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Lattice models, for their coarse-grained nature, are best suited for the study of the ‘‘designability problem,’’
the phenomenon in which most of the about 16 000 proteins of known structure have their native conforma-
tions concentrated in a relatively small number of about 500 topological classes of conformations. Here it is
shown that on a lattice the most highly designable simulated protein structures are those that have the largest
number of surface-core switchbacks. A combination of physical, mathematical, and biological reasons that
causes the phenomenon is given. By comparing the most foldable model peptides with protein sequences in the
Protein Data Bank, it is shown that whereas different models may yield similar designabilities, predicted
foldable peptides will simulate natural proteins only when the model incorporates the correct physics and
biology, in this case if the main folding force arises from the differing hydrophobicity of the residues, but does
not originate, say, from the steric hindrance effect caused by the differing sizes of the residues.
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I. INTRODUCTION

It is believed that the dynamical folding of a protein to
native conformation is determined by the amino acid
quence of the protein@1#. Yet the folding of any particular
protein is an extremely complex process; simulation of
folding of even a small protein remains an unsurmoun
challenge to state-of-the-art computers@2#. Nevertheless, a
good understanding of a number of general features of
tein folding have been acquired in computational studies
ing simple lattice models@3–8#. One feature is the so-calle
funnel picture that leads to a two-state description of fold
@5,9#. Here the vertical dimension of the funnel represe
the state of foldedness of the protein~or roughly its free
energy!, which increases~decreases! from the top towards
the bottom of the funnel, and a cross section of the fun
represents the conformation space accessible to the fol
protein at a given state of foldedness. Near the top of
funnel, most conformations are freely accessible and fold
proceeds extremely rapidly. As the folding progresses
the opening of the funnel narrows, accessibility of one c
formation from another becomes increasingly restrictive,
that increasingly fewer pairs of conformations are connec
by almost-equal-energy paths and folding correspondin
slows down. An alternative view is that the energy landsc
becomes increasingly rugged. At some junction the rate
decrease in the number of accessible conformations, h
the rate of decrease in entropy, is so large as to cause
rate of free-energy change as a function of foldedness to
positive, so that a free-energy barrier is formed to beco
an obstacle against further folding. At this point foldin
practically grinds to halt and can proceed stochastically o
on very rare occasions that brings it over the barrier, a
1063-651X/2002/65~4!/041923~11!/$20.00 65 0419
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which the protein folds~and unfolds! relatively rapidly
to its native conformation in an annealinglike process.

Another issue clarified by simple lattice models is t
designability of ‘‘topological’’ classes of protein conforma
tions @6,7,10#. The designability of a conformation class
the number of proteins whose native conformations belo
to the class. At the moment the number of proteins w
known three-dimensional conformations in the Protein D
Bank ~PDB @11#! is of the order of 16 000 and is increasin
rapidly, while the number of conformation classes has
mained about 500 for some time and is not expected to g
beyond 1000. Even when the the fact that many protein
the PDB are homologues with similar structures is taken i
account, the discrepancy between the number of nonhom
gous proteins and the number of conformation classes
observed native conformations is glaring. Because a clas
in fact composed of many conformations that differ in det
~such differences could very well be important to the fun
tion of proteins!, the problem of designability is best studie
in coarse-grain models, such as lattice models, that disre
such details.

The simplest interacting lattice model is the hydrophob
polar ~H-P! model proposed by Dill and Chan@3#, in which
the 20 kinds of amino acids are divided into two types, h
drophobic~H! and polar~P!. This model has been studie
extensively by several groups in the last decade@3–8#. A
mean-field version of the model that yields tremendous s
plification was used to study the designability problem, a
it was found that the designabilities of structures vary grea
~the terms structures and conformation classes will be u
interchangeably in this paper!, and that only a tiny portion of
structures are highly designable. Moreover, it was noted
highly designable structures seem to have patterns that e
lates secondary structural motifs@6,7,10#.

In a general Hamiltonian setting, the HamiltonianH can
©2002 The American Physical Society23-1
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be viewed as a mapping of the peptide spaceP to the con-
formation spaceC. When C is sufficiently coarse grained
which is the case we consider, each point inC is a topologi-
cal class of native conformations. ThenH is a mapping ofP
to such conformation classes intoC. If we remove fromP all
the peptides that are mapped byH to more than one confor
mation class inC ~i.e., the degenerate cases!, the remainder
of P is partitioned byH into equivalent classes of peptide
with each peptide class being mapped to a single confor
tion class. Designability results from a highly skewed dis
bution of thesizeof the peptide classes. We shall call pe
tides belonging to peptide classes that are mapped to hi
designable structures highly foldable peptides.

In Ref. @7# the designability issue of the mean-fieldH-P
model was reduced to a purely geometric problem that r
dered it easy to discuss and visualize the skewed distribu
of the size of peptide classes. It was, however, not m
clear what characterizes those structures that are highly
ignable, nor was it demonstrated whether or not highly fo
able peptides have anything to do with real proteins. In fa
whereas one can well imagine manyH’s in lattice models to
yield biased designability, it is not clear that any suchH
would yield foldable peptides that simulate real proteins.

In this paper, expanding on claims made in an ear
paper@10#, the highly designable structures in the mean-fi
H-P model will be characterized—they are those that ha
the largest number of surface-core switchbacks, and it wil
shown that highly foldable peptides have a high similar
with real protein sequences in general and with segment
sequences that fold toa helices in particular.

To demonstrate a point made above, this paper also
cusses a lattice model that exhibits designability but does
seem to be biologically correct. In the large-small~L-S!
model, the 20 kinds of amino acids are divided into tw
types, large~L! and small~S!, and it is assumed that th
deciding factor in folding is the the steric hindrance effe
caused by the difference in the sizes of the amino acids@12#.
It was shown in Ref.@12# that on a lattice, structures in th
L-Smodel too have uneven designability~there called encod
ability score!; only a small portion of structures, also claime
to have proteinlike secondary structures, are selected
large numbers of peptide sequences as unique ground s
It will be shown here that in spite of the fact that theL-S
model is mathematically almost equivalent to the mean-fi
H-P model, unlike the mean-fieldH-P model, highly fold-
able peptides in theL-S model do not match well with rea
protein sequences.

