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Quantum decoherence, Zeno process, and time symmetry breaking
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The complex spectral representation of the Liouville—von Neumann operator outside Hilbert space is applied
to the decoherence problem in quantum Brownian motion. In contrast to the path-integral method, often used
in the context of quantum decoherence for the case where the environment surrounding the Brownian particle
(subsystemis in thermal equilibrium, our spectral representation is applicable to systems far from equilibrium,
including a pure state for the surrounding bath. Starting with this pure initial condition, the subsystem evolves
in time obeying a diffusion-type kinetic equation. Hence, the collapse of wave functions is a dynamical
phenomenon occurring outside Hilbert space, and is not simply a contamination of the subsystem, a popular
view accepted in the so-called “environmental” approach, by the mixed nature of the thermal bath. The
essential element in the understanding of quantum decoherence is the “extensivity” of quantities characterizing
the thermodynamic limit. Quantum Zeno time is shown to be a lower bound of the decoherence time.
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I. INTRODUCTION ics for the case of a continuous spectrum was recognized
some years ago by various physicists and mathematicians
In this paper, we shall apply theomplex spectral repre- including Sudarshan, Chiu, and Gorifie], Bohm and
sentationsof the Liouville—von Neumann operatéthe Li-  Gadella[3,12], and Kumicak and Bredas[13]. The physical
ouvillian in shor} for the density matrix to the quantum de- motivation was to include decaying states as observed in the
coherence problem. spectral decomposition of the Hamiltoniémence, the name
The recent development of the complex spectral represerf2amow vectorsised by Bom and Gadelld12]). However,
tations shows that irreversibility is a rigorous dynamical pro-this generalization, while going in the right direction, does
cess taking place outside Hilbert space in the thermodynami@ot solve the “quantum paradox” associated with the duality
limit (see[1] and references therein for deterministic maps,mentioned above. To solve these problems we have to turn to

[2—4] for decaying states in quantum mechanics, 7]~ the Liouville spacei.e., the density matrix spagend show

for thermodynamical systems that in the cases where we expect dissipation, we obtain new
A popular trend is to attribute irreversibility to quantum Spectral decompositions that lead semigroupsincluding

decoherencgs,9]. This involves a basic distinction between irreversible processds].

the open system and its environment, which is assumed to be The complex spectral representation lof is quite re-

in a thermodynamic equlibrium. This distinction introducesmarkable, as it exhibits “non-Schdinger” features in quan-

an anthropomorphic element. Indeed, the environment introtUm mechanics. Indeed, there appear dissipative effects asso-

duced by one observer, may be different to that seen bgiated with collision operators of the Pauli type familiar from

another observer. Moreover, this distinction is phenomenoPhenomenological kinetic theories. Our method, therefore,

logical as one avoids answering the most fundamental quedeads to a unification of dynamics, thermodynamics, and ki-

tion of nonequilibrium statistical mechanics, namely, what ishetic theory.

the mechanism that governs the approach to thermal equilib- The complex spectral representation leads to a new con-

rium of the environment, without violating the basic laws of cept, subdynamicswhich decomposes the dynamical evolu-
physics. tion into independent componenit§4—16. This extension

The problem of irreversibility is especially important in Pecomes essential in the case when memory effects are non-

guantum mechanics, which has been remarkably successfiitegrable. For example, this is the case whenever one goes
in all its predictions. Still discussions about its meaning and?eyond weakly coupled systems. Indeed, since the original
scope are as lively as ever. The basic assumption in quantutork of Prigogine and Reibois[17,18, it is well-known that
mechanics is that every problem can be solved at the level ¢he Liouville—von Neumann equation lead to the generalized
wave functions, that is, probability amplitudes. This leadsmaster equation for the reduced distribution function
however, to the well-known duality between the Satinger P "p(t) as

equation, which is time reversible and deterministic, and the

reductlon_ or collapse of the wave .functlon, w_hlch evolves i— P p(t) = PODL P (1)

from a single wave function to anixture described by a dat

density matrix. This duality seems to imply that we need our .

measurements in order to go from “potentialities” to “actu- +J dt’ sgI(t ) PrIp(t—t’). (1)
alities” [10]. For Bohr and Rosenfeld 1], measurements are 0

irreversible processes, be it at the level of the apparatus or at ) o ) ) )
the level of our sensory mechanisms. Here,P("J is a projection operator defined in E@5); L, is

The need to go outside Hilbert space in quantum mecharthe unperturbed Liouviliadsee Eq.(17)]; 64(*V(t) is the
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inverse Laplace transformation of the collision operatorturn to the Liouvillian formalism that allows us to study the
syt (2) =y (z) — PUIL P defined in Eq(74), i.e.,  evolution of the density matrix outside Hilbert space.
In Sec. lll, we overview the Liouvillian formulation of
1 quantum mechanics. We introduce the projection operators
5}],(1’1)(t):—_f dze '#syl")(2), 2) associated to correlations between the harmonic oscillator
2miJc and the field, and solve the eigenvalue problem of the Liou-
villian outside Hilbert space. We show that the eigenvalue
where the contou€ is in the upper-half plane a for t>0 problgm of the Liouvillian is reduced to the eigenvalue of the
parallel to the real axis and goes frofwe to — . In spite of cplhsmn operator. We also shqw that the complete set of
apparent simplicity of the memory effects associated with th&igenstates leads to subdynamics. _ _
non-Markovian equatiofil), the analysis of these effectsisa " S€C. IV, we study the evolution of the der;sny matrix
complicated problem and still a controversial isggee, for ~Over @ long time scale of the relaxation time 1/\“, where
example[19-21)). )\ is the coupling constant. We derlve_ a Markov kinetic equa-
To consistently describe quantum decoherence, we nediPn for a weak coupling case. In this time scale, contribu-
the detailed knowledge of the memory effects. In the comfions from the memory effects are negligible. We present
plex spectral representations, memory effects associated witfinetic equations for the reduced density matrices of the har-
non-Markovian equations for reduced systems are reprélonic oscillator and the field, respectively. _ _
sented by a superposition of Markovian equations in each !N Sec. V, we study the evolution of the density matrix
Subdynamics_ The Subdynamics approach then offers a Sygyer a short time scale<1/\“. In this time scale one cannot
tematic estimation of memory effects. neglect memory effects. We show that the memory effects
As a typical setting in studies of quantum decoherencedi€ out following a power law decay, and the non-Markovian
one usually considers a charged quantum partialesub- fegime of the evolution undergoes a transition into the Mar-
system embedded in a field that is in thermodynamic equi-Kovian regime. The time scale of this transition is known as
librium. For this case the path-integral method is a usefuflu@ntum Zeno timg26]. We show that Zeno time serves as
tool to describe the evolution of the subsyst¢ap—24. @ lower bound for decoherence time.
However, since the system is already in a mixed state as a /N the last section we discuss physical implications of our
whole, the so-called collapse of wave functions of the sub!€Sults, and comment on other approaches to the decoherence
system is trivial for this castsee alsd25]). This is simply a ~ Problem.
“contamination” of the subsystem by the mixed nature of the
surrounding field. Il. THE SYSTEM
In contrast to the path-integral method, our complex spec- ) ] ] ]
tral representation of the Liouvillian is applicable to more We consider a system that consists of a one-dimensional
general situations, including those far from equilibrium. Forduantum harmonic oscillator linearly coupled to a bosonic
examp|e' we can app|y our representation to a pure Sta@:alar field l/I(X) through a bilinear interaction. This is a
satisfying the condition of théhermodynamic limjtwhich simplified version of a multilevel atom interacting with ra-
ensures the existence ettensive variablesuch as the total diation in the dipole approximation of the multipolar scheme
energy being proportional to the size of the system. Indeed27]- Extension to arbitrary dimension is straightforward. We
because of this limit density matricéise they in a pure state Shall call the harmonic oscillator “particle” and the quanta of
or in a mixturé do not belong to the Hilbert space. In the the scalar field “photons” as a convention. The particle with
thermodynamic limit we can decompose the time evolutionmassM; is located at the origin of the space. In the second
of the initial state into independent Markov processes witfduantized form, the Hamiltonian is given e use atomic
finite diffusion rates(subdynamics mentioned abgvéfter ~ units,i=c=1)
the quantum Zeno periqdonly one Markov process domi-
nates, and the initial pure state evolves dynamically into a
mixed state. Our theory, therefore, presents a striking non-
trivial example of a dynamical collapse of wave functions.
As already mentioned, outside Hilbert space the Liouvil- x(al_+ak_), (3)
lian may acquire complex eigenvalues. Going beyond Hil- : :
bert space is a necessary, but not sufficient condition. A'therew >0 andw, = |k;|. Here\ is a dimensionless cou-
additional requirement is the existence of resonances, asso- . K s i i :
ciated with unstable dynamics. pI_mg constant. We put our system in a o_ne-dlmensmnal b(_)x
In the following section we introduce our model that con- With SizeL, and impose the usual periodic boundary condi-
sists of a harmonic oscillator coupled with a field. There welion- Then, the spectrum of the field is discrete
also specify the concept of the thermodynamic limit. We )
show that due to extensivity of the expectation value of the kj=j/Q,
total Hamiltonian(H), the Hilbert norm of states diverges in
the thermodynamic limit. We also demonstrate that invari-where Q=L/27 is a volume factor and is an arbitrary
ants of motion generated by the Bogoliubov transformatiorinteger. To avoid heavy notations we hereafter abbreviate the
are destroyed in the thermodynamic limit. This prompts us tandex j in the wave vectok;, and denote the summation

H=HotAV=wiajart 2 wgagaq A Vi(ai+ay
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over the wave vector asy instead ofZ;. We assume that Due to the coupling to the field, the particle oscillates with

the volume dependence ¥f; is given asQ ™', the new frequency ;= w;+ dw; With Sw;<0. We assume
that the coupling is so weak,<1, that the frequency shift is
Uk much smaller than the unperturbed frequency, i.6a,|
Vi=—=, 4
\/5 <wl.

