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Noise-induced resonances in the Hindmarsh-Rose neuronal model
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The behavior of neurons under stimulation is often described by means of dynamical systems having
bifurcations from fixed points to limit cycles. In these models, the presence of noise can induce irregular
crossings of the bifurcation threshold leading to intrinsic oscillations of the system variables that describe the
detection of the otherwise subthreshold signals by the neuron. In this paper, the response of the Hindmarsh-
Rose neuronal model to noisy signals is investigated and a variety of noise-induced resonances are described.
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I. INTRODUCTION

From a functional point of view, sensory neurons a
mainly transducers, i.e., devices that operate by conver
signals from the external world into trains of stereotyp
action potentials or spikes that flow along the neural pa
ways to the central processing centers in the brain. The
tection and coding of external signals by neuronal cells h
become the subject of intense research in the last dec
both from an experimental and a theoretical point of vie
Some time ago, it was suggested by Longtin, Bulsara,
Moss that the stochastic resonance~SR! scenario could be o
importance in neurobiology as it provides a basis for und
standing the effect of noise in the process of transduct
coding of information by sensory neurons@1#. Those authors
argued that, in some well defined sense, the response
stimulated neuron could be described by the dynamics
particle in a bistable potential under the combined action
forcing and noise and showed that some aspects of this
namics reproduce the experimental behavior found in cer
neurons of the sensory system. The suggestion that the
phenomenology could be relevant to the efficient detec
and coding of information by sensory neurons produce
huge flow of publications aiming to explore the response
neuronal models to the cooperative action of perio
~mostly monochromatic! forcing and noise@2#.

The detection of external signals by neurons occurs b
cally through a threshold process. Each time the sig
crosses some activation threshold the neuron fires a s
and then returns to its resting state after a refractory per
The importance of SR phenomenology to the detection
signals by neurons lies mainly in the so-called subthresh
regime, in which noiseless stimuli delivered to the cell a
unable to elicit neuronal responses. In presence of a fi
amount of noise, however, a subthreshold signal beco
able to cross from time to time the activation threshold a
thus spike trains are produced by the neuron signaling
detection of the stimulus. In fact, it has been shown b
experimentally@3# and theoretically@4# that the addition of
noise enhances the ability of sensory neurons to pro
weak input signals.

Some years ago, Sigeti and Horsthemke@5# and later
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Gang et al. @6# showed that in dynamical systems havin
saddle-node bifurcations coherent motion can be stimula
by adding a finite amount of noise. Later on, Longtin tackl
the same problem, this time by using the FitzHugh-Nagu
~FHN! neuronal model@7#. This author showed that a finit
level of noise enhances the coherence of the system’s
sponse and termed this phenomenon autonomous stoch
resonance~ASR!. On the other hand, Pikovsky and Kurth
coined the term coherence resonance~CR! to describe the
noise-induced enhancement of coherence in the behavio
excitable systems@8#. Since then, CR has been found in th
Hodgkin-Huxley model of spike generation@9#, in a model
of oscillatory pattern formation under the effect of enviro
mental noise@10# and in an excitable electronic circuit@11#.

The excitable dynamics of the Hindmarsh-Rose~HR!
model comes from the existence of a Hopf bifurcation givi
rise to a limit cycle past an activation threshold@12#. Be-
sides, it has been shown that the HR model presents a s
tive sensitivity to the forcing frequency: signals with fre
quency within the range of 15–60 Hz have been found
induce spiking at weaker amplitudes than those outside
range@13#. The aim of this paper is to analyze the respon
of the HR model to a periodic forcing term embedded
noise. In Sec. I, the basic features of this model are prese
in order to stress its potentialities for the study of sign
transduction by neurons. In the following sections, we us
stochastic version of the model to analyze the noise-indu
enhancement of coherence in its response. Some conclu
are drawn at the end of the paper.

