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Classical chaotic dynamics is characterized by exponential sensitivity to initial conditions. Quantum me-
chanics, however, does not show this feature. We consider instead the sensitivity of quantum evolution to
perturbations in the Hamiltonian. This is observed as an attenuation of the LoschmidMéchoi.e., the
amount of the original stat@vave packet of widtlr) which is recovered after a time reversed evolution, in the
presence of a classically weak perturbation. By considering a Lorentz gas df,si@ch for largeL is a
model for anunboundedclassically chaotic system, we find numerical evidence that, if the perturbation is
within a certain rangeM (t) decays exponentially with a rater]/determined by the Lyapunov exponenbf
the corresponding classical dynamics. This exponential decay extends much beyond the Ehererfeantime
saturates at a time=X\~*In[N], whereN=(L/c)? is the effective dimensionality of the Hilbert space. Since
74 Quantifies the increasing uncontrollability of the quantum ph@seoherendeits characterization and
control has fundamental interest.
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Chaos justifies the observed macroscopic irreversibilityfollowed by an identical period of imperfect reversal of that
within the reversible laws of classical mechanics. One of iteevolution, achieved by the transformatidi— — (H+2),
characteristic features is the exponential divergence of trajeg-e.:
tories corresponding to nearby initial conditions, which leads
to deterministic unpredictability. However, quantum dynam- M (t)=(Olexd i (H+2)t/h]exd —iHt/AT0), (1)
ics exhibits insensitivity to initial conditiongl] and hence
prevents a dynamical definition of quantum chaos. Therewhere is a constantor quasistaticHermitian perturbation
fore, quantum signatures of chaos in systems with a chaotitepresenting the imperfection in the Hamiltonian reversal.
classical equivalent are sought in their steady-state propertid¥otice that in these experimentsin[M(t)] is a measur¢9]

[2] such as spectral rigidith8], wave function morphologies 0f the growing entropy. A striking finding10] was that, for

[4], and decaying parametric correlations of observafgs smallX, thedecay rateof M(t) becomes independent &f,
Early attemptg6] to address unitary quantum dynamics did being proportional only to the dynamical scales?of The

not clarify the connections with the dynamical classical con-hints that chaotic systems may be unstable under fluctuating
cepts of chaos, but the inclusion of interactions with a dissiferturbationg 7] and that many-body systems could be as-
pative environment was expectgf] to produce an entropy sumed to be intrinsically chaotid3] suggested to us the
growth controlled by chaos. In a purely Hamiltonian prob-hypothesis that the most relevant parameter of the Hamil-
lem, quantum reversibility can be monitored through thetonian dynamics, the Lyapunov exponent might control
amount of revival of a local density excitation, upon time the decay ofM(t). Moreover, a semiclassical analysis as-
reversal of its unitary quantum evolution, i.e., the Loschmidtsuming[14] a one-body classically chaotic Hamiltonian with
echo[8]. By considering a Lorentz gas where the reversedd perturbative potential representing a quenched disorder
evolution is disturbed by a static perturbation, we find apredicted a LE decaying exponentially with a rate ,& \.
Loschmidt echo that attenuates exponentially with a rate asFhese predictions, based on various approximations, encour-
sociated with the chaos of the classical system. Under appr@ged us to perform exhaustive numerical experiments.
priate conditions, the dynamical instability of the classical We consider a Lorentz gas, i.e., a particle in a square
system translates into quantum phase unpredictalédiggo-  billiard of areal.? where we fix an irregular array o cir-
herence and the classical Lyapunov exponent becomes theular scatterer§impurities of radiusR. A particular realiza-
guantum irreversibility rate. tion of this system is represented in Figal where the

A hypersensitivity of time reversal to perturbations waslength, in a minimal unit, is L=200a. The scatterer con-
observed in recent NMR experiments on many-body spircentration isc=N7R?/L2=87X 10 2. The minimum dis-
systemg9,10]. In essence, these experimelit$,12 involve  tance allowed between two scatterer centersRs Bhis re-
the creation of a local density excitation represented by @uirement, together with the imposed periodic boundary
state|0) which evolves under a many-spin Hamiltoniah conditions, prevents geometrical localization. The Lyapunov
The Loschmidt echdLE) is the probability of returning to exponent of a Lorentz gas should be= Bv//, where/ is
the initial state when a Hamiltonian evolution for a timis  the collision mean free path, the particle velocity, angB