The complete orthonormal basis of the unperturbed
where v is independent of) in the limit Q—o. In the  HamiltonianH is given by
Hamiltonian (3), the usual Dirac creation and annihilation

operators for the particlal, a; and the fielda}, a, H0|nl,{np}>=(w1n1+2 wknk)|nl!{nF}>v (14
obey the canonical commutation relations K

[al,ai]zl, [alyal]:o, [ak,a;tr]=5k,ku (5)  where {nF}E{nkl,nkz, o ,nkj} and n, is the occupation
number for the state of particlew=1) and field @¢=Kk),
where d \/ is the Kronecker delta. In the limil—c« we  respectively. This basis spans the Hilbert spdteck spack
have with the usual Hilbert normj|n,,{ng})|?=1, where|W¥|?
=), . |
> _)QJ' dk, Q8 g oK), (6) We describe the evolution of the system in terms of the
K ’ density matrix in the Liouville space. As we shall see later in
Eq. (23), this space is spanned by the basis formed by the
where §(k) is the Dirac delta function. The coordinate and dyadic operator generated from the basis in wave function
momentum operators for the particle are given by space. The evolution of density matrices is governed by the
Liouville—von Neumann equation

- 1
q;= =——(a;+aj), ()
V2m 9
101 |Ep(t)=LHp(t), (15
~ . JoiMy t . - . . .
pi=—i T(al—al). (8)  where theLiouvillian Ly is the commutator with the Hamil-

tonian, i.e.Lyp=Hp—pH. Corresponding to the decompo-
By introducing the field operatap(x) and momentum den- Sition of the total Hamiltoniar(3) into free and interaction
sity operatorm(x), parts, we can decompose the Liouvilliag into an unper-

turbed partL, and an interactioi,, as
1/2

(aleikx_i_ake—ikX), (9) Ly=Lot+ALy, (16

1
$O)=2 (—Zka

wherel, andL,, are given by

1/2
. Wi i —i
m(x)= —IEk (Z (aje™—ae ™), (10 Lo=HoX1—1xH, (17)
we may write the Hamiltonia3) as and
. Ly=VX1—1XV. (18)
il PL Mo, 1 il -2 Ip(x)\?
Tt oy, T T Wty T )+ —5x Here, a factorizablesuperoperator A B operating on the
density matrix, is defined by
+?\j dXt p(X)g(x), (11) (AXB)p=ApB, (19)
where the constant, is the vacuum energy of the particle WhereA andB are linear operators acting on wave functions.
and the field. Here we have introduced the form fagor) The Liouville space is spanned by linear operators
to avoid the ultraviolet divergence. The form factor is related”:B. - - . in the ordinary wave function spaf@]. As usual,
to v, by the inner product of the Liouville space is defined by
1 2 2wy ” (<A|B>)=Tr(ATB), (20
X)=— ve™x. 12
9(x) Q% TMiw; ¢ (12 whereAT is the Hermitian conjugate of the linear operafor

_ . o _in the wave function space. To distinguish a state in the Liou-
We ChOOSQ}k such that the interaction satisfies the fOIIOWIng ville space from a state in the ordinary wave function space,

conditions in the limit() —o: we shall use a double-ket notatiph)) for the former, and a
. single-ket notation¢) for the latter.
f dK|vy2<ce. (13) The Hilbert norm||p|| of a state in the Liouville space is
— defined by
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||p||25<<p|p>>_ (22) system is an “extensive” variable. This is the situation cor-
responding to the thermodynamic limit.
One can introduce the Hermitian conjuate’ of a given Due to the extensivity ofH), a state defined ag¥V’)

superoperatod in the Liouville space. One can define Her- =H|n;,{ng}) does not belong to the Hilbert space in the
mitian superoperators and unitary superoperators as usudlermodynamic limit, despite the fact that,,{ng}) is an
[6]. The Liouvillian is an example of the Hermitian superop- element of the Hilbert space. Indeed, we have for the Hilbert

erators, i.e.L[=L. norm in the limitQ— o,
For the case where the wave function space is spanned by 5 5 5 )
a complete orthonormal basis, [[?=(ny,{ne}[H?[ny {ne}) = w3(ny)
2 |a><a|:1’ <a|’3>:5aﬂ, (22) +2w1(n1>9f dkwk<nk>+Qf dkwﬁ(nk)
the Liouville space is spanned by a complete orthonormal +)\2j dklvil?(2(n)+1)(2(nY+1), (29

basis of the dyadky; B))=|a){(A|, i.e.,
where (n;)=n; and (n,y=n,. In the nonthermodynamic
; Bl=1, : FBN=8 S s case (273, Eq. (28) gives a finite norm, whereas for the
QE’B |a; B)){(a: Bl (e Bla’sB')) = ba.u 9 5 thermodynamic limit(275) this norm diverges. This implies
(23)  that we need a special consideration to analyze the evolution
of our system in the thermodynamic limit.

The matrix element of the usual operafoin the wave func- In the thermodynamic limit, the tagged harmonic mode
tion space is given by w, moves according to the field. This corresponds to quan-
. _ tum Brownian motion of the harmonic oscillator.
((a; BIA))=(a|A|B). (24 Recall that our Hamiltonian is given by a bilinear form in

In the occupation number representation the basis for thgnnihilation and creation operators. Therefore, one could for-
Liouville space is given by mally diagonalize the Hamiltonian(3) by introducing

dressed annihilation and creation operat@®g and B;

la; BYY=1Iny,{ne};n; AnEh)). (25)  through a Bogoliubov transformatidsee Appendix D
Let us now specify the meaning of the thermodynamic H:QJ dkw.BIB (29)
limit. As an example, let us consider the case where the KPPk

initial condition for the density matrix(0) is diagonal in the S ) ) e
number representation for the field component. This class of €N, We have an infinite set of invariants of motid@)By)
initial conditions is often used in quantum Brownian motion for any given initial condition. For this case, there should be

[8,22,23. Then the expectation value of the total energy is"® place for the diffusion-type dissipative processes. How-
given in the continuous spectrum linfit—c by ever, the formal diagonalization fails in the thermodynamic

limit. Indeed, in the continuous spectrum limit the dressed
operatorBy involves denominators of the formw{— wy:
(H>:TF(HP)=w1<nl>+QJ dkay(ny), (260 +i0)~1, which are distributiongsee Appendix D As a re-
sult, the invariantgB/B,) involves a product of the distri-
where(A)=Tr(Ap) denotes the ensemble average of an obbution|wy— w,+i0| ~2. In the nonthermodynamic situation,
servableA. Let us assume th@n,) decays rapidly enough a contribution from a produo(tBﬂ:Bk> vanishes in the limit
for |k| — to ensure that the integration Q) — because of an extra volume fac@r ! in Eq. (273).
However, in the thermodynamic situati¢®7b) this product
f dko(ng leads to divergency due to the resonant contributiom at
KAk =wy , and the invariants are destroyed.
The appearance of irreversibility due to destruction of in-
in Eq. (3) exists. Moreover, assuming a smooth dependencegariants of motion in the thermodynamic limit is an impor-

onk for (n,) in the continuous spectrum limit, we may con- tant subject, and we shall devote a separate paper to a more
sider two different situations, detailed discussiof28|.

<nk>~o(9 1)’ (273 Ill. COMPLEX SPECTRAL REPRESENTATIONS OF Ly
(n)~0(Q°). (27b Since the states representing thermodynamic systems do
not belong to Hilbert space, we have to deal with a larger
For the casé€27a, we have(H) << in the limit Q—oo. This  class of density matrices, which have a specific volume de-
is a typical situation considered in the usual scattering theorypendence in each matrix element, to ensure the existence of
On the other hand, for the ca&&7b), (H) is proportional to  extensive and intensive variables in the thermodynamic
the volume in the limitQ)—x, i.e., the total energy of the limit. This family includes canonical equilibrium. In the pre-
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vious papef6] one of us(T.P) and Prigogine have extended These are eigenprojectors bo§,

the total Liouvillian Ly to this family of density matrices,

and have shown that the Liouvilian may have complex ei-  LoP®1%- " =P01%- W j= (v 01+ vpwi+ - - -
genvalues that break time symmetry. The complex spectral n p(vivc. .. ) 36
representations of the Liouvillian then leads to the “dynam- Vo) (36
ics of correlations” describing the non-Markovian evolution
in terms of a set of infinite number of Markovian equations.
This set includes the Pauli master equation. The detailed

derivation of the solution of the eigenvalue problem of the >, P(Vl)+2 > P> Y plane 4. =1,

and satisfy the completeness and orthonormality conditions

extended Liouvillian as well as the derivation of the kinetic "1 V1iVk Kl v

equations has been given in Rg6]. For a self-contained (37)
presentation, we briefly summarize complex spectral repre= ., ., ) o (e, . 2 — 1w .. .7

sentations. For details the reader should corj&jlt PRk P A= PR S O - Oy

Let us first introduce projection operators that specify cor- (38)

relation components, such as a one-particle distribution o . . - S
nponel (v7) °p ﬁ'he eigenprojector&35) are Hermitian operators in Liouville
the harmonic oscnlatoPNl , correlations between the par-

space
ticle and a single modé& of photonsP(NVl ’,\Tk), correlations
. 1Nk (P(Vle...V|))T=P(Vle...V|). (39)
among the particle and two modds and | of photons
(r1,vic,m) . . . :
PN, N, » @nd soon, Diagonal components of density matrices are associated to

the “vacuum of correlation” subspace and are singled out by
) (j (r1) wi _
(v1) + - + - P™ (i.e., PY"Y with v;=0).
Py, _{nEF} lvT Anelivy Aneb) ({1 Anetivr Aned], To avoid heavy notation, we introduce the superscript
(300 ={vivk...y}, and express Ed36) as

vy,v _ Lop(v)= P(V)L():W(")P("), (40)
P?\lll N:) 2 |VI1VL{nF}(k);V1 Vi 1{nF}(k)>>
el wherew= 1,0+ vio -+ - - -+ vo,. We also abbreviate
><(<VT ,VT,{nF} KV Yk AN (1= 6, 0), summation over the wave vector of photons in completeness
o o 0 « and orthogonality relation, i.e., we write Eq&7) and (38)
B)  as
Pf\lvll’ﬁ:::‘l')z{ 2}‘, |VI,VLV|T:{nF}(k,I);VI o > p=1, p(u)p(u):%'yp(p)_ (41)
NEs (k1) ~
oot f N |
XAnebaen? X v ANed g v v m We also introduce the complements
><{"‘F}‘(k,|)|(1_51/,(,0)(1—5ul,o)- (32 Q=1 po) .

