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Lattice models, for their coarse-grained nature, are best suited for the study of the “designability problem,”
the phenomenon in which most of the about 16 000 proteins of known structure have their native conforma-
tions concentrated in a relatively small number of about 500 topological classes of conformations. Here it is
shown that on a lattice the most highly designable simulated protein structures are those that have the largest
number of surface-core switchbacks. A combination of physical, mathematical, and biological reasons that
causes the phenomenon is given. By comparing the most foldable model peptides with protein sequences in the
Protein Data Bank, it is shown that whereas different models may yield similar designabilities, predicted
foldable peptides will simulate natural proteins only when the model incorporates the correct physics and
biology, in this case if the main folding force arises from the differing hydrophobicity of the residues, but does
not originate, say, from the steric hindrance effect caused by the differing sizes of the residues.
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I. INTRODUCTION which the protein folds(and unfold$ relatively rapidly
to its native conformation in an annealinglike process.

It is believed that the dynamical folding of a protein to its ~ Another issue clarified by simple lattice models is the
native conformation is determined by the amino acid sedesignability of “topological” classes of protein conforma-
quence of the proteifil]. Yet the folding of any particular tions[6,7,10. The designability of a conformation class is
protein is an extremely complex process; simulation of théh® number of proteins whose native conformations belong
folding of even a small protein remains an unsurmountecL0 the class. At the moment the number of proteins with
challenge to state-of-the-art computé®d. Nevertheless, a nown three-dimensional conformations in the Protein Data

good understanding of a number of general features of pro'?""mk(PDB [11]) is of the order of 16 000 and is increasing

tein folding have been acquired in computational studies usr_apldly, while the number of conformation classes has re-

ing simple lattice modelE3—8§]. One feature is the so-called mained about 500 for some time and is not expected to grow

funnel picture that leads to a two-state description of foldin beyond 1000. Even when the the fact that many proteins in
P P he PDB are homologues with similar structures is taken into

h ¢ fol t th hiv ite f Saccount, the discrepancy between the number of nonhomolo-
the state of foldedness of the protefor roughly its free o, proteins and the number of conformation classes of

energy, which increasesdecreasesfrom the top towards  gpserved native conformations is glaring. Because a class is
the bottom of the funnel, and a cross section of the funnej fact composed of many conformations that differ in detail
represents the conformation space accessible to the foldingych differences could very well be important to the func-
protein at a given state of foldedness. Near the top of theon of proteing, the problem of designability is best studied
funnel, most conformations are freely accessible and foldingn coarse-grain models, such as lattice models, that disregard
proceeds extremely rapidly. As the folding progresses anduch details.

the opening of the funnel narrows, accessibility of one con- The simplest interacting lattice model is the hydrophobic-
formation from another becomes increasingly restrictive, sgolar (H-P) model proposed by Dill and Chd#], in which

that increasingly fewer pairs of conformations are connectethe 20 kinds of amino acids are divided into two types, hy-
by almost-equal-energy paths and folding correspondinglyrophobic(H) and polar(P). This model has been studied
slows down. An alternative view is that the energy landscap@xtensively by several groups in the last decg8e8]. A
becomes increasingly rugged. At some junction the rate ofean-field version of the model that yields tremendous sim-
decrease in the number of accessible conformations, hengdification was used to study the designability problem, and
the rate of decrease in entropy, is so large as to cause tiewas found that the designabilities of structures vary greatly
rate of free-energy change as a function of foldedness to b_@he terms structures and conformation classes W|II_ be used
positive, so that a free-energy barrier is formed to becomdtérchangeably in this papeand that only a tiny portion of

an obstacle against further folding. At this point folding structures are highly designable. Moreover, it was noted that

practically grinds to halt and can proceed stochastically onl a'?ehslysgiz'ﬁ’é‘:&gigﬁg&e&gfﬁe@g tloqhave patterns that emu-
on very rare occasions that brings it over the barrier, after In a general Hamiltonian setting, the Hamiltoniancan
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be viewed as a mapping of the peptide sp&c® the con-  while that in theL-S model is based on residue size, the
formation spaceC. When C is sufficiently coarse grained, highly foldable peptides are translated into different sets of
which is the case we consider, each poinCiis a topologi-  “physical” peptides in the two models. In Sec. VI the highly
cal class of native conformations. Thhis a mapping ofP  foldable peptides in the two models are compared with real
to such conformation classes infolf we remove fromP all ~ proteins in the Protein Data Bank and it is shown that the
the peptides that are mapped hyto more than one confor- highly foldable peptides in thel-P model match well with
mation class irC (i.e., the degenerate cagethe remainder eal protein sequences in general and with segments of se-
of P is partitioned byH into equivalent classes of peptides, dUences that fold ta helices in particulatbut not well with
with each peptide class being mapped to a single conforma€9ments of sequences that folddsheets whereas those
tion class. Designability results from a highly skewed distri-"n the L-S model match poorly with real protein sequences.
bution of thesizeof the peptide classes. We shall call pep- S€ction VI gives an expanded discussion of our results. In
tides belonging to peptide classes that are mapped to highf§?€ Appendix the most highly foldable peptides in the two
designable structures highly foldable peptides. odels are given and compared.

