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Analytical characterization of adhering vesicles
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We characterize vesicle adhesion onto homogeneous substrates by means of a perturbative expansion around
the infinite adhesion limit, where curvature elasticity effects are absent. At first order in curvature elasticity, we
determine analytically various global physical quantities associated with adhering vesicles: height, adhesion
radius, etc. Our results are valid for adhesion energies above a certain threshold, that we determine numerically.
We discuss the haptotactic force acting on a vesicle in the limit of weak adhesion gradients. We also propose
a few methods for measuring adhesion energies and we suggest a possible way of determining the size of
suboptical vesicles using controlled adhesion gradients.

DOI: 10.1103/PhysRevE.65.041912 PACS nuni$)er87.16.Dg, 68.35.Np, 68.03.Cd

[. INTRODUCTION W tend to produce vesicle rupture during the adhesion pro-
cesg 5], owing to a strong tension induced in the membrane
When phospholipids are dissolved in an aqueous solutiori8].

almost all the molecules condensate into bilayers. Lipid bi- To determine the shape and free energy of an adhering
layers are formed by two contacting monolayers of oppositevesicle, one must take into account the competition between:
orientation, in which the hydrophilic heads of the molecules(i) the adhesion energy gaifii) the constraints on the total
are located at the sides of the structure, the hydrophobic tailiembrane are& and the total enclosed volumé and(iii)
being shielded from contact with watgt]. As there is a the free energy cost associated with the curvature elasticity
prohibitive energy cost associated with their free borderspf the membrane. The latter is described by a free energy
these bilayers form closed objects, which are called vesicleslensity proportional to the square of the local mean curva-
For some biological studies, vesicles are used as models tdire[10]. For lipids, the corresponding bending rigidityis
the membrane of living cell]. They also have applications of the order of 101 J=25gT at room temperaturgll].
as encapsulation vectors for drug delivdB]. Their effi-  Refined vesicle models take into account a constraint on the
ciency as drug delivery vectors is linked to their permeabil-difference between the areas of the two monolay&s3, or
ity, which can be affected by adhesion phenomé¢dd  an elasticity associated with [iL3]. Physically, this arises
Vesicle adhesion on a solid substrate, followed by its rupturédrom the fact that lipids are not significantly exchanged be-
and fusion, also provides a simple technique for obtainingween the two monolayers during typical experimental times.
supported membrang5] that can be used for the design of It is not known at the present time whether this constraint is

biosensorg6]. significant for adhering vesicles: to simplify, we shall disre-
Adhesion phenomena between a lipid bilayer and a subgard it in our approach.
strate can be divided into two categori€s: Specific adhe- The shapes of axisymmetric adhering vesicles can be de-

sion between a particular host protein and a receptor on thiermined by functional minimizatiof8,14]. However, due to
substratd7]; this kind of adhesion generally implies a pro- nonlinearities in the equilibrium equations, exact solutions
cess of molecular recognition between a receptor and aan only be determined numerically. In the asymptotic case
ligand, and is common in biological systenis) Nonspecific ~ of infinitely strong adhesionW—o (or equivalently x
adhesion between the membrane’s lipids and the substrate;0), the problem is easily solved analyticall4]: the
mediated by universal interactions, e.g., van der Waalgquilibrium shapes are spherical caps, whose features are
forces. Here, we focus on nonspecific adhesion, which can beictated by the geometrical constraints only. In this paper we
described by an adhesion potentféithat represents the free characterize the adhesion of vesicles in the case of strong but
energy gain per unit area of contact. Typical valueswof finite adhesion, by extracting analytical corrections with re-
range from 104 mJ/nf to 1 mJ/n? [8]. Note that the de- spect to the infinite adhesion case. We determine analytically
scription of adhesion using a contact potential is approxithe first-order corrections to various physical observables
mate, because van der Waals forces are actually long rangead we discuss their limit of validity by a direct comparison
and because membranes may fluctuate in the vicinity of thevith exact numerical results.

substrate: adhering vesicles actually never strictly come into The first-order corrections with respect to the infinite ad-
contact with their substrate. Membrane—substrate separatiohgsion limit originate from the existence of a strongly curved
range from 1 nm for the strongest valuesWif{6], to about region at the border of the adhesion diskee Fig. 1[15].

