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Amplitude coda of classical waves in disordered media
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The propagation of classical waves in the presence of a disordered medium is studied. We consider wave
pulses containing a broad range of frequencies in terms of the configurationally averaged Green function of the
system. Damped oscillations in the time-dependent response trailing behind the direct arrival of the pulse
~coda! are predicted, the periods of which are governed by the density of scatterers.
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Wave propagation in disordered media is a broad rese
topic, with many applications. Electron transport in mes
copic systems, light diffusion in opaque media, or acou
propagation in the subsurface of the earth are example
the interdisciplinary character of this general subject.
these examples share a number of common properties
most important being that they are governed by wave eq
tions. Methods and techniques used in one field of study
in principle, be applied to others, and such an approach
proved successful in the past. Anderson localization@1#, for
instance, was originally discovered in the quantum realm
electrons but later understood to be a general wave phen
enon@2–4#.

Other contributions from traditionally quantum metho
into the study of classical waves are the diagrammatic p
turbation technique@5# and the random matrix theory@6#.
Whereas the latter explains some universal features in
response of a disordered environment that are independe
the detailed structure of the system, the microscopic na
of the former allows a more specific modeling of the m
dium. If one wishes to image the medium by observing
signal that is generated by a source and scattered by
system inhomogeneities, the desired information must
sought in the nonuniversal part of the measurements.

In addition to studies of classical wave propagation ba
on nearly monochromatic sources, the time-dependent
sponse of a short pulse containing a broad range of freq
cies is also of considerable interest. This is typically the c
in seismic studies of the earth. Excited either by earthqua
or by artificially controlled explosions, seismic waves trav
long distances before being registered by an array of de
tors. The measurements consist of time-dependent funct
describing how the subsurface responds to the excitati
The portion of the wave lagging behind the first arrivals~the
so-called coda! is delayed by being repeatedly scattered
interfaces and inhomogeneities and, therefore, carries in
mation about the medium@7#. Only recently it has been re
alized that the coda of seismic waves can be used for m
ping the subsurface of the earth as well as locat
earthquake centres@8#.

Unlike their quantum counterparts, the amplitude of cl
sical waves can be probed quite trivially. This is the case
seismic and acoustic waves in general. Ultrasonic wave
plitudes are also observable and have been used to inv
gate multiple scattering effects in disordered media@9,10#.
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Amplitude and phase of electromagnetic waves have a
been measured in the microwave region and used to t
dynamical aspects of the propagation@11,12#. Such a wide
applicability motivates us to study the time evolution of t
wave amplitude within a disordered medium.

Bearing in mind the microscopic approach mention
above, we have recently investigated the time response
disordered medium composed of small spheres~Rayleigh
scatterers! @13#. The scatterer is characterized by a set
resonances that appear as poles of the scattering matri
the lower half of the complex frequency plane. A simp
expression for the time-dependent wave amplitude is
tained when all but the lowest order poles are discarded.
subsequently considered an ensemble of randomly pla
identical scatterers and related some features of the resp
to the microscopic details of the structure.

In this paper we extend this idea by accounting for
poles of the scattering matrix. On the one hand, we loose
simplicity of the single pole approximation, but on the oth
the single scatterer contribution is better described by c
sidering scattering events previously neglected. In spite
the somewhat more complicated formalism, we are still a
to relate the delayed-time response to the microscopic
rameters of the system in the limit of impenetrable scatter
Oscillations in the time-dependent amplitude of the wave
identified, the periods of which depend on the concentrat
of scatterers.

We consider a general scalar wave equation in the
quency domain given by the following eigenvalue equatio

$2¹21V~rW,v!%Cm~rW,v!5Em~v!C~rW,v!, ~1!

whereCm(rW,v) is the wave field for a frequencyv at posi-
tion rW. Both the energyEm and the potential energyV are
frequency dependent and given byV(rW,v)5(v2/c0

2)@1

2c0
2/c2(rW)# andEm(v)5v2/c0

2. The wave velocityc(rW) is
position dependent,c0 being the velocity for the homoge
neous background medium. Associated with Eq.~1! there is a
Green functionG given by

G~rW,rW0 ,v!5(
m

Cm~rW,v!Cm* ~rW0 ,v!

~v2/c0
2! 2Em~v!1 ih sgn~v!

, ~2!
©2002 The American Physical Society04-1
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whereh is a positive infinitesimal number.G(rW,rW0 ,v) rep-
resents the response measured at positionrW due to a station-
ary perturbation of frequencyv produced atrW0. For the sake
of simplicity we assumerW0 at the origin throughout this pa
per. The Fourier transform to time domain gives the phy
cally relevant quantityG(rW,t), namely, the response to
pulse containing the full spectrum of frequencies. From t
quantity a simple convolution gives the wave amplitude fo
pulse of arbitrary shape.