In the following two sections the mean-fieldH-P model
and theL-S model are reviewed and it is shown that, no
withstanding their quite different physical contents,
square lattices the two models are mathematically close
proximates. In Sec. IV the geometrical properties of a tw
dimensional square lattice and the way they restrict the sp
of structures, which are compact paths on the lattices,
discussed. In Sec. V it is shown that only a very small p
tion of the structure have the highest numbers of surface-
switchbacks and that, for both models, it is these structu
that have the highest designabilities. Because the partitio
amino acids in theH-P model is based on hydrophobicit
04192
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while that in theL-S model is based on residue size, th
highly foldable peptides are translated into different sets
‘‘physical’’ peptides in the two models. In Sec. VI the high
foldable peptides in the two models are compared with r
proteins in the Protein Data Bank and it is shown that
highly foldable peptides in theH-P model match well with
real protein sequences in general and with segments o
quences that fold toa helices in particular~but not well with
segments of sequences that fold tob sheets!, whereas those
in the L-S model match poorly with real protein sequence
Section VII gives an expanded discussion of our results
the Appendix the most highly foldable peptides in the tw
models are given and compared.

II. THE H-P MODEL

The Hamiltonian of theH-P model is

H5(
i , j

Epi pj
D~rW i2rW j !, ~1!

wherepi is the type,H for hydrophobic andP for polar, of
the i th residue, or amino acid, in the peptide chain@3#;
D(rW i2rW j )51 if rW i andrW j are nearest neighbors in the lattic
but not adjacent along the peptide sequence, andD(rW i2rW j )
50 otherwise;Epi pj

specifies the residue contact energ
that depend on the types of residues in contact.

Several sets of contact energies (EH-H ,EH-P ,EP-P) have
been used:~21,0,0! for the originalH-P model @3#, ~22.3,
21,0! by Li et al. @6#, and~2p,21,0! by Buchler and Gold-
stein@13#. Li et al.suggested that the contact energies sho
satisfy the following constraints:~1! compact shapes hav
lower energies than noncompact shapes;~2! EP-P.EH-P
.EH-H so that hydrophobic residues are buried as much
possible; and~3! different types of residues tend to segrega
which is a condition induced by having 2EH-P.EP-P
1EH-H @6,14#. In this work these will be adopted with th
modification that~3! is replaced by the additive relatio
2EH-P5EP-P1EH-H . Then the potential simplifies to

Epi pj
52~pi1pj !, ~2!

wherepi51 for H andpi50 for P residue@15#. Henceforth,
only structures that correspond to self-avoiding comp
paths on a lattice will be considered.

In an N3N two-dimensional square lattices, there a
four corner sites with coordination numberNn52, 4(N
22) side sites withNn53 and (N22)2 core sites withNn
54. With the exception of the two ends of the peptide cha
which we ignore, each lattice point hasNn22 contacts. So
the Hamiltonian Eq.~1! becomes

H52S 03 (
i Pcorner

113 (
i Pside

123 (
i Pcore

D pi

52(
i

pi2 (
i Pcore

pi1 (
i Pcorner

pi . ~3!
3-2
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The first term on the right-hand side of Eq.~3! is a constant
for a given peptide sequence. It is independent of whate
conformation the peptide resides in and, since Eq.~3! will
only be used here to determine the native structure of a
ticular peptide sequence, it will be omitted. The third te
means that it is costly to putH residues in the corner sites
Since it is of order 1/N2 it too will be omitted. The Hamil-
tonian then simplifies to what is known as the mean-fi
H-P model @7#,

H~p,s!52p•s5 1
2 ~ us2pu22p22s2!, ~4!

wherep5(p1 ,p2 ,...,pn), n5N2, is the binary peptide se
quence ands5(s1 ,s2 ,...,sn) is a binary structural sequenc
converted from a self-avoiding compact path on the latt
with the assignment:si51 ~0! if the i th site of the structure
is a core~surface! site. In this new form the Hamiltonian ha
an interpretation quite different from its original meanin
There it was an expression of interresidual interaction. H
in Eq. ~4! it is no longer interresidual, rather it has the for
of a site-dependent potential. Withs2 fixed for a given lattice
and p2 a constant for a given peptide sequence, both
irrelevant to the determination of the ground-state struct
of the peptide. They will be ignored in the ensuing calcu
tion. The Hamiltonian now reduces to one half ofus2pu2 and
a neat geometric interpretation for it emerges@7#. When p
ands are viewed asn-component vectors, this quantity is ju
the Hamming distance between two corner points in a u
n-dimensional hypercube.

When the energy matrix elements are not additive, tha
whenEH-H5222g with g.0 as was used in Refs.@3#, @6#,
@13#, the model cannot be reduced to the simple s
dependent form of Eq.~4!. The effect ofg is to stabilize the
low-lying states in the mean-field model further by increa
ing the number ofH-H contacts.

III. THE L-S MODEL

It was shown by Michelettiet al. that in theL-Smodel the
designability~called encodability score by the authors! dis-
tribution of structures is similar to that in the mean-fieldH-P
model @12#. The Hamiltonian of this model is

H52(
i

zi~G!•A„z~s i !2zi~G!…, ~5!

wheres iP$L,S%; z(s i) is the maximal number of neare
contacts without steric repulsion belonging to residuei; on a
square lattice,z(s i) is equal to 1~2! for L ~S! residues inside
the chain, and to 2~3! for L ~S! residues at chain ends;zi(G)
is the number of contacts of thei th residue in a conformation
G; andA(x) equals to 1 ifx>0 and2a,0 otherwise. The
Hamiltonian implies that if the number of contacts of thei th
residue is larger thanz(s i), then the contact energy will b
increased bya owing to steric effects.

The results in Ref.@12#, wherea was set equal tò , show
that the distribution of designability of structures inL-S
model is very similar to that in theH-P model. In fact, most
of the highly designable structures in one model are likew
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in the other model~see the Appendix!. The highly designable
structures in theL-S model also have proteinlike seconda
substructure and tertiary symmetries. Three among the m
designable structures in the two models are shown in Fig

Just as practiced in the preceding section, we cons
only compact structures and neglect the effect of the two
points on a peptide chain. Table I gives the values ofx, A(x)
and Hamiltonian for the two types of residues at corner, s
and core sites on a square lattice. Leto, s, andc denote the
number of corner, side, and core sites, respectively;n5o
1s1c5N2 the total number of sites; and the subscriptsL
andS denote residue type, then

H52sL12acL2sS22cS52anL2~112a!sL22aoL2nS

2cS1oS . ~6!