50 nm for the weakest adhesiofy. The highest values of We shall refer to this region as the “contact-angle region,”
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Az at first order the free energy of adhering vesicles and we
) discuss haptotaxignotion ipduced by an adhesion gradient

[ [22]. In Sec. IV, we determinaumericallythe global observ-
ables and we discuss the range of validity of the correspond-

ing first-order expansions. Finally, in Sec. V, we summarize
4 0 H S our results and we discuss some possible applications, in-
~ . .
TR PTTTTTITIT I T A TS p cluding methods for measuringy.

L 7\'1 Il. DESCRIPTION OF ADHERING VESICLES
In most experimental situations, although vesicles are
slightly permeable to water, their voluméis strongly fixed
by the osmotic pressure of the various solubilized ions to
which the membrane is impermealjg]. We shall suppose
that this volume constraint remains satisfied for adhering
FIG. 1. Definition of the global observables associated with anvesicles. The areA of vesicles is also fixed to a high accu-
axisymmetric adhering vesicle. The vesicle’s shape, which was cakacy: solubilized lipids are almost inexistent and the area-
culated numerically, corresponds to a rather deflated situation istretching modulus kg, which is of the order of
which the “contact-angle region” is broad and not well defined. 100 mJ/nd>W, cannot significantly affect the area con-
When adhesion is stronger, the vesicle’s shape resembles aspherig@,laint[g]_ It is traditional to introduce a dimensionless pa-

cap (dashed ling with a strongly curved rim at the foot of the gmetery, the reduced volume, defined by
“contact angle” (no discontinuity of the membrane’s normal

V

by analogy with wetting phenomen6]. The shape of this T @
region has been determined in Rdf$7,18 using an open §7T(A/47T)3/2
membrane description, i.e., no volume constraint and an ex-
ternally imposed tension acting along a fixed direction mim-__ . . . L
icking the asymptotic contact angle. Imposing explicitly theThIS quant_lty O<v=1 describes how much the vesicle is
volume constraint, we recover the same shape for th eflgted .W.'th _respect to a sphere=t1). Due to the con-
contact-angle region. Our approach allows us to analyticallftramts’ It IS f|x_ed. . .
describe various observables associated with the adherirl;;e\( an'd A being fixed, the free energy of an adhering
vesicle(height, radius of adhesion, etc. sicle is given by

Standard measurements of adhesion potentidlisare L
bas_ed on the determmqmon_ of the shape of the cor_ltact-angle F=—WA+ % dAZ k(cy+¢,)2, )
region, e.g., by reflection interference contact microscopy 2
(RICM). Indeed, the radial curvatueof a detaching mem-
brane yieldsw through the equilibrium relation=\2W/x  Wherec; andc, are the two local principal curvatures of the
[14,19,2Q. In practice, it is difficult to precisely measuce ~ membrane is the Helfrich bending constaft0], Aqgn is
and it is more efficient to fit the contact-angle region usingthe area of contact between the vesicle and the substrate, and
RICM [18,21]. Available models rest, however, on linearized W is the contact potential. As discussed in the Introduction,
equations for contact angles close#o[18]. Our nonlinear we simply model the adhesion by an energy proportional to
analysis allows not only to fit the contact-angle region andhe contact area. In principl&, should also contain a Gauss-
determine contact potentials even for contact angles far frorian curvature termkc,c,, however, we discard it since its
m, but also provides means of determinMgby measuring integral over the membrane is constant for a given vesicle
the various global observables. topology, according to the Gauss-Bonnet theorgd3].

Our paper is organized as follows: In Sec. Il, we introduceTherefore, there are only two dimensionless parameters in
the model used to describe the elasticity of vesicles and thethe problemwv and x/(WA).
adhesion onto homogeneous substrates. We also define vari- In the entire paper we shall restrict ourselves to axisym-
ous global observables relevant to the adhesion geometrghetric vesicle shapes. We define the following global observ-
Section Il contains the results of our analytical calculations:ables(see Fig. J: we call H the height of the vesicle mea-
in Sec. Il A, we recall the asymptotic limit of infinite adhe- sured on the revolution axis, ahdhe radius of the adhesion
sion; in Sec. Ill B, we recall the general equations describinglisk. The adhering area is thédgy= 7L2. In the regime of
the equilibrium shapes of adhering axisymmetric vesicles; instrong adhesion, vesicles almost take the shape of a spherical
Sec. Il C 1 we calculate the shape of the contact-angle reeap. In order to precisely define a “contact angle” even in
gion at first order inyx/(WA); in Sec. lll C 2, we determine the case of weaker adhesion, we introduce the sphere that is
the contact-angle extrapolation leng{fi8,21; in Sec. osculatory to the membrane at the point intersecting the
[l C 3, we determine the first-order expansions, in powerrevolution axis. We calR its radius and the angle at which
series ofyx/(WA), of the various global observables asso-it intersects the substrateee Fig. 1 Finally, we define the
ciated with the vesicle’s shape; in Sec. Ill C 4, we calculateextrapolation length\; as the distance between the point
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where the vesicle detaches from the substrate and the inter- Az
section between the osculatory sphere and the substrate. ;
We shall denote throughout by the index zero all the
guantities referring to the limitV—oo, where the vesicle
exactly takes the shape of a spherical cap. Therefore
Ho, R, 6y, andL, are the height, radius, contact angle,
and adhesion radius of the corresponding spherical cap.