II. THE HINDMARSH-ROSE MODEL

Let us consider a dynamical system described by the
of equations

ẋ5y2ax31bx22z1I 01I 1 cos~vt !,

ẏ5c2dx22y,

ż5r @s~x2x0!2z#, ~1!
©2002 The American Physical Society15-1



e

r

f

t r
c

re
d
.e
rs
u
o

y
he
nu

a

,
le
a
e
-
t
illa

ca
re

l
-

R
c
el
en
d

ry

do

e
em
c

cy

ike
g

e of
sig-
e

h

nal
a
ory

ignal
n-

of

of

m
r,
a

he
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where a, b, c, d, r , s, and x0 are parameters. We hav
fixed the values of these constants toa51, b53, c51, d
55, r 50.006,s54, andx0521.6 in order to compare ou
results with previous studies on the same model@13,14#. In
these equations, the variablex(t) represents the difference o
electrical potential across the neuron’s membrane andy(t)
describes the dynamics of the resetting mechanism tha
stores the polarity of the membrane after the firing of ea
action potential. The additional variablez(t) allows the pre-
cise tuning of the interspike interval. The parameterI 0, giv-
ing the intensity of a constant~tonic! signal that is delivered
to the neuron from the external world, is usually conside
in the SR scenario as the bifurcation parameter of the
namical system. The original Hindmarsh-Rose model, i
the system~1! with I 150, was introduced by those autho
in a slightly different form in an attempt to describe acc
rately the firing pattern produced by a particular class
neurons@12#. Since then, it has been extensively studied b
number of people, which have found that it displays a rat
rich dynamics that include chaotic behavior. When a si
soidal forcing term is applied to the right of Eq.~1!, the HR
model displays a wide variety of different behaviors th
have been studied by Wang and co-workers@14#.

The linear stability analysis of the HR model withI 150
shows that, for the values of the parameters stated above
stable fixed point interchanges its stability with a limit cyc
solution through a supercritical Hopf bifurcation occurring
I 05I 0

(1)51.32. The period of the limit cycle just beyond th
bifurcation point isTLC'153 ms, thus producing an intrin
sic oscillation frequency ofvLC540.9 Hz. The coheren
spike train emitted by the system as a result of this osc
tion is presented in panelA of Fig. 1. If we increase the
strength of the external signal, the system develops a cas
of bifurcations leading to chaos, each one of its stages
resenting a different type of bursting.

The response of the HR system to a sinusoidal signa
frequencyv and amplitudeI 1 clearly shows frequency sen
sitivity, that is, the minimum value ofI 1 to provoke limit
cycle behavior depends on the forcing frequencyI 1

min5f(v).
In fact, this is not an exclusive characteristic of the H
model; a very similar relation between the forcing frequen
and I 1 can also be found, for example, in the FHN mod
although in this case frequency sensitivity is not as evid
as in the HR model. For this case, this behavior is showe
the diagram displayed in Fig. 2. In the parameter spacev-I 1,
the upper boundary of regionA corresponds to the
frequency-sensitivity relationship forI 050.8 @13#. Values of
I 1 within regionA do not drive the system to the oscillato
regime. On the other hand, within regionsB andC, periodic
firings take place at the same frequency~regionC) or at half
the frequency of the forcing signal~regionB). RegionE is a
transition zone where a periodic response of the system
not take place. In physical terms, the boundariesAC andAB
describe the enhancement of the system’s sensitivity
monochromatic signals with frequencies within a rath
broad interval around the intrinsic frequency of the syst
vLC . Observe that the minimum of the sensitivity curve o
curs at a frequencyvMÞvLC . In Fig. 3, a smaller portion of
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thev-I 1 plot is displayed in order to show that the frequen
of the noise-induced spike trainvout as revealed, for in-
stance, by the position of the first peak of the intersp
interval histogram~ISIH!, is clearly dependent on the forcin
frequency. In regionC, the frequency of firing closely
matches the value of the forcing frequency, the respons
the system thus being synchronized 1:1 to the external
nal. On the other hand, in regionB, the system ceases to b

FIG. 1. Some spike trains generated by the HR system wita
51, b53, c51, d55, r 50.006, x0521.6, andI 150. In panel
A, the response from the purely deterministic case to a tonic sig
just beyond the bifurcation point (I 051.32) is presented showing
completely regular spike train generated by the intrinsic oscillat
behavior of the system. In panelsB, C, and D, sections of the
noise-induced spike train generated by a noisy subthreshold s
(I 051.31) are plotted for three different values of the noise inte
sity (D50.05, D50.15, andD50.6 for panelsB, C, and D, re-
spectively! to show graphically the existence of an optimal value
D that makes the system to fire more coherently (D50.15).