For a given peptide sequence,nL and nS are fixed. First
consider the case when the steric repulsion is strong bu
nite, namely,a@1. Dropping the corner termoS one gets for
a given peptide sequence,

H52~2a11!cS1const'22ap•s1const, ~7!

wherep and s are the peptide and structure binary vecto
defined before, with the exception that inp the digit 0 ~1!
now stands forL ~S!. Comparison of this equation with Eq
~4! reveals that, at least on a square lattice, the mathema
form of the two models are essentially identical, provid
that here the pairH andP in theH-P model is replaced byS
and L, respectively. Since there is only one scale in eith
model, the size ofa does not matter so far as it is muc
greater than unity but finite.

FIG. 1. ~a! The most~third most! designable,~b! the second
most ~most! designable, and~c! the third ~second! most designable
structures in the mean-fieldH-P ~L-S! model, respectively, on a 6
36 lattice.

TABLE I. Action of the Hamiltonian for theL-S model on a
square lattice; end points of chains are ignored andx5z(s)
2z(G).

Type Corner Side Core

z(G) 0 1 2
x 2 1 0

S A(x) 1 1 1
H 0 21 22
x 1 0 21

L A(x) 1 1 2a
H 0 21 2a
3-3
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Whena→`, as was the case in Ref.@12#, the term 2acL
in the first line of Eq.~6! becomes a constraint thatL resi-
dues are prohibited from core sites, namely,cL50 strictly,
and the rest of the Hamiltonian becomes

H52cS1oL2nL1oS2nS'2p•s1const, ~8!

which again coincides with Eq.~4!.

IV. GEOMETRICAL PROPERTIES OF THE TWO-
DIMENSIONAL SQUARE LATTICE

Since Eqs.~4!, ~7!, and~8! reduce the Hamiltonians of th
mean-fieldH-P andL-S models to the same problem in g
ometry, namely, one of the Hamming distance between
two vectorss andp, we now study the space of these vecto
~in the H-P model!. Consider anN3N square lattice with
n5N2 sites. Recall that every structure is a self-avoidi
compact path on the lattice. The setP of all binary peptides
p is then just the set of 2n binary sequences. Because
geometric constraints, the setS,P of binary structure se-
quencess is far smaller thanP. For a very rough estimate fo
the upper limit of the size ofS, consider the construction o
compact paths by random walk on the lattice. At any giv
point during the walk after the first step, the maximum nu
ber of allowed next steps is the coordination number mi
one, which is between 2 and 3. As the number of steps ta
increases, the average number of allowed next steps will
crease. We take the average number to be 2 up to the p
when the lattice is half full. For a randomly chosen pa
after the lattice is half full, chances are that the number
allowed next steps will be either one or zero most of
time. So the number of alloweds8 should be much less tha
2n/2. On a 636 lattice this last number is 262 144, where
the size of S is 30 408, and the size ofP is 236

568 719 476 736. An example of an alloweds on the 636
lattice is shown in Fig. 2~a!. If we think of P as the set of all
the corner points in then-dimensional unit hypercube, the
the setS is composed of a tiny subset of corner points. It w
shown earlier that the designability of ansPS is the Voronoi
polytope ofs in P; it is clear what characterizes the desig
ability problem is the distribution of the contents ofS in the
unit hypercube.

We now examine how geometric constraints reduceP
down toS. A sequence inP may be viewed as a chain of 0

FIG. 2. ~a! A structure defined by a compact self-avoiding pa
which is in turn represented by the binary sequence~001100 110000
110000 110011 000011111100!. Black ~white! discs represent sur
face ~core! sites coded by the digit 0~1!. In ~b! and ~c!, the dark
solid links define ‘‘templates’’ for constructing structures of the ty
~1...1! whosen10 values are 12 and 2, respectively.
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and 1’s connected byn21 links of three types, those con
necting 0 and 0 sites, 0 and 1 or 1 and 0 sites, and 1 an
sites, respectively. Let the numbers of such links ben00,
n10, and n11, respectively. The sequence is partitioned
the 1-0 links inton1011 segments of contiguous 1’s or 0’s
Whereas the link numbers for ap are devoid of geometric
meaning, that fors are the consequences of geometric co
straints. To illustrate this, consider the caseN.4 ~the sur-
face to core ratios in smaller lattices are too lop-sided to
of interest!. Some of the simplest constraints that must
satisfied by an alloweds are the following.

~1! An isolated single 0 may only occur at an end of
path.

~2! An isolated single 1 may only either occur at or be o
0-segment away from an end of a path.

~3! Each of the four corners on the lattice belongs to a
segment at least four sites long, except when the corner i
end of a path.

~4! For a path having the patterns5(1...1) ~both the ends
of the path are 1 sites!, 2n001n1058N28 and 2<n10
<4N212.

~5! For s5(0010011...1), 2n001n1058N29 and 5
<n10<4N211.

~6! For s5(0010011...1100100), 2n001n1058N210
and 10<n10<4N210 if N.6, the last relation is replace
by 8<n10<4N210 if N<6.

~7! For s5(0010011...0)Þ(0010011...1100100), 2n00
1n1058N210 and 4<n10<4N212.

~8! For s5(0...0)Þ(0010011...0) and
Þ~0010011...1100100!, 2n001n1058N210 and 2<n10
<4N212.

~9! For s5(0...1)Þ(0010011...1), 2n001n1058N29
and 1<n10<4N213.

The first two rules are obvious on a square lattice. T
third rule implies that the polar residues tend to accumu
around corners. This fortuitously reflects a property of r
proteins: the relative abundance of polar residues on sur
areas with large curvatures. Figures 2~b! and 2~c! illustrate
the origin of the fourth rule on a 636 lattice. The two struc-
tures are both of the type~1...1!, that is, they begin and en
both on core sites. The dark solid links in the figures defi
‘‘templates’’ for constructings8 that, respectively, have th
maximum~12! and minimum~2! values forn10. Rules~5!–
~8! can be shown in a similar way. By explicitly applying th
above rules in the selection ofs ~as opposed to requiring a
s to be a compact self-avoiding path!, the total number of
236568 719 476 736 binary sequences inP is reduced to a
set of 537 549 candidate paths, which, relatively speaking
now only slightly greater than the exact number~30 408! of
s8 in S. This implies that the set of rules given above e
bodies the essence of the geometric requirement that gua
tees elements inS to be compact self-avoiding paths.