For a disordered system with many scatterers we focu
the configurationally averaged Green function^G(rW,t)&. In
wave vectorkW and frequency space, it is given by

^G~kW ,v!&5
1

~v/c0
2!2k22S~kW ,v!

, ~3!

where the so-called self-energyS(kW ,v) is a complex quan-
tity. The solution to the disordered problem is determined
the behavior of the self-energy. For spherically symme
scattering cross sections (s-wave! and within the indepen-
dent scatterer approximation@14#, valid for a low concentra-
tion of small defectsn, the kW dependence of the self-energ
disappears andS becomes

S~v!5
nc0„S0~v!21…

2iv
, ~4!

where S0(v) is the s-wave scattering matrix for the indi
vidual scatterers. Note that Eqs.~3! and ~4! bridge the gap
between the microscopic scale, in terms ofS0 of a single
impurity, and the macroscopic medium, described by the
erage Green function̂G&.

The scatterers are modeled by small spherical reg
within which the waves propagate with velocityc. The cor-
respondingS matrix is given by@15#

S0~v!52e2 ivd/c0S 11
2i

~c0/c!cotS vd

c D2 i D , ~5!

whered is the diameter of the scatterer.S0 has an infinite
number of poles in the frequency domain, each one of th
on the lower half of the complex frequency plane. As sho
in Ref. @13#, a simple expression for the response is obtain
when all but the lowest order poles are neglected. Here
want to include all poles of theS matrix and investigate the
effect this may bring to the final response. After substitut
Eq. ~5! into Eq. ~4!, the Fourier transform of Eq.~3! yields
the average Green function̂G(rW,t)& in position and time
domain. Alternatively, we can look at the scattered respo

^DG(rW,t)&, defined as the difference in amplitude betwe
the total signal and the impurity-free response, which
scribes how the scattered portion of the waves evolve
time. Figure 1 shows the calculated^DG(rW,t)& for a random
medium with identical scatterers atn5531022 and n
51021 volume concentrations andc50 andc5 1

5 . n andc
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are expressed in units of (1/d3) andc0, respectively, whereas
the time is in units ofd/c0. The distancer to the source is
arbitrarily fixed atr 510d. As expected, the direct arrival o
the wave is followed by an exponentially decaying respo
whose features depend onn as well as on the scatterin
strength. In addition, clear oscillations in the scattered
sponse can be seen in the insets of Fig. 1. Although
shown in the figure, oscillations are also present wh
c.c0.

To understand the origin of those oscillations it is help
to simplify the problem and assume that the wave veloc
vanishes inside the scatterers, i.e.,c50. This is equivalent to
a set of obstacles that are impenetrable to the waves, mo
ing, for instance, strong discontinuities in the constituti
parameters. One example is a solid porous medium fi
with rarefied air, or any other environment with scatterers
relative low sound velocity. Alternatively, in the case of ele
tromagnetic waves, obstacles with high refractive index
required. With this simplification, the concentrationn and the
diameterd are the only variable parameters and theSmatrix
becomesS052e2 ivd/c0. The responsêG(kW ,t)& in wave-
number and time domain is an intermediate step towa

^G(rW,t)& and results from the time Fourier transform of E
~3!, given by

^G~kW ,t !&5
1

2pE2`

1`

dvS v

c0
D

3H e2 ivt

~v/c0!32~v/c0!k21
n

2i
@e2 ivd/c011#J .

~6!

FIG. 1. Scattered responsêDG(rW,t)& ~in units of 1023

3d2/c0) for r 510d. The graphs at the top correspond to the ca
of impenetrable spheres wherec50. The bottom graphs are forc
5c0/5. The graphs on the left and right are forn5531022~in units
of 1/d3) andn51021 ~in units of 1/d3), respectively. The insets ar
amplified by a factor 10.
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Although the spatial part of the Fourier transform remains
be done, Eq.~6! is useful for understanding the time depe
dence of the response. The frequency integral can be ev
ated by contour integration. The poles are atk-dependent
frequency values that govern the actual dispersion relatio
the wave motion. In the absence of scatterers (n50), for
instance, the poles are atv5c0k and a further Fourier trans
form into space domain gives the usual free-space solu
@16# G(rW,t)5(c0/4pr )d(c0t2r ). For nÞ0, the poles ac-
quire a concentration dependencev j (k,n), where j is a la-
beling index. In general, the residueR associated with a
first-order polev j (k,n) is given by

R@v j~k,n!#5
v j~k,n!e2 iv j (k,n)t

2pc0f j8
, ~7!

where f j8 stands for thev derivative of f5(v/c0)3

2(v/c0)k21(n/2i )@e2 ivd/c011# evaluated atv5v j (k,n).
The time dependence of the residue is entirely in the ex
nential exp@2ivj(k,n)t#. The integral of Eq.~6!, written as a
sum of residues, is

^G~kW ,t !&52
i

c0
(

j

v j~k,n!e2 iv j (k,n)t

f j8
. ~8!

