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Quantum decoherence, Zeno process, and time symmetry breaking
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The complex spectral representation of the Liouville–von Neumann operator outside Hilbert space is applied
to the decoherence problem in quantum Brownian motion. In contrast to the path-integral method, often used
in the context of quantum decoherence for the case where the environment surrounding the Brownian particle
~subsystem! is in thermal equilibrium, our spectral representation is applicable to systems far from equilibrium,
including a pure state for the surrounding bath. Starting with this pure initial condition, the subsystem evolves
in time obeying a diffusion-type kinetic equation. Hence, the collapse of wave functions is a dynamical
phenomenon occurring outside Hilbert space, and is not simply a contamination of the subsystem, a popular
view accepted in the so-called ‘‘environmental’’ approach, by the mixed nature of the thermal bath. The
essential element in the understanding of quantum decoherence is the ‘‘extensivity’’ of quantities characterizing
the thermodynamic limit. Quantum Zeno time is shown to be a lower bound of the decoherence time.
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I. INTRODUCTION

In this paper, we shall apply thecomplex spectral repre
sentationsof the Liouville–von Neumann operator~the Li-
ouvillian in short! for the density matrix to the quantum de
coherence problem.

The recent development of the complex spectral repre
tations shows that irreversibility is a rigorous dynamical p
cess taking place outside Hilbert space in the thermodyna
limit ~see@1# and references therein for deterministic ma
@2–4# for decaying states in quantum mechanics, and@5–7#
for thermodynamical systems!.

A popular trend is to attribute irreversibility to quantu
decoherence@8,9#. This involves a basic distinction betwee
the open system and its environment, which is assumed t
in a thermodynamic equlibrium. This distinction introduc
an anthropomorphic element. Indeed, the environment in
duced by one observer, may be different to that seen
another observer. Moreover, this distinction is phenome
logical as one avoids answering the most fundamental q
tion of nonequilibrium statistical mechanics, namely, wha
the mechanism that governs the approach to thermal equ
rium of the environment, without violating the basic laws
physics.

The problem of irreversibility is especially important
quantum mechanics, which has been remarkably succe
in all its predictions. Still discussions about its meaning a
scope are as lively as ever. The basic assumption in quan
mechanics is that every problem can be solved at the leve
wave functions, that is, probability amplitudes. This lea
however, to the well-known duality between the Schro¨dinger
equation, which is time reversible and deterministic, and
reduction or collapse of the wave function, which evolv
from a single wave function to amixture described by a
density matrix. This duality seems to imply that we need o
measurements in order to go from ‘‘potentialities’’ to ‘‘actu
alities’’ @10#. For Bohr and Rosenfeld@11#, measurements ar
irreversible processes, be it at the level of the apparatus
the level of our sensory mechanisms.

The need to go outside Hilbert space in quantum mech
1063-651X/2002/65~4!/046102~21!/$20.00 65 0461
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ics for the case of a continuous spectrum was recogn
some years ago by various physicists and mathematic
including Sudarshan, Chiu, and Gorini@2#, Böhm and
Gadella@3,12#, and Kumicak and Bra¨ndas@13#. The physical
motivation was to include decaying states as observed in
spectral decomposition of the Hamiltonian~hence, the name
Gamow vectorsused by Bo¨hm and Gadella@12#!. However,
this generalization, while going in the right direction, do
not solve the ‘‘quantum paradox’’ associated with the dua
mentioned above. To solve these problems we have to tur
the Liouville space~i.e., the density matrix space! and show
that in the cases where we expect dissipation, we obtain
spectral decompositions that lead tosemigroupsincluding
irreversible processes@6#.

The complex spectral representation ofLH is quite re-
markable, as it exhibits ‘‘non-Schro¨dinger’’ features in quan-
tum mechanics. Indeed, there appear dissipative effects a
ciated with collision operators of the Pauli type familiar fro
phenomenological kinetic theories. Our method, therefo
leads to a unification of dynamics, thermodynamics, and
netic theory.

The complex spectral representation leads to a new c
cept,subdynamics, which decomposes the dynamical evol
tion into independent components@14–16#. This extension
becomes essential in the case when memory effects are
integrable. For example, this is the case whenever one g
beyond weakly coupled systems. Indeed, since the orig
work of Prigogine and Re´sibois@17,18#, it is well-known that
the Liouville–von Neumann equation lead to the generaliz
master equation for the reduced distribution functi
P(n1)r(t) as

i
]

]t
P(n1)r~ t !5P(n1)L0P(n1)r~ t !

1E
0

t

dt8dc̃ (n1)~ t8!P(n1)r~ t2t8!. ~1!

Here,P(n1) is a projection operator defined in Eq.~35!; L0 is
the unperturbed Liouvillian@see Eq.~17!#; dc̃ (n1)(t) is the
©2002 The American Physical Society02-1
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inverse Laplace transformation of the collision opera
dc (n1)(z)[c (n1)(z)2P(n1)L0P(n1) defined in Eq.~74!, i.e.,

dc̃ (n1)~ t !5
1

2p i EC
dze2 iztdc (n1)~z!, ~2!

where the contourC is in the upper-half plane ofz for t.0
parallel to the real axis and goes from1` to 2`. In spite of
apparent simplicity of the memory effects associated with
non-Markovian equation~1!, the analysis of these effects is
complicated problem and still a controversial issue~see, for
example,@19–21#!.

To consistently describe quantum decoherence, we n
the detailed knowledge of the memory effects. In the co
plex spectral representations, memory effects associated
non-Markovian equations for reduced systems are re
sented by a superposition of Markovian equations in e
subdynamics. The subdynamics approach then offers a
tematic estimation of memory effects.

As a typical setting in studies of quantum decoheren
one usually considers a charged quantum particle~a sub-
system! embedded in a field that is in thermodynamic eq
librium. For this case the path-integral method is a use
tool to describe the evolution of the subsystem@22–24#.
However, since the system is already in a mixed state a
whole, the so-called collapse of wave functions of the s
system is trivial for this case~see also@25#!. This is simply a
‘‘contamination’’ of the subsystem by the mixed nature of t
surrounding field.

In contrast to the path-integral method, our complex sp
tral representation of the Liouvillian is applicable to mo
general situations, including those far from equilibrium. F
example, we can apply our representation to a pure s
satisfying the condition of thethermodynamic limit, which
ensures the existence ofextensive variables, such as the tota
energy being proportional to the size of the system. Inde
because of this limit density matrices~be they in a pure state
or in a mixture! do not belong to the Hilbert space. In th
thermodynamic limit we can decompose the time evolut
of the initial state into independent Markov processes w
finite diffusion rates~subdynamics mentioned above!. After
the quantum Zeno period, only one Markov process domi
nates, and the initial pure state evolves dynamically int
mixed state. Our theory, therefore, presents a striking n
trivial example of a dynamical collapse of wave functions

As already mentioned, outside Hilbert space the Liouv
lian may acquire complex eigenvalues. Going beyond H
bert space is a necessary, but not sufficient condition.
additional requirement is the existence of resonances, a
ciated with unstable dynamics.

In the following section we introduce our model that co
sists of a harmonic oscillator coupled with a field. There
also specify the concept of the thermodynamic limit. W
show that due to extensivity of the expectation value of
total Hamiltonian̂ H&, the Hilbert norm of states diverges i
the thermodynamic limit. We also demonstrate that inva
ants of motion generated by the Bogoliubov transformat
are destroyed in the thermodynamic limit. This prompts us
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turn to the Liouvillian formalism that allows us to study th
evolution of the density matrix outside Hilbert space.

In Sec. III, we overview the Liouvillian formulation o
quantum mechanics. We introduce the projection opera
associated to correlations between the harmonic oscill
and the field, and solve the eigenvalue problem of the Li
villian outside Hilbert space. We show that the eigenva
problem of the Liouvillian is reduced to the eigenvalue of t
collision operator. We also show that the complete set
eigenstates leads to subdynamics.

In Sec. IV, we study the evolution of the density matr
over a long time scale of the relaxation timet;1/l2, where
l is the coupling constant. We derive a Markov kinetic equ
tion for a weak coupling case. In this time scale, contrib
tions from the memory effects are negligible. We pres
kinetic equations for the reduced density matrices of the h
monic oscillator and the field, respectively.

In Sec. V, we study the evolution of the density matr
over a short time scalet!1/l2. In this time scale one canno
neglect memory effects. We show that the memory effe
die out following a power law decay, and the non-Markovi
regime of the evolution undergoes a transition into the M
kovian regime. The time scale of this transition is known
quantum Zeno time@26#. We show that Zeno time serves a
a lower bound for decoherence time.

In the last section we discuss physical implications of o
results, and comment on other approaches to the decoher
problem.

II. THE SYSTEM

We consider a system that consists of a one-dimensio
quantum harmonic oscillator linearly coupled to a boso
scalar fieldc(x) through a bilinear interaction. This is
simplified version of a multilevel atom interacting with ra
diation in the dipole approximation of the multipolar schem
@27#. Extension to arbitrary dimension is straightforward. W
shall call the harmonic oscillator ‘‘particle’’ and the quanta
the scalar field ‘‘photons’’ as a convention. The particle w
massM1 is located at the origin of the space. In the seco
quantized form, the Hamiltonian is given by~we use atomic
units,\5c51)

H5H01lV5v1a1
†a11(

j
vkj

akj

† akj
1l(

j
Vkj

~a1
†1a1!

3~akj

† 1akj
!, ~3!

wherev1.0 andvkj
5ukj u. Herel is a dimensionless cou

pling constant. We put our system in a one-dimensional b
with sizeL, and impose the usual periodic boundary con
tion. Then, the spectrum of the field is discrete

kj5 j /V,

where V[L/2p is a volume factor andj is an arbitrary
integer. To avoid heavy notations we hereafter abbreviate
index j in the wave vectorkj , and denote the summatio
2-2



t

n

d

-

le

e

g

ith

ed

the
in
the
tion
the

-
-

s.
rs

ou-
ce,

s
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over the wave vector as(k instead of( j . We assume tha
the volume dependence ofVk is given asV21/2,

Vk5
vk

AV
, ~4!

where vk is independent ofV in the limit V→`. In the
Hamiltonian ~3!, the usual Dirac creation and annihilatio
operators for the particlea1

† , a1 and the fieldak
† , ak

obey the canonical commutation relations

@a1 ,a1
†#51, @a1 ,ak

†#50, @ak ,ak8
†

#5dk,k8 , ~5!

wheredk,k8 is the Kronecker delta. In the limitV→` we
have

(
k

→VE dk, Vdk,0→d~k!, ~6!

whered(k) is the Dirac delta function. The coordinate an
momentum operators for the particle are given by

q̂15
1

A2M1v1
~a11a1

†!, ~7!

p̂152 iAv1M1

2
~a12a1

†!. ~8!