FIG. 2. The response of the forced HR model in the vicinity
the Hopf bifurcation. The continuous line between zonesA and C
and zonesA andB describes the frequency sensitivity of the syste
to a sinusoidal signal. RegionD corresponds to bursting behavio
whereas in regionE the system fires nonperiodically. There is
narrow region just near the main boundaryAB where the firing is
irregular. This region is not depicted here for the sake of clarity. T
arrows mark the frequencies of the limit cycle (vLC) and of the
maximum sensitivity (vM).
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able to follow the external forcing and it halves its frequen
by skipping one of each two firings. In regionE, the analysis
of the spike train clearly reveals that there is not a defin
frequency in the response of the system after the onset o
external signal.

Returning to the diagram displayed in Fig. 2, it is wor
discussing the nature of the response when the amplitud
the sinusoidal signal is increased so that the sys
leaves the frequency-locked regime. At every forcing f
quency, if the forcing amplitude is increased, there appea
second boundary separating the region of spike trains wi
single frequency from a region where bursting takes pl
~regionD).

III. THE STOCHASTIC HR MODEL

Let us now turn our attention to a stochastic version of
sinusoidally forced HR model, namely,

ẋ5y2ax31bx22z1I 01I 1 cos~vt !1j~ t !,

ẏ5c2dx22y,

ż5r @s~x2x0!2z#, ~2!

wherej(t) is a Gaussian white process with

^j~ t !&50, ^j~ t !j~s!&5Dd~ t2s!. ~3!

Let us consider first the case withI 150. For I 0,I 0
(1) , the

action of noise renders unstable from time to time the oth
wise stable fixed point by driving the system to cross
bifurcation threshold. It can be said, then, that the prese
of noise activates the system’s intrinsic oscillation associa
with the limit cycle. In fact, this is the origin of the sub
threshold detection capabilities of this neuronal model a
the scenario associated with terms such as CR or ASR. C
evidence of this intrinsic oscillation can be obtained from

FIG. 3. Relationship between the frequency of the forcing sig
v in and that of the spike trainvout . When we consider the fre
quency of the response to different values ofv along the dotted line
~i.e., at a fixed value ofI 1), we obtain that in regionA the system’s
response follows the forcing and fires with the same frequency
regionB, however, the system is unable to follow the forcing and
obliged to halve the frequency of firing. In regionE the system no
longer responds periodically to the external signal.
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presence of the broad peak in the noise-induced spec
depicted in Fig. 4. The precise location of this peak a
makes clear that this noise-induced oscillation virtually c
incides withvLC .

If in addition to noise, we introduce a sinusoidal signal
subthreshold intensity into the system, a resonance must
place between this signal and the noise-induced intrinsic
cillation, leading to an entrainment of the system’s respo
to the signal. This resonance, which will take place when
frequency of the external signal matches that of the no
induced limit cycle

v5vLC , ~4!

has been studied in Ref.@15# for the FHN model. Under
these circunstances, the temporal structure of the spike t
as shown, for example, by the signal-to-noise ratio~SNR! or
by the ISIH, will reflect the periodic character of the dynam
ics beyond the bifurcation threshold. Thus, as pointed ou
Refs. @15,16# this resonant process is closely related to
CR and ASR scenarios. Characteristically, this resonance
curs always at the frequency of the limit cycle, which has
weak dependence on the noise intensity. In fact, the enha
ment of coherence in the spike train does not follow in t
case the usual stochastic resonance phenomenology;
rather a purely mechanical resonance induced by the p
ence of noise. As long as the noise allows the subthresh
signal to cross the bifurcation threshold, a resonance ta
place producing an optimal stimulation of the system’s
sponse at the frequency of its limit cycle. Furthermore,
change of the noise intensity does not lead to a correspo
ing change in the location of the resonant peak. In orde
illustrate the characteristic feature of this noise-induced re
nance we have computed the SNR for several values of
forcing frequency aroundvLC and two different values ofD.
Figure 5 clearly shows that the location of the maximum
the SNR does not depend on the noise strength. It shoul
noticed, however, that those maxima are obtained at a
quency that is close, but not equal tovLC . This result is due
to the difference between the frequenciesvM andvLC .