In Ref.[7] the designability issue of the mean-fidtiP
model was reduced to a purely geometric problem that ren- Il. THE H-P MODEL
dered it easy to discuss and visualize the skewed distribution o )
of the size of peptide classes. It was, however, not made The Hamiltonian of thed-P model is
clear what characterizes those structures that are highly des-
ignable, nor was it demonstrated whether or not highly fold-
able peptides have anything to do with real proteins. In fact,
whereas one can well imagine mahs in lattice models to

yield biased designability, it is not clear that any sukh wherep is the type,H for hydrophobic and® for polar, of
would yield foldable peptides that simulate real proteins. the ith Iresidue or ’amino acid, in the peptide ChéB]'

In this paper, expanding on claims made in an earl'erA(Fi—Fj)zl if r; andr; are nearest neighbors in the lattice

paper{10], the highly designable structures in the mean-fieldbut not adjacent along the peptide sequence, &{fi—F;)

H-P model will be characterized—they are those that have_ - o . .
the largest number of surface-core switchbacks, and it will be_0 otherW|se,Epipj specifies th.e res@ue contact energies
shown that highly foldable peptides have a high similarityth@t depend on the types of residues in contact.

with real protein sequences in general and with segments of S€veral sets of contact energigs (4 ,Ey.p,Ep.p) have
sequences that fold te helices in particular. been used(—1,0,0 for the originalH-P model[3], (-2.3,

To demonstrate a point made above, this paper also dis-1:0 by Li et al.[6], and(—m,—1,0) by Buchler and Gold-

cusses a lattice model that exhibits designability but does nct€IN[13]. Li et al. suggested that the contact energies should
seem to be biologically correct. In the large-smél+S) satisfy the following constraints(l) compact shapes have

model, the 20 kinds of amino acids are divided into two'OWer energies than noncompact shap; Ep.p>E.p
types, large(L) and small(S), and it is assumed that the >EH__H so that hydrophob|c reS|due§ are buried as much as
deciding factor in folding is the the steric hindrance effectPossible; and3) different types of residues tend to segregate,
caused by the difference in the sizes of the amino ddigls ~ Which is a condition induced by havingE.p>Ep.p

It was shown in Ref[12] that on a lattice, structures in the +Ew-n [6,14]. In this work these will be adopted with the
L-Smodel too have uneven designabilithere called encod- modification that(3) is replaced by 'the .add.lt.lve relation
ability score; only a small portion of structures, also claimed 2En-p=Ep.p+Ey.y. Then the potential simplifies to

to have proteinlike secondary structures, are selected by

large numbers of peptide sequences as unique ground states. Epipj: —(pitpj, (2)

It will be shown here that in spite of the fact that theS

model is mathematically almost equivalent to the mean—fielq,\,herep:1 for H andp; =0 for P residue[15]. Henceforth
. . . | ] . il
H-P model, unlike the mean-fieltl-P model, highly fold- only structures that correspond to self-avoiding compact
able peptides in thé-S model do not match well with real paths on a lattice will be considered.
protein sequences. . . In an NXN two-dimensional square lattices, there are
In the following two sections the mean-field-P model four corner sites with coordination numbet, =2, 4(N
and thelL-S model are reviewed and it is shown that, not- —2) side sites wittN,=3 and (N—2)2 core si'?es v’vitH\l
n n

Withstandin_g their quite different physical _contents, ON_ 4. With the exception of the two ends of the peptide chain
square lattices the two models are mathematically close aRuhich we ignore, each lattice point hi —2 contacts. So '

proximates. In Sec. IV .the geometrical properties of a tWO'the Hamiltonian Eq(1) becomes
dimensional square lattice and the way they restrict the space

of structures, which are compact paths on the lattices, are

H=i2<j Epyp, A(Fi—T)), (&)

discussed. In Sec. V it is shown that only a very small por- H=—[0x > +1x > +2x > |p;

tion of the structure have the highest numbers of surface-core i € comner i €side i £core

switchbacks and that, for both models, it is these structures

that have the highest designabilities. Because the partition of — _E pi— 2 P+ E D 3)
I

amino acids in theH-P model is based on hydrophobicity i €core i € corner

041923-2



GEOMETRIC AND STATISTICAL PROPERTIES OF TH. .. PHYSICAL REVIEW E 65 041923

The first term on the right-hand side of E®) is a constant
for a given peptide sequence. It is independent of whateve
conformation the peptide resides in and, since &f.will
only be used here to determine the native structure of a par,
ticular peptide sequence, it will be omitted. The third term
means that it is costly to pi residues in the corner sites.
Since it is of order M? it too will be omitted. The Hamil-

tonian then simplifies to what is known as the mean-field (@) (b) (©)
H-P model[7], FIG. 1. (8 The most(third mos} designable(b) the second
. " most (mos) designable, an¢c) the third (secongl most designable
H(p,s)=—p-s=3(|s—p|*—p?—<), (4)  structures in the mean-field-P (L-S) model, respectively, on a 6
X6 lattice.

wherep=(p1,p2,....pn), N=N2, is the binary peptide se-
guence and=(s;,S,,...,Sy) is a binary structural sequence in the other mode{see the Appendjx The highly designable
converted from a self-avoiding compact path on the latticestructures in the.-S model also have proteinlike secondary
with the assignment;=1 (0) if the ith site of the structure substructure and tertiary symmetries. Three among the most
is a core(surface site. In this new form the Hamiltonian has designable structures in the two models are shown in Fig. 1.
an interpretation quite different from its original meaning.  Just as practiced in the preceding section, we consider
There it was an expression of interresidual interaction. Her@nly compact structures and neglect the effect of the two end
in Eq. (4) it is no longer interresidual, rather it has the form points on a peptide chain. Table | gives the values, #(x)
of a site-dependent potential. Wigh fixed for a given lattice  and Hamiltonian for the two types of residues at corner, side
and p? a constant for a given peptide sequence, both arend core sites on a square lattice. bes, andc denote the
irrelevant to the determination of the ground-state structur@umber of corner, side, and core sites, respectivelyo
of the peptide. They will be ignored in the ensuing calcula-+s+c=N?2 the total number of sites; and the subscripts
tion. The Hamiltonian now reduces to one half®f p|>and  andS denote residue type, then
a neat geometric interpretation for it emerd@$s Whenp
ands are viewed as-component vectors, this quantity is just H= —S_+2ac, —ss—2cs=2an —(1+2a)s —2ao —ng
the Hamming distance between two corner points in a unit

. : —Cgt0g. (6)
n-dimensional hypercube.