By introducing the field operatorf(x) and momentum den
sity operatorp(x),

f~x!5(
k

S 1

2Lvk
D 1/2

~ak
†eikx1ake

2 ikx!, ~9!

p~x!52 i(
k

S vk

2L D 1/2

~ak
†eikx2ake

2 ikx!, ~10!

we may write the Hamiltonian~3! as

H5e01
p̂1

2

2M1
1

M1v1
2

2
q̂1

21
1

2E dxH p2~x!1S ]f~x!

]x D 2J
1lE dxq̂1f~x!g~x!, ~11!

where the constante0 is the vacuum energy of the partic
and the field. Here we have introduced the form factorg(x)
to avoid the ultraviolet divergence. The form factor is relat
to vk by

g~x!5
1

V (
k
A 2vk

pM1v1
vke

ikx. ~12!

We choosevk such that the interaction satisfies the followin
conditions in the limitV→`:

E
2`

`

dkuvku2,`. ~13!
04610
d

Due to the coupling to the field, the particle oscillates w
the new frequencyṽ1[v11dv1 with dv1,0. We assume
that the coupling is so weak,l!1, that the frequency shift is
much smaller than the unperturbed frequency, i.e.,udv1u
!v1.

The complete orthonormal basis of the unperturb
HamiltonianH0 is given by

H0un1 ,$nF%&5S v1n11(
k

vknkD un1 ,$nF%&, ~14!

where $nF%[$nk1
,nk2

, . . . ,nkj
% and na is the occupation

number for the state of particle (a51) and field (a5k),
respectively. This basis spans the Hilbert space~Fock space!
with the usual Hilbert normiun1 ,$nF%&i251, whereiCi2

[^CuC&.
We describe the evolution of the system in terms of

density matrix in the Liouville space. As we shall see later
Eq. ~23!, this space is spanned by the basis formed by
dyadic operator generated from the basis in wave func
space. The evolution of density matrices is governed by
Liouville–von Neumann equation

i
]

]t
r~ t !5LHr~ t !, ~15!

where theLiouvillian LH is the commutator with the Hamil
tonian, i.e.,LHr5Hr2rH. Corresponding to the decompo
sition of the total Hamiltonian~3! into free and interaction
parts, we can decompose the LiouvillianLH into an unper-
turbed partL0 and an interactionLV as

LH5L01lLV , ~16!

whereL0 andLV are given by

L05H031213H0 ~17!

and

LV5V31213V. ~18!

Here, a factorizablesuperoperator A3B operating on the
density matrix, is defined by

~A3B!r5ArB, ~19!

whereA andB are linear operators acting on wave function
The Liouville space is spanned by linear operato

A,B, . . . in the ordinary wave function space@6#. As usual,
the inner product of the Liouville space is defined by

^^AuB&&5Tr~A†B!, ~20!

whereA† is the Hermitian conjugate of the linear operatorA
in the wave function space. To distinguish a state in the Li
ville space from a state in the ordinary wave function spa
we shall use a double-ket notationuA&& for the former, and a
single-ket notationuc& for the latter.

The Hilbert normiri of a state in the Liouville space i
defined by
2-3
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iri2[^^rur&&. ~21!

One can introduce the Hermitian conjuateA † of a given
superoperatorA in the Liouville space. One can define He
mitian superoperators and unitary superoperators as u
@6#. The Liouvillian is an example of the Hermitian supero
erators, i.e.,LH

† 5LH .
For the case where the wave function space is spanne

a complete orthonormal basis,

(
a

ua&^au51, ^aub&5da,b , ~22!

the Liouville space is spanned by a complete orthonor
basis of the dyadsua;b&&[ua&^bu, i.e.,

(
a,b

ua;b&&^^a;bu51, ^^a;bua8;b8&&5da,a8db8,b .

~23!

The matrix element of the usual operatorA in the wave func-
tion space is given by

^^a;buA&&5^auAub&. ~24!

In the occupation number representation the basis for
Liouville space is given by

ua;b&&5un1 ,$nF%;n18 ,$nF8 %&&. ~25!

Let us now specify the meaning of the thermodynam
limit. As an example, let us consider the case where
initial condition for the density matrixr(0) is diagonal in the
number representation for the field component. This clas
initial conditions is often used in quantum Brownian moti
@8,22,23#. Then the expectation value of the total energy
given in the continuous spectrum limitV→` by

^H&5Tr~Hr!5v1^n1&1VE dkvk^nk&, ~26!

where^A&[Tr(Ar) denotes the ensemble average of an
servableA. Let us assume that^nk& decays rapidly enough
for uku→` to ensure that the integration

E dkvk^nk&

in Eq. ~3! exists. Moreover, assuming a smooth depende
on k for ^nk& in the continuous spectrum limit, we may co
sider two different situations,

^nk&;O~V21!, ~27a!

^nk&;O~V0!. ~27b!

For the case~27a!, we havê H&,` in the limit V→`. This
is a typical situation considered in the usual scattering the
On the other hand, for the case~27b!, ^H& is proportional to
the volume in the limitV→`, i.e., the total energy of the
04610
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system is an ‘‘extensive’’ variable. This is the situation co
responding to the thermodynamic limit.

Due to the extensivity of̂ H&, a state defined asuC&
[Hun1 ,$nF%& does not belong to the Hilbert space in th
thermodynamic limit, despite the fact thatun1 ,$nF%& is an
element of the Hilbert space. Indeed, we have for the Hilb
norm in the limitV→`,

iCi25^n1 ,$nF%uH2un1 ,$nF%&5v1
2^n1&

2

12v1^n1&VE dkvk^nk&1VE dkvk
2^nk&

1l2E dkuvku2~2^n1&11!~2^nk&11!, ~28!

where ^n1&5n1 and ^nk&5nk . In the nonthermodynamic
case~27a!, Eq. ~28! gives a finite norm, whereas for th
thermodynamic limit~27b! this norm diverges. This implies
that we need a special consideration to analyze the evolu
of our system in the thermodynamic limit.

In the thermodynamic limit, the tagged harmonic mo
v1 moves according to the field. This corresponds to qu
tum Brownian motion of the harmonic oscillator.

Recall that our Hamiltonian is given by a bilinear form
annihilation and creation operators. Therefore, one could
mally diagonalize the Hamiltonian~3! by introducing
dressed annihilation and creation operatorsBk and Bk

†

through a Bogoliubov transformation~see Appendix D!

H5VE dkvkBk
†Bk . ~29!

Then, we have an infinite set of invariants of motion^Bk
†Bk&

for any given initial condition. For this case, there should
no place for the diffusion-type dissipative processes. Ho
ever, the formal diagonalization fails in the thermodynam
limit. Indeed, in the continuous spectrum limit the dress
operatorBk involves denominators of the form (vk2vk8
6 i0)21, which are distributions~see Appendix D!. As a re-
sult, the invariantŝ Bk

†Bk& involves a product of the distri-
bution uvk2vk81 i0u22. In the nonthermodynamic situation
a contribution from a product̂Bk

†Bk& vanishes in the limit
V→` because of an extra volume factorV21 in Eq. ~27a!.
However, in the thermodynamic situation~27b! this product
leads to divergency due to the resonant contribution atvk
5vk8 , and the invariants are destroyed.

The appearance of irreversibility due to destruction of
variants of motion in the thermodynamic limit is an impo
tant subject, and we shall devote a separate paper to a m
detailed discussion@28#.

III. COMPLEX SPECTRAL REPRESENTATIONS OF L H

Since the states representing thermodynamic system
not belong to Hilbert space, we have to deal with a larg
class of density matrices, which have a specific volume
pendence in each matrix element, to ensure the existenc
extensive and intensive variables in the thermodyna
limit. This family includes canonical equilibrium. In the pre
2-4
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vious paper@6# one of us~T.P.! and Prigogine have extende
the total Liouvillian LH to this family of density matrices
and have shown that the Liouvillian may have complex
genvalues that break time symmetry. The complex spec
representations of the Liouvillian then leads to the ‘‘dyna
ics of correlations’’ describing the non-Markovian evolutio
in terms of a set of infinite number of Markovian equation
This set includes the Pauli master equation. The deta
derivation of the solution of the eigenvalue problem of t
extended Liouvillian as well as the derivation of the kine
equations has been given in Ref.@6#. For a self-contained
presentation, we briefly summarize complex spectral rep
sentations. For details the reader should consult@6#.

Let us first introduce projection operators that specify c
relation components, such as a one-particle distribution
the harmonic oscillatorPN1

(n1) , correlations between the pa

ticle and a single modek of photonsPN1 ,Nk

(n1 ,nk) , correlations

among the particle and two modesk and l of photons
PN1 ,Nk ,Nl

(n1 ,nk ,n l ) , and so on,

PN1

(n1)
[(

$nF%
un1

1 ,$nF%;n1
2 ,$nF%&&^^n1

1 ,$nF%;n1
2 ,$nF%u,

~30!

PN1 ,Nk

(n1 ,nk)
[ (

$nF%(k)

un1
† ,nk

† ,$nF%(k) ;n1
2 ,nk

2 ,$nF%(k)&&

3^^n1
† ,nk

† ,$nF%(k) ;n1
2 ,nk

2 ,$nF%(k)u~12dnk,0!,

~31!

PN1 ,Nk ,Nl

(n1 ,nk ,n l )[ (
$nF%(k,l )

un1
† ,nk

† ,n l
† ,$nF%(k,l ) ;n1

2 ,nk
2 ,n l

2

3$nF% (k,l )&&^^n1
† ,nk

† ,n l
† ,$nF%(k,l ) ;n1

2 ,nk
2 ,n l

†

3$nF% (k,l )u~12dnk,0!~12dn l ,0
!. ~32!

SincePN1 ,Nk ,Nl

(n1 ,nk ,n l ) involves more modes of the particle and t

field, this subspace ismore correlatedthan the subspac
PN1 ,Nk

(n1 ,nk) . Here$nF%(k, . . . ,l ) means that the components of th

field nk , . . . ,nl are excluded from the set$nF%
5$nk1

,nk2
,nk3

, . . . %. Moreover,

n j
1[Nj1

n j

2
5nj , ~33!

n j
2[Nj2

n j

2
5mj , ~34!

for integers 2Nj[(nj1mj ) and integersn j[nj2mj , where
j 51 or k.

We introduce operators

P(n1)[(
N1

PN1

(n1) , P(n1nk)[(
N1

(
Nk

PN1 ,Nk

(n1 ,nk), . . . .

~35!
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These are eigenprojectors ofL0,

L0P(n1nk . . . n l )5P(n1nk . . . n l )L05~n1v11nkvk1•••

1n lv l !P
(n1nk . . . n l ) ~36!

and satisfy the completeness and orthonormality conditio

(
n1

P(n1)1(
k

(
n1 ,nk

P(n1nk)1(
k,l

(
n1 ,nk ,n l

P(n1nkn l )1•••51,

~37!