IIl. ANALYTICAL RESULTS i 7/ IM S S

Strong adhesion corresponds to the situation where the giG, 2. Definition of the parameters used in the determination of
adhesion energy gain is very large compared to the elastigie equilibrium shape of an adhering vesicle.
energy of the vesicle. Since the energy of freely floating
vesicles is of orderm [8], even for deflated vesicles, this As for the two Lagrange mu|tip|iers, they can eas”y be found
condition can be expressed as by using the analogy with wetting droplets: the Young rela-
tion y,y cosO+ yg = ygy Yields

WAS k. ()
w

It corresponds, for a given vesicle, to strong enough contact Eozm, (7)
potentialsW, or, for a givenW, to large enough vesicles. In 0
this situation, elasticity can be treated as a first-order correc- dth | | _ / iald
tion with respect to the asymptotic limit of infinite adhesion. 21d the Laplace lamP=2y,y /R, yields
We shall, therefore, first review the limit/— o [14]. )

5 23, 2Wsin 6, ®

O: —_— — S

A. Infinite contact potential W Ro Lo(1+cosbyo)

In this case, adhesion is the only relevant contribution to _ S )
the free energy of the system, ands the only dimension- B. The equations describing finite adhesion

less parameter of the problem. Taking into account the two |et us now consider the case of a finite contact potential
geometrical constraints, and formally setting O, the shape W. The equilibrium shapes are those minimizing the sum of
of the adhering vesicle is deduced from the minimization ofthe bending free energy and the adhesion free energy, subject
the following functional: to the area and volume constraints. Considering axisymmet-
ric shapes, we parameterize their contour by the tangent
angle ¢(s), wherese[0,s,] is the arc lengthsee Fig. 2,

such that as=0 the membrane leaves the substrate and at

2 is the Lagrange multiplier associated with the area CONs—g, it attains the revolution axis. Althougi(s) alone is

straint andP, is the Lagrange multiplier associated with the gyficient to describe the vesicle’s shape, it is more conve-
volume constraint. Equatiof#) can be rewritten as nient to also introduce the distancés) to the revolution
axis[24]. In the following, we shall denote by a dot deriva-
tion with respect tos. The two principal curvatures ae

= (in the plane of Fig. Pandc,=(siny)/r (perpendicular

to the plane of Fig. 2 Enforcing the constraints by Lagrange
multipliers, the equilibrium shapes can be obtained by mini-
mizing the following functiona[24]:

Fi=—WA+30A+PoV. (4)

Fi=(30— WA+ 3 o(A—A24) + PoV. (5)

This functional is identical to that of a liquid droplet wetting
a flat substrate, with the correspondentg—W— yg_

—7Ysv, 20—y andPo——AP, inwhichys., ysv, v

have their usual meaning aXP is the drop’s excess pres-
sure [16]. This implies that infinitely strongly adhering s ..
vesicles and liquid droplets have the same ensemble of equF*[r(S),¥(s),s;]= 7T (0)3(2 —W) + f L(r,r,4,4,y)ds,
librium shapes, although they are described by different sets 0

of physical parameters. Consequently, the equilibrium shapes (%8
in the asymptotic limitw— oo are spherical caps. where
The major physical difference with the case of liquid
droplets is that the contact angles are not fixed by surface 1 sinu\ 2 P
tensions, but rather by the geometrical constraints acting on L=2mr _K( s sing +34 =rsing
the vesicles. The relation between the contact asigland 2 r 2
the reduced volume [Eg. (1)] can easily be deduced from :
simple geometry8] +2my(s)(r—cosy). (9b)
8—9 cosfy -+ cos 30, " Here ¢(s) andr(s) are regular functions satisfying
v= .
2(2—2 cosfy+sir? 6)? #(0)=0, ¥(s)=m, and r(s)=0, (10
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while r (0)=L ands; are arbitrary. The above conditions are For an equilibrium solution}{ does not depend os
necessary for the vesicle's shape to be closed and in order to The boundary equilibrium equations are obtained by set-
avoid discontinuities of the membrane’s normal. The paramting to zero the variatiorSF}, in Eq. (11b). Taking into ac-
etersX andP are the Lagrange multipliers associated with count Eqs(10) yields 8(0)=0, S¢(s,) = — #(s,) 8s,, and

the area and volume constraints, respectively. The functio%r(S )=—1(sy) 8. Therefore

