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Jamming coverage in competitive random sequential adsorption of a binary mixture

M. Kamrul Hassan,1,2 Jürgen Schmidt,1 Bernd Blasius,1 and Ju¨rgen Kurths1
1Department of Physics, University of Potsdam, Postfach 601553, D-14415 Potsdam, Germany

2Department of Physics, Theoretical Physics Division, University of Dhaka, Dhaka 1000, Bangladesh
~Received 21 December 2001; published 4 April 2002!

We propose a generalized car parking problem where cars of two different sizes are sequentially parked on
a line with a given probabilityq. The free parameterq interpolates between the classical car parking problem
of only one car size and the competitive random sequential adsorption~CRSA! of a binary mixture. We give
an exact solution to the CRSA rate equations and find that the final coverage, the jamming limit of the line, is
always larger for a binary mixture than for the unisized case. The analytical results are in good agreement with
our direct numerical simulations of the problem.
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The adsorption of particles onto a solid substrate is a c
mon phenomenon and it is of wide interest in physics, che
istry, biology, and in other branches of science and tech
ogy. Examples include adsorption of gas molecules, collo
particles, polymer chains, bacteria, proteins, and latex
ticles@1–3#. Due to its wide range of applications, adsorpti
has been studied experimentally, numerically, and ana
cally ~see@4# for review!.

The simplest model one can think of, still capturing t
generic features of the adsorption phenomenon, is the ki
ics of random sequential adsorption~RSA! of particles of a
fixed size on a D-dimensional substrate. The on
dimensional~1D! continuum version of the RSA process
popularly known as the random car parking~RCP! problem
@5#. In comparison to monolayer growth by RSA of mon
disperse particles, very little attention has been given to
monolayer growth by two or more species of different s
although the latter problem is much closer to the real
situation than the former. Nonetheless, there has been a
creasing interest in the study of RSA of mixtures of differe
degree@6–12#. In the context of 1D lattice models, Epste
was the first to notice that the rate equation approach ma
extended for RSA ofk-mers of different lengths@13#. Later
Evans further remarked that using an appropriate limit
solution of the lattice model can be extended to its c
tinuum counterpart@14#. Nevertheless to date there is no e
act analytical solution for mixtures of a finite number
species. It is worth mentioning that the problem is simplifi
in two extreme cases, namely, the RSA of unisized partic
and that of a mixture of particles obeying a power-law s
distribution@10#. In the former case the ultimate structure
the long time limit is described by the jamming coverag
whereas in the latter case the resulting monolayer is uniq
quantified by the fractal dimensionD f . The complexity
arises in between these two extreme cases when the mi
contains more than one specie. The competitive random
quential adsorption~CRSA! of a binary mixture has recentl
received new interest in the literature@11,12#, where the
properties of the jamming coverage obtained in analyt
continuum models and their lattice counterpart have b
discussed controversially@11#.

In this Rapid Communication, we study the CRSA of
binary mixture on a one-dimensional substrate, i.e., the g
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eralization of the classical RCP problem to two car spec
To this end we develop an analytical model in terms of r
equations for the gap size distribution function and comp
exact expressions for the jamming limit of both particle sp
cies, for a size ratio<2. We compare our results to direc
numerical simulations of the CRSA process.

One time step of the CRSA process for a binary mixture
defined as follows.

~i! A particle is selected to be deposited on the substr
With probability q the size of the particle iss and with
probability p512q its size isms, wherem.1 is the size
ratio of the two particle species.

~ii ! Randomly a position is chosen on the substrate.
~iii ! The particle is deposited on the substrate if this po

tion is not occupied by another particle and if there is
overlap with particles left and right to the position.

~iv! The process is repeated until no more gaps with s
larger thans are left on the substrate.

Our main results are as follows. The jamming coverage
the binary mixture always exceeds its monodisperse coun
part. The dynamics close to the jamming limit is governed
the dynamics of the smaller species. The total number d
sity, as well as the number density of the smaller partic
reach their asymptotic values algebraically, following Fe
er’s law @3#. The large particles reach their asymptotic co
erage exponentially, with a decay constant;(m21)q, mul-
tiplied by an algebraic prefactort21.

We define the gap size distribution function

P~x,t !5
s

L
N~x,t !, ~1!

whereN(x,t) is the total number of gaps with sizex ~say, in
an interval@x,x1dx#) at timet on a substrate with lengthL.
We scale length and time as

x→ x

s
, t→t

a

L/s
, ~2!

wherea is the rate of particles brought to the substrate.
the limit L→`, keeping the particle inflow rate per un
lengtha/L fixed, the time evolution of the gap size distribu
tion function is then described by the dimensionless r
equations
©2002 The American Physical Society03-1
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]P~x,t !