P(n1nk . . . n l )P(m1mk . . . m l )5P(n1nk . . . n l )dn1 ,m1
dnk ,mk

. . . dn l ,m l
.

~38!

The eigenprojectors~35! are Hermitian operators in Liouville
space

~P(n1nk . . . n l )!†5P(n1nk . . . n l ). ~39!

Diagonal components of density matrices are associate
the ‘‘vacuum of correlation’’ subspace and are singled out
P(0) ~i.e., P(n1) with n150).

To avoid heavy notation, we introduce the superscripn
[$n1nk . . . n l%, and express Eq.~36! as

L0P(n)5P(n)L05w(n)P(n), ~40!

where w(n)[n1v11nkvk1•••1n lv l . We also abbreviate
summation over the wave vector of photons in completen
and orthogonality relation, i.e., we write Eqs.~37! and ~38!
as

(
n

P(n)51, P(n)P(m)5dm,nP(n). ~41!

We also introduce the complements

Q(n)[12P(n). ~42!

We have

~P(n)!25P(n), ~Q(n)!25Q(n), P(n)Q(n)5Q(n)P(n)50
~43!

and

L0P(n)5P(n)L0 , L0Q(n)5Q(n)L0 . ~44!

Let us now consider the eigenvalue problem of t
Liouvillian1 @6#,

1We formulate the eigenvalue problem ofLH in the thermody-
namic limit. In this limit, special care is necessary for a gene
Hamiltonian, as the perturbed LiouvillianLV usually gives rise to
divergence due to disconnected processes~see connected and dis
connected diagrams in Refs.@6,17#!. However, in the case of ou
Hamiltonian we do not encounter this divergence as all proce
are connected to the tagged modev1 through the specific form of
interaction involvinga1 or a1

† .
2-5
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LHuFa
(n)&&5za

(n)uFa
(n)&&, ^^F̃a

(n)uLH5^^F̃a
(n)uza

(n) .
~45!

The indexa together withn is a parameter characterizing th
eigenfunctions. For the unstable case some of the eigen
uesza

(n) may be complex. As mentioned before, this is on
possible if we consider the eigenvalue problem that co
sponds to an extension ofLH outside Hilbert space. As a
result, the left eigenstates are generally not the same a
Hermitian conjugate of the right eigenstates.

Because the eigenvaluesza
(n) are complex, the time evo

lution of the system splits into two semigroups. For the se
group corresponding tot.0, the eigenstates are associat
with the eigenvalues with Imza

(n)<0 ~including the case
Im za

(n),0) and equilibrium is reached in our future fort
→1`, while for the other the eigenvalues are the comp
conjugate ofza

(n) and equilibrium is reached in our past. E
perience shows that all irreversible processes have the s
time orientation. To be self-consistent, we have to choose
semigroup oriented towards our future.

The right and left eigenstates satisfy biorthogonality a
bicompleteness relations,

^^F̃a
(n)uFb

(m)&&5dn,mda,b , (
n

(
a

uFa
(n)&&^^F̃a

(n)u51.

~46!

We consider the case where the eigenstates are analytic
respect to the coupling constantl, i.e.,

lim
l→0

uFa
(n)&&5 lim

l→0
P(n)uFa

(n)&&, lim
l→0

^^F̃a
(n)u5 lim

l→0
^^F̃a

(n)uP(n)

~47!

and

lim
l→0

za
(n)5w(n), ~48!

wherew(n) is defined in Eq.~40!.
Using P(n)1Q(n)51 in Eq. ~45! one can find theQ(n)

component of the eigenstates as

Q(n)uFa
(n)&&5C (n)~za

(n)!P(n)uFa
(n)&&, ~49!

where the ‘‘creation-of-correlation operator’’~creation opera-
tor in short! is defined as

C (n)~z![
21

Q(n)LHQ(n)2z
Q(n)lLVP(n). ~50!

This operator is an ‘‘off-diagonal operator’’ as it describes
‘‘off-diagonal transition’’ between the different subspa
Q(n) and P(n). Care has to be taken in the analytic contin
ation ofz to have the time evolution approaching equilibriu
in our futuret.0.

Substituting Eq.~49! into the eigenvalue equation~45!,
we obtain

c (n)~za
(n)!uua

(n)&&5za
(n)uua

(n)&&, ~51!
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uua
(n)&&[@Na

(n)#21/2P(n)uFa
(n)&&. ~52!

Here Na
(n) is a normalization constant andc (n)(z) are the

collision operatorsdefined by

c (n)~z![P(n)L0P(n)1P(n)lLVC (n)~z!P(n). ~53!

The collision operator is a ‘‘diagonal operator’’ since it d
scribes a ‘‘diagonal transition’’ within the same subspa
P(n). As indicated in Eq.~51!, the eigenvalue problem of th
Liouville operator is then reduced to the eigenvalue probl
of the collision operators that have the same eigenvaluesz(n)

as LH . The eigenvalue equation~51! is ‘‘nonlinear’’ as the
eigenvalue appears in the collision operator.

Using Eq.~49!, we obtain the right eigenstates ofLH from
the corresponding right eigenstates ofc (n)(za

(n)) as

uFa
(n)&&5@Na

(n)#1/2@P(n)1C (n)~za
(n)!#uua

(n)&&. ~54!

A construction parallel to the above, leads to the left eig
states ofLH with the same eigenvaluesza

(n) ,

^^F̃a
(n)u5^^ṽa

(n)u@P(n)1D (n)~za
(n)!#@Na

(n)#1/2, ~55!

where the ‘‘destruction operator’’ is defined by

D (n)~z![P(n)lLVQ(n)
1

z2Q(n)LHQ(n)
, ~56!

and ^^ṽa
(n)u[^^F̃a

(n)uP(n)Na
(n)21/2 are the left eigenstates o

the collision operator,

^^ṽa
(n)uc (n)~za

(n)!5^^ṽa
(n)uza

(n) . ~57!

Since the collision operator depends on the eigenva
za

(n) , the statê ^ṽa
(n)u is generally not biorthogonal touua

(n)&&.
Assuming, however, bicompleteness of these states in e
P(n) subspace, we may always construct sets of sta

$^^ũa
(n)u% and $uva

(n)&&% biorthogonal to $uua
(n)&&% and

$^^ṽa
(n)u%, respectively,

^^ũa
(n)uub

(m)&&5dn,mda,b , (
a

uua
(n)&&^^ũa

(n)u5P(n)

~58!

and similarly foruva
(n)&& and ^^ṽa

(n)u.
In order to connect the kinetic theory to the eigenva

problem ofLH , we introduce the ‘‘global’’ creation and de
struction operators

C(n)[(
a

C (n)~za
(n)!uua

(n)&&^^ũa
(n)u, ~59!

D(n)[(
a

uva
(n)&&^^ṽa

(n)uD (n)~za
(n)!. ~60!

Then, we can write the eigenstates as
2-6
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uFa
(n)&&5@Na

(n)#1/2~P(n)1C(n)!uua
(n)&&, ~61!

^^F̃a
(n)u5^^ṽa

(n)u~P(n)1D(n)!@Na
(n)#1/2. ~62!

The normalization constant may be found from the bi
thonormality condition of the eigenstates,

@Na
(n)#215^^ṽa

(n)u@A(n)#21uua
(n)&&, ~63!

where

A(n)5@~P(n)1D(n)!~P(n)1C(n)!#215@~P(n)

1D(n)C(n)!#21. ~64!

We have

A(n)5(
a

uua
(n)&&Na

(n)^^ṽa
(n)u. ~65!

The global collision operators associated with the crea
operatorC(n) are given by

u (n)[(
a

c (n)~za
(n)!uua

(n)&&^^ũa
(n)u. ~66!

Then we have

u (n)uua
(n)&&5za

(n)uua
(n)&&. ~67!

Substituting Eq.~53! into Eq. ~56!, we have

u (n)5P(n)L0P(n)1P(n)lLVC(n)P(n). ~68!

Now we define the dressed projection operators in e
subspace in terms of eigenstates~61! and ~62!,

P (n)[(
a

uFa
(n)&&^^F̃a

(n)u. ~69!

This leads to the relation

e2 iL HtP (n)5P (n)e2 iL Ht5~P(n)1C(n)!e2 iu(n)tA(n)

3~P(n)1D(n)!. ~70!

From Eqs.~45! and ~46!, we have

LHP (n)5P (n)LH , (
n

P (n)51, P (n)P (m)5P (n)dn,m .

~71!

Hence,P (n) is a generalization ofP(n) for the total Liouvil-
ian LH . However, Eq.~69! shows thatP (n) is not a Hermit-
ian superoperator, i.e.,

~P (n)!†5” P (n). ~72!

Equations~70! and ~71! show that each correlation sub
spaceP (n) evolves independently of other subspaces.
this reasonP (n) is associated withsubdynamics. We call the
componentP(n)r (n) the ‘‘privileged’’ component of r (n)
04610
-

n

h

r

[P(n)r. Taking the time derivative of the privileged compo
nent in Eq.~70!, we obtain the ‘‘Markovian’’ kinetic equation

i
]P(n)r (n)~ t !

]t
5u (n)P(n)r (n)~ t !. ~73!

There is an infinite set of Markovian processes associa
with eachP (n) subspace.

In this work we are interested in the weak coupling lim
For this case, the relation between the original collision o
eratorc (n)(z) and the global collision operatoru (n) takes a
simple form. Indeed, a series expansion of the creation
erator~50! in powers ofl starts froml. Keeping the inter-
action term up tol2 in Eq. ~53!, we have2

c (n)~za
(n)!5P(n)L0P(n)1l2c2

(n)~w(n)1 i0!1O~l4!.
~74!

Here c2
(n)(z)5P(n)LVC1

(n)(z)P(n) and C1
(n)(z) is the first-

order contribution inC(n)(z), i.e.,

C1
(n)~z!5

21

L02z
Q(n)lLVP(n) ~75!

and we have analytically continuedza
(n) from the upper-half

plane to guarantee that the time evolution is oriented to
future t.0. Substituting Eq.~74! into Eq. ~68!, we obtain

u (n)5P(n)L0P(n)1l2c2
(n)~w(n)1 i0!1O~l4!, ~76!

where we have used the second relation in Eq.~58!. This
result allows us to calculate Eq.~76! in Eq. ~73! the lowest-
order approximation inl. We also have the following per
turbation expansions:

C(m)5lC1
(m)~w(m)!1O~l2!, ~77!

D(m)5lD1
(m)~w(m)!1O~l2!, ~78!

A(m)5P(m)2l2D1
(m)~w(m)!C1

(m)~w(m)!1O~l4!, ~79!

with a suitable analytic continuation ofw(m) ~see Appendix
B!. Here the subscriptn in each superoperator means thenth
order contribution in thel expansion of a superoperator.

