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Amplitude coda of classical waves in disordered media
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The propagation of classical waves in the presence of a disordered medium is studied. We consider wave
pulses containing a broad range of frequencies in terms of the configurationally averaged Green function of the
system. Damped oscillations in the time-dependent response trailing behind the direct arrival of the pulse
(coda are predicted, the periods of which are governed by the density of scatterers.
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Wave propagation in disordered media is a broad researchmplitude and phase of electromagnetic waves have also

topic, with many applications. Electron transport in mesos-been measured in the microwave region and used to treat
copic systems, light diffusion in opaque media, or acoustiglynamical aspects of the propagatidii,12. Such a wide
propagation in the subsurface of the earth are examples @pplicability motivates us to study the time evolution of the
the interdisciplinary character of this general subject. Allwave amplitude within a disordered medium.

these examples share a number of common properties, the Bearing in mind the microscopic approach mentioned
most important being that they are governed by wave equaabove, we have recently investigated the time response of a
tions. Methods and techniques used in one field of study carflisordered medium composed of small sphefayleigh

in principle, be applied to others, and such an approach hafatterers[13]. The scatterer is characterized by a set of
proved successful in the past. Anderson localizafibpfor ~ resonances that appear as poles of the scattering matrix on
instance, was originally discovered in the quantum realm ofhe lower half of the complex frequency plane. A simple

electrons but later understood to be a general wave phenorXpression for the time-dependent wave amplitude is ob-
enon[2—4]. tained when all but the lowest order poles are discarded. We

Other contributions from traditionally quantum methods Subsequently considered an ensemble of randomly placed

into the study of classical waves are the diagrammatic perdentical scatterers and related some features of the response
turbation techniqud5] and the random matrix theorys].  to the microscopic details of the structure. _

Whereas the latter explains some universal features in the N this paper we extend this idea by accounting for all
response of a disordered environment that are independent Bples of the scattering matrix. On the one hand, we loose the
the detailed structure of the system, the microscopic naturdimplicity of the single pole approximation, but on the other
of the former allows a more specific modeling of the me-the single scatterer contribution is better described by con-
dium. If one wishes to image the medium by observing theSidering scattering events previously neglected. In spite of
signal that is generated by a source and scattered by ttie€ somewhat more complicated formalism, we are still able

system inhomogeneities, the desired information must b& relate the delayed-time response to the microscopic pa-
sought in the nonuniversal part of the measurements. rameters of the system in the limit of impenetrable scatterers.

In addition to studies of classical wave propagation basescillations in the time-dependent amplitude of the wave are

on nearly monochromatic sources, the time-dependent rddentified, the periods of which depend on the concentration
sponse of a short pulse containing a broad range of freque®f scatterers.

cies is also of considerable interest. This is typically the case We consider a general scalar wave equation in the fre-
in seismic studies of the earth. Excited either by earthquakeguency domain given by the following eigenvalue equation:
or by artificially controlled explosions, seismic waves travel

long distances before being registered by an array of detec- {—V2+V(F )W (Fr0)=E () V(7 ,0) (1)
y m ) - m y y

tors. The measurements consist of time-dependent functions
describing how the subsurface responds to the excitations.

The portion of the wave Iagglng behind the first arrivdle Where\lfm(ﬁ w) is the wave field for a frequenay at posi_

so-called codpnis delayed by being repeatedly scattered bytion ;
interfaces and inhomogeneities and, therefore, carries infor- )
mation about the mediunv]. Only recently it has been re-

Both the energyE,, and the potential energy are
frequency dependent and given W(F,w)=(w2/cé)[1

alized that the coda of seismic waves can be used for map= ¢§/c*(r)] and E,(w) = w?/cj. The wave velocityc(r) is

ping the subsurface of the earth as well as locatingoosition dependent, being the velocity for the homoge-
earthquake centrg$]. neous background medium. Associated with B¢ there is a

Unlike their quantum counterparts, the amplitude of clas-Green functionG given by

sical waves can be probed quite trivially. This is the case for

seismic and acoustic waves in general. Ultrasonic wave am-

plitudes are also observable and have been used to investi- G(FF ):Z
. . . . Mo, @ 2,2 - )

gate multiple scattering effects in disordered md@a.0]. m (0/c) —Ep(w)+insgnw)

V(F)PE(Ty,0)
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where 7 is a positive infinitesimal numbe6(r,ry,») rep- -
resents the response measured at posﬁidne to a station-
ary perturbation of frequenay produced afo. For the sake

of simplicity we assume?o at the origin throughout this pa-
per. The Fourier transform to time domain gives the physi-
cally relevant quantityG(F,t), namely, the response to a
pulse containing the full spectrum of frequencies. From this e
guantity a simple convolution gives the wave amplitude for a =

AG(r,Y) (10° d’rc, )

pulse of arbitrary shape. §° L L
For a disordered system with many scatterers we focus or's | 3 N C 105
the configurationally averaged Green functig®(r,t)). In ° | 3 | ¥ 1]
wave vectork and frequency space, it is given by 2 | 3 N L 3 1
o E [ L 1 T
1 3 8 - 40 60 80
< = P R IR B P R BT R I
(G(k,@)) (wlce?)—k2—3 (K, ) © 0 20 40 60 80 O 20 40 60 8G.°

time (units of d/co) time (units of d/co)

where the so-called self-ener@y(k,w) is a complex quan- .