There exists a completely different scenario in the int
action of noisy sinusoidal signals of subthreshold intens

l

In

FIG. 4. Power spectrum of the noise-induced spike train. T
broad peak nearvLC indicates the existence of a periodic comp
nent of the noise-induced firing.
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J. P. BALTANÁS AND J. M. CASADO PHYSICAL REVIEW E65 041915
with the dynamics of excitable systems like the FHN or t
HR models. It arises at frequencies far below that of the li
cycle and gives rise to the true SR phenomenology in
kind of dynamical systems. Here, the two time scales t
play a role are the mean time needed by the noisy signa
reach the bifurcation point~a kind of Kramers’ time!, and the
period of the external forcing term. The important point
that the SR scenario does not involve the time scale ass
ated with the period of the intrinsic limit cycle of the system
In fact, it is now well known that the occurrence of SR
excitable systems only needs the conjunction of a sinuso
signal with a noise and a threshold. When a weak~subthresh-
old! signal is applied to the system, the noise makes
system to cross the threshold from time to time so that
firings are to some degree coherent with the signal. When
noise intensity is too small, there are too few firings
sample a cycle of the signal, thus allowing a very poor tra
duction of the signal by the excitable system. By contra
when the noise intensity is too large, the firings become
random and again the timing of the spikes will reflect ve
poorly the spectral characteristics of the sinusoidal sig
The SR marks the existence of an optimal noise intensit
which the transduction process is maximized. The charac
istic feature of the SR in excitable systems is the match
between the mean escape time from its resting state to
thresholdt(D) and half the period of the external signal

t~D !'
p

v
. ~5!

Thus, for a given value ofI 0, this matching occurs at a fre
quency that depends on the intensity of noise. As for mod
ate values of the tonic signalt grows rapidly whenD de-
creases, the SR will usually take place at small frequen
with respect to the frequency of the system’s limit cycle

v!vLC , ~6!

i.e., in the adiabatic regime. The dependence of the pos
of the resonant peak on the noise intensity is shown in Fig
We have computed the SNR for the same two values oD

FIG. 5. Mechanical resonance induced by noise in the
model. Circles correspond toD50.2 and squares toD50.4. The
location of the peak of the SNR curves is independent on the n
intensity as discussed in the text.
04191
it
is
t

to

ci-
.

al

e
e

he

-
t,
o

l.
at
r-
g
he

r-

es

n
6.

used previously, and for several different frequencies ver
ing Eq. ~6!. This time each value ofD leads to a different
location of the SNR peak in accordance with Eq.~5!. It is
worth noticing that the behavior of the SNR curves for d
ferent values ofD is inverted with respect to that of th
previous case; there SNR values computed forD50.2 were
higher than the corresponding ones forD50.4, whereas now
the opposite is found. This is a clear evidence of the differ
roles played by the noise in both cases. In the SR scen
the noise plays a constructive role leading to an increas
the SNR as the noise intensity is increased~up to a certain
limit !. For the purely mechanical resonance induced
noise, the increase of the noise intensity only degrades
response of the system.

IV. CR IN THE HR MODEL

In this section, we will consider how the presence o
finite amount of noise can force the system to behave m
coherently in absence of a forcing signal. Noise-induced
herence enhancement will appear when some noisej(t) is
added to a subthreshold tonic signal (I 0,I 0

(1)) so that the full
stimuluss(t)5I 01j(t) becomes able to cross occasiona
the bifurcation point. Then, the response of the system to
stimulus will be a train of irregularly spaced spikes, each o
of them lasting approximately the period of the limit cyc
~excursion timete) and being separated from the precedi
one by the time of escape fromI 0 to the thresholdI 0

(1) ~ac-
tivation timeta). The full duration of each processts will be
the sum of these two timests5ta1te and the spike train will
have some temporal structure reflecting the competition
these two time scales.