V. DISTRIBUTION OF THE ALLOWED STRUCTURES IN
THE HYPERCUBE

Here we show that only a small portion of the structur
in S have largen10. On anN3N square lattice, there is a

,

3-4
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total of 2N222N links andN221 among them need to b
chosen to form a structure. For the 636 case these number
are 60 and 35, respectively. For the structure shown in
2~b!, of the total number of 60 links on the lattice, 28 link
are used to define the template~that hasn10512! and 17
links, marked by filled diamonds in the figure, are forbidd
because they would form close loops or connect sites wh
already have two links. This means that to complete as
from the template, one needs to select 3522857 links from
among 60228217515 links on the lattice. Hence at mo
(7

15)56435s8 with n10512 can be constructed from the tem
plate. A similar argument shows that (14

23)5817 190s8 with
n1052 can be constructed from the template shown in F
2~c!, which has 21 predetermined links. The ra
817 190:6435 illustrates the point that the number ofs8 with
high n10 values is much smaller than the number ofs8 with
low n10 values.

We now give a heuristic argument showing that there is
approximate relation between the smallest possible H
ming distancedmin(s1 ,s2) between two structuress1 and s2
and the difference in then10 values of the two structures
Dn105n10(s1)2n10(s2); for simplicity we assume tha
n10(s1).n10(s2). For this discussion we ignore the two en
points of the structures, so that~on a square lattice! all the
segments on ans partitioned by 0-1 links have at least two
or two 1 digits. We begin by considering the case whens2
5s1 . Then bothd(s1 ,s2) andDn10 are zero. Suppose we ca
generates2 by swapping the positions of a pair of 0’s and
pair of 1’s in s1 ~while keeping in mind that in most case
such an operation would not give ans; it would give ap that
is not in S!. Thend(s1 ,s2)52 and, depending on the pos
tion of the replaced pair of 0’s ins1 , Dn1050 or 2. Any
other pair ofs2 and s1 having Dn1052 will have d(s1 ,s2)
.2. Thusdmin(s1 ,s2) is 2 for Dn1052. Similarly, if we gen-
erates2 by exchanging the positions of a pair of 0’s and
pair 1’s in s1 , for example,

~ ...0111111110...1000000001...!

→~ ...0111111000...1001100001...! ~9!

or

~ ...0111111110...1000000001...!

→~ ...0111100110...1001100001...!, ~10!

then d(s1 ,s2)54 and Dn1052 @Eq. ~9!# or 4 @Eq. ~10!#.
Again any others2 and s1 having Dn1052 or 4 will have
d(s1 ,s2).4. Thus dmin(s1 ,s2) is 4 for Dn1054. Arguing
along this line it can be shown thatdmin(s1 ,s2)'Dn10.

In Fig. 3, the logarithmic distributions of the Hammin
distances between pairs ofs8 with fixed values ofDn10 are
plotted for a 636 lattice. The relation betweendmin(s1 ,s2)
and Dn10 is clearly displayed. Notice that all distribution
peak at a Hamming distance of 15–20, with the width of
distribution decreasing monotonically withDn10.

It has already been shown that the number ofs8 with large
n10 is much smaller than the number ofs8 with small n10.
Hence the former kinds ofs8 will be even more sparsely
04192
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distributed inP than the latter kinds. Thus given an arbitra
s the chances are that most of its nearest neighbors will h
relatively smalln10’s. An s with large n10 will be farther
away from its nearest neighbors than if it has a smallern10.
This is indeed brought out in Fig. 4, where each curve pl
as a function ofn10 the number of neighborings8 in S within
a Hamming distanceRH , averaged over thoses8 specified by
n10. It is seen that so long asRH<15, s8 with largen10 has
far fewer nearby neighbors~in S! thans8 with smallern10. It

FIG. 3. The Hamming distances between pairs of all the 30
structural sequences on a 636 lattice. The vertical dashed line
indicate the minimal Hamming distances for differentDn10.

FIG. 4. Average number of neighboring structures within diffe
ent Hamming distancesRH for a 636 lattice.
3-5
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follows that s8 with large n10 will on average have large
Voronoi polytopes, hence high designabilities. Note that
approximate proportional relation betweenDn10 and
dmin(s1 ,s2) is not expected to be limited to square lattic
although the proportional constant is expected to be dep
dent on lattice type.

In Figs. 5~a! and 5~b! the logarithmic designability is plot
ted as a function ofn10 for a 636 square lattice and a 21-sit
triangular lattice, respectively. The size of each disc indica
the number ofs8 having the specificn10 and designability
and an open diamond indicates the average designabilit
all s8 having the specifiedn10. On the whole the averag
designability increases withn10 up to near the maximum
n10. For n10 near the maximum value it appears that t
heuristic argument given above breaks down, probably pa
for boundary effects, and partly because the number of st
tures with the largest values ofn10 is very small~3 for n10
514 and 24 forn10513 among the 30 408sPS on a 636
square lattice! so that statistical fluctuations become impo
tant. The designability distributions on several other lattic
were studied and the pattern shown in Fig. 5 persisted.
result is summarized in Table II, wheren10

max, the maximum
n10 andn10

peak, then10 where the largest average designabil
occurs, are given for each lattice. In all the casesn10

peak

5n10
max2261. Results for three-dimensional lattices will b

shown elsewhere.

VI. COMPARISON WITH REAL PROTEINS

It has been shown that the mathematical contents of
mean-fieldH-P model and theL-S model are essentially

FIG. 5. Designability distributions for~a! 636 square lattice
and ~b! 21-site triangular lattice. See the text for detail.

TABLE II. n10
max andn10

peak for several latices.

Lattice n10
max n10

peak

434 6 4
436 9 8
535 10 7
437 11 10
536 12 9
636 14 12

21-site triangle 12 9
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identical. The physical~or biological! interpretations given to
the two models are, however, entirely different. The me
field H-P, model is based on the assumption that hydrop
bic residues would congregate in the core as much as
sible. TheL-S, model is based on the assumption that la
residues would be excluded from the core as much as
sible. To see which model is closer to nature we compare
results of the two models with real proteins by matchi
model peptide sequences against protein sequences c
from data banks. For either model, the model sequences
the two sets of sequences among a total 26 000 000 rando
sampled 36-word binary sequences that select the m
highly designable and least designable structures, res
tively, on a 636 lattice.

