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We propose a generalized car parking problem where cars of two different sizes are sequentially parked on
a line with a given probabilityy. The free parameteg interpolates between the classical car parking problem
of only one car size and the competitive random sequential adsoi@R8A) of a binary mixture. We give
an exact solution to the CRSA rate equations and find that the final coverage, the jamming limit of the line, is
always larger for a binary mixture than for the unisized case. The analytical results are in good agreement with
our direct numerical simulations of the problem.
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The adsorption of particles onto a solid substrate is a comeralization of the classical RCP problem to two car species.
mon phenomenon and it is of wide interest in physics, chemTo this end we develop an analytical model in terms of rate
istry, biology, and in other branches of science and technolequations for the gap size distribution function and compute
ogy. Examples include adsorption of gas molecules, colloidagxact expressions for the jamming limit of both particle spe-
particles, polymer chains, bacteria, proteins, and latex parcies, for a size ratic=2. We compare our results to direct
ticles[1—3]. Due to its wide range of applications, adsorption numerical simulations of the CRSA process.
has been studied experimentally, numerically, and analyti- One time step of the CRSA process for a binary mixture is
cally (see[4] for review). defined as follows.

The simplest model one can think of, still capturing the (i) A particle is selected to be deposited on the substrate:
generic features of the adsorption phenomenon, is the kineWith probability g the size of the particle igr and with
ics of random sequential adsorpti0RSA) of particles of a  probability p=1—q its size ismo, wherem>1 is the size
fixed size on a D-dimensional substrate. The one- ratio of the two particle species.
dimensional(1D) continuum version of the RSA process is (i) Randomly a position is chosen on the substrate.
popularly known as the random car parki®CP problem (iii) The particle is deposited on the substrate if this posi-
[5]. In comparison to monolayer growth by RSA of mono- tion is not occupied by another particle and if there is no
disperse particles, very little attention has been given to th@verlap with particles left and right to the position.
monolayer growth by two or more species of different size (iv) The process is repeated until no more gaps with size
although the latter problem is much closer to the real lifelarger thano are left on the substrate.
situation than the former. Nonetheless, there has been an in- Our main results are as follows. The jamming coverage of
creasing interest in the study of RSA of mixtures of differentthe binary mixture always exceeds its monodisperse counter-
degree[6—-12). In the context of 1D lattice models, Epstein part. The dynamics close to the jamming limit is governed by
was the first to notice that the rate equation approach may bée dynamics of the smaller species. The total number den-
extended for RSA ok-mers of different length§l3]. Later  sity, as well as the number density of the smaller particles,
Evans further remarked that using an appropriate limit thgeach their asymptotic values algebraically, following Fed-
solution of the lattice model can be extended to its coner’s law[3]. The large particles reach their asymptotic cov-
tinuum counterpari14]. Nevertheless to date there is no ex- erage exponentially, with a decay constantm—1)q, mul-
act analytical solution for mixtures of a finite number of tiplied by an algebraic prefactar .
species. It is worth mentioning that the problem is simplified We define the gap size distribution function
in two extreme cases, namely, the RSA of unisized particles
and that of a mixture of particles obeying a power-law size P(x,t)= zN(x,t), (1)
distribution[10]. In the former case the ultimate structure in L

the long time limit is described by.the jamming qover.age’whereN(x,t) is the total number of gaps with size(say, in
whereas in the latter case the resulting monolayer is unlquelgn interval[x,x+ dx]) at timet on a substrate with lengih

qqantnjed by the fractal dimensioB;. The complexny We scale length and time as

arises in between these two extreme cases when the mixture

contains more than one specie. The competitive random se- X a

quential adsorptioiCRSA) of a binary mixture has recently X— ot 2

received new interest in the literatuf@1,12, where the

properties of the jamming coverage obtained in analyticalvhere « is the rate of particles brought to the substrate. In

continuum models and their lattice counterpart have beethe limit L—~, keeping the particle inflow rate per unit

discussed controversial[yL1]. lengtha/L fixed, the time evolution of the gap size distribu-
In this Rapid Communication, we study the CRSA of ation function is then described by the dimensionless rate

binary mixture on a one-dimensional substrate, i.e., the gerequations

1063-651X/2002/6&4)/0451034)/$20.00 65045103-1 ©2002 The American Physical Society