IV. MARKOVIAN KINETIC EQUATION

Let us now apply the formulation developed in the pr
ceding section to describe the evolution of our harmonic
cillator governed by the Hamiltonian~3!. We assume that the
initial state of r is diagonal in the field component in th
number representation3

2For the Hamiltonian~3!, there appear only terms of even order
l in the expansion of the collision operator~53!. In general, terms
of odd power inl may also appear in the expansion.

3P(n1) is defined in Eq.~35!. It should not be confused with the
abbreviated notationP(n) introduced in Eq.~41!.
2-7
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r~0!5(
n1

P(n1)r~0!

5 (
n1 ,m1

(
$nF%

un1 ,$nF%&r~n1 ,$nF%;m1 ,$nF%,0!

3^m1 ,$nF%u. ~80!

Moreover, we assume that the initial condition is factoriza
into a product of the particle state and the field state as

r~n1 ,$nF%;m1 ,$nF%,0!5 f n1 ,m1
~0!)

k
f k~nk ,nk,0!

~81!

with the normalization conditions

(
n1

f n1 ,n1
~0!51, ~82!

(
nk

f k~nk ,nk,0!51, ~83!

where we have introduced the reduced density matrix for
particle,

f n1 ,m1
~ t ![^n1u f̂ ~ t !um1& ~84!

with

f̂ ~ t ![TrF@P(n1)r~ t !#, ~85!

and for the field

f k~nk ,nk ,t ![^nkuTrp,F(k)
@P(0)r~ t !#unk&, ~86!

whereP(0) meansP(n1) with n150, and TrF means that the
partial trace is taken with respect to all field componen
while Trp,F(k)

means that the partial trace is taken with r

spect to all components except for thekth-mode of the field.
One of the possible choices of initial conditions is to a

sume that the field is in unperturbed thermodynamic equi
rium,

f k~nk ,nk,0!5
e2bnkvk

Q
, ~87!

where Q[@12exp(2bvk)#
21 is the partition function and

b5(kBT)21. This case has been treated extensively in
literature@8,9,22–24#. For this choice of initial conditions, a
system is in a mixed state near thermal equilibrium. For t
situation, the path-integral method is applicable to study
evolution of the system@8,22,23#.

Another interesting choice of initial conditions is given b
a pure stater(0)5uc1&^C1u ^ u$nF

0%&^$nF
0%u. Then we have

f n1 ,m1
~0!5^n1uc1&^C1um1&, f k~nk ,nk,0!5dnk ,n

k
0,

~88!

where we have assumed that in the limitV→`
04610
e

e

,
-

-
-

e

is
e

nk
0;O~V0! and E dknk

0,`, ~89!

i.e., the thermodynamic condition is satisfied@see Eq.~27b!#.
For the choice of initial conditions~88!, the system is far
from equilibrium. Our complex spectral representation is a
plicable to both near equilibrium~87! and far from equilib-
rium ~88!, whereas the path-integral method is not a use
tool to describe the evolution of the system far from equil
rium. Of special importance is the case~88!, since as we will
show, even starting from this pure state, the system evo
to a mixed state from the pure state in the thermodyna
limit. Hence, the wave function collapses dynamically in th
limit @29#.

Let us now evaluate the time evolution of the compon
P(n1)r(t),

P(n1)r~ t !5P(n1)r (n1)~ t !1P(n1)rnp
(n1)

~ t !, ~90!

whereP(n1)r (n1) is the privileged component inP (n1) sub-
space, whereasrnp

(n1)
[Q(n1)r is the nonprivileged compo

nent @see Eq.~70!#,

P(n1)r (n1)~ t !5P(n1)e2 iu(n1)tA(n1)P(n1)r~0!, ~91!

P(n1)rnp~ t !5 (
m(5” n1)

P(n1)C(m)e2 iu(m)tA(m)D(m)P(n1)r~0!.

~92!

In the lower-order approximation inl, we have

u0
(n1)

5n1v1P(n1), ~93!

l2u2
(n1)

5l2P(n1)LVC1
(n1)P(n1), ~94!

lC1
(n1)

5l
21

L02n1v12 i0
Q(n1)LVP(n1), ~95!

lD1
(n1)

5lP(n1)LVQ(n1)
1

n1v12L01 i0
. ~96!

First, let us consider a long time scalet;l22, which
corresponds to the relaxation time scale. Later, we will c
sider a short time scale wheret!l22. In the long time scale
we can approximate the privileged component by

P(n1)r~ t !'P(n1)exp@2 i ~n1v11l2u2
(n1)

!t#P(n1)r~0!,
~97!

whereA(n1) has been approximated byP(n1) by neglecting
higher-order terms inl, and the collision operatoru (n1) is
approximated byn1v1P(n1)1l2c2

(n1)(n1v11 i0). This cor-
responds to the so-calledl2t approximation@17#.4

4Irreversibility is not introduced by this approximation, but is
result of the nonvanishing imaginary part of the complex eig
valueza

(n1) . This approximation is a way to evaluate the imagina
2-8
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Equation ~92! with Eqs. ~77! and ~78! shows that the
dominant contribution to the evolution of the non-privileg
component~with m5” n1) in eachP (m) subspace starts with
the second-order term inl. Therefore, we can neglect th
nonprivileged components for the time scale oft;l22, i.e.,
we have

P(n1)r~ t !'P(n1)r (n1)~ t !. ~98!

Taking the time derivative of Eqs.~84! and~86! with Eq.
~97!, we have fort;l22,

i
]

]t
f k~nk ,nk ,t !5l2^nkuTrp,Fk

@u2
(0)P(0)r (1)~ t !#unk&,

~99!

i
]

]t
f n1 ,m1

~ t !5~n12m1!v1f n1 ,m1
~ t !

1l2^n1uTrF@u2
(n1)P(n1)r (1)~ t !#um1&.

~100!

Using Eq.~95! with the expressions~3!, ~30!–~32!, we ob-
tain an explicit expression for the right hand side~RHS! of
Eqs. ~99! and ~100!. However, since calculation is length
we have presented the calculation in Appendix A, and h
we display only the results. We obtain the Markov equatio
for t;l22 as

]

]t
f k~nk ,nk ,t !5

l2gk

V
@nk^n1& t f k~nk21,nk21;t !2~^n1& t

1nk12^n1& tnk! f k~nk ,nk ,t !1~^n1& t11!

3~nk11! f k~nk11,nk11,t !# ~101!

and

]

]t
f n1 ,m1

~ t !2 i ṽ1~m12n1! f n1 ,m1
~ t !

5l2E dkgkHAn1m1^nk& t f n121,m121~ t !

2F ~n11m111!^nk& t1
1

2
~n11m1!G f n1 ,m1

~ t !

1A~n111!~m111!~^nk& t11! f n111,m111~ t !J .

~102!

Here

part of za
(n1) up to the second-order contribution inl; cf. Appendix

D where the decay rate of spontaneous emission of an excited
is evaluated in thel2t limit ~see also Ref.@4#!. However, care has
to be taken when the unperturbed discrete spectrum is located
the lower bound of the continuous spectrum of the field.
04610
re
s

gk[2puvku2d~vk2v1! ~103!

and the renormalized frequency of the particle is

ṽ1[v11l2dv1 ~104!

with the frequency shift

l2dv1[2pl2 PE dkuvku2
2v1

v1
22vk

2 , ~105!

where P stands for the principal part. The quantities^n1& t
and ^nk& t are the average numbers of quanta of the part
and the field, respectively, at timet. To obtain Eqs.~101! and
~102! we have used the factorization property~81! that per-
sists for anyt.0 @17#.

The RHS of Eqs.~102! and ~101! are dissipative terms
These results show that dissipation comes from the contr
tion at the resonancevk5v1 @see Eq.~103!#.

The RHS of Eq.~101! is proportional to 1/V. Hence, if
we start with nonvanishingf k(nk ,nk,0) of the orderV0, then
we can neglect the expression in the RHS in the thermo
namic limit asV→`. Examples are the finite temperatu
case in Eq.~87!, or a pure state with Eq.~88!. For these
cases, the photon distribution function is invariant in tim
i.e.,

f k~nk ,nk ,t !5 f k~nk ,nk,0!. ~106!

However, if we start at zero temperature, i.e.,T50 in Eq.
~87! so that there is no photon att50 @or nk

0;O(V21) in
Eq. ~88!#, then one cannot neglect the expression in the R
of Eq. ~101!. This corresponds to the case of spontane
emission of the photon by the excited particle. In this ca
f k(nk ,nk ,t) changes in time and̂nk& t approaches the line
shape of the emitted photon ast→`. Indeed, our kinetic
equations~102! and ~101! lead to the Pauli-type equation
which corresponds to the well-known Uhling-Uhlenbe
equations for the average number of particles and the fi
for the case of nonlinear interaction, i.e.,

]

]t
^n1& t5

l2

V (
k

gk@^nk& t2^n1& t#, ~107!

]

]t
^nk& t5

l2

V
gk@^n1& t2^nk& t#. ~108!

If the thermodynamic limit is fulfilled, one can again negle
the RHS of Eq.~108!, i.e., ^nk& t is an invariant of motion
@see Eq.~111!#. On the other hand, for a nonthermodynam
situation such asT50, the RHS of Eq.~108! is not negli-
gible in describing a decay of the excited particle. Indeed,
the initial condition^nk&050, the solution of Eqs.~107! and
~108! is given by

^n1& t5e2l2gt^n1&0 , ^nk& t5
1

V

gk

g
~12e2l2gt!^n1&0 ,

~109!

where

ate

ear
2-9
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g[
1

V (
k

gk , ~110!

which leads to the well-known line shape proportional
d(vk2v1) in the l2t approximation. Note that a non
negligible contribution to the RHS of Eq.~101! for the zero
temperature case is essential in order to keep the de
matrix in a pure state for arbitrary timet.0 by starting with
a pure initial state.

We first restrict ourselves to the thermodynamic case~we
will discuss the nonthermodynamic case, i.e.,T50 in Sec.
VI !. Then, the average number of photons^nk& t in the kth
mode of the field is an invariant of motion, i.e.,

^nk& t5^nk&05(
nk

nkf k~nk ,nk ;0!. ~111!

Then we obtain a closed kinetic equation~102! for the re-
duced particle distribution functionf (n1 ,m1 ,t), which is one
of the main results in this paper. However, in order to disc
physical consequences of our kinetic equation, we hav
justify our approximation~97!, where we have neglecte
contributions from all nonprivileged components, comi
from other subdynamics. These components are respon
for memory effects~i.e., non-Markovian processes! that are
essential for estimation of the decoherence time scale. In
following section, we will analyze the memory effects
detail.

Before going to the next section, let us present our kine
equation~102! for the case~111! in other useful representa
tions. First, Eq.~102! leads to the following master equatio
for the operatorf̂ (t) defined in Eq.~85! @9,29–32#,

]

]t
f̂ ~ t !52 i ṽ1@a1

†a1 , f̂ ~ t !#1
l2

2 E dkgk~^nk&011!

3@2a1 f̂ ~ t !a1
†2a1

†a1 f̂ ~ t !2 f̂ ~ t !a1
†a1#

1
l2

2 E dkgk^nk&0@2a1
† f̂ ~ t !a12a1a1

† f̂ ~ t !