We consider the frequency distributions of the set of
quences$Plul5h,l ,S,f,a,b,f8,a8,b8%, where the sub-
scripth denotes the concatenated 27 006 peptides mappe
the 15 most highly designable structures in the mean-fi
H-P model; l, the concatenated 24 134 peptide sequen
mapped to the 1545 least designable structures in the m
field H-P model;S, the concatenated 22 789 peptides mapp
to the 364 most highly encodable structures in theL-Smodel
@16#; f, the concatenated protein sequences in PDB@11#,
converted to a binary sequences based on the hydrophob
of the peptides;a, same asf, but includes only segments o
protein sequences that fold toa helices;b, same asf, but
includes only segments of protein sequences that fold tb
sheets;f8, a8, andb8, same asf, a, andb, respectively,
except that protein sequences are converted to binary
based on the volume of residues. The ten residues design
polar ~P! are: Lys, Arg, His, Glu, Asp, Gln, Asn, Ser, Th
and Cys@17# and the ten residues designated asL-type resi-
dues are, in descending order of volume, Trp, Tyr, Phe, A
Lys, Leu, Ile, Met, His, and Gln@18–20#. That theH-P and
L-S models differ in physical and biological contents
predicated by the fact that the two lists overlap poorly. T
predication will not change if the cut-off points of either o
both lists are varied slightly. The sequencesPh andPs will
be referred to as the most foldable peptides in theH-P and
L-S models, respectively.

To compare the sequences, we employ a Cartesian c
dinate representation for symbolic sequences@21#, here ap-
plied to binary sequences. LetS denote the set of 2l binary
stringss of lengthl. Given a binary sequencePl of lengthL
and a string lengthl ~we are interested only in cases whe
L@ l !, there is the set$ f l

( l )(s)usPS% of frequencies of oc-
currence of the strings in l. The frequencies may be ob
tained, say, by counting while sliding a windowl digits wide
alongl. The frequency depends on the ratio of 0 to 1 dig
in the sequence. This ratio,r l , is 0.983, 1.039, 0.553, 0.960
0.993, 0.720, 0.734, 0.917, and 0.934, respectively, for
sequencesPl , l5h,l ,S,f,a,b,f8,a8,b8. In order to
make a fair comparison of the sequences adjustments ne
be made to compensate for the disparity in the 0 to 1 rat
For this purpose we define a normalized frequencyf 8 by

f l8
~ l !~s!5~r l!ns f l

~ l !~s!, ~11!
3-6
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wherens is the number of 0’s ins. Sequences in the nor
malized frequency set$ f l8

( l )(s)% now have 0 to 1 ratios
equal to unity.

In what follows we consider only cases whenl is even,
l 52k. Let L be a 2k32k lattice with spacing 22k, andp be
a one-to-one mapping fromS to L, p:S→L by

p~s!5~x,y![S (
i 51

k

sk1 i322 i ,(
i 51

k

s i322~k2 i 11!D ,

~12!

wheres5@s1 ,s2 ,...,s2k# is a string inS and~x,y! is a site
on L. From the set$ f

8l
( l ) (s)% we define a normalized relativ

frequency distribution ofl on the latticeL:

Fl
~ l !~x,y![Fl

~ l !
„p~s!…5~ f l8

~ l !~s!2 f̄ l
~ l !!/Zl , ~13!

where f̄ l
( l ) is the mean frequency and

Zl5S (
sPS

f l8
~ l !~s!2 f̄ l

~ l !D 1/2

. ~14!

Figures 6 and 7 show the distributionsFl
(6) , l5f,a,b

andh, andl5f8,a8,b8, andS respectively. In the figures
the magnitude of the distribution is coded into the gray sc
shown at the top of the figures. From the fact that Figs. 6~b!
and 6~d! have their brightest and darkest regions, resp
tively, at generally the same locations, it is evident thatPh
@Fig. 6~d!#, the most foldable peptides in theH-P model, is
closet toPa @Fig. 6~b!#, the sequence that representsa helix
segments in real protein sequences. In comparison, altho
Fig. 6~a! looks similar to Fig. 6~b!, it is not so similar to Fig.

FIG. 6. Frequency distributions of strings of length 6 in t
sequences~a! Pf , ~b! Pa , ~c! Pb , and~d! Ph ; see text for descrip-
tion.
04192
le

c-

gh

6~d!. In particular, some of the brightest regions in Fig. 6~a!
are dark in Fig. 6~d!, and vice versa. In sharp contrast Fi
6~c!, which representsb sheet segments in real protein s
quences, is entirely different from all the other distributio
in Fig. 6.

Turning to Fig. 7, it is noticed that Fig. 7~d!, representing
the most foldable peptides in theL-S model, is very similar
to its counterpart in theH-P model, Fig. 6~d!. This is as
expected because the mathematical contents of the two m
els are essentially identical. On the other hand, Fig. 7~d! is
very dissimilar to Fig. 7~a!, which represents all protein se
quences in PDB, but with the residues partitioned accord
to theL-S model. This shows that size of the residue is n
the most dominant factor in protein structure.

The frequency distributions shown in Figs. 6 and 7 a
repeated in Figs. 8 and 9, except that the word lengthl is
now 8 instead of 6. This implies that the sequencesPl are
now examined with a finer resolution. The result is similar
the l 56 case: the most foldable peptides in theH-P model
closely resemble thea helix segments of real protein, whil
the foldable peptides in theL-S model do not resemble rea
proteins@20,21#.

The sequencesPl may be compared in a more quantit
tive manner through the overlap of frequency distribution

Oll8
~ l !

5 (
sPS

Fl
~ l !
„p~s!…Fl8

~ l !
„p~s!…. ~15!

The overlapsOll8
( l ) , for a number of pairs (l,l8) selected

from the set$h,l ,S,f,a,b,f8,a8,b8%, and forl 54;14 are
given in Fig. 10.