RAPID COMMUNICATIONS

HASSAN, SCHMIDT, BLASIUS, AND KURTHS PHYSICAL REVIEW E55 045103R)
IP(x,1) % Thus, the solution for the gap size distribution function for
i~ (x=imptahP(x,t)+2q LHP(y.t)dy gapsx>m is
* P(x,H)=t2F(t)e"*" 9, x>m. (12)
+2pJ P(y,t)dy (
xrm In the casen<2 only the solution12) for x>m contributes
for  m<x<oo 3) to the integrals in Eq4). Thus, in this case a solution in the
X<, domain 1<x=<m can be derived in the form
JP(x,t o _ —q(x—1)t
<(9t )=—q(x—1)P(x,t)+2qf P(y,t)dy P(x.)=B(x.)e : (13
x+1
The result is (Kx=m)
+ ZpJ P(y,t)dy ¢
xem P(x,t)= 2e‘q<x‘1)‘J dsF(s)s(qeMP~ s+ pe=ams)g=xps
0
for 1<x=m, 4 (14
IP(x,t) o w Form>2 the yet unknown solution to E¢4) contributes to
ﬁt' =2qJ P(y,t)dy+ ZpJ P(y,t)dy the integrals in that equation as well, and thus, the integra-
X+1 X+m

tion of the equation is more difficult.
From the knowledge of the gap size distribution function
for 0<x<1. (5 in the domainx>1 we find the total coveragé(t) by the

adsorbing particles at timie
These equations describe a RSA process with two particle

species competing for adsorption. The strength of competi- o
tion is determined by. The free parameters of the model are Or(t)=1— JO XP(x,t)dx. (19
g andm.

To solve the kinetic Eqs(3)—(5), we seek a solution in

the domairnx>m of the form For 0<g<1 the total coveraged+(t)= 64(t)+ 6, (t) has

contributions by the small particlegs(t) and large particles

6, (). Practically, we first compute the time derivatigg(t),
using Eqgs.(3)—(5). Then we formulate the resulting expres-
gion in terms ofP(x,t) in the domainsx>m (12) and 1
By<m (14) alone, by means of partial integrations. Thus,
— the solution to the rate equations o« 1 is not needed. The
o=mp+q (") contribution of the small particless(t) to the coverage at
timetis

P(x,t)=A(t)e" 9, (6)

where the average size of incoming patrticles is expressed

and A(t) is to be determined. Substituting E@) into Eq.
(3) we obtain t
0S(t)=2f dsF(s)sem™ P (ge S+ pe ™9
dInA(t) et e M 0

dt 20— +2p——- 8 el (m-1)(ps+at] _ 1  g-(m-1)s_q ¢
( s+qt B s +qf F(s)
At the beginning of the RSA process the number per unit psTq 0
length of gaps of any lengtkis zero. Also, initially there is X[1+(m—1)s]e (M~ 1asgs, (16)
only one gap of the size of the substrate. Solving &j.
subject to these initial conditions, i.e., and the large particles contribute
(e ] i o0 t
fo dxP(x,0)=0, Ilmf0 dxxP(x,t)=1 ©) 9L(t)=pmf F(s)e (M Yasgs, 17
t—0 0
gives We calculate the jamming limit of our model by numerical
integration of Eqs(16) and(17). Form=1, we recover the
A(t)=t2F(t), (100 classical RCP resu[5],
where t
0= | Fioids 18
0
t l1-e Y +p(l—e ™
F(t)=ex —Zf duq( ) R( ) . (11 ) o
0 u which equalsfr=0.7479 . .. (the Renyi-limiy for t—oo.
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FIG. 1. Coverage in the jamming limit \esfor m= 1.5, with the FIG. 2. The total coverage wg for various values ofmn. Dia-

respective contributions from small and large particles. Symboldond symbols refer to simulations with a substrate length of 10 000
represent simulational results, lines the analytical solutidh and small cars, and for the case= 1.95 results from a simulation with
(17). Simulations were carried out for a substrate length of 10 00¢-="5000 are shown for comparison as square symbols.

s_mall cars, each symbol is an average over 20 independent realiz@feases due to increasing strength of competition for adsorp-
tions. tion between the two species. This can be explained as fol-
: . lows. Every time a small particle wins in the competition it
To test our analytic results we simulate the CRSA prob-,.. nies Igss territory thaﬁ a large particle would.Fl)\/Ioreover,
lem on a computer. Naturally, the simulations restrict on fi-g\ery gccupation by the smaller specie creates an exclusion
nite substrate lengths. However, for sufficiently large zone for further adsorption of larger particles. In the limit
|engthSL>(f the effeCtS Of f|n|td_ are Sma”. The algorithm q_)l once again the two processes decoup|e but now the
we use follows literally the step§)—(iv) described above. remaining gaps are smaller than the large particles and the
The time scale in the simulations is set by the number okymmetry is broken, i.e.f:(q—0)# 6:(q—1). Note, that
particles brought to the substratsuccessful or not This  the CRSA model has no smooth transition in the limmit
discrete “loop index”i relates to the time scale of the rate — o« to the competitive adsorption model of a binary mixture
equationg as of point particles and finite sized particles; the small particles
of finite length will always occupy a fractioéiz of the gaps
(19 between the large particles. Thus, the total coverégés
always larger thamg . Only if their length is indeed zero the
small particles will not contribute to the coverage, and their
Using this time scale and expressing all lengths in the simupn|y effect is to prevent the large particles from reaching
lation in terms ofc, the simulational results can be directly thejr maximum coveragég. In this case the total coverage
compared to the solution to the rate equations and 8.  stems from the large particles alofmee Fig. 1, and it re-
and(17) for the jamming limit. mains always below the Renyi-limi#iz [15]. The time de-