SmceP(N”l ,\Tk :l') involves more modes of the particle and the \we nave

field, th|s subspace isnore correlatedthan the subspace

ve oy (2= p(») 2= Mo =pWp =
Pf\l 1'Nk). Here{ng}, . ;) means that the components of the (PT)7=P™,  (Q")*=Q™, P¥Q QP 0
17k

Lk T (43
field ny,...,n are excluded from the set{ng}
={nkl,nk2,nk3, ...}. Moreover, and
v; LOP(")=P(")LO, LOQ(V)zQ(V)LO_ (44)
VrENj+§=nj, (33)
Let us now consider the eigenvalue problem of the
" Liouvillian* [6],

We formulate the eigenvalue problem bf, in the thermody-

for integers ;= (n;+m;) and integers’;=n;—m;, where namic limit. In this limit, special care is necessary for a general

j=1 or k. Hamiltonian, as the perturbed Liouvillial, usually gives rise to
We introduce operators divergence due to disconnected procegseg connected and dis-
connected diagrams in Ref®,17]). However, in the case of our
P(”l)EZ Pf\ln), P(r1vi) = f\llq '\’l/k) o Hamiltonian we do not encounter this divergence as all processes
17k are connected to the tagged made through the specific form of

N1 ! Ni  Ng
(35 interaction involvinga, or a] .
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LalFEN=20IFD)), (FOIL=(FY12Y. where

“9 U =[N~ Y2 F D)), (52

The indexa together withy is a parameter characterizing the
eigenfunctions. For the unstable case some of the eigenv
uesz{") may be complex. As mentioned before, this is only
possible if we conS|d.er the elgen.value' problem that corre- Py (2)=PWL PO+ PUINL,CM(2)PM). (53
sponds to an extension af, outside Hilbert space. As a
result, the left eigenstates are generally not the same as tffde collision operator is a “diagonal operator” since it de-
Hermitian conjugate of the right eigenstates. scribes a “diagonal transition” within the same subspace
Because the eigenvalueS’ are complex, the time evo- P, As indicated in Eq(51), the eigenvalue problem of the
lution of the system splits into two semigroups. For the semiLiouville operator is then reduced to the eigenvalue problem
group corresponding to>0, the eigenstates are associatedof the collision operators that have the same eigenvatiés
with the eigenvalues with Im(;)so (including the case asLy. The eigenvalue equatiof®1) is “nonlinear” as the
Imz{’<0) and equilibrium is reached in our future for €igenvalue appears in the collision operator.
— +o0, while for the other the eigenvalues are the complex Using Eq.(49), we obtain the right eigenstateslof, from
conjugate o2(") and equilibrium is reached in our past. Ex- the corresponding right eigenstatesyéf)(z.”) as
erience shows that all irreversible processes have the same
'ﬁme orientation. To be self-consister?t, we have to choose the [FON=INVILPW +c Mz ]ul)). (54
semigroup oriented towards our future.
The right and left eigenstates satisfy biorthogonality an
bicompleteness relations,

Al-[ere Nf]) is a normalization constant angl*)(z) are the
collision operatorsdefined by

(f\ construction parallel to the above, leads to the left eigen-
states ofL,; with the same eigenvalues”

EW —//7W (v) () (5(») (v)11/2
(FOIRN=6,,805 > 2 FONEY|=1. R e

(46) where the “destruction operator” is defined by

We consider the case where the eigenstates are analytic with DM (z2)=P\L, Q") ———— (56)
respect to the coupling constaxt i.e., z—QWL,QW

lim [FU))y = lim POIEMYY,  lim ((FP|=1im (FOIP® and (0|=(FW PN =12 gre the left eigenstates of
A—0 A—0 A—0 A—0 the collision operator,

(47)
and (@) =Y. (57)
lim 2z =w®, (48) Since the cgllision operator depends on the eigenvalue
A—0 Z\") | the statd(v{"| is generally not biorthogonal fa{")).
_ _ _ Assuming, however, bicompleteness of these states in each
wherew(") is defined in Eq(40). P(" subspace, we may always construct sets of states

Using P(V)+Q(”)51 in Eq. (45) one can find theQ™ (AN and {[v™))} biorthogonal to {[u”))} and
component of the eigenstates as {<<;(V)|} respectively

Q(V)lFE;/)>>=C(V)(Z(QV))P(V)|FEYV)>>, (49

Ty — (v) )| =p®
u,”’|u =06, .04 8, u, u,’|=P
where the “creation-of-correlation operatof¢reation opera- (U ) wop % e ()
tor in shoni is defined as (58

) -1 » » and similarly for|v (")) and((v{"|.
¢ (z)=WQ ALyPH. (50) In order to connect the kinetic theory to the eigenvalue
problem ofLy, we introduce the “global” creation and de-
This operator is an “off-diagonal operator” as it describes anstruction operators
“off-diagonal transition” between the different subspace
Qf”) and P, Care has to be taken in the analytic continu- CO=3 W)Uy @), (59)
ation ofzto have the time evolution approaching equilibrium a
in our futuret>0.

Substituting Eq.(49) into the eigenvalue equatiof5), y DA S = (5 rm ()7 (v
we obtain Dt )Eg @YD) (60)

gy =20 [u)), (51 Then, we can write the eigenstates as
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IFUYY =[NUY2 () 4 00| uyy, (61  =II"p. Taking the time derivative of the privileged compo-
nent in Eq.(70), we obtain the “Markovian” kinetic equation
W) —//7W (y)+ (v) (v)q71/2
The normalization constant may be found from the bior- ! ot
thonormality condition of the eigenstates,

= g(V)p(V)p(V)(t). (73

~ There is an infinite set of Markovian processes associated
[N 2= (W[ AM]~Luyy, (63  with eachIT" subspace.
In this work we are interested in the weak coupling limit.
where For this case, the relation between the original collision op-
~ erator (*)(z) and the global collision operata”) takes a
(v) = (v) (v) (v) (My1-1= (v) . . ) ;
A [(PT+ D) (P +C) ] [(P simple form. Indeed, a series expansion of the creation op-
+DWcM)1 L, (64)  erator(50) in powers of\ starts from\. Keeping the inter-
action term up to\? in Eq. (53), we havé
We have
Py =POLPW + N2y (W +i0)+O(N%).
~ 74
A= UPINEH Y. (69 (7
“ Here 44" (z)=PML,C{’(z2)P™ and C{"(z) is the first-
The global collision operators associated with the creatiorder contribution inC(")(z), i.e.,
operatorC”) are given by

-1
C(z)= ——QWhL,PY (75)
6= 2 g U], (66) Lo~ 2
and we have analytically continuet}”’ from the upper-half

Then we have plane to guarantee that the time evolution is oriented to our
future t>0. Substituting Eq(74) into Eq. (68), we obtain

6|u)) =2 ul)). €7
- : 0 =PIL PO+ N2y (WM +i0)+ O\, (76
Substituting Eq(53) into Eqg. (56), we have 0 v2( )+OMD, (79
(") = PP 1 PO L, P (69) where we have used the second relation in &@). This

result allows us to calculate E¢76) in Eq. (73) the lowest-
Now we define the dressed projection operators in eacRrder approximation i.. We also have the following per-

subspace in terms of eigenstaté4) and(62), turbation expansions:
(1) =\ ) () 2
H(V)EZ |FEYV)>><<'|EEYV)|_ (69) c# )\Cl (W) +0O(N9), (77)
’ D(“):)\D(lﬂ)(w(“))Jro()\?), (78)

This leads to the relation

(1) = p() — )\ 2D () (\ )y 4 (1) 4
e ILHIT0) = [T Lut = (P 4 C) g 1A ) AW =P —\2DI (W) CI (W) + O(N%), (79

with a suitable analytic continuation @f*) (see Appendix

(v) (v)
X (PT7+ D). (70 B). Here the subscript in each superoperator means tith
From Egs.(45) and (46), we have order contribution in the. expansion of a superoperator.
LIV =110, > n®=1, nOnwW=mw"s, . IV. MARKOVIAN KINETIC EQUATION
: (71) Let us now apply the formulation developed in the pre-
ceding section to describe the evolution of our harmonic os-
Hence,I1* is a generalization oP) for the total Liouvil- cillator governed by the Hamiltoniai3). We assume that the
ian L, . However, Eq(69) shows thaI*) is not a Hermit- initial state ofp is diagonal in the field component in the
ian superoperator, i.e., number representati?)n
(TTHT£IT™, (72

) ] 2For the Hamiltoniar(3), there appear only terms of even order in
Equations(70) and (71) show that each correlation sub- ) in the expansion of the collision operat@3). In general, terms
spacell(” evolves independently of other subspaces. Fogf odd power in\ may also appear in the expansion.