]t
52~x2$mp1q%!P~x,t !12qE

x11

`

P~y,t !dy

12pE
x1m

`

P~y,t !dy

for m,x,`, ~3!

]P~x,t !

]t
52q~x21!P~x,t !12qE

x11

`

P~y,t !dy

12pE
x1m

`

P~y,t !dy

for 1,x<m, ~4!

]P~x,t !

]t
52qE

x11

`

P~y,t !dy12pE
x1m

`

P~y,t !dy

for 0,x<1. ~5!

These equations describe a RSA process with two par
species competing for adsorption. The strength of comp
tion is determined byq. The free parameters of the model a
q andm.

To solve the kinetic Eqs.~3!–~5!, we seek a solution in
the domainx.m of the form

P~x,t !5A~ t !e2(x2s̄)t, ~6!

where the average size of incoming particles is expresse

s̄[mp1q ~7!

and A(t) is to be determined. Substituting Eq.~6! into Eq.
~3! we obtain

d ln A~ t !

dt
52q

e2t

t
12p

e2mt

t
. ~8!

At the beginning of the RSA process the number per u
length of gaps of any lengthx is zero. Also, initially there is
only one gap of the size of the substrate. Solving Eq.~8!
subject to these initial conditions, i.e.,

E
0

`

dxP~x,0!50, lim
t→0

E
0

`

dxxP~x,t !51 ~9!

gives

A~ t !5t2F~ t !, ~10!

where

F~ t !5expF22E
0

t

du
q~12e2u!1p~12e2mu!

u G . ~11!
04510
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Thus, the solution for the gap size distribution function f
gapsx.m is

P~x,t !5t2F~ t !e2(x2s̄)t, x.m. ~12!

In the casem<2 only the solution~12! for x.m contributes
to the integrals in Eq.~4!. Thus, in this case a solution in th
domain 1,x<m can be derived in the form

P~x,t !5B~x,t !e2q(x21)t. ~13!

The result is (1,x<m)

P~x,t !52e2q(x21)tE
0

t

dsF~s!s~qe(mp21)s1pe2qms!e2xps.

~14!

For m.2 the yet unknown solution to Eq.~4! contributes to
the integrals in that equation as well, and thus, the integ
tion of the equation is more difficult.

From the knowledge of the gap size distribution functi
in the domainx.1 we find the total coverageuT(t) by the
adsorbing particles at timet,

uT~ t !512E
0

`

xP~x,t !dx. ~15!

For 0,q,1 the total coverageuT(t)5uS(t)1uL(t) has
contributions by the small particlesuS(t) and large particles
uL(t). Practically, we first compute the time derivativeu̇T(t),
using Eqs.~3!–~5!. Then we formulate the resulting expre
sion in terms ofP(x,t) in the domainsx.m ~12! and 1
,x<m ~14! alone, by means of partial integrations. Thu
the solution to the rate equations forx,1 is not needed. The
contribution of the small particlesuS(t) to the coverage a
time t is

uS~ t !52E
0

t

dsF~s!se(m21)ps~qe2s1pe2ms!

3S e@2~m21!~ps1qt!# 21

ps1qt
2

e2(m21)s21

s D 1qE
0

t

F~s!

3@11~m21!s#e2(m21)qsds, ~16!

and the large particles contribute

uL~ t !5pmE
0

t

F~s!e2(m21)qsds. ~17!

We calculate the jamming limit of our model by numeric
integration of Eqs.~16! and ~17!. For m51, we recover the
classical RCP result@5#,

uT~ t !5E
0

t

F~s!ds, ~18!

which equalsuR50.74759 . . . ~the Renyi-limit! for t→`.
3-2
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To test our analytic results we simulate the CRSA pro
lem on a computer. Naturally, the simulations restrict on
nite substrate lengthsL. However, for sufficiently large
lengthsL@s the effects of finiteL are small. The algorithm
we use follows literally the steps~i!–~iv! described above
The time scale in the simulations is set by the number
particles brought to the substrate~successful or not!. This
discrete ‘‘loop index’’ i relates to the time scale of the ra
equationst as

t5 i
s

L
. ~19!

Using this time scale and expressing all lengths in the sim
lation in terms ofs, the simulational results can be direct
compared to the solution to the rate equations and Eqs.~16!
and ~17! for the jamming limit.

In Fig. 1 results for the jamming coverage are shown
the casem51.5, where the parameterq is varied. In general,
we find an excellent agreement between simulation
theory. The total coverage is found to be always larger
binary mixtures (qÞ0, qÞ1) than for the unisized case (q
50 or q51). Also, the contribution of the small cars to th
jamming limit does not vanish asq→0. This is intuitively
clear, since for a very smallq first the large particles may
reach the Renyi limituR , while the small particles then hav
time to gradually fill the remaining gaps. The CRSA proce
is particularly effective in covering the substrate for smalq
and hence there is a sudden jump fromuT(q50) to uT(q
501).