To quantify the structure of the spike train we will sta
using the coefficient of variation of the ISIH as given, f
example, by@8#

R~D !5
AVar ~ ts!

^ts&
. ~7!

To calculate the distribution functions forta , te, and ts we
have solved the system of stochastic equations~2! for I 1
50 by means of a stochastic Runge-Kutta algorithm@17#,

se

FIG. 6. Stochastic resonance in the HR model. The frequenc
which the SNR peaks is now a function ofD. Circles stand forD
50.2 and squares forD50.4.
5-4
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NOISE-INDUCED RESONANCES IN THE HINDMARSH- . . . PHYSICAL REVIEW E 65 041915
thus producing a number of spike trains allowing the cal
lation of the statistics of activation and excursion time
Typically, we have usedN550 spike trains, each one havin
a very big number of firings.

The CR arises from the different dependence on the n
strengthD of the statistical properties of the activation a
excursion times. For weak enough noise strength, the ac
tion time decreases rapidly withD according to the Kramers
formula ^ta&; expD21 and, besides, Var(ta)'^ta&

2. Thus,
in the limit of small noise,ta@te , and the system will spend
large intervals of time around the fixed point before be
able to fire a spike. Thus, the temporal structure of the sp
train will be dominated by the large activation time a
R;1.

For large noise intensity, the signal will cross the thre
old many times during the performing of a single limit cyc
and so, the time between succesive spikes will be domin
by the relative fluctuations of the excursion time. Betwe
those asymptotic regimes there is a crossover wherR
reaches its minimum. Near the optimal noise intensity e
time ~in mean! the signal reaches the threshold, it finds t
system variable completing a limit cycle and ready to s
another one and, then, the coherence of the resulting s
train will be maximal. This implies that CR will occur to
sufficiently large noise strength so that excursion time do
nates the temporal structure of the spike train but not v
large so that its fluctuations remain small.

In Fig. 7, a plot ofR as a function of the noise strengthD

FIG. 7. Coherence resonance in the HR model. The coeffic
of variationR and the parameterb are plotted as functions ofD for
I 051.31, showing a minimum and maximun, respectively, at
optimal noise intensityDc50.15.
v.
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is presented for the stochastic HR model. It is apparent
there exists an optimum value of noiseDc at which the co-
herence of the spike train is maximal. When comparing t
curve with those obtained for the FHN model@8# we can
appreciate that both models behave analogously, a fact th
not surprising given that their firing mechanism is associa
with the same type of bifurcation.

The temporal structure of the spike train can also be a
lyzed by means of spectral techniques. The existence
more or less defined time scale will be associated with
presence of a peak in the spectrum because the inverse
noise-induced period should be a noise-induced freque
Thus, another measure of coherence can be defined a
product of the height of the peakH to its quality factorQ

b5HQ, Q5
vp

Dv
, ~8!

wherevp is the frequency of the peak andDv is its width at
half maximun amplitude@6#. In the inset appearing in Fig. 7
a plot ofb is presented to show its dependence on the no
intensity. Here, too, an optimum value of noise appe
which coincides roughly with the one determined by usi
Eq. ~7!.

V. CONCLUSIONS

In this paper we have investigated the response of an
citable system to monochromatic signals and noise by me
of a model of relevance in neurobiology. The use of t
Hindmarsh-Rose model has allowed us to study the
quency sensitivity of the response to noise. We have fo
that the sensitivity curve has some features that have
mained undetected in previous studies. In addition, we h
made a distinction between the different possible scenario
the interaction of noise and subthreshold monochromatic
nals in this model, which to our knowledge was lacking
the literature. For a system subjected to noise alone, we h
found the existence of a noise strength that optimally
hances the coherence in the response.
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