this reasod1(*) is associated witisubdynamicswe call the 3p() is defined in Eq(35). It should not be confused with the
componentP(”p(" the “privileged” component of p(*)  abbreviated notatioR*) introduced in Eq(41).
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p(0)=2, P*1)p(0) ni~0(Q% and f dkn)<oo, (89
V1
_ i.e., the thermodynamic condition is satisfisge Eq(27b)].
:nzm {nz} Ing{neb)p(ny {netimy {ne},0) For the choice of initial condition$88), the system is far
T EE from equilibrium. Our complex spectral representation is ap-
x{my,{ng}|. (80) plicable to both near equilibriunt87) and far from equilib-

o o ) rium (88), whereas the path-integral method is not a useful
Moreover, we assume that the initial condition is factorizableyoo| to describe the evolution of the system far from equilib-
into a product of the particle state and the field state as  rjum. Of special importance is the ca@8), since as we will
show, even starting from this pure state, the system evolves
P(nly{nF};mla{nF}yo):fnl,ml(o)H f (N ,N,0) to a mixed state from the pure state in the thermodynamic
k limit. Hence, the wave function collapses dynamically in this
(81 limit [29].
. o . Let us now evaluate the time evolution of the component
with the normalization conditions SCAPY

E fnlvnl(o):]_, (82 P(Vl)p(t):P(Vl)p(Vl)(t)+ P(Vl)pr(’n];:)l)(t)! (90)
n

where P("0p("1) is the privileged component ifl(*? sub-
E fr(Ne,N,0) =1, (83) space, whereapﬁ”pl)EQ(”l)p is the nonprivileged compo-
Mk nent[see Eq.(70)],

where we have introduced the reduced density matrix for the P (1) (1) = P(”l)e*‘0(V1)tA(V1)P(Vl)p(O), 91)

particle,
fnl,ml(t)s(n1|f(t)|ml) (84) PDp, ()= ; PrICWe i AW DW P ().
wu(Fvy)
with (92
HO=Tre[ PU2p(0)], (85)  In the lower-order approximation in, we have
and for the field 630 =110, PO, 93
fr(nie, N at)E<nk|Trp,F(k)[ POp(t)]Iny), (86) )\29(;1): )\Zp(Vl)LVCfLVl)P(Vl), (94)
whereP(®) meansP(") with v;=0, and Tg means that the
partial trace is taken with respect to all field components, )\C(1”1)=)\ — QUL P, (95)
while Tror,, Means that the partial trace is taken with re- Lo—r10,710
spect to all components except for tkida-mode of the field. 1
One of the possible choices of initial conditions is to as- )\D(lvl)z)\p(vl)LVQ(vl)—_. (96)
sume that the field is in unperturbed thermodynamic equilib- v1w1~Lot+i0
rium,

First, let us consider a long time scale-\ 2, which
e~ Aok corresponds to the relaxation time scale. Later, we will con-
o (87)  sider a short time scale wher&\ ~2. In the long time scale

we can approximate the privileged component by
where Q=[1—exp(—Bwy)] ! is the partition function and , , _ o (v) ,
B=(kgT) L. This case has been treated extensively in the PUp(t)~PUVexd —i(riwi+) 0" )tIPtp(0),
literature[8,9,22—24. For this choice of initial conditions, a 97)
system is in a mixed state near thermal equilibrium. For this

(v1) i vq) :
situation, the path-integral method is applicable to study th .hereA v has bee_n apprommated_ W v by neglﬁc)tl_ng
evolution of the systerf8,22,23. igher-order terms i\, and the collision operatof'*? is

H v 2 (1) H H
Another interesting choice of initial conditions is given by @PProximated byvy @, 0+ N2y I(V1°_’1+'0);1 This cor-
a pure state(0)=|y(¥4|®|[{n2})({n2}|. Then we have responds to the so-called’t approximation{17].

foy m (0)=(na[ 1 (Wamy),  fi(n,n,0)= 3, 0,

k

f(n,n,0) =

(88) “4Irreversibility is not introduced by this approximation, but is a
result of the nonvanishing imaginary part of the complex eigen-
where we have assumed that in the liflit- o valuez"” . This approximation is a way to evaluate the imaginary

a
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Equation (92) with Egs. (77) and (78) shows that the v=27|v\|?8(w— wq) (103
dominant contribution to the evolution of the non-privileged
componentwith u# v;) in eachII*) subspace starts with and the renormalized frequency of the particle is
the second-order term iR. Therefore, we can neglect the

nonprivileged components for the time scaletef\ "2, i.e., 01=w;+\ 5w, (104
we have . .
with the frequency shift
P p(t)~ P p((t), (98) 5
w1
A25w152wA2PJ.deQ2 —, (105
Taking the time derivative of Eq$84) and(86) with Eq. w1— Wy

97), we have fort~\ "2, . :
(97, we have fo where P stands for the principal part. The quantitiag),

9 and(ny); are the average numbers of quanta of the particle
iafk(nk,nk,t):)\z(nk|Trp'Fk[ 0P pM(t)]|ny), and the field, respectively, at timeTo obtain Eqs(101) and
(99) (102 we have used the factorization prope(8i) that per-
sists for anyt>0 [17].
3 The RHS of Eqs(102 and (101) are dissipative terms.
i—f, o ()=(N =My wyfy m(t) These results show that dissipation comes from the contribu-
ot 1 S tion at the resonance,= w, [see Eq(103)].
() (v The RHS of Eq.(101) is proportional to 10). Hence, if
TN Trel 6™ PDp(1)]my). we start with nonvanishing(n,n,0) of the orde2?, then
(100 we can neglect the expression in the RHS in the thermody-
namic limit as{)—oo. Examples are the finite temperature
Using Eq.(95) with the expression$3), (30—(32), we ob- case in EQq.(87), or a pure state with Eq@88). For these
tain an explicit expression for the right hand sidRHS) of  cases, the photon distribution function is invariant in time,
Egs. (99) and (100. However, since calculation is lengthy, i.e.,
we have presented the calculation in Appendix A, and here
we display only the results. We obtain the Markov equations fe(ni, N, t) = Fi(ni, Ny, 0). (106

fort~\"2% as . . .
However, if we start at zero temperature, ies0 in Eq.

P A2, (87) so that there is no photon &0 [or nY~0O(Q 1) in
Efk(nk,nk,t)= Q [ni{ny)f(ne=21,n—1;5t) — ({Nny )y Eq. (88)], then one cannot neglect the expression in the RHS
of Eqg. (101). This corresponds to the case of spontaneous
+ Nt 2(n) ) (N, N, O + (g + 1) emission of the photon by the excited particle. In this case,
fi(ng,n,t) changes in time andn,), approaches the line
X (Nt 1) fe(ne+1,n+1,1) ] (10D  shape of the emitted photon &s-%. Indeed, our kinetic
equations(102) and (101) lead to the Pauli-type equation,
and which corresponds to the well-known Uhling-Uhlenbeck

equations for the average number of particles and the field

a_tfnl,ml(t)_iwl(ml_nl)fnl,ml(t) for the case of nonlinear interaction, i.e.,

d A2
- == - , 10
:)\ZJ dk')/k[ n1m1<nk>tfnl—1’ml_1(t) (?t<n1>t QO ; 7k[<nk>t <nl>t] ( 7)
d \?
1 _
=l (np+my+21)(n)+ E(nl+ml)}fn1’m1(t) 2t (M= 7Nyt (il (108

If the thermodynamic limit is fulfilled, one can again neglect
+(ny+1)(My+1)({n)+ 1)fn1+1,m1+1(t)]- the RHS of Eq.(108), i.e., {ny), is an invariant of motion
[see Eq(111)]. On the other hand, for a nonthermodynamic
(102 situation such ag§ =0, the RHS of Eq(108) is not negli-
gible in describing a decay of the excited particle. Indeed, for
Here the initial condition{n,)o= 0, the solution of Eq¥107) and
(108 is given by

part ofzi”l) up to the second-order contributionin cf. Appendix ) 1w )

D where the decay rate of spontaneous emission of an excited state (niye=e "Ny, (M= Q 7(1_ e 7)(ny)o,

is evaluated in tha?t limit (see also Refl4]). However, care has (109
to be taken when the unperturbed discrete spectrum is located near

the lower bound of the continuous spectrum of the field. where

046102-9



T. PETROSKY AND V. BARSEGOV PHYSICAL REVIEW 65 046102

h? M, w?

2

32 92

I F e

2M,

1 J
yzﬁzk Ve, (110 i f(a1,01,0)=

which leads to the well-known line shape proportional to

8(w—w;) in the \?t approximation. Note that a non- x(qf—qiz)]f(ql,qi,t)—i)\zAz

negligible contribution to the RHS of E@101) for the zero

temperature case is essential in order to keep the density

matrix in a pure state for arbitrary tinte-0 by starting with

a pure initial state. 9 g \2
We first restrict ourselves to the thermodynamic case X(a—+ F) f(g1,0; ) —iANT,

will discuss the nonthermodynamic case, i'EEs0 in Sec. RE

X (9. —01)%f(qy,a1,1) +i72\2B,

VI). Then, the average number of photdmg), in the kth 9 J
mode of the field is an invariant of motion, i.e., X(QrQi)(a—ql— ﬁ_q’) f(q..a1.t)
1
H 2
<nk>t:<nk>0:n2 Nifr(ni, N ;0). (111 FIRAT
k
Then we obtain a closed kinetic equatitt02) for the re- X 69_(11+ aaL (d:+07)f(91,9;,1).

duced particle distribution functiof{n,,m,,t), which is one

of the main results in this paper. However, in order to discuss (119
hysical consequences of our kinetic equation, we have t - .

j%s)t/ify our app?oximation(97), where Wg have neglected Piere the constant coefficients,, B, andI’; are given by

contributions from all nonprivileged components, coming M, 1

from other subdynamics. These components are responsible A= f dk')’k(<nk>0+ _), (116

for memory effectdi.e., non-Markovian procesgethat are 2 2

essential for estimation of the decoherence time scale. In the

following section, we will analyze the memory effects in _ 1 J' l)

detail. B2= oMo, dkyk(<”k>°+ 2] (117
Before going to the next section, let us present our kinetic

equation(102) for the casg111) in other useful representa- 1 Ve Y

tions. First, Eq(102) leads to the following master equation = EJ dkj 2 (118

for the operatorf(t) defined in Eq(85) [9,29-33,
) where the subscript 2 iA,, B,, andl’, indicate the second-
d . L~ - A order contribution in\, and we have explicitly indicatef
_ - T —_ '
s [(O=—lofaa, f(O]+ 5 J dky((nio+1) and the mas#1, of the harmonic oscillator.
R R R Finally, in the Wigner representation defined by
x[2a,f(t)a]—ala,f(t)—f(t)ala,]