When the energy matrix elements are not additive, thatis, For 4 given peptide sequenag, and ng are fixed. First

whenE, = —2—ywith y>0 as was used in Ref3], [6],  consider the case when the steric repulsion is strong but fi-

[13], the model cannot be reduced to the simple Siteqjte namelyas 1. Dropping the corer termg one gets for
dependent form of Eq4). The effect ofy is to stabilize the 5 given peptide sequence,

low-lying states in the mean-field model further by increas-
ing the number oH-H contacts. H=—(2a+1)cg+consts —2ap- s+const, 7

wherep ands are the peptide and structure binary vectors
defined before, with the exception that pnthe digit 0 (1)

It was shown by Michelettét al.that in theL.-Smodel the  now stands folL (S). Comparison of this equation with Eq.
designability(called encodability score by the authpdis-  (4) reveals that, at least on a square lattice, the mathematical
tribution of structures is similar to that in the mean-fiele® ~ form of the two models are essentially identical, provided
model[12]. The Hamiltonian of this model is that here the paiH andP in the H-P model is replaced b$
and L, respectively. Since there is only one scale in either

B model, the size ofr does not matter so far as it is much
H=-2 z(I)-A(0)) ~z(I)), (3 greater than unity but finite.

lll. THE L-S MODEL

TABLE |. Action of the Hamiltonian for thelL-S model on a

where o < {L.,S}; 2(o) is the maximal number of nearest square lattice; end points of chains are ignored amdz(o)

contacts without steric repulsion belonging to residusn a

square latticez(o;) is equal to 1(2) for L (S) residues inside —xD.

fche chain, and to 23) for L (S _residugs at.chain enda;(l“) Type Corner Side Core

is the number of contacts of thth residue in a conformation

I'; and A(x) equals to 1 ix=0 and —a<0 otherwise. The z(T') 0 1 2

Hamiltonian implies that if the number of contacts of tlie X 2 1 0

residue is larger tham(o;), then the contact energy will be S A(X) 1 1 1

increased by owing to steric effects. H 0 -1 -2
The results in Refl12], wherea was set equal te, show X 1 0 -1

that the distribution of designability of structures InS L A(X) 1 1 —a

model is very similar to that in thel-P model. In fact, most H 0 -1 2a

of the highly designable structures in one model are likewise
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and 1's connected by—1 links of three types, those con-
necting 0 and O sites, 0 and 1 or 1 and O sites, and 1 and 1
sites, respectively. Let the numbers of such linksrigg,
n.g, andny,, respectively. The sequence is partitioned by
the 1-0 links inton,o+1 segments of contiguous 1's or O’s.
Whereas the link numbers for@are devoid of geometric
(a) (b) mea_ming, that fos are the consequences of geometric con-
straints. To illustrate this, consider the cdde-4 (the sur-
FIG. 2. (a) A structure defined by a compact self-avoiding path, face to core ratios in smaller lattices are too lop-sided to be
which is in turn represented by the binary sequef@4100 110000 of interesj. Some of the simplest constraints that must be
110000 110011 00001111100. Black (white) discs represent sur- satisfied by an allowed are the following.
face (core sites coded by the digit Q1). In (b) and (c), the dark ) )
solid links define “templates” for constructing structures of the type (1) An isolated single 0 may only occur at an end of a
(1...D whosen,, values are 12 and 2, respectively. path.
(2) An isolated single 1 may only either occur at or be one
Whena—, as was the case in Réfl2], the term &c, ~ 0-segment away from an end of a path.

in the first line of Eq.(6) becomes a constraint thatresi- (3) Each of the four corners on the lattice belongs to a 0
dues are prohibited from core sites, namely=0 strictly, ~ Segment at least four sites long, except when the corner is an
and the rest of the Hamiltonian becomes end of a path.

(4) For a path having the pattess (1...1) (both the ends
H=—csto0 —n_+0s—Nng~—p-stconst, (8)  of the path are 1 sités 2ngp+n;;=8N—8 and 2<ny,

. . I . <4N-12.
which again coincides with Ed4). (5) For s=(0010011..1), Bog+ny=8N—9 and 5
=n;<4N—11.
IV. GEOMETRICAL PROPERTIES OF THE TWO- (6) For s=(0010011...1100100), e+ ny=8N—10
DIMENSIONAL SQUARE LATTICE and 16<n;;<4N—10 if N>6, the last relation is replaced

Since Egs(4), (7), and(8) reduce the Hamiltonians of the bY 8<N1g<4N—10 if N<6.
mean-fieldH-P and L-S models to the same problem in ge-  (7) For s=(0010011...0%(0010011...1100100), rio
ometry, namely, one of the Hamming distance between thé N10=8N—10 and 4<n,<4N—12.
two vectorss andp, we now study the space of these vectors (8 For s=(0...0)#(0010011...0) and
(in the H-P mode). Consider anNXN square lattice with ~#(0010011...1100100 2ngotn;e=8N—10 and 2<ny
n=N? sites. Recall that every structure is a self-avoiding<4N—12.
compact path on the lattice. The $ef all binary peptides (9) For s=(0...1)#(0010011...1), Bgot Ny o=8N—9
p is then just the set of 2binary sequences. Because of @nd I=n;;<4N—13.
geometric constraints, the s8CP of binary structure se-

ot ler tharP. F h estimate f The first two rules are obvious on a square lattice. The
quences s far smaller thafe. -or a very rough estimate for -y, e implies that the polar residues tend to accumulate
the upper limit of the size of, consider the construction of