FIG. 7. Frequency distributions of strings of length 6 in t
sequences~a! Pf8 , ~b! Pa8 , ~c! Pb8 , and~d! PS ; see text for descrip-
tion.
3-7
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One first notices that, with the exception ofOhS
( l ) ~j in

Fig. 10!, all the overlaps approach zero as the word lengl
increases. This is so because the resolving power of
method increases withl; for sufficiently largel, the resolu-
tion becomes so large that any two sequence that does
have substantial and extended sequence identity will h
zero overlap. ThatOhS

( l ) has large positive correlatio
throughout the whole range ofl studied is expected from th

FIG. 8. Frequency distributions of strings of length 8 in t
sequences~a! Pf , ~b! Pa , ~c! Pb , and~d! Ph .

FIG. 9. Frequency distributions of strings of length 8 in t
sequences~a! Pf8 , ~b! Pa8 , ~c! Pb8 , and~d! PS .
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mathematical equivalence of theH-P and L-S models. In
Ref. @12#, the parametera in Eq. ~5! was taken to be infinity
to emphasize the steric constraint on the residues. Here
had done the same just to conform to Ref.@12#. On the other
hand, since in the present study all the structures are s
avoiding paths on a discrete lattice, the steric constra
caused by the existence of the backbone is automatic
satisfied. Therefore, so far as the intention of theL-S model
is concerned, a small and positive, but not infinite, value
a would have sufficed.

The overlapOfa
( l ) ~m! is larger than most other overlap

for much of l’s shown in the figure. This is connected to
basic fact of proteins:a helices account for almost half of th
total amount of protein sequences in PDB. The overlap dr
sharply whenl>12 because mosta helix segments are
shorter than 15 residues long.

Next in order of magnitude are the overlapsOah
( l ) andOfh

( l )

~. and d!; these have large positive values for the sma
l’s. This reveals that the mean-fieldH-P model provides a
coarse-grained description of some features of the real
teins and suggests that the basic assumption of the mod
that local residue-water interaction is the dominant cause
protein folding—is consistent with the mechanism for t
formation ofa helices. The overlaps decrease with incre
ing l for the general reason given above. On the other ha
the negative correlation shown by the negative value of
overlapObh

( l ) ~,! shows that the same assumption is inco
sistent with what causes the formation ofb sheets. Two of
the obvious reasons are: whereas mostb sheets are buried in
the interior of proteins, the mean-fieldH-P model differenti-
ates only surface from core sites but has no means of in
encing the interior structure of proteins; the stability of mo
b sheets depends on long-range interactions that are ab
in the model.

FIG. 10. Overlap of frequency distribution functions vers
word lengthl: Ofa

( l ) ~m!, Oah
( l ) ~.!, Ofh

( l ) ~d!, OhS
( l ) ~j!, Oa8S

( l ) ~n!,
Obh

( l ) ~,!, Ob8S
( l ) ~L!, Of8S

( l ) ~h!, and Ohl
( l ) ~s!. See text for the

description of the subscriptsh, l, S, f, a, b, f8, a8, andb8.
3-8
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TABLE III. Strings most and least favored in the mean-field H-P and L-S models. Strings of different lengths are ranked separat
the least favored string of length 4 is ranked 24516.

Strings most/least
favored in H-P model

H-P model L-S model
Strings most/least

Favored in L-S model

L-S model H-P model

Frequency Rank Frequency Rank Frequency Rank Frequency R

~0110! 0.4459 1 20.0468 10 ~0011! 0.3834 1 0.4272 2
~0011! 0.4272 2 0.3834 1 ~1100! 0.3693 2 0.4224 3
~0000! 20.3883 15 0.2732 3 ~1010! 20.3815 15 20.1572 11
~1111! 20.3903 16 0.0109 9 ~0101! 20.3892 16 20.1594 12

~001100! 0.4605 1 0.2694 1 ~001100! 0.2694 1 0.4605 1
~011001! 0.2746 2 0.0656 20 ~000011! 0.2694 2 0.0515 18
~100110! 0.2698 3 0.0672 19 ~110000! 0.2680 3 0.0369 23
~000001! 20.1725 62 0.0379 22 ~101010! 20.2186 62 20.1253 58
~100000! 20.1741 63 0.0385 21 ~010101! 20.2222 63 20.1234 57
~000000! 20.2694 64 0.0274 25 ~001010! 20.2224 64 20.0589 39

~00110011! 0.2101 1 0.1016 19 ~11000011! 0.2318 1 0.1875 4
~01100110! 0.2089 2 0.0541 51 ~00001100! 0.2141 2 0.1332 15
~11001100! 0.1977 3 0.1001 20 ~00110000! 0.2110 3 0.1191 23
~11000011! 0.1875 4 0.2318 1 ~00111100! 0.1684 4 20.0466 200
~00000011! 20.0927 253 0.0293 74 ~01010100! 20.0989 253 20.0401 180
~00000001! 20.1015 254 0.0301 72 ~01010010! 20.1008 254 20.0418 188
~10000000! 20.1023 255 0.0334 63 ~01001010! 20.1013 255 20.0436 194
~00000000! 20.1060 256 0.0088 94 ~00101010! 20.1017 256 20.0379 172

~0011001100! 0.1682 1 0.902 14 ~0011000011! 0.1837 1 0.1400 4
~1100001100! 0.1574 2 0.1830 2 ~1100001100! 0.1830 2 0.1574 2
~0110000110! 0.1548 3 0.1335 3 ~0110000110! 0.1335 3 0.1548 3
~0011000011! 0.1400 4 0.1837 1 ~1001100001! 0.1230 4 0.1211 8
~1111000000! 20.0408 1021 0.0220 214 ~0101001010! 20.0441 1021 20.0173 693
~1110000000! 20.0414 1022 0.0508 58 ~0100001010! 20.440 1022 20.0102 528
~0000000000! 20.0426 1023 20.0219 773 ~0101010101! 20.0444 1023 0.0268 893
~1111111111! 20.0427 1024 20.0358 914 ~1010101010! 20.0446 1024 0.0250 869
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The negative value of the overlaps betweenPS and
Pf8,a8,b8 ~h, n, and L, respectively! indicates that the
highly foldable peptide sequences in theL-S model are anti-
correlated with the real protein sequences forl<6 and un-
correlated for largerl. This confirms what is already seen
Figs. 7 and 9: that size effect is not the dominant fac
determining the formation of a stable protein conformatio
Finally, the large negative values of the overlapOhl

( l ) ~s! for
all values of l tested simply verify that the most and lea
foldable peptides in theH-P model are highly dissimilar
however they are compared.