¥(s) is a field of Lagrange multipliers enforcing the condi- 1 oL

tion r = cosy for everys: this allows to treat (s) and () SFp="H(s1)8s1+2m[(Z—W)r(0)—y(0)]5r(0).
as independent functions in the first variationFof while (15
ensuring thatr(s) and ¢(s) effectively parameterize the ) ]
same shape. Since ds, and 6r(0) are independent, we obtain
) - . .
The first variation ofF* can be written as H(s,)=0, (163
% Sy L d dL _
o = [Mas [ 5 - 3. = outs (-W)r(0)=(0). (160
0 (0"(// ds (91/!) ¥(s)

Since H(s) is a constant, Eq(16g implies H(0)=H=0.

oL d L This yields £ k#2(0)+ y(0)/r (0)— = =0. Hence the above
+(W_ d_s;) or(s)|+oF5. (118 conditions can be rewritten as
with H=0, (174
1.
aL aL aL ~ ) 2(0) =
SFp =——(S1) dih(s1) — 5 kY (0)=W. (17b

— —(0)6¢Y(0)+ —(sy)dr(s
P (M()zﬁ() ar(l) (s1)

s Note that Eq.17b) is the familiar curvature boundary con-
ok B dition for adhering membranes and thin elastic plates
ar (0)r(0)+2m(2=W)r(0)r (0)+ L(s) 5. [14,19. Together with Egs(10), these equations form the
boundary conditions of the problem. Note that we have five

boundary conditions for a fourth-order system sirgzeis

l@Iso an unknown.

(11b

The membrane’s equilibrium equations are obtained by se

ting to zero the coefficients afy(s) and or(s) in 5F*
C. First-order corrections to the limit W infinite

0= - ysing:  Prcosy N pcosyr  sin2y In order to compute the first-order corrections to the limit
=y Kr 2K r or2 W infinite, we shall determine the shape of the contact-angle
(129  region in the case of strong adhesion. To this aim, we first
integrate once the membrane equilibrium equations by re-
L1 (.. sy placing Eqg.(12b) by the integral conditior-{=0,
o=y—§K< WP — 2 )—E—Prsinz//. (12b)

= 75i”¢+ Pr cosw_ wcos¢+ sin(2)
Kr 2k r 212

, (183
The constraintr =cosy, which determines the Lagrange
field y(s), constitutes actually a supplementary differential

i i i ici : r P 1 (., sir
equa_lt|on to be fl:J|fI||Ed. _It is worth noticing _that it can be = S+ orsing—=«| $2— 4 . (18b)
obtained by varyind-* with respect toy(s), since CoSys 2 2 r2
oL d L . .
—— ( —) =0e 1 =Cosy. (13 r=cosy. (180
. . _ . 1. Shape of the contact-angle region
By analogy with Lagrangian mechanissplaying the role of The equilibrium problem embodied in Eq48) cannot be
time, there exists, therefore, a conserved Hamiltortdn  solved analytically. As evidenced by the boundary condition
given by[24] (17b), the width of the contact-angle regi¢see Fig. 1is of
orderx/W; hence the condition of strong adhesion can be
0L oL 9L expressed as
H=L- lﬂ—.—r—.—’y—.
dp ar  ay
e
1., sify) vy P e=rVwst (19
=2mr| - k| Y — + —cosy—2— =rsiny|.
2 r2 r 2

whereL=r(0) is the adhesion disk’s radius. This condition
(14 refines Eq.(3). We, therefore, start with the estimates
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Y(s)= \/z:x O(1), (209 2

r(s)=Lo[1+0(1)], (20b) Y

3=3¢[1+0(1)], (200

P=Po[1+0(1)], (200) 3 » .0

where o(1) indicates terms that tend to zero withand
O(1) indicates terms of order unity. It follows that in Eq.
(18b) all the terms in the brackets are equalWbx O(1)