.~ around corners. This fortuitously reflects a property of real
nproteins: the relative abundance of polar residues on surface

point during the walk after_the first step, thg Maximum NUM-z .o a5 with large curvatures. Figured)2and Zc) illustrate
ber of allowed next steps is the coordination number minug;, . origin of the fourth rule on a6 lattice. The two struc-

one, which is between 2 and 3. As the number of steps taket’&res are both of the typ@...1), that is, they begin and end
increases, the average number of allowed next steps wil def)'oth on core sites. The dark solid links in the figures define

crease. We take the average number to be 2 up to the poi ” - ;
when the lattice is half full. For a randomly chosen path’n[templates for constructings' that, respectively, have the

g aximum(12) and minimum(2) values forn;y. Rules(5)—
ier e e s el ol chances e that e umber o1 can b shown i smiar way. By explcy spoing e
time. So the number of allowes! should be much less than above rules in the selection_ qf(as opposed to requiring an
22 .On a 6x6 lattice this last number is 262 144, whereas. fo be a compact se!f—av0|d|ng pajfthe Fotal number of
the size of S is 30408. and the size off is 2% 2%=68719476736 binary sequences7nis reduced to a
— 68719476 736. An exan’1ple of an allowsdn the 6<6 set of 537 5_49 candidate paths, which, relatively speaking, is
lattice is shown iﬁ Fig. @). If we think of P as the set of all now only slightly greater than the exact numitg0 408 of

ninHg. &@. . : s’ in S. This implies that the set of rules given above em-

the corner points in the-dimensional unit hypercube, then

: . : bodies the essence of the geometric requirement that guaran-
the setS is composed of a tiny subset of corner points. It was 9 9 9

shown earlier that the designability of aa S is the Voronoi tees elements i to be compact seif-avoiding paths.
polytope ofsin P; it is clear what characterizes the design-
ability problem is the distribution of the contents &fin the
unit hypercube.

We now examine how geometric constraints reddite Here we show that only a small portion of the structures
down toS. A sequence irP may be viewed as a chain of 0's in S have largen;;. On anNXN square lattice, there is a

V. DISTRIBUTION OF THE ALLOWED STRUCTURES IN
THE HYPERCUBE
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total of 2N?—2N links andN?—1 among them need to be ' ' ' ' '

chosen to form a structure. For th&xX® case these numbers 10’k i
are 60 and 35, respectively. For the structure shown in Fig.

2(b), of the total number of 60 links on the lattice, 28 links 108F -
are used to define the templatinat hasn,,=12) and 17

links, marked by filled diamonds in the figure, are forbidden Z 100 ]
because they would form close loops or connect sites which g 4

already have two links. This means that to completesan S [ 1
from the template, one needs to select-38=7 links from 1o°F i
among 606-28—17=15 links on the lattice. Hence at most

(3% =6435s with n;y=12 can be constructed from the tem- 105F .
plate. A similar argument shows thiﬁx= 817 190s’ with )

nig=2 can be constructed from the template shown in Fig. 10 1 i
2(c), which has 21 predetermined links. The ratio 10° S I . s

817 190:6435 illustrates the point that the numbes'ofvith 0 5 10 15 20 25 30 35

high n,q values is much smaller than the numbersbiwith
low n4q values.

Hamming Distance

We now give a heuristic argument showing that there is an  FIG. 3. The Hamming distances between pairs of all the 30 408
approximate relation between the smallest possible Hamstructural sequences on ax& lattice. The vertical dashed lines

ming distanced i (s;,S,) between two structures, ands,
and the difference in tha,y values of the two structures,

indicate the minimal Hamming distances for differe,,.

Anyg=no(s1) —N1o(S); for simplicity we assume that distributed in than the latter kinds. Thus given an arbitrary
N10(S1)>n1o(S,). For this discussion we ignore the two end s the chances are that most of its nearest neighbors will have
points of the structures, so th@n a square lattigeall the  relatively smalln,gs. An s with large n,, will be farther
segments on aspartitioned by 0-1 links have at least two 0 away from its nearest neighbors than if it has a smaligt

or two 1 digits. We begin by considering the case wisgn This is indeed brought out in Fig. 4, where each curve plots

=s;. Then bothd(s; ,s;) andAny, are zero. Suppose we can as a function oh;, the number of neighboring in S within
generates, by swapping the positions of a pair of 0's and a a Hamming distanc®y; , averaged over thos# specified by
pair of 1's ins; (while keeping in mind that in most cases n,,. It is seen that so long @&,<15, s’ with largen;, has

such an operation would not give anit would give ap that
is not inS). Thend(s,,s,)=2 and, depending on the posi-
tion of the replaced pair of O’s is;, An;g=0 or 2. Any

far fewer nearby neighbokg S) thans’ with smallern,g. It

T T T T T T T 2500 T T T T T T T
other pair ofs, ands; having An,;,=2 will have d(s;,s,) 150 o R 5 ] oo
>2. Thusdyin(s1,S,) is 2 for Anyg=2. Similarly, if we gen- 5 H 2000 | ¢ o"o,n Ry=10 J
erates, by exchanging the positions of a pair of 0's and a 10| ] Fd %
pair 1's ins;, for example, o 1500 kS 1
S0r % 1 1000 2
(...0111111110...1000000001... 20660000 i RETS
O 1 1 1 1 1 1 1 500 1 1 1 1 1 1 1
—(...0111111000...1001100001}... 9 0 2 4 6 810121416 0 2 46 810121416
9000 T T T T T T T 28000 [ T T T T T T T
o 8000 | O,.O"OOOaQ Ry=15 1 26000f Ry=20  ,° ]
(...0111111110...1000000001... % " o°
~(...0111100110...100110000L...  (10) 7000 ro b, 24000 o o0®”
L : oL
then d(s;,,) =4 and Anyo=2 [Eq. (9)] or 4 [Eq. (10] 0 4 6 8 10 1I2O1I416 22000 e 6 8 10121416
Again any others, ands; having An,;=2 or 4 will have 31000 ———F———— 30420 ———T——T——
d(s;,s)>4. Thus dyin(s;,S,) is 4 for An,g=4. Arguing ’ 0000
along this line it can be shown thdt,(s;,S)~Any,. 30000 [ B foo.oo 1 30400 :,o-oo ]
In Fig. 3, the logarithmic distributions of the Hamming Ry=R5 o_o'o ! &
distances between pairs sf with fixed values ofAnjgare 54500 | ° 1 30380 4 ]
plotted for a 66 lattice. The relation betweeth;,(s;,S,) ©000 L R,=30
and Any, is clearly displayed. Notice that all distributons , t , ,  , | | 30360 oS
peak at a Hamming distance of 15-20, with the width of the 0 2 4 6 810121416 0 2 46 810121416

distribution decreasing monotonically witkn,g.
It has already been shown that the numbes’ ofith large
Nio is much smaller than the number gf with small nq,.

n

10

Hence the former kinds o' will be even more sparsely ent Hamming distanceR,, for a 6x 6 lattice.