1 . r r
Qe Pyt)= WJ' dryePaa/ f| Qi+ §,Q1— E’t

\? R R
+ 5 [ diningolzalf(va,-asalico

(119
—f(t)aa]]. (112 our master equatiofi15) takes the form
Second, in the coordinate representation 9 1 9 i 9
2w, |- —p - _—
) atf (Q1,P1,t) R Plan +My01Q; 9P,
f(Ql:Qiat)EnZn (9a/ny)(nq|F(t)[my)(mq[qy), P pr
1"
113 +N2hA, ——5+\%hBy—
(113 2 9p2 29Q2
where ¢,(q) are the eigenstates of the harmonic oscillator, 9
given by +2\T,—P,
P
lel 1/4 1 1/2 5
= = N —(&772) J
(@) =(qln) ( h ) omi| Hn(©e = +2>\2F25Q1)fW(Q1,P1,t),
(114 '
(120

with H,(&) being a Hermite polynomial of degreeand ¢
=(M,w, /%)%, the Eq. (112 takes the following form where P; and Q,=(q;+q})/2 are the Brownian particle
[29]: momentum and average position, respectively.
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In Eqg. (120 the terms associated with the coefficieAts  Hence, the dominant contribution in a short time scale in
andB, describe the diffusion process in variabRsandQ,,  expressior(90) comes fromll(#2) subspace fox <1, where
respectively. These terms are responsible for the decoherengg=(u;=1). In the short time scale<\ 2, we can ap-
phenqmena. I.ndeed, in EGL15 one can see that the term proximate the collision operato&?‘”i”k) as[cf. Eq. (93]
associated withA, leads to the decoherence of the off-
diagonal elements of the reduced density matrix in the coor- ,
ginate representation, and the decoherence tigeés given o1 M) ~ 08”1’”k)=(v1w1+ ykwk)P(V:/L’Vk)_ (124)

y
h (129 Then, we have
4o~ 55—
99 N?Ay(q,—a))?

. _ , (| Tre[ P p () 1My
Similarly, the decoherence tintg, in the momentum repre-

sentation is given by 23> 3 <n1|TrF[P(V1)C(”i*"k)
o k pn==*1 1
ﬁ 1
top~ 2n o 2 (122 '
A“Bo(p1—P1) xex —i(viw;+ nat]DUT WP p(0) ] my).
The larger thdq,—q;| or |p;—pj|, the shorter the decoher- (125

ence timety. However, there is a lower bound tf, below
which formulas(121) and (122) are not applicable. Indeed, The calculation of the RHS of expressi¢éh25) is straight-

for times much sho(rEe)r than the relaxation time scale ongynyard. We shall present this calculation in Appendix B.
cannot approximat®'"*'p(t) by only the privileged compo-  ere we display only the final result,
nent, as in Eq(97). In the following section, we will evalu-

ate a contribution from the nonprivileged component in Eqg. (v1)
(90) for times much shorter than the relaxation time scale. (M|TrelP*Vpny()][my)
To consistently take the classical lintit—0, one has to
keep in mind that in the RHS of E4120) the decoherence w)\zf dk|vk|2[[(<nk)0+ D(ng+my)fn m (0)
rate constant&,,~% "1 andB,~# 1. Then, in this limit we
recover the usual kinetic equation for the reduced probability 4 (n,)(n,+m,+2)f, m.(0)
distribution function of a classical particle weakly coupled to v
the clagsical field. Note that_in the classical limit, in the RHS +<nk>0'/nlmlfnl—l,ml—l(o)+(<nk>0
of the kinetic equation we still have the terms proportional to

the second-ordezr dlfgerentlal opergtors of'p05|t|@2rﬂ(?Q1 + DN+ 1) (M +1)f 4 m +1(0)]
and momentuny</JP{ of the classical particle. Therefore, _

quantum decoherence or collapse of wave function is nota exf —i(ox—wi)t]

unique attribute of quantum mechanics and corresponds to (w—w;—i€)?

the well-known diffusion processes in classical mechanics.
(Mo + V(Mg +mMy+2)F, 1 (0)+(Ni)o

V. QUANTUM ZENO TIME
N X (Ny+ M) Fo i (0)+ (Mo + 1) aMef o 1 —1(0)

In this section we will show that the non-Markovian effect

coming from the nonprivileged components in E2Q) gives +(NoV(ny+1)(My+1)f 4 g +1(0)]
a non-negligible contribution for a short time scale\ 2, )
and it dies out following a power law in a time scale of the exd —i(wg+ w)t] vt
Ty . ; — c.| e et (126
order 1liv;<<\ "~ “. Therefore, 1bh, gives a time scale of tran- (ot wi—ie)

sition of the evolution from the non-Markovian regime to the

Markovian regime. This transition time scale is called quan- As a function ofw,= k| the first and second terms in the
tum Zeno timeg26]. Only after the Zeno time does the Mar- . . @k’ .
integrand in expressiofll26) have a second-order poles in

kov equation (102 start making sense. Hence, quantumt e ubper and lower half of the complex planewef. Hence
Zeno time serves as a lower bound for the decoherence timg PP piex planeugql. ’

[29]. in the I1(*17 subspace, the resonance poles do not contrib-
To estimate the Zeno time, we first note that to generatélte fort>0. Indeed, these resonance effects have already

the correlation subspaﬁvmmw) from theP(") subspace, been taken into account in thig) subspace. In the subdy-
we need at leag, |+ - - - +| | successive interactions, i.e., hamics theory, analytic continuation of the denominators has
been carefully chosen to avoid double counting of the reso-

P(Vl)C(Vin‘ - V|)p(Vin' ) p(Vin- - "I)D(”i"k' ~v)p(r1) nance effects.
As a working example, let us evaluate a part of the first
~O(\Im e mly, (123 term in Eq.(126), given by
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[O=N2(0y+ M), 1, (0) [ K20+ 1)

exg —i(w—w)t]
(wk_wl_if)2

(127

Assuming thatn,)o=exp(— Bwy) with 8= (kgT) ! and(cf.
[33])

w
vy 2= .

“[1+ (@ MY (128

whereM is the cutoff frequency. Then, we have

- 2((nyot+1
I(t)E)\Z(nl‘le)fnl,ml(O)Jmdkm%

xex —i([K|— o)t]
=2y ) o (O) |

voe” P+ 1)
el T T et
Xdo o7 e : (129

Fort>0, we deform the contour of integration in the lower-

half plane ofw. A contour rotationw= —iy with y= ¢/t
allows us to evaluate the integration in EG29 as

I(t)=—2iN*(ng+my)f, n (0)e'“r't

xfmdg
0

Due to the factor expf{ &), integral overé contributes prima-
rily for values of é¢~1. Hence, for X w;t<w,\ 2 integra-
tion in Eq. (130 with Eq. (128 yields

|U—i(g/t)|2

—¢ i(BEIY)
e ¢(1+e ).
(f iwlt)z

(130

eiwlt

(0= =402y (), 1, (0) | “dece ¢

fwqt

= _4)\2—(n1+m1)fn1,m1(0)1

(wlt)z (133

where we have approximated ekgf/t)~1 for &t<<1. A

PHYSICAL REVIEW 65 046102

VI. DISCUSSION

As an application of complex spectral representations of
the Liouvillian, we have investigated the motion of a charged
harmonic oscillator coupled to a field. For a weakly coupled
case, we have analyzed a short time memory effect that dies
out in quantum Zeno time of the orderdly/, and derived
kinetic equationg101) and (102 that are valid in the long
time scale of order of the relaxation time. As far as the final
form of these kinetic equations are concerned, any standard
approach based on thet approximation(that recovers the
well-known Pauli master equatipieads to the same kinetic
equations.

An additional element is the analysis of the memory effect
(i.e., the quantum Zeno effect discussed in Seadéociated
with non-Markovianity in a short time scale of the order
l/w,. For a time scale shorter than the Zeno time, the Mar-
kovian kinetic equation is not a good approximation to de-
scribe the evolution of the system and the expressih23)
and (122 for decoherence times lose their meaning.

In this paper, we have restricted our consideration to only
the dominant contributions in the expansion of the collision
operator in terms of the coupling constant. However, we
should emphasize that our estimation of the memory effect in
Sec. V goes beyond th&?t approximation, that is, the
lowest-order contribution in the Markovian regime. Except
for a rigorous derivation for the generalized master equation,
estimation of contributions from the memory effects, that are
corrections to the\?t approximation, is still a controversial
subject[19-21]. Our complex spectral representation of the
Liouvillian offers a systematic way of estimating contribu-
tions from the memory effects even for a higher-order con-
tribution with respect to the coupling constant.