In this equation each term gives an exponentially dam
oscillatory contribution, whose period and rate of decay
pend on the real and imaginary parts ofv j (k,n), respec-
tively. Whether this time dependence persists in the fi
response depends on the spatial Fourier transform.

After integrating over the angular variables, the remain
transform becomes

^G~rW,t !&5(
j
E

2`

1`

dkA~k,r !e2 iv j (k,n)t, ~9!

where A(k,r )5 ik2 sin(kr)vj(k,n)/c0rfj8 . Except for the
damping component induced by the imaginary part of
pole, the integrand in Eq.~9! is a periodic function oft,
oscillating with a frequency given by the real part ofv j (k,n)
and with an amplitude governed byA(k,r ). For large values
of t the exponential oscillates rapidly as a function ofk and
the dominant contribution to the integral comes from t
vicinity of k points at whichv j (k,n) is stationary. In other
words, the values ofk that effectively contribute to the inte
gral are those satisfying the conditiondv j /dk50. Although
each pole in Eq.~6! contributes with a different term in Eq
~9!, those meeting the stationary phase condition will dom
nate the signal.

The existence of such stationary points is implied by
oscillations found in Fig. 1 and we now try to locate them
closer look at Eq.~6! shows that the polesv j (k,n) are func-
tions of k2. Therefore,k50 always satisfies the stationa
phase conditiondv j /dk50. We assume this value ofk as a
possible candidate for explaining the observed results in
1. The corresponding poles are the solutions of a trans
dental equation, which can be further simplified if we expa
the S matrix for smallv. Assuming thatn is small, which is
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the basic condition for the validity of the independent sc
terer approximation, the zero order term is sufficient and
find for the real part of the pole that Re@v j (k50,n)#
5(c0A3/2)(n)1/3. Associated with this pole is a simple ex
pression for the oscillation periodT given by

T52p/Re@v j~k50,n!#5S 4p

c0A3
DA3 1/n . ~10!

The predicted oscillation periods based on the station
phase argument, shown as a continuous line in Fig. 2, a
very well with the observed periods obtained by numeri
integration of the Green function, represented by the poi
Although the stationary phase approximation provides no
formation about the respective weight of the oscillations, i
sufficient to explain their existence in the time respon

^G(rW,t)&. With such a simple expression for the period, t
oscillations are easily related to a microscopic structural
rameter of the system, namely the average separatioa
51/A3 n between scatterers.

A simple physical picture for the oscillations in the tim
dependent amplitude is as follows. When scattered o
once, theS matrix S0 induces a phase shift in the wav
corresponding to a sign change. A second scattering e
restores the original sign, which is again changed by a th
scatterer, and so on. In this way, positive and negative c
tributions to the scattered response occur, depending on
number of scattering events. The maximum probability
being scattered a certain number of times depends on
time lapse, and, therefore, dictates the overall sign of
final response. For that reason the sign of the respo
changes as a function of time and we can also unders
why the average distance between scatterers appears a
period of the oscillations. On the opposite side of the vel
ity spectrum, infinitely large values ofc lead to S0
5e2 ivd/c0, causing no sign change in individual scatteri

FIG. 2. Oscillation periods~in units ofd/c0) as a function of the
concentrationn ~in units of 1/d3). The continuous line results from
the stationary phase aproximation whereas the points are the
ods obtained after numerical integration.
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events. In this case, no oscillation should occur and, inde
are not observed in the numerical solution for this limiti
case.

Therefore, according to Eq.~10!, it might be possible to
obtain the values ofa and n, once such oscillations in

^G(rW,t)& are observed. Whether this structural informati
can be extracted from an actual measurement depends o
type of disorder in the system. Within the conditions for t
validity of the present model, i.e.,vd!1 anda/d@1, the
oscillations do not depend on the distribution of the size
the scatterers.

Well defined oscillations in the time-delayed respon
have been recently observed in ultrasonic waves transm
across a two-dimensional disordered structure@10#. They
have a different origin, but we suspect that the superimpo
beating pattern reflects the physics discussed here. This
pothesis could be tested by systematic experiments with
ferent concentration of scatterers.
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In summary, we have observed oscillations in the tim
dependent response of a system composed of rando
placed spherical scatterers. Based on the stationary p
approximation, we have identified the origin of the oscill
tions and derived a simple expression for the periods in
limit of impenetrable scatterers, whose dependence on
mean separation between obstacles was established. It is
gested that such oscillations should be observable in di
dered systems providing an indirect way of measuring
density of scatterers. When the scatterers are penetrabl
simple analytical result presented here has to be modifi
but can still be useful in the comparison to the numeri
results.
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