041923-5
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r 2 : identical. The physicalor biologica) interpretations given to

P @ o P the two models are, however, entirely different. The mean-
L field H-P, model is based on the assumption that hydropho-
bic residues would congregate in the core as much as pos-
sible. TheL-S model is based on the assumption that large
residues would be excluded from the core as much as pos-
sible. To see which model is closer to nature we compare the
results of the two models with real proteins by matching
model peptide sequences against protein sequences culled
from data banks. For either model, the model sequences are
the two sets of sequences among a total 26 000 000 randomly
o sampled 36-word binary sequences that select the most
n, highly designable and least designable structures, respec-
tively, on a 6<6 lattice.

We consider the frequency distributions of the set of se-
quences{P,|A=h,1,5,¢,a,8,¢',a’,8'}, where the sub-
follows thats’ with large n;o will on average have large Scripth denotes the concatenated 27 006 peptides mapped to
Voronoi polytopes, hence high designabilities. Note that théhe 15 most highly designable structures in the mean-field
approximate proportional relation betweeAn,, and H-P model; |, the concatenated 24 134 peptide sequences
dmin(s1,S,) is not expected to be limited to square latticesmapped to the 1545 least designable structures in the mean-
although the proportional constant is expected to be deperiield H-P model;S the concatenated 22 789 peptides mapped
dent on lattice type. to the 364 most highly encodable structures inlth@ model

In Figs. 5a) and 5b) the logarithmic designability is plot- [16]; ¢, the concatenated protein sequences in HDH,
ted as a function afi;, for a 6X 6 square lattice and a 21-site converted to a binary sequences based on the hydrophobicity
triangular lattice, respectively. The size of each disc indicatesf the peptidesa, same asp, but includes only segments of
the number ofs’ having the specifia;o and designability protein sequences that fold te helices; 3, same asp, but
and an open diamond indicates the average designability @hcludes only segments of protein sequences that fol@ to
all g’ ha\{ipg Fhe specifietho. On the whole the average gheetsi’, a', andB’, same asp, a, and 3, respectively,
designability increases with;o up to near the maximum  eycept that protein sequences are converted to binary ones

Nyo. FOr Ny near the maximum value it appears that thepageq on the volume of residues. The ten residues designated
heuristic argument given above breaks down, probably part'éolar (P) are: Lys, Arg, His, Glu, Asp, GIn, Asn, Ser, Thr

for bour_1dary effects, and partly be_cause the number of stru ind Cys[17] and the ten residues designated_agpe resi-
tures with the largest values af is very small(3 for nio 65 are, in descending order of volume, Trp, Tyr, Phe, Arg,
=14 and 24 fom,o=13 among the 30408c Son a6x6 | 5" o |, Met, His, and GIf18—20. That theH-P and
square latticeso that statistical fluctuations become impor- L-S models differ in physical and biological contents is

tant. The designability distributions on several other lattices, g icated by the fact that the two lists overlap poorly. This
were siudied and the pattern shown in Fig. 5 persisted. Thﬁredication will not change if the cut-off points of either or

result |snFs)eLE|inmarlzed in Table I, whergg™, the maximum ) jists are varied slightly. The sequendasand Ps will

njpandniy™, thenyo where the largest average designability pe referred to as the most foldable peptides inHhE and
occurs, are given for each lattice. In all the cas#§™ | -Smodels, respectively.

(&)
T

1.5

n

log ,o(Designability)

e

0.5

FIG. 5. Designability distributions fofa) 6 X6 square lattice
and (b) 21-site triangular lattice. See the text for detail.

=njps —2*1. Results for three-dimensional lattices will be  To compare the sequences, we employ a Cartesian coor-
shown elsewhere. dinate representation for symbolic sequen®H, here ap-
plied to binary sequences. L&tdenote the set of'inary
VI. COMPARISON WITH REAL PROTEINS stringso of lengthl. Given a binary sequend®, of lengthL

It has been shown that the mathematical contents of th@nd & string length (we are interested only in cases when

mean-field H-P model and theL-S model are essentially L>1). there is the seff{’(0)|o e S} of frequencies of oc-
currence of the stringr in \. The frequencies may be ob-

TABLE II. nf5*andnf§*for several latices. tained, say, by counting while sliding a winddwdigits wide

: o eak along\. The frequency depends on the ratio of 0 to 1 digits
Lattice Nio No in the sequence. This ratip, , is 0.983, 1.039, 0.553, 0.960,
4% 4 6 4 0.993, 0.720, 0.734, 0.917, and 0.934, respectively, for the
4% 6 9 8 sequencesP,, A=h,l,S ¢,a,B8,¢",a’,8". In order to
5%5 10 7 make a fair comparison of the sequences adjustments need to
A% 7 11 10 be made to compensate for the disparity in the 0 to 1 ratios.
5%6 12 9 For this purpose we define a normalized frequeficpy
6X6 14 12