~1 a geometrical factof15] depending logarithmically on
/. In our system, we estimaté=L?/(2NR)— 7wR/2. Com-
*Corresponding author. Email address: horacio@famaf.unc.edu.gutation of the distribution of distances between collisions
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initial distances, i.e., the classical dynamics of this system is
equally sensitive to changes in the Hamiltonian as to changes
in the initial conditiong18].

The Hamiltonian operator is obtained by a lattice discreti-
zation on a small scala. The evolution is calculated using
the Trotter-Suzuki algorithnj19]. Its basic idea is that, by
choosing a short time unit, the evolution can be approxi-
mated as the finite product of evolution operators where each

exp[-i(I}C+2)t]‘ exp[i(:}C+):)t]‘ one is solved analytically. In the lowest order,

exp[-iHt

d Q
. . . U(T)zexquT/ﬁ]zD(T)zl'k[ exdiHerlh],  (4)

‘ ~
." WhereH=ESHk. The conceptual virtue of this method is
. . thatU(7) is always unitary. For an approximation of order

the difference betweeld (7) andU(7) is of order7"**. Our

choice ofn=4 and r=0.14/V=0.2m,a?/#% allowed us to
FIG. 1. Wave packet evolution in a system witha=200,  obtain high accuracy even for times an order of magnitude

R/a=20, andc=8mx 10 2. (a) Initial state att=0. The velocity larger than needed.

points to the left.(b) State evolved with the unperturbed Hamil- | ot ys consider a typical system wiRla=20, c=87

tonian for a timet=30#/V. (c) State evolved with the perturbed %1072, and sizel/a=200. The initial state is a Gaussian

Hamlltor_uan (q=0.04) for_a timet=301/V. (d) Stgte e_volved frqm wave packet of widthc=3a and wave numberk,=

e S oed Hamioner U ~0.78, K, =0 shown in Fig. 1a. Al furter simuiatons

N : q will use ky=k,=37/8a. Since kR>1, comparison with

Lhe states of panel) and (d) is M(t)=0.09, the same as that semiclassical calculations is justified. We tookr/R</
etween the states of panél® and(c). . L , .
=(96+2)a, in order to minimize Anderson’s localization
effects. The density resulting from a typical evolution for a
timet=30A/V [20] is shown in pane(b). An evolution with
the perturbed Hamiltoniana(=0.04) for the same time is
shown in Fig. 1c). In both panels the classical trajectories
%orresponding to three initial positions are shown for refer-
ence. While densities look similar to the eyé(t) is about
0.09 indicating the relevant role of the quantum phase in the
attenuation oM (t). Panel(d) shows the LE formed by the
perturbed backward evolution of the state in paiel Ana-
lyzing M (t) in different realizations we observe that, after
1+; . (20 the initial transientM(t) fluctuates around an exponential
Ry1—x2 decay, with a characteristic time,. Notably this exponen-
tial decay persists much beyond the Ehrenfest titae
The outer integral accounts for the distribution of free paths~(1/\)In[2R/\:]=40%/V, which is fixed by the local scale
s, and the internal one is the distribution of impact param-of the potential fluctuatiofi7]. In a Lorentz gas, in contrast
etersx. Numerical\//v verify Eq. (2). For the present case with the usual case of chaotic cavitigg,is independent of
of c=87x107?, i.e.,,/=96a, we got3=2.1+0.1. the system sizg21]. Finally, M(t) saturates on a time scale
The perturbation parameter controls the distortion of related to system size. A typical curve fofa= 800 is shown
the diagonal components of the mass tensar,=my(1  with a bold line in Fig. 2.
+a) andmy ,=my/(1+«a), with my the isotropic unper- In principle, any given precision of, can then be ob-
turbed mass. This perturbation is inspired by the effects of @ained by studying a large enough system; however, this eas-
slight rotation of the sample in the related problem of dipolarily becomes computationally expensive. Alternatively, one
spin dynamics[17], which modifies the mass of the spin can resort to the ensemble averaging of the obserhitg,
wave excitations. It is written as which reduces noise and defineg with the same precision
) 5 in much smaller systems. This is exemplified in Fig. 2, where
Px n Py 3) we present the ensemble averalyed) for billiards of three
1+a2m, “2m, different sizes ofL/a=200, 400, and 800 and fixed
=0.024 andc=87x 102, which show the same exponen-
For a fixed initial position and velocity we find numeri- tial behavior with a progressively expanded range. Similar
cally that two evolutions with slightly different mass tensorsplots are obtained for the other parameters with an exponen-
lead to trajectories whose distance in phase space grows etial M (t), showing that the ensemble average does not intro-
ponentially with the same Lyapunov exponent that amplifiesduce any spurious effect in the decay. Previous attempts to

