pick an ensem
entropy value that accompanies best optimization results~an
optimal entropy, that is!. The optimal entropy interval read

Hopt50.1760.05 ~16!

for all tested model problems. This value is even fairly ind
pendent of the temperature parameter, as can be see
Table II. We are not yet sure about the causes for the
served temperature independence.

How sensitive this measure indeed is to mutation r
variations can be seen in Fig. 3. The gradient within
interesting region (50%<Pmut<100%) is very high, so tha
small deviations from the optimal interval can easily be d
tected. As stated above, the optimal mutation rate is fo
close below the error threshold. Comparing Fig. 1 with F
2~a! and 2~b! for example, one can clearly see that indeed
the N525 seekers used in Fig. 1 the ensemble distribut
suddenly spreads for mutation rates abovePmut.70% as
predicted by the optimal ensemble entropyHopt'0.2. This
coincides with the upper bound of the search parameter
terval yielding best results~the evolutionary window! as
shown in Fig. 2~a!.

V. OPTIMIZATION WITH ADAPTIVE
PARAMETER CONTROL

It is intuitively clear that one constant mutation/selecti
ratio cannot be optimal for all given simulation times. If th
computer time is clearly insufficient, the best optimizati
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TABLE II. Optimal entropies for the different model problem
in dependence of the temperature. All entropy values have a to
ance of about60.05.

Engel LABS RNA

T Optimal entropy Optimal entropy Optimal entropy
0 0.15 0.12 0.12
1 0.20 0.10 0.12
2 0.14 0.13 0.15
3 0.14 0.10 0.12
A A A A
10 0.15 0.12 0.16

FIG. 2. Mean fitness and ensemble entropy for a frustrated
riodic sequence of lengthL515; The entropy measure nicely re
draws the areas of different fitness values independent of the
semble size and may thus server as a numerical sensor.
temperature was kept constant atT51; random initial sequence
were used; the simulation time wast5500; the results average
over 1000 runs. The best fitness values are obtained for an ent
around 0.20.
6-4
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FIG. 3. Frustrated periodic sequence of leng
L515; ensemble entropy in dependence of t
mutation ratem; simulation time t5500, tem-
peratureT51; ensemble sizeN520; and aver-
aged over 1000 runs.
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FIG. 4. RNA sequence of lengthL5100; The temperature wa
kept constant atT51; the simulation time wast5150; random
initial secondary structures; the results are averaged over 200
The best fitness values are obtained for an entropy aroundHopt

50.20–0.40.
04610
strategy surely is to guess possible solutions. This co
sponds to missing selection steps, i.e.,m51.

Contrary to what we expected, however, the optimal
semble entropy is robust, even against variations of the c
putation time. Taking, for example, the RNA folding prob
lem, too short computation times simply widen the optim
entropy interval. As can be seen in Fig. 4, the best results
achieved for large ensembles withN.50 seekers for a com
putation time of onlyt5150—while for long computation
times t.1000 ensembles ofN'20 are much more efficient
Of course, the best optimization result ofF5
232.0 kcal/mol is not yet reached, but as Fig. 4 demo
strates the best results gained so far are still achieved
ensemble entropies of 0.20<Hopt<0.40, i.e., well belowH
51. It is also interesting to note that above this interval t
functional correspondence between mutation ratePmut and
entropyH is lost.

Using the information laid out so far, it is possible
derive an advanced adaptive optimization schedule base
our work published in Ref.@15#. Extending the procedure
introduced in the previous section, we propose the follow
algorithm:

~1! Initialize theN seekers with random initial conditions
~2! Start with a high temperature (b!1; e.g.,T5103).
~3! Initially, disable selection (m51).
~4! while @run time, final time#

~i! Draw a uniformly distributed random numberj
P@0,1#.

~ii ! if @j,m#→ mutation step:
~a! Mutate randomly drawn seeker.
~b! Decide about mutant’s acceptance according

Eq. ~3!.
~c! If accepted, replace original with mutant. Dis

card mutant otherwise.
~iii ! else→ selection step:

~a! Pick some 2<n!N seekers at random~e.g.,
n54).

~b! Determine the best and the worst from thesen

ns.
6-5



ta
nd
e

g
ar

o
a

ic
h
e

ap

se
ab
ti
th

he
an
p
y

ting
,
t to
al
nd

int-
n to
-
to
tion
n-

BS
m-
itial

the

AXEL REIMANN AND WERNER EBELING PHYSICAL REVIEW E65 046106
seekers.
~c! Replace the worst seeker by the best one.

~iv! After a short computation time, the ensemble s
tistics yields enough information to increase a
control the selection~i.e., reduce the mutation rat
m,1), keeping the ensemble entropy atHopt .

~v! Follow a standard deviation schedule3 ~SDS! to
adapt the temperature parameter:

db~ t !

dt
5

c

s f
. ~17!

The small constantc in Eq. ~17! determines the annealin
speed; the terms f denotes the ensemble fitness’ stand
deviation.

VI. SUMMARY

In this paper, we investigated mixed evolutionary alg
rithms. Numerical simulations reveal the existence of a sm
search parameter interval—the evolutionary window—wh
the algorithm needs to adapt to in order to be efficient. T
paper introduces an entropy-based control sensor, which
ables mixed evolutionary algorithms to automatically ad
themselves as necessary.

The numerical results obtained while using the propo
schedule are convincing, as they are absolutely compar
to manually tuned search parameters following an exhaus
parameter scan. In Fig. 5 the comparison is shown for
LABS problem. Within the standard deviation interval, t
adaptive optimization gives the best possible results
definitely surpasses the ensemble dispersion-based ada
schedule published in Ref.@15#. The fact that the absolutel
best result found in one particular single run~fitnessF58) is

3The SDS was inspired by Andresen@2#, used in a previous work
@3# and also by Mahnig and Mu¨hlenbein@16#.
ife
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much better than the expected result (F53.660.5) indicates
that one can achieve better optimization results, gran
more simulation time (t.500). It still remains to be seen
however, how our results can be generalized with respec
other optimization problems. Also, a profound theoretic
motivation for the entropy-based sensor is still missing a
must be subject to future investigations. To our disappo
ment we did not yet succeed to use a simple test functio
analytically verify our findings. The well-known, linear one
max problem for example is simple, but not appropriate
study ensemble-based search strategies. A slight modifica
of the problem to switch from a linear to a parabolic pote
tial, however, has already rendered it unsolvable.

FIG. 5. Expectation value for the ensemble’s best seeker; LA
problem of lengthL532; comparison between exhaustive para
eter scan and automatic parameter adaption with random in
strings and initial conditionsm51 andT5103; computation time
t5500; averaged over 1000 runs; absolutely best result found is
string S501010100000111111011011001110011 with fitnessF
58.
,
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