21-site triangle 12 9

f,0(a)=(r))"f (o), (11)
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0.5
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FIG. 6. Frequency distributions of strings of length 6 in the FIG. 7. Frequency distributions of strings of length 6 in the
sequence®) P, , (b) P,, (c) P, and(d) P, ; see text for descrip-  sequence&) Py, (b) P, , (c) Py, and(d) Ps; see text for descrip-
tion. tion.

wheren, is the number of 0s inr. Sequences in the nor- g(d). In particular, some of the brightest regions in Fi¢g)6
malized frequency seff;!)(o)} now have 0 to 1 ratios are dark in Fig. &), and vice versa. In sharp contrast Fig.
equal to unity. 6(c), which represent® sheet segments in real protein se-
In what follows we consider only cases whefs even, quences, is entirely different from all the other distributions
| =2k. Let £ be a ¥x 2 lattice with spacing 2%, and=be in Fig. 6.
a one-to-one mapping froli to L, m:S— L by Turning to Fig. 7, it is noticed that Fig.(d), representing
the most foldable peptides in theS model, is very similar
i o to its counterpart in théd-P model, Fig. &d). This is as
m(0)=(XY)= izl O+ X2 I'zl oix 2 expected because the mathematical contents of the two mod-
(12)  els are essentially identical. On the other hand, Fig) i
very dissimilar to Fig. 7a), which represents all protein se-
whereo=[0,,05,,...,05] is a string inS and(x,y) is a site  quences in PDB, but with the residues partitioned according
on £. From the Se(f(,l))\(O')} we define a normalized relative to theL-S model. This shows that size of the residue is not
frequency distribution ok on the lattice’: the most dominant factor in protein structure.
The frequency distributions shown in Figs. 6 and 7 are
FOxy)=F(m(o)=(f\ V(o) f")/z,, (13 repeated in Figs. 8 and 9, except that the word lerigth
now 8 instead of 6. This implies that the sequenggsare
now examined with a finer resolution. The result is similar to
thel=6 case: the most foldable peptides in tHe® model
| | 12 closely resemble the helix segments of real protein, while
Zx:( E fL( ‘(o) —?(x)) : (14 the foldable peptides in thie-S model do not resemble real
7es proteins[20,21].
The sequence®, may be compared in a more quantita-
tive manner through the overlap of frequency distributions,

k k

Whereﬂ') is the mean frequency and

Figures 6 and 7 show the distributiof$®), A= ¢,a,p
andh, and\=¢',a’,B’, andS respectively. In the figures,
the magnitude of the distribution is coded into the gray scale
shown at the top of the figures. From the fact that Figb) 6
and Gd) have their brightest and darkest regions, respec-
tively, at generally the same locations, it is evident tRat
[Fig. 6(d)], the most foldable peptides in thé-P model, is
closet toP, [Fig. 6b)], the sequence that represeatielix  The overlapsO!),, for a number of pairs\,\’) selected
segments in real protein sequences. In comparison, althoudiom the seth,|,S, ¢,«,8,¢",a’,8'}, and forl =4~14 are
Fig. 6(a) looks similar to Fig. @), it is not so similar to Fig.  given in Fig. 10.

ol =3 Flm@)F(n(o). (19
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FIG. 10. Overlap of frequency distribution functions versus
word lengthl: 00, (&), 00 (), 04} (@), of (m), o) (1),
o4 (V), Og?s (0), Og),s (0), and Of)) (O). See text for the

FIG. 8. Frequency distributions of strings of length 8 in the description of the subscripts |, S, ¢, «, 8, ¢', ', andg’.
sequence$d) P, , (b) P,, (c) Pz, and(d) P;.

_ , _ _ h _ mathematical equivalence of thé-P and L-S models. In
~One first notices that, with the exception ol (Win per [12], the parametea in Eq. (5) was taken to be infinity
Fig. 10, all the overlaps approach zero as the word lergth 1, emphasize the steric constraint on the residues. Here we
increases. This is SO becausg _the resolving power of thgaq done the same just to conform to R&R]. On the other
method increases with for sufficiently largel, the resolu-  hang since in the present study all the structures are self-
tion becomes so large that any two sequence that does ng{iding paths on a discrete lattice, the steric constraint
have substantial and extended sequence identity will havg sed by the existence of the backbone is automatically
zero overlap. ThatOf) has large positive correlation satisfied. Therefore, so far as the intention of kh8 model
throughout the whole range bftudied is expected from the s concerned, a small and positive, but not infinite, value for
a would have sufficed.
(a)-om% 0.07 (b) The overlapOE,Pa (A) is Iarg_er than r_no_st other overlaps
for much ofl’'s shown in the figure. This is connected to a
basic fact of proteinsx helices account for almost half of the
total amount of protein sequences in PDB. The overlap drops
sharply whenl=12 because mostr helix segments are
shorter than 15 residues long.
Next in order of magnitude are the overlap§) and0Y),
(V¥ and @); these have large positive values for the smaller
I's. This reveals that the mean-field-P model provides a
coarse-grained description of some features of the real pro-
teins and suggests that the basic assumption of the model—

0.75

(c) that local residue-water interaction is the dominant cause for
i v protein folding—is consistent with the mechanism for the
0.75 > v formation of « helices. The overlaps decrease with increas-
) . .
ing | for the general reason given above. On the other hand,
05 - & the negative correlation shown by the negative value of the
~ overlapogﬁ1 (V) shows that the same assumption is incon-
{ ; sistent with what causes the formation @fsheets. Two of
025 the obvious reasons are: whereas n@sheets are buried in
‘ N\ the interior of proteins, the mean-fiekdtP model differenti-
O e O YA ates only surface from core sites but has no means of influ-

encing the interior structure of proteins; the stability of most
FIG. 9. Frequency distributions of strings of length 8 in the 8 sheets depends on long-range interactions that are absent
sequencesa) Py, (b) P, (c) Py, and(d) Ps. in the model.
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TABLE Ill. Strings most and least favored in the mean-field H-P and L-S models. Strings of different lengths are ranked separately; e.g.,

the least favored string of length 4 is ranket=216.