gives a shifted Poisson distribution whose mean valué.is
The Lyapunov exponent is obtaingil6] from the average
logarithm of the distancal,, after a timet, between two
classical trajectories initially separated by a small distanc
do. The condition of smallness fal, is that d;<R. The
longer the time the more precise the estimation\ofBy
neglecting correlations in the position of the impurities, we
obtain the estimation

ocd exp —s//) 1d|
5= 9% 73y

2(a)=—
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FIG. 2. Bold line, M(t) for an individual system withL/a FIG. 3. AverageM(t) for a system withL=200a, R=20a,

=800 anda=0.024. The Ehrenfest time is shown with an arrow. which makes/=(96+ 2)a. The values ofx are, from top to bot-

Dashed line, shown for reference: exponential decay with the caltom, 0.006, 0.009, 0.012, 0.018, 0.024, 0.03, 0.04, 0.05, and 0.06.

culated Lyapunov exponent of the classical equivalent. Solid linesThe thick line corresponds to an exponential with the calculated

averageM (t) for different system sizek/a=200, 400, and 800 numerical Lyapunov exponent of the system. For long tifds)

and the same perturbation. In the inddt, is shown forL/a saturates to a finite valud.. . In the inset the inverse characteristic

=200, 300, 400, 500, 600, and 800 as a function@i)®. The  decay times are shown, evidencing the regime where the decay of

straight line is the best fit, with .= (5+0.2)(a/L). M is given by the intrinsic properties of the system. The dotted line
is the fit, r;1=(130t 6)a?V/#, while the dashed line is the clas-

characterize quantum chal® considered the limiting value sical Lyapunov exponent.

M., for the Loschmidt echo at asymptotically large times. _ _

M.« 1/N was proposed wherBl is the number of energy quired for an important change in the phase as a consequence

levels appreciably represented in the initial state. In our cas@ th€ perturbation must be shorter than the distance associ-
~ 2 . . . ated with the Lyapunov exponent\. A rough estimation
N=(L/o)“. The numerical results verify a complete inde-

. for our perturbationrsm, ,= amy is
pendence oM., on the perturbation. The calculatédl, for P xx— *Tlo
various sizes are shown in the inset of Fig. 2 for a fixed _ wh

=0.024. The predicted relationship is shown with a straight T=
line, obtainingM..=(5.0=0.1)(a/L)?. For all the sizes we

keptc (and hence’, \, andtg) fixed and we verified that,, . . ..
) which would predict a critical value.=0.13. However, we
does not depend oi/a. These results imply that the : . i
. : . .~ see the universal exponential even for perturbatiens
Lyapunov exponential behavior persists up to a time . . o .
=0.02 implying a critical value an order of magnitude