As mentioned in the introduction, in a typical setting for
the decoherence probleffor quantum Brownian motion
one usually assumes a parti¢ke subsystemembedded in a
field, that is, in thermodynamic equilibriupsee Eq(87)]. In
this case, the so-called collapse of wave functions of the
subsystem is trivially a contamination of the subsystem by
the mixed nature of the surrounding field. In contrast, our
complex spectral representation of the Liouvillian is not re-
stricted to near equilibrium, and is applicable to arbitrary
initial conditions including the pure stat88), which is far
from equilibrium and satisfies the thermodynamic condition.
Our result in Sec. IV shows that starting with this pure initial
condition, the subsystem evolves in time obeying the diffu-

similar estimation shows that all other terms decay assion equatior(120), while a field component keeps purity as

(w1t) 2.
This result shows that after a time scale ofw{/ the

its distribution remains invariant in the thermodynamic situ-
ation[see Eq(111)]. Therefore, our result presents a striking

memory effect described by the nonprivileged components imontrivial example of a dynamical collapse of wave func-
expression(90) becomes negligible as compared with thetions in the thermodynamic limit. It should be emphasized
contribution from the privileged component that obeys theagain that this transition of pure to mixture occurs because
Markov kinetic equatiori102). A deviation from the Markov  the evolution takes place outside Hilbert space.

evolution is known as the quantum Zeno effE26]. Equa- Before closing our paper, let us give some remarks on
tion (131 shows that the Zeno time is given aswl/ After  other approaches to the problem of quantum decoherence.
this time scale, the decoherence terms with coefficiégts The usual phenomenological approach to this problem is to
and B, in Eg. (120 start to give non-negligible contribu- start with the Pauli master equation that is a Markovian
tions. Therefore, we see that the Zeno time gives a loweequation[9]. Various examples of the estimation of the de-
bound for the decoherence time. coherence time scale for a particle in a gas in thermal equi-
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librium can be found in Refd.34,35 (see also a book by
Giulini et al.[9]). Applying their estimates to several sizes of
the tagged particle, these authors obtained decoherence times
at room temperature of, for example, 6 s for a large
molecule of size 10° cm, 10%° s for a dust particle
with size 10° cm. Hence, it seems that the decoherence

—d1)?f(g1,97,1) +iN*iDan(d:—0y)
( d
X[ —+
dq1
W

time after which a classical world appears may be extremelﬁhICh is different from our Eq(119. The last term in the

: : : RHS of Eq.(132) is their anomalous diffusion term. We note
tsgr?;g‘or both mesoscopically and macroscopically sized mathat because of this term, their kinetic equation does not lead

However, these estimations are meaningless, since the do.the Pauli-type kinetic equ_at|c>_m$08) ar_ld (107).
timated time scale is much shorter than the relaxation time Ve now show that our kinetic equatidal9) leads to a
where the Markovian process is not a good description of th€onsistent dESCI’Ip.tIOI’] of dynamlcs, while this is not the case
evolution of the system. For instance, the relaxation timor Eq. (132. We first consider the zero temperature c@ise
scale for a gas is typically I8 s at room temperature. As =0 Then we haven,),=0 in Egs.(116) and (117). This
we have shown in this paper, for a short time scale memorgorresponds to the nonthermodynamic situatigiia, and
effects to the initial condition remain. Because the diffusionOn€ can exactly solve the evolution of the system by the
process is a result of resonance interactions, it takes time @0goljubov transformation given in Appendix D. Let us as-
build up this process. sume that the initial condition is given by

Concerning the decoherence time scale, more confusion

Jd
—)f(ql,qi,t), (132

a9y

in the interpretation has resulted from the studies of the so- p(0)=|W(0))(¥(0)[=]1p,00)(1p,0 (133
called “exactly solvable model” discussed by Unruh and

Zurek [8]. They have considered the same type of systenwith

discussed in this paper. The resulting master equation leads

to a dissipative term even in the lintit-0. Hence, the dis- |¥(0))=|1,,0)=al|0,,0), (134

sipation seems to start instantaneously, and so does the de-
coherence. However, their result is inconsistent with dynamwhere @, and Q, denote the vacuum of particle and the field,

ics. Indeed, the generalized master equatibnshows that
dissipation disappears in the linit-0.3

Later, this inconsistency has been noticed by étial.
[23,24). By applying the path-integral method initiated by
Caldeira and Leggett22] for quantum Brownian motion,

respectively. This corresponds to the well-known Friedrichs
model (for detailed studies of this model see, for example,
Refs.[36—39). Let us then consider the?t limit, i.e.,

A—0, with  N2t=finite.

t—+x

(135

they have obtained another form of the kinetic equation, in

which dissipation disappears in the liniit>0. However, as
we now show, their kinetic equation still contradicts with

We should distinguish the concept of thét limit and the
A2t approximation The expressions obtained it limit are

dynamics, since it does not consistently describe a spontangyactin the limit t—oe for Eq. (135, while beingapproxi-

ous decay of an excited harmonic oscillator.

The main difficulty in their kinetic equation comes from
their so-called “anomalous diffusion” term. Note that our
kinetic equatior(115) does not have the anomalous diffusion
term. As shown in Appendix C, their kinetic equation re-
duces to the following Markovian equation in thét ap-
proximation

" af N S s Miwi
ih— (91,91,0)= M, 5?% @ T(QZL
—q;?) [f(01,97,1) —iANT (0, —q7)

|

5As pointed out by Hiet al.[23], the singular nature of the inter-
action(such as the ultraviolet divergenamay lead to a nonvanish-
ing contribution to the interaction term in E@l) in the limit t
— 0. However, since the ultraviolet singularity is irrelevant to irre-
versibility, the nonvanishing terrtif it exists) should not be related
to dissipation.

i J )f( ) —iN2AL(
— = ,qq,t)—i
9 g, d1.91 2001

mationswhen we apply these expressions for a finite time
scale of the ordek ~2 with finite \.

As shown in Appendix D, the Bogoliubov transformation
leads to theexact solutiorfor the reduced patrticle distribu-
tion function in thex?t limit,

f(0y,05,t)—(1—e ") o(qy) &% (a4)

te Mgiaei(ap, (139
where ¢y(q,) and ¢4(q,) are the ground and first excited
state of the particle, respectively, given in Etjl4). One can
verify that Eq.(136) is indeed the solution of our kinetic
equation, by substituting E¢L36) in both sides of Eq(115).
However, this is not the case for EQL32). Therefore, the
kinetic equation of Het al. contradicts with the exact time
evolution of the system for the zero temperature case.

We note that for an arbitrary temperature of the field, the
anomalous diffusion term in Eq132) vanishes at the point
g;=0,, while the corresponding terms with coefficielis
andTI’, in our kinetic equation do not vanish. Therefore, the
discrepancy between the kinetic equation ofédal. and the
underlying dynamics remains even for the nonzero tempera-
ture case.
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with interactionVX1 and —1XV are represented by the

mAbmol 2 vertex in Fig. 1(fragmentsa, b, ¢, andd), and are given by
a) e R mlm? G + 1, ng — 15 my, | (V x 1) |mg, mas g, ) = Vil + 1)

{a; BIIVX1]|a’;B'))=Vaa s,
—{(a;Bl[1xV]|a";B8"))

5L S ]

8 i 010E g 7 {na, iy, mg (1 X Vg, g ma — 1,me + 1) = Viy/m(ne +1) = — 5aa’vﬂ’ﬂ . (Al)
et In the following expressions we use the abbreviated notation
L1 for the state
) arar ™M o Y sy N_1 No1
T Inz,nicmy, nig)=[ng, ni ngl ™S my g g} ).

(A2)

Each diagram consists of the upper part corresponding to

(VX1) and the lower part corresponding te(1XV).

Straight lines correspond to the particle, while curved lines

correspond to the field. Each vertex contaiﬂsak, alzal,

. R aIaﬂ:, a,a,. For the interaction, the direction of reading is

e - - denoted by arrows, and is from left to right on the lower line
and from right to left on the upper line. The arrow oriented to

the vertex corresponds to the annihilation operatowhile

the arrow coming out of the vertex corresponds to the cre-

ation operator.

The propagator is given by

7y N
d) = Vi (e + Dy +1
mn afaf my+1 e/ Y )

ng + 1

FIG. 1. Examples of typical vertices for real transitidas and
(b), virtual transitions(c) and(d), and the propagatde).

VII. CONCLUSION

In summary we have shown that quantum decoherence is
a phenomenon taking place outside Hilbert space in the ther-  ((n,,n,;my,my|
modynamic limit. Our theory can be applied to the case
when initial conditions are far from equilibrium, such as a -1
pure state. We have demonstrated that transition from the = (A3)
pure state to a mixed stafeollapse of wave functionsis pa@1F P~ 2
dynamically possible in the thermodynamic limit. We have,, ;i pi=n,—m,; and w,=n,—m,. The propagator is rep-
shown that quantum decoherence is not a unique attribute fgented by the diagramin Fig. 1.
quantum mechanics, as in the classical limit the decoherence \ye calculate the matrix element of the collision operator
terms reduce to the diffusion terms. We have also shown thqtm) in the number representation
guantum Zeno time serves as a lower bound for the decoher-
ent time. The estimated decoherence time is much longer ((ng,n;my,myl l//(le)(W(Vl)+i6)|ni,n{<;mi,mé>>
than the time reported in literature.

FoxX 1= IxHg—z MMM Ma)

={(ny,ni;;my,my| PCYLGPM ] g smy,my))
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XQ<”1>LVP‘”1’|n1,n&;mi,m&>>- (A4)

{(ng,ni;my,my| PCYLPIDY g ngsmp, my))
= Ni—My) b 1 0m m. On nOm' m.- A5
APPENDIX A: DERIVATION OF THE MASTER wl( 1 l) Ny N 7my My &0y, nemy,my (AS)

EQUATIONS . . .
Q The diagrams corresponding to the second term in Eq.