PHYSICAL REVIEW E 65041923

Strings most/least
favored in H-P model

H-P model

L-S model

Frequency Rank

Strings most/least
Frequency RankFavored in L-S model

L-S model

H-P model

Frequency Rank

Frequency Rank

(0110 0.4459 1 —0.0468 10 (0011 0.3834 1 0.4272 2
(001Y) 0.4272 2 0.3834 1 (1100 0.3693 2 0.4224 3
(0000 —0.3883 15 0.2732 3 (1010 —0.3815 15 —0.1572 11
(1111 —0.3903 16 0.0109 9 (0101 —0.3892 16 —0.1594 12
(001100 0.4605 1 0.2694 1 (001100 0.2694 1 0.4605 1
(011002 0.2746 2 0.0656 20 (000012 0.2694 2 0.0515 18
(100110 0.2698 3 0.0672 19 (110000 0.2680 3 0.0369 23
(000002 —0.1725 62 0.0379 22 (101010 —0.2186 62 —0.1253 58
(100000 —0.1741 63 0.0385 21 (010102 —0.2222 63 —0.1234 57
(000000 —0.2694 64 0.0274 25 (001010 —0.2224 64 —0.0589 39
(001100131 0.2101 1 0.1016 19 (11000011 0.2318 1 0.1875 4
(01100110 0.2089 2 0.0541 51 (00001100 0.2141 2 0.1332 15
(11001100 0.1977 3 0.1001 20 (00110000 0.2110 3 0.1191 23
(11000011 0.1875 4 0.2318 1 (00111100 0.1684 4 —0.0466 200
(00000011 —0.0927 253 0.0293 74 (01010100 —0.0989 253 —0.0401 180
(00000001 —0.1015 254 0.0301 72 (01010010 —0.1008 254  —0.0418 188
(10000000 —0.1023 255 0.0334 63 (01001010 —0.1013 255 —0.0436 194
(00000000 —0.1060 256 0.0088 94 (00101010 —0.1017 256  —0.0379 172
(001100110D 0.1682 1 0.902 14 (0011000011 0.1837 1 0.1400 4
(110000110D 0.1574 2 0.1830 2 (110000110D 0.1830 2 0.1574 2
(011000011D 0.1548 3 0.1335 3 (011000011D 0.1335 3 0.1548 3
(0011000011 0.1400 4 0.1837 1 (1001100001 0.1230 4 0.1211 8
(1111000000 —0.0408 1021 0.0220 214 (010100101p —0.0441 1021 -0.0173 693
(112000000 —0.0414 1022 0.0508 58 (010000101p —0.440 1022 —0.0102 528
(000000000D —0.0426 1023 —0.0219 773 (0101010101 —0.0444 1023 0.0268 893
(11111121131 —0.0427 1024 —0.0358 914 (101010101D —0.0446 1024 0.0250 869

structures correspond. In this paper, taking advantage of the
o, geometric picture for the designability problem given in Ref.
highly foldable peptide sequences in the&s model are anti- [7], namely, that designability of a structure in the mean-field
correlated with the real protein sequenceslfsi6 and un-  H-P model is proportional to Voronoi volume of that struc-
correlated for larget. This confirms what is already seen in ture in a certain hyperspace, we showed that uneven design-
Figs. 7 and 9: that size effect is not the dominant factorapility arises because a type of structures—those with the
determining the formation of a stable protein Conformation.|argest numbers of surface-core switchbacks—are very rare,
Finally, the large negative values of the over@f)) (O) for  and that their nearest neighbors in the hyperspace are other
all values ofl tested simply verify that the most and least similar rare structures. Hence such structures have the largest
foldable peptides in théd-P model are highly dissimilar Voronoi volumes and the highest designabilities. Because the
however they are compared. hyperspace of structures has properties independent of the
two-dimensional lattices used in the present study, this con-
clusion is expected to stand for other more realistic lattices.
Indeed, the same effect was observed on a three-dimensional
Because conformation designability in protein structurelattice based on an icosahedr@®].
refers to the natural selection of a very small number of The identification of structures having the largest numbers
topological classes of native conformations over the vast toef surface-core switchbacks with the conformation classes of
tal number of classes, it is a topic that can be suitably studiesbserved proteins entails certain physical and biological im-
in coarse-grained settings such as in lattice models. Previoydications. Proteins choosing such structures as native con-
lattice model studies have firmly established that indeed onljormations would tend to have ratios of numberstbfype
a very small number ofmode) structures, out of a very and P-type residues close to being unity. Indeed, the aver-
large total number, are highly designable. It has not beelages o to P ratios for all the protein sequences in PDB, for
shown why this phenomenon should arise, and to whathe segments that folds tohelices and for those that fold to
classes of native conformations would the highly designablegs sheets, respectively, are all very close to unity. Proteins

The negative value of the overlaps betwefg and
Py o (O, A, and O, respectively indicates that the

VII. DISCUSSION
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having structures with many surface-core switchbacks are The situation is different with respect {8 sheets. The
expected to be energetically favored. For such proteingnost common domain structures in proteins @@ domains
would by and large have alternatiiyand H residues that that consist of a central group ¢ sheets surrounded by
match the pattern of the structures, and the outward-pointingelices. Theg sheets in these domains will not be rich in
force exerting on theP-type residues and the inward- €itherH-H-P-P or H-P repeats. In the second large group of
pointing force exerting on theH-type residues together Protein domain structures, comprised of antipargiisheets,
would make the protein especially sturdy. some of .the sheets are on the putside of the protein and these
On the mean-fielcH-P lattice, high-designability struc- are fich inH-P repeats but not itd-H-P-P repeats. A super-