tity. The solution to the disordered problem is determined by FIG. 1. Scattered responseAG(r,t)) (in units of 10°°

the behavior of the self-energy. For spherically symmetricXd/Co) for r=10d. The graphs at the top correspond to the case
scattering cross sections-ave and within the indepen- ©f impenetrable spheres whece-0. The bottom grapst_are for
dent scatterer approximati¢f4], valid for a low concentra-  —Co/>: The graphs on the left and right are for 5> 10" %(in units

i N of 1/d®) andn=10""1 (in units of 143), respectively. The insets are
tion of small defects), thek dependence of the self-energy ) ( ) P Y

. amplified by a factor 10.
disappears and becomes
NCo(So( @) —1) are expressed in units of @ andc,, respectively, whereas
= i, (4  the time is in units ofd/c,. The distance to the source is
2iw arbitrarily fixed atr =10d. As expected, the direct arrival of

) . ) .. the wave is followed by an exponentially decaying response
where Sy(w) is the swave scattering matrix for the indi- \hose features depend anas well as on the scattering

vidual scatterers. Note that EGS) and (4) bridge the gap  gyrength. In addition, clear oscillations in the scattered re-
between the microscopic scale, in termsSyfof a single  gponse can be seen in the insets of Fig. 1. Although not
impurity, and the macroscopic medium, described by the avghown in the figure, oscillations are also present when
erage Green functio(G). c>co.

_The scatterers are modeled by small spherical regions 14 ynderstand the origin of those oscillations it is helpful
within which the waves propagate with velocity The cor- 4 simplify the problem and assume that the wave velocity
respondingS matrix is given by{15] vanishes inside the scatterers, iee=,0. This is equivalent to

a set of obstacles that are impenetrable to the waves, model-
, (5 ing, for instance, strong discontinu_ities in the constitut_ive
(c /c)cot(—)—i parameters. Qne example is a _sol|d porous medium filled
0 c with rarefied air, or any other environment with scatterers of
relative low sound velocity. Alternatively, in the case of elec-
whered is the diameter of the scattere3; has an infinite tromagnetic waves, obstacles with high refractive index are
number of poles in the frequency domain, each one of themequired. With this simplification, the concentratioand the
on the lower half of the complex frequency plane. As showndiameterd are the only variable parameters and Swmatrix
in Ref.[13], a simple expression for the response is obtaineghecomesS,= — e~ 1“0, The responséG(Kk,t)) in wave-
when all but the lowest order poles are neglected. Here Waymber and time domain is an intermediate step towards

want to include all poles of th& matrix and investigate the (G(F t)) and results from the time Fourier transform of Eq.
effect this may bring to the final response. After substituting(3) diven by

Eq. (5) into Eq. (4), the Fourier transform of Eq3) yields
the average Green functiofG(r,t)) in position and time 1 [+ ®
2] ol

S(w)

. 2i
So((l)): _efla)d/CO 1+

domain. Alternatively, we can look at the scattered response(G(lz,t»:
(AG(r t)), defined as the difference in amplitude between

the total signal and the impurity-free response, which de- g iot

scribes how the scattered portion of the waves evolves in X =

time. Figure 1 shows the calculatéAG(r,t)) for a random (wlcg)®— (wlcy)k?+[e 1@¥C+1]
medium with identical scatterers at=5x102 and n 2

=101 volume concentrations art=0 andc=%. n andc (6)

045604-2



RAPID COMMUNICATIONS

AMPLITUDE CODA OF CLASSICAL WAVES IN . .. PHYSICAL REVIEW E65 045604R)

Although the spatial part of the Fourier transform remains to 15
be done, Eq(6) is useful for understanding the time depen-

dence of the response. The frequency integral can be evalu:

ated by contour integration. The poles arekadependent
frequency values that govern the actual dispersion relation of’
the wave motion. In the absence of scatterers-(Q), for
instance, the poles are @t= cok and a further Fourier trans-
form into space domain gives the usual free-space solution

llation period
=)

[16] G(r,t)=(col4mr)S(cot—r). For n#0, the poles ac- g 5
quire a concentration dependenogk,n), wherej is a la-
beling index. In general, the residu@ associated with a i 7
first-order polew;(k,n) is given by | | | |
) 0O 0.02 0.04 0.06 0.08 0.1
wj(k,n)efle(k,n)t
Rl w;j(k,n)]= 7 :