2 f̂ ~ t !a1a1
†#. ~112!

Second, in the coordinate representation

f ~q1 ,q18 ,t ![ (
n1m1

^q1un1&^n1u f̂ ~ t !um1&^m1uq18&,

~113!

wherefn(q) are the eigenstates of the harmonic oscillat
given by

fn~q!5^qun&[S M1v1

p\ D 1/4S 1

2nn! D
1/2

Hn~j!e2(j2/2),

~114!

with Hn(j) being a Hermite polynomial of degreen and j
[(M1v1 /\)1/2q, the Eq. ~112! takes the following form
@29#:
04610
ity
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]

]t
f ~q1 ,q18 ,t !5F2

\2

2M1
S ]2

]q1
2

2
]2

]q18
2D 1

M1ṽ1
2

2

3~q1
22q18

2!G f ~q1 ,q18 ,t !2 il2A2

3~q12q18!2f ~q1 ,q18 ,t !1 i\2l2B2

3S ]

]q1
1

]

]q18
D 2

f ~q1 ,q18 ,t !2 i\l2G2

3~q12q18!S ]

]q1
2

]

]q18
D f ~q1 ,q18 ,t !

1 i\l2G2

3S ]

]q1
1

]

]q18
D ~q11q18! f ~q1 ,q18 ,t !.

~115!

Here the constant coefficientsA2 , B2, andG2 are given by

A2[
M1v1

2 E dkgkS ^nk&01
1

2D , ~116!

B2[
1

2M1v1
E dkgkS ^nk&01

1

2D , ~117!

G2[
1

2E dk
gk

2
5

g

4
, ~118!

where the subscript 2 inA2 , B2, andG2 indicate the second
order contribution inl, and we have explicitly indicated\
and the massM1 of the harmonic oscillator.

Finally, in the Wigner representation defined by

f W~Q1 ,P1 ,t ![
1

2p\E dr1eiP1r 1 /\ f S Q11
r 1

2
,Q12

r 1

2
,t D

~119!

our master equation~115! takes the form

]

]t
f W~Q1 ,P1 ,t !5S 2

1

M1
P1

]

]Q1
1M1ṽ1

2Q1

]

]P1

1l2\A2

]2

]P1
21l2\B2

]2

]Q1
2

12l2G2

]

]P1
P1

12l2G2

]

]Q1
Q1D f W~Q1 ,P1 ,t !,

~120!

where P1 and Q15(q11q18)/2 are the Brownian particle
momentum and average position, respectively.
2-10
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In Eq. ~120! the terms associated with the coefficientsA2
andB2 describe the diffusion process in variablesP1 andQ1,
respectively. These terms are responsible for the decoher
phenomena. Indeed, in Eq.~115! one can see that the term
associated withA2 leads to the decoherence of the o
diagonal elements of the reduced density matrix in the co
dinate representation, and the decoherence timetdq is given
by

tdq;
\

l2A2~q12q18!2 . ~121!

Similarly, the decoherence timetdp in the momentum repre
sentation is given by

tdp;
\

l2B2~p12p18!2 . ~122!

The larger theuq12q18u or up12p18u, the shorter the decohe
ence timetd . However, there is a lower bound oftd , below
which formulas~121! and ~122! are not applicable. Indeed
for times much shorter than the relaxation time scale
cannot approximateP(n1)r(t) by only the privileged compo-
nent, as in Eq.~97!. In the following section, we will evalu-
ate a contribution from the nonprivileged component in E
~90! for times much shorter than the relaxation time scal

To consistently take the classical limit\→0, one has to
keep in mind that in the RHS of Eq.~120! the decoherence
rate constantsA2;\21 andB2;\21. Then, in this limit we
recover the usual kinetic equation for the reduced probab
distribution function of a classical particle weakly coupled
the classical field. Note that in the classical limit, in the RH
of the kinetic equation we still have the terms proportiona
the second-order differential operators of position]2/]Q1

2

and momentum]2/]P1
2 of the classical particle. Therefore

quantum decoherence or collapse of wave function is n
unique attribute of quantum mechanics and correspond
the well-known diffusion processes in classical mechanic

V. QUANTUM ZENO TIME

In this section we will show that the non-Markovian effe
coming from the nonprivileged components in Eq.~90! gives
a non-negligible contribution for a short time scale,t!l22,
and it dies out following a power law in a time scale of t
order 1/v1!l22. Therefore, 1/v1 gives a time scale of tran
sition of the evolution from the non-Markovian regime to t
Markovian regime. This transition time scale is called qua
tum Zeno time@26#. Only after the Zeno time does the Ma
kov equation ~102! start making sense. Hence, quantu
Zeno time serves as a lower bound for the decoherence
@29#.

To estimate the Zeno time, we first note that to gener

the correlation subspaceP(n18nk•••n l ) from theP(n1) subspace,
we need at leastunku1•••1un l u successive interactions, i.e

P(n1)C(n18nk•••n l )P(n18nk•••n l );P(n18nk•••n l )D(n18nk•••n l )P(n1)

;O~l unku1•••1un l u!. ~123!
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Hence, the dominant contribution in a short time scale
expression~90! comes fromP (m2) subspace forl!1, where
m2[(m1861). In the short time scalet!l22, we can ap-

proximate the collision operatoru (n18 ,nk) as @cf. Eq. ~93!#

u (n18 ,nk)'u
0
(n18 ,nk)

5~n18v11nkvk!P
(n18 ,nk). ~124!

Then, we have

^n1uTrF@P(n1)rnp~ t !#um1&

'l2(
n18

(
k

(
nk561

^n1uTrF@P(n1)C
1
(n18 ,nk)

3exp@2 i ~n18v11nkvk!t#D1
(n18 ,nk)

P(n1)r~0!#um1&.

~125!

The calculation of the RHS of expression~125! is straight-
forward. We shall present this calculation in Appendix
Here we display only the final result,

^n1uTrF@P(n1)rnp~ t !#um1&

'l2E dkuvku2H @~^nk&011!~n11m1! f n1 ,m1
~0!

1^nk&0~n11m112! f n1 ,m1
~0!

1^nk&0An1m1f n121,m121~0!1~^nk&0

11!A~n111!~m111! f n111,m111~0!#

3S exp@2 i ~vk2v1!t#

~vk2v12 i e!2 1c.c.D
1@~^nk&011!~n11m112! f n1 ,m1

~0!1^nk&0

3~n11m1! f n1 ,m1
~0!1~^nk&011!An1m1f n121,m121~0!

1^nk&0A~n111!~m111! f n111,m111~0!#

3S exp@2 i ~vk1v1!t#

~vk1v12 i e!2 1c.c.D J e2 in1v1t. ~126!

As a function ofvk5uku the first and second terms in th
integrand in expression~126! have a second-order poles
the upper and lower half of the complex plane ofvk . Hence,

in the P (n18nk) subspace, the resonance poles do not cont
ute for t.0. Indeed, these resonance effects have alre

been taken into account in theP (n18) subspace. In the subdy
namics theory, analytic continuation of the denominators
been carefully chosen to avoid double counting of the re
nance effects.

As a working example, let us evaluate a part of the fi
term in Eq.~126!, given by
2-11
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I ~ t !5l2~n11m1! f n1 ,m1
~0!E dkuvku2~^nk&011!

3
exp@2 i ~vk2v1!t#

~vk2v12 i e!2 . ~127!

Assuming that̂ nk&05exp(2bvk) with b5(kBT)21 and~cf.
@33#!

uvku25
vk

@11~vk /M !2#4 , ~128!

whereM is the cutoff frequency. Then, we have

I ~ t ![l2~n11m1! f n1 ,m1
~0!E

2`

`

dk
uvku2~^nk&011!

~ uku2v12 i e!2

3exp@2 i ~ uku2v1!t#

52l2~n11m1! f n1 ,m1
~0!E

0

`

3dv
uvvu2~e2bv11!

~v2v12 i e!2 e2 i (v2v1)t. ~129!

For t.0, we deform the contour of integration in the lowe
half plane of v. A contour rotationv52 iy with y5j/t
allows us to evaluate the integration in Eq.~129! as

I ~ t !522il2~n11m1! f n1 ,m1
~0!eiv1tt

3E
0

`

dj
uv2 i (j/t)u2

~j2 iv1t !2
e2j~11ei (bj/t)!. ~130!

Due to the factor exp(2j), integral overj contributes prima-
rily for values ofj;1. Hence, for 1!v1t!v1l22 integra-
tion in Eq. ~130! with Eq. ~128! yields

I ~ t !'24l2
eiv1t

~v1t !2 ~n11m1! f n1 ,m1
~0!E

0

`

djje2j

524l2
eiv1t

~v1t !2 ~n11m1! f n1 ,m1
~0!, ~131!

where we have approximated exp(ibj/t)'1 for j/t!1. A
similar estimation shows that all other terms decay
(v1t)22.

This result shows that after a time scale of 1/v1, the
memory effect described by the nonprivileged component
expression~90! becomes negligible as compared with t
contribution from the privileged component that obeys
Markov kinetic equation~102!. A deviation from the Markov
evolution is known as the quantum Zeno effect@26#. Equa-
tion ~131! shows that the Zeno time is given as 1/v1. After
this time scale, the decoherence terms with coefficientsA2
and B2 in Eq. ~120! start to give non-negligible contribu
tions. Therefore, we see that the Zeno time gives a lo
bound for the decoherence time.
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VI. DISCUSSION

As an application of complex spectral representations
the Liouvillian, we have investigated the motion of a charg
harmonic oscillator coupled to a field. For a weakly coupl
case, we have analyzed a short time memory effect that
out in quantum Zeno time of the order 1/v1, and derived
kinetic equations~101! and ~102! that are valid in the long
time scale of order of the relaxation time. As far as the fin
form of these kinetic equations are concerned, any stand
approach based on thel2t approximation~that recovers the
well-known Pauli master equation! leads to the same kineti
equations.

An additional element is the analysis of the memory eff
~i.e., the quantum Zeno effect discussed in Sec. V! associated
with non-Markovianity in a short time scale of the ord
1/v1. For a time scale shorter than the Zeno time, the M
kovian kinetic equation is not a good approximation to d
scribe the evolution of the system and the expressions~121!
and ~122! for decoherence times lose their meaning.

In this paper, we have restricted our consideration to o
the dominant contributions in the expansion of the collisi
operator in terms of the coupling constant. However,
should emphasize that our estimation of the memory effec
Sec. V goes beyond thel2t approximation, that is, the
lowest-order contribution in the Markovian regime. Exce
for a rigorous derivation for the generalized master equat
estimation of contributions from the memory effects, that a
corrections to thel2t approximation, is still a controversia
subject@19–21#. Our complex spectral representation of t
Liouvillian offers a systematic way of estimating contrib
tions from the memory effects even for a higher-order co
tribution with respect to the coupling constant.