tures tend not to have long sequences of contiguous sites thi@Mily of proteins containing sucl sheets has members
are purely core sites or purely surface sitsse Table Il in Such as the human plasma retinal-binding protein and
Appendi®, because such structures tend to be involved irB-lactoglobulin, a protein that is abundant in milk. Of all

degenerate cases—peptides with corresponding contiguofi€Ptide sequences that coflesheets in the PDB, 33% 6
subsequences & or H-type residuegor S- or L-type resi- to P (or P to H) changes are after singlets, 28% are after
dues in theL-S mode) would easily have two or more such doublets, and 18% are after triplets. Hence the most foldable

structures as ground states—and for that reason the peptifé®de! peptides would match poorly wifhisheets.
and the degenerate structures would have been excluded !f Our computation were carried out on a lattice that al-

from the set of allowed peptides and acceptable structureé‘?wed struc_tures with surface-core repeats then the foldab_le
respectively. This practice is justified biologically: peptidesM0de! peptides would have better matched sequences coding

and conformations involved in degenerap a coarse- for B sheets. Still, because the only interaction taken into

grained sengeare presumably filtered out by evolution be- @ccount in the mean-fielti-P model is the hydrophobicity
cause they would make for functionally unreliable proteins.Cf the residues, whereas the formation of the majority3of

In fact, relatively few proteins in PDB have sequences Cor]_sheets depend on other details of interresidual interactions,

taining long segments of contiguo® or H-type residues W€ cannot expect the most foldable model peptides to have a

whose native conformations have long segments of contigugd20d match with the majority o8 sheets irrespective of
ous surface or buried sité&3]. Such native conformations What lattice was used. _ , , L
are presumably generated by the finer details of interresidua) T nydrophobicity but not interresidual interaction is in-
interactions, and the conformation classes to which they bed€€d the main force that drives the formationcohelices,
long would not have counterparts among the high designabif'€n We can better understand wiayelices are formed on a
ity structures given by simple, coarse-grained lattice modeldime scale of the order 10 s[24,28), right after the collapse
Because structures on square lattices are not realistff the protein to globular shape, and why it takes ten times

enough for direct comparison with empirically observed to-ONg€r for the formation of sheets, which involves interac-
pological conformation classes, we compared model peptidePnS between residues distantly separated on the primary
folding into such structures, namely, the most foldable pepStructure. This scenario is consistent with the finding in a
tides, with (binarized peptide sequences in the PDB. If the récent statistical analysis of experimental data: local contacts
highly designable structures are rich in surface-core switchPlay the key role in fast processes during fold[2§].

backs then the highly foldable peptides should be richiin e have shown that the mathematical content ofltf&
andP singlets andH-H andP-P doublets. In Table 11l in the Mdel, which partitions residues into largg and small(S)

Appendix it is seen that the highly foldable peptides in the®n€S, was essentially the same as that of the meanHi¢id
mean-fieldH-P model are rich irH-H-P-P (or P-P-H-H) but model. Hence the binary composition of the most foldable
poor inH-P (or P-H) repeats. This reflects an artifact of the PePtides in the two models are quite similaee Table Il in
square lattice. On such lattices, the shortest surface-cof8® Appendix. However, because not all largsmal) resi-
switchback motif is surface-surface-core-céoe core-core- dues are hydrophilichydrophobig, the most foldable pep-
surface-surfagerepeats while surface-core repeats do not ex{ides in the two models are mapped to significantly different
ist (see first two “constraints” in Sec. IV We showed that sets of(binarized protein sequences. The result is that the

the most foldable peptides match well with those segment@'0St foldable peptides in the-S model do not match well

of protein sequences in PDB that fold inte helices but ~ With any subset of proteins in the PDB. This means that
match relatively poorly with segments that fold infsheets. stenc.hmdrance eﬁgct arising from dn‘ferent_3|zes pf the resi-
a helices are most commonly amphipathic and lie on thdlues is not the main driving force for protein folding.
outside of their host proteins. With 3.6 residues per turn,

suc_h a h_elices tend to change fr_0|h1 to P residues with a ACKNOWLEDGMENTS

periodicity of three to four. That is, they should have a pre-

dominance of alternatingl-H andP-P doublets interspersed We thank the National Center for High-Performance
with H and P singlets. Indeed, of all peptide sequences thatComputing (NCHC) for providing support in computation
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APPENDIX repeats of 1's and Qs are the least favored string patterns in
: . the H-P model and(01) is the least favored string repeat in
Here we show how the two lattice models dn‘fer_ by COM- e L -Smodel. The(reazson for this is cle&@011) re%eatps are
paring strings of several lengths that have the highest an@e favored pattern in most highly designable structures in
lowest frequencies of occurrence, called the most and leagiyih models and each of tipeptide strings(0000, (1112),
favored strings, respectively, in the sequenggsand Ps,  and (0101 is separated fron0011) by the greatesframe
which are the concatenated sequences of the mostly highlydependenHamming distance. There is an additional disin-
foldable peptides in the mean-fiek#tP andL-S models, re-  centive for a peptide to hav@1) repeats in thé.-S model.
spectively. In Table IlI, the first and sixth columns list such On a square lattice such repeats do not appear in a structure
strings. Strings of different lengths are ranked separately bgequence, hence, withtype residuegrepresented by 0 dig-
their normalized relative frequency of occurreh&ey. (14)]; its) strictly forbidden on core sitegepresented by 1 digits
the string with the highestlowesy frequency is ranked 1 a peptide string with 01 repeats can only occupy a structure
(2"). By definition, an unfavored string has negative fre-sequence composed entirely of surface sites. This gives the
guency. Table Il shows that the most favored strings argeptide zero binding energy in theS model. The situation
quite well correlated in the two models but the least favoreds different in theH-P model. There a peptide string with 01
strings are not so. It is seen that among tetramers the repeatpeats can occupy a structure sequence with 0011 repeats
(0011 are the most favored pattern in both models, longand nonzero binding energy.
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