VII. DISCUSSION

Because conformation designability in protein structu
refers to the natural selection of a very small number
topological classes of native conformations over the vast
tal number of classes, it is a topic that can be suitably stu
in coarse-grained settings such as in lattice models. Prev
lattice model studies have firmly established that indeed o
a very small number of~model! structures, out of a very
large total number, are highly designable. It has not b
shown why this phenomenon should arise, and to w
classes of native conformations would the highly designa
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structures correspond. In this paper, taking advantage of
geometric picture for the designability problem given in R
@7#, namely, that designability of a structure in the mean-fi
H-P model is proportional to Voronoi volume of that stru
ture in a certain hyperspace, we showed that uneven des
ability arises because a type of structures—those with
largest numbers of surface-core switchbacks—are very r
and that their nearest neighbors in the hyperspace are o
similar rare structures. Hence such structures have the la
Voronoi volumes and the highest designabilities. Because
hyperspace of structures has properties independent o
two-dimensional lattices used in the present study, this c
clusion is expected to stand for other more realistic lattic
Indeed, the same effect was observed on a three-dimens
lattice based on an icosahedron@22#.

The identification of structures having the largest numb
of surface-core switchbacks with the conformation classe
observed proteins entails certain physical and biological
plications. Proteins choosing such structures as native c
formations would tend to have ratios of numbers ofH-type
and P-type residues close to being unity. Indeed, the av
ages ofH to P ratios for all the protein sequences in PDB, f
the segments that folds toa helices and for those that fold t
b sheets, respectively, are all very close to unity. Prote
3-9
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having structures with many surface-core switchbacks
expected to be energetically favored. For such prote
would by and large have alternatingP and H residues that
match the pattern of the structures, and the outward-poin
force exerting on theP-type residues and the inward
pointing force exerting on theH-type residues togethe
would make the protein especially sturdy.

On the mean-fieldH-P lattice, high-designability struc
tures tend not to have long sequences of contiguous sites
are purely core sites or purely surface sites~see Table III in
Appendix!, because such structures tend to be involved
degenerate cases—peptides with corresponding contig
subsequences ofP- or H-type residues~or S- or L-type resi-
dues in theL-S model! would easily have two or more suc
structures as ground states—and for that reason the pe
and the degenerate structures would have been excl
from the set of allowed peptides and acceptable structu
respectively. This practice is justified biologically: peptid
and conformations involved in degeneracy~in a coarse-
grained sense! are presumably filtered out by evolution b
cause they would make for functionally unreliable protei
In fact, relatively few proteins in PDB have sequences c
taining long segments of contiguousP- or H-type residues
whose native conformations have long segments of cont
ous surface or buried sites@23#. Such native conformation
are presumably generated by the finer details of interresi
interactions, and the conformation classes to which they
long would not have counterparts among the high designa
ity structures given by simple, coarse-grained lattice mod

Because structures on square lattices are not rea
enough for direct comparison with empirically observed
pological conformation classes, we compared model pept
folding into such structures, namely, the most foldable p
tides, with ~binarized! peptide sequences in the PDB. If th
highly designable structures are rich in surface-core swi
backs then the highly foldable peptides should be rich inH
andP singlets andH-H andP-P doublets. In Table III in the
Appendix it is seen that the highly foldable peptides in t
mean-fieldH-P model are rich inH-H-P-P ~or P-P-H-H! but
poor in H-P ~or P-H! repeats. This reflects an artifact of th
square lattice. On such lattices, the shortest surface-
switchback motif is surface-surface-core-core~or core-core-
surface-surface! repeats while surface-core repeats do not
ist ~see first two ‘‘constraints’’ in Sec. IV!. We showed that
the most foldable peptides match well with those segme
of protein sequences in PDB that fold intoa helices but
match relatively poorly with segments that fold intob sheets.
a helices are most commonly amphipathic and lie on
outside of their host proteins. With 3.6 residues per tu
sucha helices tend to change fromH to P residues with a
periodicity of three to four. That is, they should have a p
dominance of alternatingH-H andP-P doublets intersperse
with H andP singlets. Indeed, of all peptide sequences t
code a helices in the PDB, 24% ofH to P ~or P to H!
changes are after singlets, 36% are after doublets and
are after triplets. This implies thata helices are relatively
rich in H-H-P-P repeats and this could explain why the mo
foldable model peptides~in the mean-fieldH-P model!
match well witha helices.
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The situation is different with respect tob sheets. The
most common domain structures in proteins area/b domains
that consist of a central group ofb sheets surrounded bya
helices. Theb sheets in these domains will not be rich
eitherH-H-P-P or H-P repeats. In the second large group
protein domain structures, comprised of antiparallelb sheets,
some of the sheets are on the outside of the protein and t
are rich inH-P repeats but not inH-H-P-P repeats. A super-
family of proteins containing suchb sheets has member
such as the human plasma retinal-binding protein a
b-lactoglobulin, a protein that is abundant in milk. Of a
peptide sequences that codeb sheets in the PDB, 33% ofH
to P ~or P to H! changes are after singlets, 28% are af
doublets, and 18% are after triplets. Hence the most folda
model peptides would match poorly withb sheets.

If our computation were carried out on a lattice that
lowed structures with surface-core repeats then the folda
model peptides would have better matched sequences co
for b sheets. Still, because the only interaction taken i
account in the mean-fieldH-P model is the hydrophobicity
of the residues, whereas the formation of the majority ob
sheets depend on other details of interresidual interacti
we cannot expect the most foldable model peptides to ha
good match with the majority ofb sheets irrespective o
what lattice was used.

If hydrophobicity but not interresidual interaction is in
deed the main force that drives the formation ofa helices,
then we can better understand whya helices are formed on a
time scale of the order 1027 s @24,25#, right after the collapse
of the protein to globular shape, and why it takes ten tim
longer for the formation ofb sheets, which involves interac
tions between residues distantly separated on the prim
structure. This scenario is consistent with the finding in
recent statistical analysis of experimental data: local cont
play the key role in fast processes during folding@26#.