In Fig. 1 results for the jamming coverage are shown foryelopment of the coverage is shown in Fig. 3 for the case
the casen=1.5, where the parametgqris varied. In general, g=0.5, m=1.5. Again a good agreement is found for theo-
we find an excellent agreement between simulation angetical and simulational results. The contribution of the large
theory. The total coverage is found to be always larger foparticles to the total coverage reaches its final value very

binary mixtures q;ﬁo, q#l) than for the unisized CaS(E]( rap|d|y Asymptotica”y, Eq(l?) y|e|ds
=0 org=1). Also, the contribution of the small cars to the

jamming limit does not vanish ag—0. This is intuitively
clear, since for a very smafj first the large particles may
reach the Renyi limig, while the small particles then have

I
S

OL()— HL(t)=meF(s)e‘(m‘l)qsds
t

time to gradually fill the remaining gaps. The CRSA process g~ (m-d)at

is particularly effective in covering the substrate for snegll - t as toe. (20
and hence there is a sudden jump freg(q=0) to 6+(q 08 s

= 0+). ) %41) (TALVERAGE) .

The highest coverages are obtained for smalhd a large

large and small particles decouple in the ligit-0. Then

the maximum possible coveragg,.,= 0r(2— 6g)=0.937 0.0
may be reached in the limim— . The simulation withm 0.001
=20 shown in Fig. 2 is already very close to this limit. Our
theoretical solution for the gap size distribution function re-  FIG. 3. Time development of the coverage &pr0.5, m=1.5.
stricts on the domaim=2, thus no theory curve is plotted Lines(solid, dashed, dott¢dre theoretical results, the symbols are
for the latter simulation. Ag| increases the coveragg de-  from simulations.

. : . . : : 06— .
size ratiom of the binary mixturgsee Fig. 2 In this case the & € .
large particles rapidly cover a fractiofly of the substrate, % 0.4 Sl (AL AR
while the small particles then fill again the same fraction of 2 e "o ARGE CARS) ]
the remaining gaps. In this sense the adsorption processes of° ([ -
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100 : < . . . with the direct simulation of the 1D CRSA that we have
107! N carried out. Furthermore, the dependence of our results on
= o andm is in qualitative agreement with the numerical results
@ 10 3 for the 2D continuum case reported by Meakin and Jullien
3 10 [6] (see Fig. 3 of that referenceMeakin and Jullien also
< 1074 confirm Feder’s law for the small particle specie, and find an

103 , ) . ) . ) . exponential approach of the coverage by the large ones. In

1072 10° 102 104 the latter case, an algebraic prefactor, as we found [Hege
TIME (20)], might have been hard to identify in their simulational
data.

FIG. 4. The approach dig(t), and thusf(t), to its asymptotic

value obeys Feder’s lafEq. (21)]. In conclusion we have shown that an analytical model for

the CRSA of a binary mixture in one dimension predicts a

Thus, the asymptotic behavior of the coverage, reachin. mming Iimit. that is always larger than for the unisized
eventually the jamming limit, is dominated by the small par- r?se] In t.helllmltsr‘lrﬁ), a= 1,fas ;/]vell a.sr.n:dl We recover

ticles. Indeed, the contribution of the small particles to thelhe (l:las?ca resu R._O'Z48 or tb? unisize RSA proc;gzs.
total coveragdEq. (16)] approaches its final value algebra- In all other cases, I.e., for true binary mixtures, we find a
ically ast ! (see Fig. 4 Thus, we verified the validity of larger jamming limit in theory and simulation. In general,

Feder’s law for this system our analytical results are in excellent agreement with direct
numerical simulations. The time-asymptotic approach of the
O4(0) — O4(t)~t~ 1, (21 jamming limit is dominated by the contribution of the small
particles, and we confirm thetllbehavior predicted by Fed-
whered is the dimension of the substrate. er's law in one dimension. The large particles reach their

It has been recently reported by Bonnfdd] that a 1D  contribution to the jamming limit exponentially with an al-
continuum substrate is covered less efficiently by a binarygebraic prefactor.
mixture than by one single specie. On the other hand it is
well known that this is in contrast to the results of lattice
models, where the binary coverage is always high&}than This work was supported by the Alexander von Humboldt
for the monodisperse case. The continuum model we presefRbundation (M.K.H.), the Ministerium fu Wissenschaft,
in this study, however, is consistent with the lattice models inForschung und Kultur Brandenbu(d.S), and the Deutsche
this respect. Our results are supported by the good agreemevitlkswagen-StiftungB.B.).
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