In this appendix we outline steps in the calculation of the(A4) are presented in Figs. 2 and 3, where we have collected
collision operator that yield expressions in the RHS of thethe processes coming from the “real” transitions in Fig. 2,
kinetic equation$101) and(102). It is convenient to use the while the processes from the “virtual” transitions in Fig. 3.
correlation space diagrams to describe each process contribs we will see, the virtual processes contribute only to the
uting to the collision operator. Matrix elements associatedrequency shift for the renormalized particle in thét ap-
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m "k: =1 :”* —{(ny,ni;;my,m[1X Viasa, 1|ng,ny;my— 1m+ 1))
- Mg _._&,_ NN (o ny
1) n—1 (2) n+1

many MMk ™k Tk = — Vk\ ml( nk+ 1) y (A7)

{{ny,n;m—1n+1|[Via]ax1]n—1n+1;m;—1n,

Mg o TN mny — . MmN + 1>> :Vk nl(nk+ 1) (A8)
@ @
myng my—1 ming my m+1 m . X L
e -1 e Then, using the expressidi3) for the collision operator, we
et 1 obtain the following contribution to the interaction part in
Eq. (A4) from diagram(5):
g+ 1 %
g / ny -1 nll‘ﬂL‘f’ 1,ng —1
©) g my =1 © my+1m -1 E (=Vigymy(ng+1) —————ViVny(n+1)p(n,
:nk-%—l nk::
—-1n+1;m—1,n+1,t)
N ng+1
N ny+1mg =1 . ning — -1 —2 |Vk| (ne+1)ynim — —IE
@ ™ my+1,ng -1 ®) ming my —1
nk: :nk+l Xp(ni—1,n+1;m;—21n+1t). (A9)

FIG. 2. The second-order diagrams with “real” transitions in the One can evaluate contributions from the remaining diagrams
correlation space. in a similar way. Collecting all intraction part contributions
L ) ) . . to Eqg. (A4) from diagrams(1)—(4) and (6)—(8) with real
proximation. As an gxample, we f|rst. glve_the epr|C|t_der|— transitions(Fig. 2), we get the following expressions:
vation of a contribution from one typical diagrdsay, dia-
gram(5) with real transitions in Fig. R The propagator part

. 1
(A2) of diagram(5) corresponds to (1) > [Vi2ng(ne+ 1)mp(nl,nk;ml,nk,t),
K K~ @17
(Lo—w—ie)=[[(ni—m+ 1) wg+ (=N 1) wy]
. . 1
—(N—M)w;—le]=w;—w—ie. (A6) (2) E |Vk|2nk(nl+l)Tp(nlvnk;mlankvt)a
k w1~ wg—le

The vertices are calculated as

5 1
(3) 2 IVidPma(mict 1) ———p(ny,mi;my,ni 0),

w1 Wk
ng+1 Nk ng—1 Nk
Nk _.Cl_ TNk ny l—é ny
w 7n1nk4n1+«1_ Mk ? Tt no ik (4) z |Vk|2nk(ml+1);p(nl!nk;mllnk!t)!
K Wy—wi—IlE
) 2 VP ni(ng + 1) (my +1) ————
mng — myn, g nny k w wq le
(3) 17k 1 1Tk (4) 17k - !
m: - m
T : e ™ - ' X p(ni+1,n—1;m+1,n—141),
et 1 g e —1 T4
7 Vi2ne(ng+ 1) (mp+1) ——
o (M) 2 VilPnln+ 1) (my 1) o
) nmk—éinlﬂ © mli—l,nk—l
Mg f my+1 ™ my — L —1 Xp(ni+1,n—1;m;+1,n.—1t),
ng+ 1 T
2 [Vil2ynimy nk+1) ——
Nk ng+1 ie
nl‘l—"l— Ly —1 s nmk_é: n +1
@ my my — 1,n;— 1 ® Ty my+1 Xp(nl_lank+l;ml_ 11nk+ 11t) (Alo)
Tk e+ 1

As a next example, we illustrate the calculation of dia-
FIG. 3. The second-order diagrams with “virtual” transitions in gram(1) with virtual processes in Fig. 3. The propagator part
the correlation space. in diagram(1) corresponds to
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(0" +ie—Lo)=(n;—my)+ie—[(n+1-m))w;
—(nk+1—nk)wk]=ie—wl—wk. (All)
The vertices are

((ny+ 10+ 1;my,m|[Viaial X 11| ng,ny ;my,my))

=Viv(ng+1)(ne+1),
((ng,n;my,my|[Viagag X 1][ng + 1n+1;mg,my))
=Vt D (et 1). (A12)

Then, for diagram(1) with virtual processes in Fig. 3, we

obtain
.
2 Vil D (et 1) =
XViN(ng+ 1) (ne+1)p(ng,ni;my, e, t) f

=§ IVi[2(n+ 1) (ny +1)

1

wito—ie (AL3)

p(Ng,Ng;my, N, t).

Contributions to Eq(A4) from diagramg2)—(8) with virtual
processes are

) ; |Vk|2nknl_| kP(nlynk;ml,nk,t),

E- W1~ W

(3) E Vi 2(my+ 1) (ny+ 1)m

Xp(nllnk;mlinklt)l

p(Ng, N ;Mg N, t),

2
(4) Ek Vil nkml——i6+w1+wk

1
—ietw;t+ wy

(5) Ek: [Vil2Vnim;n,
Xp(ny—

(6) E Vi 2(n+1)V(ny+ 1) (my+ 1)

Xp(ni+1,ng+1;m;+1,n.+1t),
(7); IVid2(ni+1) V(g + 1) (my+1)

1
X——————p(n+1,n+1;m+1,n+
_,6+w1+wkp(n1 1.+ 1;m+1,n+11),

(8) 2 Vi 2Vnimyny

Xp(ng—

1n—1;m—1n—1}),

—ie— w1~ Wy

—ie— w1~ Wy

1n—1m;—1,n—-1¢t), (Ald)

PHYSICAL REVIEW 65 046102

Using the relation fore— 0+,
1

wXie

—P

(A15)

1) )
— | F 7 d(w),
®

we notice that in contribution§A12) and (A13) from dia-
grams with virtual transitions, there appears gfeinction in
the form 6(w,+ wy) that gives a vanishing contribution.
Contributions(A9) and (A10) from diagrams with real tran-
sitions, contain thes function of the formé(w;— w) that
gives a nonvanishing dissipative contribution at the “reso-
nance point”’w,= w4. The principal part of the propagator
gives the nonvanishing contribution to the frequency shift.
Summing over all contributions, we obtain the master
equation for the total density matrix for-\ 2

. d
'Ep(nl:nk ;Mg ,Ny)
={(ny,Ni;my, Ny lﬂ(gvl)(W(Vl) +ie)|p))

2(1)1
-\ |Vk|2P( 7 2”
X w]— o

=(Ny—mMy)| w1

X p(Ny, N My, N, O+ N2 ) [V |28( 0 — w1)
k

X ynimy(ng+1)p(n,—1,ng+1;m;—1,n+1%t)

1
- E(n1+ m; +2n,+2n.n,.+2mqny)

X p(Ng,Ne;myg N, +ny/(ng+1)(my+1)

Xp(ni+1,n—1;m;+1,n—11)|. (A16)
By reducing Eq.(A16) as in EqY85) and (86), and taking
the continuous spectrum limf@ —, we obtain the kinetic
equations(101) and (102 of the main text, where we have
used the factorizability propert§81), which persists for any
time t>0 [17].

APPENDIX B: DERIVATION OF EQ. (121

In this appendix we evaluate contributions from the non-
privileged component92) to the time evolution of the den-
sity matrix (90) and derive Eq(126). We can use the same
diagrams presented in Appendix A, but with a different cor-
respondence to the mathematical expression. For the non-
privileged component we associate the expres@@nto the
diagram. For the interaction part, the correspondence is the
same as the one presented in Appendix A. In the propagator,
care must be taken in the analytic continuation to be consis-
tent with the evolution oriented to>0. Because the sub-
space ¢1vy) is more correlated than the subspacg)( we
have to associate the creation operator with the propagator

(6]

! o _1
P(Vl)c(Vle)P(Vlvk)z - S —, (Bl)
1 viw1— (viw+ vewy) +ie
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while the destruction operator with the propagator

+1

POp 10 pr)— _ _
1 (viw1+ v ) —ie—viwg

(B2)

Using the correspondence for each diagram in Fig. 2, we

obtain the following expressioriby omitting a common fac-
tor expivimt)]:

(1) ; Vi 2ny(nic+ 1) exd —i(w,— w1)t]

1

X(wk—wl—ie)zp(nl’nk;ml'nk;o)’

(2) ; Vi 2ni(n+ 1) exd —i(wy— o )t]

1

Xm!’(nl,nk;ml,nk;o),

(3) Ek Vi 2my(n+ 1) exd —i (w1~ w)t]

1

(wl_wk_i6_)2p(nlynk;m1,nk;0),

(4) ; Vil 2ni(my+ 1) exd —i (w— w1)t]

1

mp(nl,nk;ml,nk;o),

(5) § IVid2Vnimy(n+ 1) exd —i (w1 — wp)t]

1
X ootz (M~ LMt Lim =10+ 1,0),

(6) ; Vi 2niy(ng+ 1) (my + 1) exf — i (wg— wq)t]

1
oo —ie)? p(ni+1,n—1;my+1,n,—1;0),

(7) § Vi 2nie(ng+ 1) (my + 1) exd — i (w3 — o )t]

1
X—(wl—wk—ie)z p(n1+1,nk—l;m1+1,nk— 1,0),

(8) ; Vi 2Vnimy(ny+ 1)exd — i (wy— w1)t]

1
X oo —TezPMm= LMt Lim—1,n,+1:0).

(B3)
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Similarly, contributions from diagrams in Fig. 3 are

(1) 2k Vi 2(ny+ 1) (ne+ Dexd — i (w1 + o )t]

1

X (orF a1 e2P (MM Me i 0),

(2) ; Vi 2nng exli (w1 + w)t]

1

me(nlank;mlvnk;o)a

(3) ; IVil2(my+ 1) (N + Dexdli(wy+ w)t]

me(nlrnk;mlvnk;o),

(4) ; Vi 2nemy exd —i (w1 + wy)t]

X(w1+wk_ie)zp(nl!nk;mllnk;o)i

(5) Ek Vi 2yniming exd —i (o, + w)t]

me(nl_ 1,n—1;m;—1,n,—1:0),

(6) Ek: Vi 2(n+ 1) V(ny+ 1) (my + 1) expli (w1 + wy)t]

1
X(wl-i- wk+ie)zp(nl+l'nk+1;m1+1’nk+1;o)’

(7) ; Vi 2(n+ D)V (g + 1) (my+ 1)exd —i (01 + wy)t]

X ortor—ie)? p(ni+1,n+1;my+1,n+1;0),

1
(w1t o tie)?