We have shown that the mathematical content of theL-S
model, which partitions residues into large~L! and small~S!
ones, was essentially the same as that of the mean-fieldH-P
model. Hence the binary composition of the most folda
peptides in the two models are quite similar~see Table III in
the Appendix!. However, because not all large~small! resi-
dues are hydrophilic~hydrophobic!, the most foldable pep-
tides in the two models are mapped to significantly differe
sets of~binarized! protein sequences. The result is that t
most foldable peptides in theL-S model do not match well
with any subset of proteins in the PDB. This means t
steric hindrance effect arising from different sizes of the re
dues is not the main driving force for protein folding.
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APPENDIX

Here we show how the two lattice models differ by com
paring strings of several lengths that have the highest
lowest frequencies of occurrence, called the most and l
favored strings, respectively, in the sequencesPh and PS ,
which are the concatenated sequences of the mostly hi
foldable peptides in the mean-fieldH-P andL-S models, re-
spectively. In Table III, the first and sixth columns list su
strings. Strings of different lengths are ranked separately
their normalized relative frequency of occurrence@Eq. ~14!#;
the string with the highest~lowest! frequency is ranked 1
(2l). By definition, an unfavored string has negative fr
quency. Table III shows that the most favored strings
quite well correlated in the two models but the least favo
strings are not so. It is seen that among tetramers the rep
~0011! are the most favored pattern in both models, lo
ar,

d
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I.
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repeats of 1’s and 0’s are the least favored string pattern
the H-P model and~01! is the least favored string repeat
theL-Smodel. The reason for this is clear:~0011! repeats are
the favored pattern in most highly designable structures
both models and each of the~peptide! strings~0000!, ~1111!,
and ~0101! is separated from~0011! by the greatestframe
independentHamming distance. There is an additional disi
centive for a peptide to have~01! repeats in theL-S model.
On a square lattice such repeats do not appear in a stru
sequence, hence, withL-type residues~represented by 0 dig
its! strictly forbidden on core sites~represented by 1 digits!,
a peptide string with 01 repeats can only occupy a struc
sequence composed entirely of surface sites. This gives
peptide zero binding energy in theL-S model. The situation
is different in theH-P model. There a peptide string with 0
repeats can occupy a structure sequence with 0011 rep
and nonzero binding energy.
ys.

ei,

s of
the

M.

,

se-
type
via-
in
the

n,
@1# C. Anfinsen, Science181, 223 ~1973!.
@2# Y. Duan and P. A. Kollman, Science282, 740 ~1998!.
@3# K. A. Dill, Biochemistry 24, 1501~1985!; H. S. Chan and K.

A. Dill, Macromolecules22, 4559~1989!.
@4# E. I. Shakhnovich, Phys. Rev. Lett.72, 3907 ~1994!; H. S.

Chan and K. A. Dill, Proteins24, 335~1996!; C. Micheletti, F.
Seno, A. Maritan, and J. R. Banavar, Phys. Rev. Lett.80, 2237
~1998!; F. Seno, C. Micheletti, A. Maritan, and J. R. Banav
ibid. 81, 2172~1998!.

@5# P. E. Leopold, M. Montal, and J. N. Onuchic, Proc. Natl. Aca
Sci. U.S.A.89, 8721~1992!; P. G. Wolynes, J. N. Onuchic, an
D. Thirumalai, Science267, 1619~1995!; J. N. Onuchic, P. G.
Wolynes, Z. Luthey-Schulten, and N. D. Socci, Proc. Na
Acad. Sci. U.S.A.92, 3626~1995!.

@6# H. Li, R. Helling, C. Tang, and N. S. Wingreen, Science273,
666 ~1996!.

@7# H. Li, C. Tang, and N. S. Wingreen, Proc. Natl. Acad. S
U.S.A. 95, 4987~1998!.

@8# E. I. Shakhnovich, Curr. Biol.8, R478~1998!.
@9# J. D. Bryngelson and P. G. Wolynes, Proc. Natl. Acad. S

U.S.A. 84, 7524 ~1987!; O. M. Becker and M. Karplus, J
Chem. Phys.106, 1495~1997!; A. Gutin, A. Sali, V. Abkevich,
M. Karplus, and E. I. Shakhnovich,ibid. 108, 6466~1998!; P.
Garstecki, T. X. Hoang, and M. Cieplak, Phys. Rev. E60, 3219
~1999!.

@10# C. T. Shih, Z. Y. Su, J. F. Gwan, B. L. Hao, C. H. Hsieh, a
H. C. Lee, Phys. Rev. Lett.84, 386 ~2000!.

@11# Protein Data Bank ver. 91, released Jan. 2000; H. M. Berm
J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig,
N. Shindyalov, and P. E. Bourne, Nucleic Acids Res.28, 235
~2000!.
.

.

i.

n,

@12# C. Micheletti, J. R. Banavar, A. Maritan, and F. Seno, Ph
Rev. Lett.80, 5683~1998!.

@13# N. E. G. Buchler and R. A. Goldstein, Proteins34, 113~1999!.
@14# H. Li, C. Tang, and N. S. Wingreen, Phys. Rev. Lett.79, 765

~1997!.
@15# M. R. Ejtehadi, N. Hamedani, H. Seyed-Allaei, V. Shahreza

and M. Yahyanejad, Phys. Rev. E57, 3298~1998!.
@16# It turns out that in theL-S model, because anL ~i.e., large!

residue is strictly forbidden—whena5`—to occupy a core
site, for a same set of sample peptides, the encodabilitie
highly encodable structures are generally much lower than
designabilities of highly designable structures inH-P model.

@17# A. Radzickaet al., Biochemistry27, 1664~1988!.
@18# A. A. Zamyatin, Prog. Biophys. Mol. Biol.24, 107 ~1972!.
@19# G. D. Rose, A. R. Geselowitz, G. J. Lesser, R. H. Lee, and

H. Zehfus, Science229, 834 ~1985!.
@20# Wen-Hsiung Li, Molecular Evolution ~Sinauer Associates

Sunderland, MA, 1997!, p. 14.
@21# Bai-Lin Hao and Wei-Mou Zheng,Applied Symbolic Dynamics

and Chaos~World Scientific, Singapore, 1998!.
@22# B. H. Wang and H. C. Lee~unpublished!.
@23# In the peptide obtained from concatenating all the protein

quences in PDB, the average length of contiguous same-
residues is approximately 1.8 residues, with a standard de
tion of 1.1 residues. The total number of residues involved
same-type contigs longer than four residues is about 9% of
total number of residues.
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