As mentioned in the introduction, in a typical setting f
the decoherence problem~or quantum Brownian motion!,
one usually assumes a particle~a subsystem! embedded in a
field, that is, in thermodynamic equilibrium@see Eq.~87!#. In
this case, the so-called collapse of wave functions of
subsystem is trivially a contamination of the subsystem
the mixed nature of the surrounding field. In contrast, o
complex spectral representation of the Liouvillian is not
stricted to near equilibrium, and is applicable to arbitra
initial conditions including the pure state~88!, which is far
from equilibrium and satisfies the thermodynamic conditio
Our result in Sec. IV shows that starting with this pure init
condition, the subsystem evolves in time obeying the dif
sion equation~120!, while a field component keeps purity a
its distribution remains invariant in the thermodynamic si
ation @see Eq.~111!#. Therefore, our result presents a strikin
nontrivial example of a dynamical collapse of wave fun
tions in the thermodynamic limit. It should be emphasiz
again that this transition of pure to mixture occurs beca
the evolution takes place outside Hilbert space.

Before closing our paper, let us give some remarks
other approaches to the problem of quantum decohere
The usual phenomenological approach to this problem is
start with the Pauli master equation that is a Markov
equation@9#. Various examples of the estimation of the d
coherence time scale for a particle in a gas in thermal e
2-12
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librium can be found in Refs.@34,35# ~see also a book by
Giulini et al. @9#!. Applying their estimates to several sizes
the tagged particle, these authors obtained decoherence
at room temperature of, for example, 10218 s for a large
molecule of size 1026 cm, 10230 s for a dust particle
with size 1023 cm. Hence, it seems that the decoheren
time after which a classical world appears may be extrem
short for both mesoscopically and macroscopically sized
terials.

However, these estimations are meaningless, since th
timated time scale is much shorter than the relaxation t
where the Markovian process is not a good description of
evolution of the system. For instance, the relaxation ti
scale for a gas is typically 1026 s at room temperature. A
we have shown in this paper, for a short time scale mem
effects to the initial condition remain. Because the diffusi
process is a result of resonance interactions, it takes tim
build up this process.

Concerning the decoherence time scale, more confu
in the interpretation has resulted from the studies of the
called ‘‘exactly solvable model’’ discussed by Unruh a
Zurek @8#. They have considered the same type of syst
discussed in this paper. The resulting master equation le
to a dissipative term even in the limitt→0. Hence, the dis-
sipation seems to start instantaneously, and so does th
coherence. However, their result is inconsistent with dyna
ics. Indeed, the generalized master equation~1! shows that
dissipation disappears in the limitt→0.5

Later, this inconsistency has been noticed by Huet al.
@23,24#. By applying the path-integral method initiated b
Caldeira and Leggett@22# for quantum Brownian motion
they have obtained another form of the kinetic equation
which dissipation disappears in the limitt→0. However, as
we now show, their kinetic equation still contradicts wi
dynamics, since it does not consistently describe a spont
ous decay of an excited harmonic oscillator.

The main difficulty in their kinetic equation comes fro
their so-called ‘‘anomalous diffusion’’ term. Note that ou
kinetic equation~115! does not have the anomalous diffusio
term. As shown in Appendix C, their kinetic equation r
duces to the following Markovian equation in thel2t ap-
proximation

i\
]

]t
f ~q1 ,q18 ,t !5F2

\2

2M1
S ]2

]q1
2

2
]2

]q18
2D 1

M1ṽ1
2

2
~q1

2

2q18
2!G f ~q1 ,q18 ,t !2 i\l2G2~q12q18!

3S ]

]q1
2

]

]q18
D f ~q1 ,q18 ,t !2 il2A2~q1

5As pointed out by Huet al. @23#, the singular nature of the inter
action~such as the ultraviolet divergence! may lead to a nonvanish
ing contribution to the interaction term in Eq.~1! in the limit t
→0. However, since the ultraviolet singularity is irrelevant to irr
versibility, the nonvanishing term~if it exists! should not be related
to dissipation.
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2q18!2f ~q1 ,q18 ,t !1 il2\Dan~q12q18!

3S ]

]q1
1

]

]q18
D f ~q1 ,q18 ,t !, ~132!

which is different from our Eq.~115!. The last term in the
RHS of Eq.~132! is their anomalous diffusion term. We not
that because of this term, their kinetic equation does not l
to the Pauli-type kinetic equations~108! and ~107!.

We now show that our kinetic equation~115! leads to a
consistent description of dynamics, while this is not the c
for Eq. ~132!. We first consider the zero temperature caseT
50. Then we havênk&050 in Eqs.~116! and ~117!. This
corresponds to the nonthermodynamic situation~27a!, and
one can exactly solve the evolution of the system by
Bogoljubov transformation given in Appendix D. Let us a
sume that the initial condition is given by

r~0!5uC~0!&^C~0!u5u1p,0k&^1p,0ku ~133!

with

uC~0!&5u1p,0k&[a1
†u0p,0k&, ~134!

where 0p and 0k denote the vacuum of particle and the fiel
respectively. This corresponds to the well-known Friedric
model ~for detailed studies of this model see, for examp
Refs.@36–39#!. Let us then consider thel2t limit, i.e.,

l→0, t→1` with l2t5finite. ~135!

We should distinguish the concept of thel2t limit and the
l2t approximation. The expressions obtained inl2t limit are
exact in the limit t→` for Eq. ~135!, while beingapproxi-
mationswhen we apply these expressions for a finite tim
scale of the orderl22 with finite l.

As shown in Appendix D, the Bogoliubov transformatio
leads to theexact solutionfor the reduced particle distribu
tion function in thel2t limit,

f ~q1 ,q18 ,t !→~12e2l2gt!f0~q1!f0* ~q18!

1e2l2gtf1~q1!f1* ~q18!, ~136!

wheref0(q1) and f1(q1) are the ground and first excite
state of the particle, respectively, given in Eq.~114!. One can
verify that Eq. ~136! is indeed the solution of our kinetic
equation, by substituting Eq.~136! in both sides of Eq.~115!.
However, this is not the case for Eq.~132!. Therefore, the
kinetic equation of Huet al. contradicts with the exact time
evolution of the system for the zero temperature case.

We note that for an arbitrary temperature of the field, t
anomalous diffusion term in Eq.~132! vanishes at the poin
q185q1, while the corresponding terms with coefficientsB2

andG2 in our kinetic equation do not vanish. Therefore, t
discrepancy between the kinetic equation of Huet al.and the
underlying dynamics remains even for the nonzero temp
ture case.
2-13
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VII. CONCLUSION

In summary we have shown that quantum decoherenc
a phenomenon taking place outside Hilbert space in the t
modynamic limit. Our theory can be applied to the ca
when initial conditions are far from equilibrium, such as
pure state. We have demonstrated that transition from
pure state to a mixed state~collapse of wave functions! is
dynamically possible in the thermodynamic limit. We ha
shown that quantum decoherence is not a unique attribut
quantum mechanics, as in the classical limit the decohere
terms reduce to the diffusion terms. We have also shown
quantum Zeno time serves as a lower bound for the deco
ent time. The estimated decoherence time is much lon
than the time reported in literature.
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APPENDIX A: DERIVATION OF THE MASTER
EQUATIONS

In this appendix we outline steps in the calculation of t
collision operator that yield expressions in the RHS of
kinetic equations~101! and~102!. It is convenient to use the
correlation space diagrams to describe each process con
uting to the collision operator. Matrix elements associa

FIG. 1. Examples of typical vertices for real transitions~a! and
~b!, virtual transitions~c! and ~d!, and the propagator~e!.
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with interactionV31 and 213V are represented by th
vertex in Fig. 1~fragmentsa, b, c, andd), and are given by

^^a;bu@V31#ua8;b8&&5Vaa8db8b ,

2^^a;bu@13V#ua8;b8&&

52daa8Vb8b . ~A1!

In the following expressions we use the abbreviated nota
for the state

un1 ,nk ;m1 ,nk&&[un1 ,nk ,$nF%N21;m1 ,nk ,$nF%N21&&.
~A2!

Each diagram consists of the upper part corresponding
(V31) and the lower part corresponding to2(13V).
Straight lines correspond to the particle, while curved lin
correspond to the field. Each vertex containsa1

†ak , ak
†a1 ,

a1
†ak

† , a1ak . For the interaction, the direction of reading
denoted by arrows, and is from left to right on the lower li
and from right to left on the upper line. The arrow oriented
the vertex corresponds to the annihilation operatora, while
the arrow coming out of the vertex corresponds to the c
ation operatora†.

The propagator is given by

^^n1 ,nk ;m1 ,mku
21

H031213H02z
un1 ,nk ;m1 ,mk&&

5
21

m1v11mkvk2z
, ~A3!

with m1[n12m1 andmk[nk2mk . The propagator is rep
resented by the diagrame in Fig. 1.

We calculate the matrix element of the collision opera
~76! in the number representation

^^n1 ,nk ;m1 ,mkuc2
(n1)

~w(n1)1 i e!un18 ,nk8 ;m18 ,mk8&&

5^^n1 ,nk ;m1 ,mkuP(n1)L0P(n1)un18 ,nk8 ;m18 ,mk8&&

1 K ^n1 ,nk ;m1 ,mkUP(n1)LVQ(n1)
21

L02w(n1)2 i e

3Q(n1)LVP(n1)un18 ,nk8 ;m18 ,mk8&L . ~A4!

In Eq. ~A4! the first term corresponds to free propagati
without interaction, the second term represents interact
Calculating the free part in Eq.~A2!, we obtain

^^n1 ,nk ;m1 ,mkuP(n1)L0P(n1)un18 ,nk8 ;m18 ,mk8&&

5v1~n12m1!dn
18 ,n1

dm
18 ,m1

dn
k8 ,nk

dm
k8 ,mk

. ~A5!

The diagrams corresponding to the second term in
~A4! are presented in Figs. 2 and 3, where we have collec
the processes coming from the ‘‘real’’ transitions in Fig.
while the processes from the ‘‘virtual’’ transitions in Fig. 3
As we will see, the virtual processes contribute only to t
frequency shift for the renormalized particle in thel2t ap-
2-14
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proximation. As an example, we first give the explicit de
vation of a contribution from one typical diagram@say, dia-
gram~5! with real transitions in Fig. 2#. The propagator part
~A2! of diagram~5! corresponds to

~L02w(n1)2 i e!⇒@@~n12m111!v11~nk2nk21!vk#

2~n12m1!v12 i e#5v12vk2 i e. ~A6!

The vertices are calculated as

FIG. 2. The second-order diagrams with ‘‘real’’ transitions in th
correlation space.