(8) g Vi 2N myny exli (w1 + wy)t]
Xp(n;—1,n,—1;m;—1,n,—1;0). (B4)

Adding all contributions(B3) and (B4), we obtain the fol-
lowing expression foP("Vp, (t):
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[(Ng+1)(ng+myg)p(ng, N ;my, N ;0) +ny(ng+my+2)p(ng,n;mg,ny;0)

PO pnp(H)~N220 V2

+(ne+1)ynymyp(n;—1n+1;m;—1n+1;0)+n(ny+1)(m+1)p(ny+1n—1;my+1n,—1;0)]
e_i(“’k_“’l)t

WH-C-) +[(n+1)(ng+my+2)p(ng, N s My, Ny ;0) + N (N +mMy) p(Ng, N ; My, Ny ;0)

X
(0~

+neynimep(n—1n,—1;m—1n,—1;0)+(n+1)y(ny+1)(m+1)p(ny+1n+1;my+1n,+1;0)]

e*i(warwl)t

. ] e e, (B5)

In the thermodynamic limit)—, Eq. (B5) leads to the , [t
desired expressiofl26) presented in the main text, where F(t)h(t)~A deSV(S)COS{wls), (C3
the factorization property81) has been used.

where we have explicitly written the coupling constant
APPENDIX C: THE A2T APPROXIMATION OF THE HU- and

PAZ-ZHANG KINETIC EQUATION

w f
In this appendix we derive the?t approximation of the y(s):f de(w)cotI'( 'B—w) coq ws),
Hu-Paz-Zhang kinetic equation given in RE23]. Without 0 2

any approximation, their kinetic equation is given by

9 77(S)=—dewJ(w)Sin(wS). (Co
Ihﬁf(qliqilt) 0

Here, the spectral densit){ w) is defined as

h2 [ ? P M, Q2(t)
TV P ,2>+ > —(ai—a;?) c2
qi Jq Jw)=2, 5(w—wk)2m > (CH
’ H ! k
xf(ay,a;,t) = iRl (t)(d,—a) T
( 9 )f A andCy is related to ouw, in Eqg. (3) as
X|——— g4, ) —il(Hh(t
5, 7y (GG —iT(ORC) .
"2 ’ Uk= . (CG)
X(d1—dy)f(dg,q71,t) FAT(DF(L) V2m,wy
PN J / To compare their kinetic equation with our equatidds
(G q1)<5q1+ a9, 1(Q1.a1.0), €Y in our main text, we now evaluate E¢C3) in the A%t ap-

proximation. Using the second expression in EQ4), we
where(}, is the renormalized frequency, rewrite, for example['(t) as
524y 2 2 A2 [t ®
Q3(1)= w1+ 803(1). (€2 r(t)~w—f dssin(ws)f dwd(w)sinws)
1J0 0
In the weak coupling approximation, the time dependent N2 [ .
kernels appearing in the RHS of EE1) are given agEgs. = lim _f de(w)f ds(exfi(w,+w+ie)s]
(2.469—(2.460 in [23]] cordo1lo 0

5Qf(t)~2A2ftdsn(s)coiwls), +exd —i(wi+w—ie)s]—exdi(w;— w+ie)s]
0

—exg —i(w;—w—ie)s]). (C7)
N2 [t . T . . .
N : In the large time limit, integration oves in the first expo-
')~
® wljodsn(s)s'n(“’ls)’ nential in Eq.(C7) yields
N2 [t ) t . .
F(t)f(t)%w—lfodslz(s)sm(wls), jodsexp[l(w1+w+|e)s]—>m. (C8)
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Performing integration for the remaining exponentials in Eq.

(C7) and using the representatigA10), we obtain the ex-
pression forl’(t) in the large time limit as

% ) \? 5
F(t)*T; [Vl 5(w1—wk)=m§k: Y=NT5.
(C9

Other kernels in Eq(C3) are calculated in a similar way.
Then, we obtain the following coefficients:

605 (t)~2w\%w,,
L(t)h(t)=\?A,,

. ho| 1
r(t)f(t)~>\2Danz>\2Pf de(w)cotI‘(lgz—w)wz—
0

1_‘02.

(C10

Coefficientsl’,, dw4, andA, are given in Eqs(105), (118),

PHYSICAL REVIEW E 65 046102

dk\ o[ (wy+ ©1)GT (o)) By

o
al:_f

— (k= 01)G ™ (w)B}]. (D4)
We now calculate the evolution of the density matrix
p(t)=|¥(t))(¥(t)| starting with the initial condition pre-
sented in Eq(134). We note that the\?t limit has a well-
defined meaning only in the context of the evolution of the
density matrix, and not the wave function. Hence, in the
following calculation this limit should be understood as ap-
plied in the context of the density matrix. Then, in thé&

limit, the Green functiorG™ (wy) approaches

1
(Z+ — ) (Z5 + wy)

O(A?),

1
— o) (01t o)

(D5)

G (wy)—

:(Z+

wherez, and z; are the poles of5™(w,) on the second

and (116 of our main text. Replacing these coefficients by Riemann sheefthe asterisk denotes complex conjugalion

the expressions in the RHS of Eq€9) and (C10 in Eq.
(C1), we obtain the\?t approximation of their kinetic equa-
tion presented in Eq132) in our main text.

APPENDIX D: BOGOLIUBOV TRANSFORMATION

In this appendix we derive the exact solution for the re-

duced particle density matrix for zero temperature inXfe
limit (135).

By the Bogoliubov transformation presented below in Eq.

(D1), the Hamiltonian(3) can be diagonalized in the continu-
ous spectrum limitQ—oo as in Eq.(29), where the new
dressed field operatd, is given by[40],

I

ay

Bk=ak+w1)\va_(wk) dk')\vk,(

(,()k/_((l)k_ié')

aI:r' (ot w)a; +(wx—w)ay
- - (D1)
wk,+(vk 2(1)1
Here the functiorG= (w,)=G(wy*ie€) is defined as
)\zv 2
G(2)=|w f g2 2 10K v l (D2)
wk,

Note that the diagonalized Hamiltonid®9) consists of the

dressed field alone. The particle associated with the descrete

In the N2t limit, z, approaches

R4
Z+—>(,()l+ )\25w1+l)\2—

5 (D6)

The exact time evolution of the wave function of the total
system is given by

[W(t))=e MW (0))=eMa]]0,,0,)
= —e_thfw dk\v [ (o, + wl)G_(wk)BE

— (k= 1) G (w)By]e"[0). (D7)

Here|0) denotes the true ground state, which is related to the
bare ground state as

0,00 =¢"[0), (D8)
whereV is given ag40]
V= f dkf dkK'Nv Av p(— o t+ie) p(— wy
2(wy+ Seg)
. tot w3 . 1 0

spectrum has been destroyed by the resonance. This is the
characteristic feature of the unstable system, which is noninand de, being the vacuum energy shift. The function

tegrable in the sense of Petrosky and Prigodih&]. The
inverse transformation is given by

-B N Jm dk'\ G+(wkr)
A= B @1 Uk — Uk wk/—wk-i-ie '
G (w) +
—mBkr , (D3)

(—2) is defined by

(L 0N u?G(w)|?
I
and
7(2) n(—2)=G(2). (D11)

046102-19



T. PETROSKY AND V. BARSEGOV PHYSICAL REVIEW 65 046102

In the \?t limit, the state|1,,0) in Eq. (133 can be where we have used the fact that the true ground state is an
connected to the Statép,1k>53l|0p,0k> with only one pho-  invariant of motion, i.e., e>{prthJ|O>=ff)). Substituting Eq.
ton, and all other transitions vanish. Hence, in this limit, we(D4) into Eq. (D14) and performing the contour rotation of
have for the reduced density matrix of the particle wy into the lower-half plane similar to Eq129) and(130),
we see that the contribution in the éntegratlon from the pure
F(O)=Tre[ | T (O)NW(1)]]—]1,, 1,0 W (1)) %1, imaginary axis ofw, vanishes in tha “t limit, while the pole
el A il P 0lc P O I P at w,=2; gives a finite contribution. Then, in the?t limit,

[+105, L) (0p, 1| W (1)) |%(0p, Ly (D120 we obtain
In the position representation, E¢D12) leads in then?t . 1
limit to P P q:) <1paok|\lf(t)>_)27ﬂ)\2|Uw1+)\25wl—i)\27/2|2i)\_2,y
f(qy,97,t 1,,0 ¥ (1))|%¢% (g4 . .
(Q1 a; )_’¢1(Q1)|< p0k| ( )>| ¢1(q1) XeX[{—|(wl+)\25w1_”\2%>t}

+¢o<ql>§ {0, LW (1)) |25 (q}).

—>exp[ —i(wl-i— )\Zéwl—i)\zg)t}.
(D13

. : . D15
Now, using the Heisenberg representation of the dressed (b1
operator B], i.e., exp—iHt]B! exdiHt]=B](0)exd—iwd],  This leads to the final form of the exact expression for

- 2 2¢ [imi
and the\ expansions a$0)=[1+0(\?)]|0,,0,) and By (15,0 W (1))[* in the A"t limit as

=axt+ O()\), the Eq(D?) leads in the)\zt limit to |<1p,0k|\];,(t)>|2_>e*)\2’yt. (D16)
_ * Calculation of the coefficienl(0,,1,|W(t))|? is similar to
<1p’ok|q}(t)>_<lp’0k|)‘f,xdkvk(war 1) the one presented above and in limit, we obtain

X G~ (w)BL(0)e™'*¥[0) > (0 1 W (1))[2—1—e "7, (D17)

—>)\Zf dkjvy/2(w1+ 0 ) %G (wy)|2e K, Substituting Eqs(D16) and(D17) into Eq.(D13), we obtain
o the exact solution of(q,q’,t) in the At limit given by Eq.
(D14)  (136) in the main text.
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