=\ 1N
ts=\""In[N]. smaller than Eq(5). This suggests that either this estimation

A representative dependencef on the parameter is o the condition required in Ref14] is too strong22].
obtained by considering the smallest sample size compatible The condition for a classically weak perturbation means
with a good observation of the exponential, in this casgpat jt must not modify the system’s global properties. Oth-
L/a=200. Figure 3 show#(t) averaged over 100 realiza- gnyise, even in the absence of chae collisions the per-
tions that contain at least one scatterer in the classical trajegg pation would spread out the classical trajectories. In our
tory of the wave packet. Far>a=0.02, all the exponen- c4qe thisM(t) fits a Gaussian decay. If at the timen1/
tial decays coincide, within the numerical error, with the rgqyired for the chaos to set in the overlap has already de-
Lyapunov decay associated with the classical system, showthyed hecause of the perturbation, the exponential decay will
with a thick line for comparison. The initial perturbative i pe observed. This sets an upper bound for the perturba-
parabolic decayM(t)=1—b (at)? with b=0.37(V/%)% o from M (t=1/\) = ex —b(a/\)?]=M... Replacing with
has a characteristic scale whidbesdepend quadratically on ¢ parameters of the system shown in Fig. 3 one gets the
the perturbation strength and prevents the curves from bei”&onditionaso.& consistent with our results.
superimpos?d. We show in the inset of Fig. 3 the numerical Therefore, we have shown that in a wide range of param-
vall_Je.s. ofry extr_acted from the exponential pait shows etersM(t) in any large enough individual system decays
an initial quadratic dependence anand a crossover at.  exponentially until an asymptotic value is reached. The char-
=0.02 to saturation at a value close to the classicahcteristic decay time does not depend on the perturbation,
Lyapunov exponent. _but rather on the intrinsic properties of the Hamiltonian. The

The semiclassical analysis predicts a universal behavioiange of perturbation parameters with an exponential decay
provided that the perturbation is strong enough to be quantis much broader than hinted by the previous semiclassical
cally significant, but weak enough to be classically irrel-analysis. From our numerical results one can infer that infi-
evant. The first condition implies that the length=v 7 re-  nite systems not showing Anderson’s localization should

rmoa’

5_5(:ah(1—cos{ka])51h\’ ®)
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present an unbounded exponential decay. The Lorentz gaspic and molecular electroni¢24], and quantum informa-
represents a broad class of chaotic systems, where the samien [25]. In view of the entropic meaning of IN[M(t)] the
overall behavior is expected. It has the additional advantagiterest for the foundations of statistical physi2$] is clear.

over other chaotic cavities that here the saturation titge In summary, we have presented numerical evidence sup-
=(2/\)In[L/g]) can be made arbitrarily longer than the porting the fact that decoherence, as measured by the expo-
Ehrenfest time. This manifests the quantum nature of th@]ent|a| decay of the Loschmidt echo, is controlled by the
observed effect. The simplicity of our perturbation evidencessagme parameters that govern classical chaos. This renders

a very remarkable propertjhere is no need for chaoticity or \(t), defined in Eq(1), a very practical tool to study dy-
stochasticity in the “environment” to introduce irreversibil- 5 nical quantum chaos.

ity. Figure 1 manifests that the irreversibility produced by
small perturbations is caused by their effect on the wave The authors acknowledge B. Altshuler, J. V. Jose, P.
function’s phase. In this sense, the definition of classical ebouef, F. M. Israilev, and H. De Raedt for useful refer-
chaos in terms of hypersensitivity to initial conditions andences and comments, and R. Jalabert and P. R. Levstein for
perturbations translates, in the quantum world, into a sensextensive discussions. We also acknowledge the Argentinian
tivity of phases to perturbations in the Hamiltonian, i.e., de-sypercomputer Center and the UNC Department of Com-
coherence. Since we restricted ourselves to a Hamiltoniaﬁuter Science. D.AW. and F.M.C. received support from
problem, its solution clarifies how chaos limits our control of CONICET and SeCyT-UNC, respectively. This work re-
dynamics even within the reversible framework of quantuMeqiyed financial support from CONICET, ANPCyT, SeCyT-

mechanics of closed systems. This concept has deep con

minimized, such as classical wave propagafi28|, mesos-

guences for the diverse fields where decoherence must ig;lc’ Fundacia Antorchas, and the French-Argentinian

OS-Sud program.
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