FIG. 3. The second-order diagrams with ‘‘virtual’’ transitions
the correlation space.
04610
2^^n1 ,nk ;m1 ,mku@13Vka1ak
1#un1 ,nk ;m121,mk11&&

52VkAm1~nk11!, ~A7!

^^n1 ,nk ;m121,nk11u@Vka1
1ak31#un121,nk11;m121,nk

11&&5VkAn1~nk11!. ~A8!

Then, using the expression~53! for the collision operator, we
obtain the following contribution to the interaction part
Eq. ~A4! from diagram~5!:

(
k

~2Vk!Am1~nk11!
21

v12vk2 i e
VkAn1~nk11!r~n1

21,nk11;m121,nk11,t !

5(
k

uVku2~nk11!An1m1

1

v12vk2 i e

3r~n121,nk11;m121,nk11,t !. ~A9!

One can evaluate contributions from the remaining diagra
in a similar way. Collecting all intraction part contribution
to Eq. ~A4! from diagrams~1!–~4! and ~6!–~8! with real
transitions~Fig. 2!, we get the following expressions:

~1! (
k

uVku2n1~nk11!
1

vk2v12 i e
r~n1 ,nk ;m1 ,nk ,t !,

~2! (
k

uVku2nk~n111!
1

v12vk2 i e
r~n1 ,nk ;m1 ,nk ,t !,

~3! (
k

uVku2m1~nk11!
1

v12vk2 i e
r~n1 ,nk ;m1 ,nk ,t !,

~4! (
k

uVku2nk~m111!
1

vk2v12 i e
r~n1 ,nk ;m1 ,nk ,t !,

~6! (
k

uVku2nkA~n111!~m111!
1

vk2v12 i e

3r~n111,nk21;m111,nk21,t !,

~7! (
k

uVku2nkA~n111!~m111!
1

v12vk2 i e

3r~n111,nk21;m111,nk21,t !,

~8! (
k

uVku2An1m1~nk11!
1

vk2v12 i e

3r~n121,nk11;m121,nk11,t !. ~A10!

As a next example, we illustrate the calculation of d
gram~1! with virtual processes in Fig. 3. The propagator p
in diagram~1! corresponds to
2-15
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~v (n1)1 i e2L0!⇒~n12m1!1 i e2@~n1112m1!v1

2~nk112nk!vk#5 i e2v12vk . ~A11!

The vertices are

^^n111,nk11;m1 ,mku@Vkak
†a1

†31#un1 ,nk ;m1 ,mk&&

5VkA~n111!~nk11!,

^^n1 ,nk ;m1 ,mku@Vkaka131#un111,nk11;m1 ,mk&&

5VkA~n111!~nk11!. ~A12!

Then, for diagram~1! with virtual processes in Fig. 3, w
obtain

(
k

VkA~n111!~nk11!
21

i e2v12vk

3VkA~n111!~nk11!r~n1 ,nk ;m1 ,nk ,t ! f

5(
k

uVku2~nk11!~n111!

3
1

v11vk2 i e
r~n1,nk ;m1 ,nk ,t !. ~A13!

Contributions to Eq.~A4! from diagrams~2!–~8! with virtual
processes are

~2! (
k

uVku2nkn1

1

2 i e2v12vk
r~n1 ,nk ;m1 ,nk ,t !,

~3! (
k

uVku2~m111!~nk11!
1

2 i e2v12vk

3r~n1 ,nk ;m1 ,nk ,t !,

~4! (
k

uVku2nkm1

1

2 i e1v11vk
r~n1 ,nk ;m1 ,nk ,t !,

~5! (
k

uVku2An1m1nk

1

2 i e1v11vk

3r~n121,nk21;m121,nk21,t !,

~6! (
k

uVku2~nk11!A~n111!~m111!
1

2 i e2v12vk

3r~n111,nk11;m111,nk11,t !,

~7!(
k

uVku2~nk11!A~n111!~m111!

3
1

2 i e1v11vk
r~n111,nk11;m111,nk11,t !,

~8! (
k

uVku2An1m1nk

1

2 i e2v12vk

3r~n121,nk21;m121,nk21,t !, ~A14!
04610
Using the relation fore→01,

1

v6 i e
→PS 1

v D7p id~v!, ~A15!

we notice that in contributions~A12! and ~A13! from dia-
grams with virtual transitions, there appears thed function in
the form d(v11vk) that gives a vanishing contribution
Contributions~A9! and ~A10! from diagrams with real tran-
sitions, contain thed function of the formd(v12vk) that
gives a nonvanishing dissipative contribution at the ‘‘res
nance point’’vk5v1. The principal part of the propagato
gives the nonvanishing contribution to the frequency shif

Summing over all contributions, we obtain the mas
equation for the total density matrix fort;l22

i
]

]t
r~n1 ,nk ;m1 ,nk!

5^^n1 ,nk ;m1 ,nkuc2
(n1)

~w(n1)1 i e!ur&&

5~n12m1!Fv12l2(
k

uVku2PS 2v1

v1
22vk

2D G
3r~n1 ,nk ;m1 ,nk ,t !1l22p i(

k
uVku2d~vk2v1!

3FAn1m1~nk11!r~n121,nk11;m121,nk11,t !

2
1

2
~n11m112nk12n1nk12m1nk!

3r~n1 ,nk ;m1 ,nk ,t !1nkA~n111!~m111!

3r~n111,nk21;m111,nk21,t !G . ~A16!

By reducing Eq.~A16! as in Eqs.~85! and ~86!, and taking
the continuous spectrum limitV→`, we obtain the kinetic
equations~101! and ~102! of the main text, where we hav
used the factorizability property~81!, which persists for any
time t.0 @17#.

APPENDIX B: DERIVATION OF EQ. „121…

In this appendix we evaluate contributions from the no
privileged component~92! to the time evolution of the den
sity matrix ~90! and derive Eq.~126!. We can use the sam
diagrams presented in Appendix A, but with a different c
respondence to the mathematical expression. For the
privileged component we associate the expression~92! to the
diagram. For the interaction part, the correspondence is
same as the one presented in Appendix A. In the propag
care must be taken in the analytic continuation to be con
tent with the evolution oriented tot.0. Because the sub
space (n18nk8) is more correlated than the subspace (n1), we
have to associate the creation operator with the propag
@6#

P(n1)C
1
(n18nk8)

P(n18nk8)⇒ 21

n1v12~n18v11nk8vk!1 i e
, ~B1!
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while the destruction operator with the propagator

P(n18nk8)D
1
(n18 ,nk8)

P(n1)⇒ 11

~n18v11nk8vk!2 i e2n1v1
. ~B2!

Using the correspondence for each diagram in Fig. 2,
obtain the following expressions@by omitting a common fac-
tor exp(2in1v1t)]:

~1! (
k

uVku2n1~nk11!exp@2 i ~vk2v1!t#

3
1

~vk2v12 i e!2 r~n1 ,nk ;m1 ,nk ;0!,

~2! (
k

uVku2nk~n111!exp@2 i ~v12vk!t#

3
1

~v12vk2 i e!2 r~n1 ,nk ;m1 ,nk ;0!,

~3! (
k

uVku2m1~nk11!exp@2 i ~v12vk!t#

3
1

~v12vk2 i e!2 r~n1 ,nk ;m1 ,nk ;0!,

~4! (
k

uVku2nk~m111!exp@2 i ~vk2v1!t#

3
1

~vk2v12 i e!2 r~n1 ,nk ;m1 ,nk ;0!,

~5! (
k

uVku2An1m1~nk11!exp@2 i ~v12vk!t#

3
1

~v12vk2 i e!2 r~n121,nk11;m121,nk11;0!,

~6! (
k

uVku2nkA~n111!~m111!exp@2 i ~vk2v1!t#

3
1

~vk2v12 i e!2 r~n111,nk21;m111,nk21;0!,

~7! (
k

uVku2nkA~n111!~m111!exp@2 i ~v12vk!t#

3
1

~v12vk2 i e!2 r~n111,nk21;m111,nk21;0!,

~8! (
k

uVku2An1m1~nk11!exp@2 i ~vk2v1!t#

3
1

~vk2v12 i e!2 r~n121,nk11;m121,nk11;0!.

~B3!
04610
e

Similarly, contributions from diagrams in Fig. 3 are

~1! (
k

uVku2~n111!~nk11!exp@2 i ~v11vk!t#

3
1

~v11vk2 i e!2 r~n1 ,nk ;m1 ,nk ;0!,

~2! (
k

uVku2nkn1 exp@ i ~v11vk!t#

3
1

~v11vk1 i e!2 r~n1 ,nk ;m1 ,nk ;0!,

~3! (
k

uVku2~m111!~nk11!exp@ i ~v11vk!t#

3
1

~v11vk1 i e!2 r~n1 ,nk ;m1 ,nk ;0!,

~4! (
k

uVku2nkm1 exp@2 i ~v11vk!t#

3
1

~v11vk2 i e!2 r~n1 ,nk ;m1 ,nk ;0!,

~5! (
k

uVku2An1m1nk exp@2 i ~v11vk!t#

3
1

~v11vk2 i e!2 r~n121,nk21;m121,nk21;0!,

~6! (
k

uVku2~nk11!A~n111!~m111!exp@ i ~v11vk!t#

3
1

~v11vk1 i e!2 r~n111,nk11;m111,nk11;0!,

~7! (
k

uVku2~nk11!A~n111!~m111!exp@2 i ~v11vk!t#

3
1

~v11vk2 i e!2 r~n111,nk11;m111,nk11;0!,

~8! (
k

uVku2An1m1nk exp@ i ~v11vk!t#
1

~v11vk1 i e!2

3r~n121,nk21;m121,nk21;0!. ~B4!

Adding all contributions~B3! and ~B4!, we obtain the fol-
lowing expression forP(n1)rnp(t):
2-17
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P(n1)rnp~ t !'l2(
k

uVku2H @~nk11!~n11m1!r~n1 ,nk ;m1 ,nk ;0!1nk~n11m112!r~n1 ,nk ;m1 ,nk ;0!

1~nk11!An1m1r~n121,nk11;m121,nk11;0!1nkA~n111!~m111!r~n111,nk21;m111,nk21;0!#

3S e2 i (vk2v1)t

~vk2v12 i e!2 1c.c.D1@~nk11!~n11m112!r~n1 ,nk ;m1 ,nk ;0!1nk~n11m1!r~n1 ,nk ;m1 ,nk ;0!

1nkAn1m1r~n121,nk21;m121,nk21;0!1~nk11!A~n111!~m111!r~n111,nk11;m111,nk11;0!#

3S e2 i (vk1v1)t

~vk1v12 i e!2 1c.c.D J e2 in1v1t. ~B5!
e

en
In the thermodynamic limitV→`, Eq. ~B5! leads to the
desired expression~126! presented in the main text, wher
the factorization property~81! has been used.