The highest coverages are obtained for smallq and a large
size ratiom of the binary mixture~see Fig. 2!. In this case the
large particles rapidly cover a fractionuR of the substrate,
while the small particles then fill again the same fraction
the remaining gaps. In this sense the adsorption process
large and small particles decouple in the limitq→0. Then
the maximum possible coverageumax5uR(22uR)50.937
may be reached in the limitm→`. The simulation withm
520 shown in Fig. 2 is already very close to this limit. O
theoretical solution for the gap size distribution function
stricts on the domainm<2, thus no theory curve is plotte
for the latter simulation. Asq increases the coverageuT de-

FIG. 1. Coverage in the jamming limit vsq for m51.5, with the
respective contributions from small and large particles. Symb
represent simulational results, lines the analytical solution~16! and
~17!. Simulations were carried out for a substrate length of 10 0
small cars, each symbol is an average over 20 independent re
tions.
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creases due to increasing strength of competition for ads
tion between the two species. This can be explained as
lows. Every time a small particle wins in the competition
occupies less territory than a large particle would. Moreov
every occupation by the smaller specie creates an exclu
zone for further adsorption of larger particles. In the lim
q→1 once again the two processes decouple but now
remaining gaps are smaller than the large particles and
symmetry is broken, i.e.,uT(q→0)ÞuT(q→1). Note, that
the CRSA model has no smooth transition in the limitm
→` to the competitive adsorption model of a binary mixtu
of point particles and finite sized particles; the small partic
of finite length will always occupy a fractionuR of the gaps
between the large particles. Thus, the total coverageuT is
always larger thanuR . Only if their length is indeed zero the
small particles will not contribute to the coverage, and th
only effect is to prevent the large particles from reachi
their maximum coverageuR . In this case the total coverag
stems from the large particles alone~see Fig. 1!, and it re-
mains always below the Renyi-limituR @15#. The time de-
velopment of the coverage is shown in Fig. 3 for the ca
q50.5, m51.5. Again a good agreement is found for the
retical and simulational results. The contribution of the lar
particles to the total coverage reaches its final value v
rapidly. Asymptotically, Eq.~17! yields

uL~`!2uL~ t !5pmE
t

`

F~s!e2(m21)qsds

;
e2(m21)qt

t
as t→`. ~20!

ls

0
za-

FIG. 2. The total coverage vsq for various values ofm. Dia-
mond symbols refer to simulations with a substrate length of 10
small cars, and for the casem51.95 results from a simulation with
L55000 are shown for comparison as square symbols.

FIG. 3. Time development of the coverage forq50.5, m51.5.
Lines ~solid, dashed, dotted! are theoretical results, the symbols a
from simulations.
3-3
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Thus, the asymptotic behavior of the coverage, reach
eventually the jamming limit, is dominated by the small p
ticles. Indeed, the contribution of the small particles to
total coverage@Eq. ~16!# approaches its final value algebr
ically as t21 ~see Fig. 4!. Thus, we verified the validity of
Feder’s law for this system

ud~`!2ud~ t !;t21/d, ~21!

whered is the dimension of the substrate.
It has been recently reported by Bonnier@11# that a 1D

continuum substrate is covered less efficiently by a bin
mixture than by one single specie. On the other hand i
well known that this is in contrast to the results of latti
models, where the binary coverage is always higher@12# than
for the monodisperse case. The continuum model we pre
in this study, however, is consistent with the lattice models
this respect. Our results are supported by the good agree

FIG. 4. The approach ofuS(t), and thusuT(t), to its asymptotic
value obeys Feder’s law@Eq. ~21!#.
y
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with the direct simulation of the 1D CRSA that we hav
carried out. Furthermore, the dependence of our results oq
andm is in qualitative agreement with the numerical resu
for the 2D continuum case reported by Meakin and Jull
@6# ~see Fig. 3 of that reference!. Meakin and Jullien also
confirm Feder’s law for the small particle specie, and find
exponential approach of the coverage by the large ones
the latter case, an algebraic prefactor, as we found here@Eq.
~20!#, might have been hard to identify in their simulation
data.

In conclusion we have shown that an analytical model
the CRSA of a binary mixture in one dimension predicts
jamming limit that is always larger than for the unisize
case. In the limitsq50, q51, as well asm51 we recover
the classical resultuR50.748 for the unisized RSA proces
In all other cases, i.e., for true binary mixtures, we find
larger jamming limit in theory and simulation. In genera
our analytical results are in excellent agreement with dir
numerical simulations. The time-asymptotic approach of
jamming limit is dominated by the contribution of the sma
particles, and we confirm the 1/t behavior predicted by Fed
er’s law in one dimension. The large particles reach th
contribution to the jamming limit exponentially with an a
gebraic prefactor.
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