2mCo] - o .
FIG. 2. Oscillation period§in units ofd/cy) as a function of the
where ¢j’ stands for thew derivative of ¢:(w/Co)3 concentlratiom (in units of llﬂs)..The continuous Iing results from .
— (wlcy)k2+ (n/Zi)[efiwd/coJr 1] evaluated ato=w;(k,n). the statlo_nary phase apro_xm;mon whereas the points are the peri-
The time dependence of the residue is entirely in the expo2ds obtained after numerical integration.
nential exp—iwj(k,n)t]. The integral of Eq(6), written as a
sum of residues, is the basic condition for the validity of the independent scat-
terer approximation, the zero order term is sufficient and we
R i wj(k,n)eteitkmt find for the real part of the pole that Rej(k=0n)]
(G(k,t))=— o ; & : @ =(cyy/3/2)(n)*. Associated with this pole is a simple ex-
! pression for the oscillation periotl given by
In this equation each term gives an exponentially damped
oscillatory contribution, whose period and rate of decay de- 4
pend on the real and imaginary parts ®@f(k,n), respec- _ le— _ T |3
tively. Whether this time dependence pe{rsists in the final T=2m/Rdw;(k=0n)] (%\/§> Ln. (10
response depends on the spatial Fourier transform.
After integrating over the angular variables, the remaining
transform becomes The predicted oscillation periods based on the stationary
phase argument, shown as a continuous line in Fig. 2, agree
very well with the observed periods obtained by numerical
integration of the Green function, represented by the points.
Although the stationary phase approximation provides no in-
where A(k,r)=ik? sin(kr)wj(k,n)/corqu’. Except for the formation about the respective weight of the oscillations, it is
damping component induced by the imaginary part of th@ufﬁfient to explain their existence in the time response
pole, the integrand in Eq9) is a periodic function oft, (G(r,t)). With such a simple expression for the period, the
oscillating with a frequency given by the real partaf(k,n) oscillations are easily related to a microscopic structural pa-
and with an amplitude governed bi(k,r). For large values rameter of the system, namely the average separation
of t the exponential oscillates rapidly as a functionkaind = 14/n between scatterers.
the dominant contribution to the integral comes from the A simple physical picture for the oscillations in the time-
vicinity of k points at whichw;(k,n) is stationary. In other dependent amplitude is as follows. When scattered only
words, the values df that effectively contribute to the inte- once, theS matrix S, induces a phase shift in the wave
gral are those satisfying the conditidiv; /dk=0. Although  corresponding to a sign change. A second scattering event
each pole in Eq(6) contributes with a different term in Eq. restores the original sign, which is again changed by a third
(9), those meeting the stationary phase condition will domi-scatterer, and so on. In this way, positive and negative con-
nate the signal. tributions to the scattered response occur, depending on the
The existence of such stationary points is implied by thenumber of scattering events. The maximum probability of
oscillations found in Fig. 1 and we now try to locate them. Abeing scattered a certain number of times depends on the
closer look at Eq(6) shows that the poles;(k,n) are func-  time lapse, and, therefore, dictates the overall sign of the
tions of k?. Therefore, k=0 always satisfies the stationary final response. For that reason the sign of the response
phase conditiomlw; /dk=0. We assume this value &fas a  changes as a function of time and we can also understand
possible candidate for explaining the observed results in Figvhy the average distance between scatterers appears as the
1. The corresponding poles are the solutions of a transcemeriod of the oscillations. On the opposite side of the veloc-
dental equation, which can be further simplified if we expandty spectrum, infinitely large values ot lead to S,
the Smatrix for smallw. Assuming than is small, which is  =e~1“%%, causing no sign change in individual scattering

(G(r,H)=2>, FmdkA(k,r)e“‘”J(k'”)‘, 9
| — o
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events. In this case, no oscillation should occur and, indeed, In summary, we have observed oscillations in the time-
are not observed in the numerical solution for this limiting dependent response of a system composed of randomly
case. placed spherical scatterers. Based on the stationary phase
Therefore, according to Eq10), it might be possible to approximation, we have identified the origin of the oscilla-
obtain the values ofa and n, once such oscillations in tions and derived a simple expression for the periods in the
(G(F,t)) are observed. Whether this structural informationIImIt of |mpen.etrable scatterers, whose depen_dence on the
can be extracted from an actual measurement depends on {figan separation bet"YeeF‘ obstacles was estabhshed: It IS Sug-
type of disorder in the system. Within the conditions for theg('}":’t'EOI that such osql_latlons _sh(_)uld be observable In disor-
validity of the present model, i.ewd<1 anda/ds>1, the dered systems providing an indirect way of measuring the

oscillations do not depend on the distribution of the size Oid_ensity of scatterers. When the scatterers are penetrab.lg the
the scatterers simple analytical result presented here has to be modified,
Well defined oscillations in the time-delayed responsebut can still be useful in the comparison to the numerical
have been recently observed in ultrasonic waves transmitter(‘?smts'
across a two-dimensional disordered struct[t6]. They We thank Cees Wapenaar for critically reading the manu-
have a different origin, but we suspect that the superimposeskript. This work is part of the research program of the
beating pattern reflects the physics discussed here. This hyStichting Technische Wetenschappen'STW) and the
pothesis could be tested by systematic experiments with dif‘Stichting Fundamenteel Onderzoek der MaterigFOM).

ferent concentration of scatterers. G.B. acknowledges support by the NEDO prograave.
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