APPENDIX C: THE l2T APPROXIMATION OF THE HU-
PAZ-ZHANG KINETIC EQUATION

In this appendix we derive thel2t approximation of the
Hu-Paz-Zhang kinetic equation given in Ref.@23#. Without
any approximation, their kinetic equation is given by

i\
]

]t
f ~q1 ,q18 ,t !

5F2
\2

2M1
S ]2

]q1
2

2
]2

]q18
2D 1

M1Ṽ1
2~ t !

2
~q1

22q18
2!G

3 f ~q1 ,q18 ,t !2 i\G~ t !~q12q18!

3S ]

]q1
2

]

]q18
D f ~q1 ,q18 ,t !2 iG~ t !h~ t !

3~q12q18!2f ~q1 ,q18 ,t !1\G~ t ! f ~ t !

3~q12q18!S ]

]q1
1

]

]q18
D f ~q1 ,q18 ,t !, ~C1!

whereṼ1 is the renormalized frequency,

Ṽ1
2~ t !5v1

21dV1
2~ t !. ~C2!

In the weak coupling approximation, the time depend
kernels appearing in the RHS of Eq.~C1! are given as@Eqs.
~2.46a!–~2.46d! in @23##

dV1
2~ t !'2l2E

0

t

dsh~s!cos~v1s!,

G~ t !'2
l2

v1
E

0

t

dsh~s!sin~v1s!,

G~ t ! f ~ t !'
l2

v1
E

0

t

dsn~s!sin~v1s!,
04610
t

G~ t !h~ t !'l2E
0

t

dsn~s!cos~v1s!, ~C3!

where we have explicitly written the coupling constantl,
and

n~s!5E
0

`

dvJ~v!cothS b\v

2 D cos~vs!,

h~s!52E
0

`

dvJ~v!sin~vs!. ~C4!

Here, the spectral densityJ(v) is defined as

J~v!5(
k

d~v2vk!
Ck

2

2mkvk
~C5!

andCk is related to ourvk in Eq. ~3! as

vk5
Ck

A2mkvk
. ~C6!

To compare their kinetic equation with our equation~115!
in our main text, we now evaluate Eq.~C3! in the l2t ap-
proximation. Using the second expression in Eq.~C4!, we
rewrite, for example,G(t) as

G~ t !'
l2

v1
E

0

t

dssin~vs!E
0

`

dvJ~v!sin~vs!

5 lim
e→01

l2

4v1
E

0

`

dvJ~v!E
0

t

ds„exp@ i ~v11v1 i e!s#

1exp@2 i ~v11v2 i e!s#2exp@ i ~v12v1 i e!s#

2exp@2 i ~v12v2 i e!s#…. ~C7!

In the large time limit, integration overs in the first expo-
nential in Eq.~C7! yields

E
0

t

dsexp@ i ~v11v1 i e!s#→ i

v11v1 i e
. ~C8!
2-18
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Performing integration for the remaining exponentials in E
~C7! and using the representation~A10!, we obtain the ex-
pression forG(t) in the large time limit as

G~ t !'
pl2

2 (
k

uVku2d~v12vk!5
l2

4V (
k

gk5l2G2 .

~C9!

Other kernels in Eq.~C3! are calculated in a similar way
Then, we obtain the following coefficients:

dV1
2~ t !'2v1l2dv1 ,

G~ t !h~ t !'l2A2 ,

G~ t ! f ~ t !'l2Dan[l2PE
0

`

dvJ~v!cothS b\v

2 D 1

v1
22v2 .

~C10!

CoefficientsG2 , dv1, andA2 are given in Eqs.~105!, ~118!,
and ~116! of our main text. Replacing these coefficients
the expressions in the RHS of Eqs.~C9! and ~C10! in Eq.
~C1!, we obtain thel2t approximation of their kinetic equa
tion presented in Eq.~132! in our main text.

APPENDIX D: BOGOLIUBOV TRANSFORMATION

In this appendix we derive the exact solution for the
duced particle density matrix for zero temperature in thel2t
limit ~135!.

By the Bogoliubov transformation presented below in E
~D1!, the Hamiltonian~3! can be diagonalized in the continu
ous spectrum limitV→` as in Eq. ~29!, where the new
dressed field operatorBk is given by@40#,

Bk5ak1v1lvkG
2~vk!F E

2`

`

dk8lvk8S ak8
vk82~vk2 i e!

2
ak8

1

vk81vk
D 2

~vk1v1!a1
11~vk2v1!a1

2v1
G . ~D1!

Here the functionG6(vk)[G(vk6 i e) is defined as

G~z![Fv1
22z22E

2`

`

dk82
v1l2uvk8u

2

vk8
2

2z2 G21

. ~D2!

Note that the diagonalized Hamiltonian~29! consists of the
dressed field alone. The particle associated with the desc
spectrum has been destroyed by the resonance. This i
characteristic feature of the unstable system, which is no
tegrable in the sense of Petrosky and Prigogine@41#. The
inverse transformation is given by

ak5Bk2v1lvkE
2`

`

dk8lvk8F G1~vk8!

vk82vk1 i e
Bk8

2
G2~vk8!

vk81vk
Bk8

† G , ~D3!
04610
.

-

.

ete
the
n-

a152E
2`

`

dklvk@~vk1v1!G1~vk!Bk

2~vk2v1!G2~vk!Bk
†#. ~D4!

We now calculate the evolution of the density matr
r(t)5uC(t)&^C(t)u starting with the initial condition pre-
sented in Eq.~134!. We note that thel2t limit has a well-
defined meaning only in the context of the evolution of t
density matrix, and not the wave function. Hence, in t
following calculation this limit should be understood as a
plied in the context of the density matrix. Then, in thel2t
limit, the Green functionG2(vk) approaches

G2~vk!→
1

~z12vk!~z1* 1vk!
5

1

~z12vk!~v11vk!

1O~l2!, ~D5!

where z1 and z1* are the poles ofG2(vk) on the second
Riemann sheet~the asterisk denotes complex conjugatio!.
In the l2t limit, z1 approaches

z1→v11l2dv11 il2
g

2
. ~D6!

The exact time evolution of the wave function of the to
system is given by

uC~ t !&5e2 iHt uC~0!&5e2 iHta1
1u0p,0k&

52e2 iHtE
2`

`

dklvk@~vk1v1!G2~vk!Bk
†

2~vk2v1!G1~vk!Bk#e
Ṽu0̃&. ~D7!

Hereu0̃& denotes the true ground state, which is related to
bare ground state as

u0p,0k&5eṼu0̃&, ~D8!

whereṼ is given as@40#

Ṽ5
1

2E2`

`

dkE
2`

`

dk8lvklvk8h~2vk1 i e!h~2vk8

1 i e!Bk
†Bk8

† v1

v11de0
S 12

2~v11de0!

vk1vk8
D ~D9!

and de0 being the vacuum energy shift. The functionh
(2z) is defined by

h~2z![E
2`

`

dk
v1l2uvku2uG~vk!u2

h~vk!~vk2z!
~D10!

and

h~z!h~2z!5G~z!. ~D11!
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In the l2t limit, the stateu1p,0k& in Eq. ~133! can be

connected to the stateu0p,1k&[ak
†u0p,0k& with only one pho-

ton, and all other transitions vanish. Hence, in this limit,
have for the reduced density matrix of the particle

f̂ ~ t !5TrF@ uC~ t !&^C~ t !u#→u1p,0k&u^1p,0kuC~ t !&u2^1p,0k

u1u0p,1k&u^0p,1kuC~ t !&u2^0p,1ku. ~D12!

In the position representation, Eq.~D12! leads in thel2t
limit to

f ~q1 ,q18 ,t !→f1~q1!u^1p,0kuC~ t !&u2f1* ~q18!

1f0~q1!(
k

u^0p,1kuC~ t !&u2f0* ~q18!.

~D13!

Now, using the Heisenberg representation of the dres
operator Bk

† , i.e., exp@2iHt#Bk
† exp@iHt#5Bk

†(0)exp@2ivkt#,

and thel expansions asu0̃&5@11O(l2)#u0p,0k& and Bk
5ak1O(l), the Eq.~D7! leads in thel2t limit to

^1p,0kuC~ t !&5^1p,0kulE
2`

`

dkvk~vk1v1!

3G2~vk!Bk
†~0!e2 ivktu0̃&

→l2E
2`

`

dkuvku2~v11vk!
2uG1~vk!u2e2 ivkt,

~D14!
try

d
l.

-

s

8
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where we have used the fact that the true ground state i
invariant of motion, i.e., exp@2iHt#u0̃&5u0̃&. Substituting Eq.
~D4! into Eq. ~D14! and performing the contour rotation o
vk into the lower-half plane similar to Eqs.~129! and~130!,
we see that the contribution in the integration from the p
imaginary axis ofvk vanishes in thel2t limit, while the pole
at vk5z1 gives a finite contribution. Then, in thel2t limit,
we obtain

^1p,0kuC~ t !&→2p il2uvv11l2dv12 il2g/2u2
1

il2g

3expF2 i S v11l2dv12 il2
g

2D t G
→expF2 i S v11l2dv12 il2

g

2D t G .
~D15!

This leads to the final form of the exact expression
u^1p,0kuC(t)&u2 in the l2t limit as

u^1p,0kuC~ t !&u2→e2l2gt. ~D16!

Calculation of the coefficientu^0p,1kuC(t)&u2 is similar to
the one presented above and in thel2t limit, we obtain

(
k

u^0p,1kuC~ t !&u2→12e2l2gt. ~D17!

Substituting Eqs.~D16! and~D17! into Eq.~D13!, we obtain
the exact solution off (q,q8,t) in the l2t limit given by Eq.
~136! in the main text.
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@3# A. Böhm and M. Gadella,The Rigged Hilbert Space an
Quantum Mechanics, Springer Lecture Notes on Physics Vo
78 ~Springer, New York, 1978!.

@4# T. Petrosky, I. Prigogine, and S. Tasaki, Physica~Amsterdam!
A 173, 175 ~1991!.

@5# T. Petrosky and I. Prigogine, Chaos, Solitons Fractals7, 441
~1996!.

@6# T. Petrosky and I. Prigogine, Adv. Chem. Phys.99, 1 ~1997!.
@7# T. Petrosky and I. Prigogine, inGravity, Particles and Space

time, edited by P. Pronin and G. Sardanashvily~World Scien-
tific, Singapore, 1996!.

@8# W. G. Unruh and W. H. Zurek, Phys. Rev. D40, 1071~1989!.
@9# D. Giulini et al., Decoherence and the Appearance of a Cla

sical World in Quantum Theory~Springer-Verlag, New York,
1996!.

@10# A. Shimony, inThe New Physics, edited by P. Davies~Cam-
bridge University Press, New York, 1993!.

@11# N. Bohr and L. Rosenfeld, Phys. Rev.78, 794 ~1950!.
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