FIG. 3. Dimensionless universal shape of the contact-angle re-
gion. For a given contact angl&,, the actual shape, in units of

except the last one which equaléx 0(62). We. therefore. = Vi(1+coshy)/W, is the part of the curve comprised between the

. - - . . horizontal asymptote and the substrate, the latter being the tangent
neglect it, which amounts to neglecting the orthoradial prin- . )
. . . to the curve oriented at the angg with respect to the asymptote.
cipal curvature (sig)/r; thus Eq.(18b) can be rewritten as

the size of the vesicle has no influence on the shape of the
[1+0(1)]. contact-angle region. Yet, the constraint on the reduced vol-
21) ume keeps an influence since it determifgs

Scaling lengths tb= / x(1+ coséy)/W, and introducing a

Plugging this expression of(s) into Eq. (184 and using nhormalized frameX,Y) rotated at an anglé, with respect
Egs.(20), we obtain to the frame (,z), the shape of the contact-angle region

assumes the universal expression

_ Lo [y Po o1
7(5)_E// ot 5 Losiny—z ki

| sinyg 1., PoLo . PolLocosy _
B KCOSlﬁ(_EKlp 2ot S'n‘/’)+ P X(S)=2 tanhS-S, (263
gcosy  sin2y Y(S)=2[1-(coshS) 1], (26b)
- +——|[1+0(1)]. (22 . , ,
Lo 2 whereS=¢s/| is the normalized arc length. For a given con-

tact angled,, the actual shape of the contact-angle region is
All the terms in this equation are equal W« 1x0O(1), obtained by putting the substrate tangent to this shape, at the
except the last two terms that are equalMa X O(e) and  angle 6, with respect to the horizontal asymptote of the
Wk~ 1XO(€?), respectively. Using the expressions of thecurve, and then rescaling lengths with respedt, tas shown
zeroth-order Lagrange multiplie ) and (8), we obtain fi- in Fig. 3. This shape is the same as that found in REf],

nally which was established using an open membrane description
and by imposing the asymptotic direction of the membrane at
. 1. W sing—sinéy the angled, through an externally imposed tension.
= — —y? - v - 7 0
v 2"/1 tanyg+ Kk (1+cos6y)cosys [1+o(D)].

(23 2. Contact-angle extrapolation length

Neglecting theo(1) term provides us with a simplified equa- A useful characteristic of the contact-angle region, used in
g g p p d tRICM experiments in order to determine the raid/ «

tion describing the contact-angle region in the regime o 8,21, is theextrapolation length, (see Fig. 1 From the

strong adhesion. This equation can easily be integrated On(%%)ove calculation, valid in the regime of strong adhesion, we

by introducing the intermediate variah}é/(2 cosy) and us- deduce
ing the boundary conditiofiL7h):

* = sin 2k 69
oo 2N Lrcostoty) - n= [ Ccospas [ o as= ot (27
K 1+cosfy 0

This expression holds even for deflated vesicles and agrees

Its solution is . . i : .
with the expression previously obtained in R¢18] for
W nearly spherical vesiclesr(— p<<1).
Y(s)=4 arctantanh s\/ —————| |— 6y, (25
4x(1+cosby) 3. First-order corrections to the global observables
where we have shifted the arc lengihby a constant, the Let us determine, in the regime of strong but finite adhe-

detachment point still corresponding #o=0. Since the ra- sion, the global observables characterizing the vesicle’s
diusL of the adhesion disk has disappeared, the problem hashape#, R, L, H (see Sec. Il for their definitionsTo this
actually become two dimensional, as if the rim of the purpose, we match the contact-angle region to the rest of the
contact-angle region were translationally invariant. This im-vesicle. This is done by expressing the area and volume con-
plies that in the present regime of strong but finite adhesionstraints
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A=Ay SA, (28a

V=Vop— 8V, (28b)

where A = mR?[2(1—cosé)+sir? 4] is the area of the

spherical cap osculatory to the vesicle plus the area of its

bounding diskV o= 3 7R3 2(1— cosf)—sir? gcosd] is the
volume enclosed by this spherical cap, ahdndV are the
actual vesicle’s area and volume, respectively.

In the regime of strong adhesiodA can be evaluated
from the results of Sec. Il C 1 by calculating the difference

between the area associated with the approximate contact-

angle shape given by E@25) and that associated with its
asymptote
ds)

© Siny
+ :
N fo sin 6y

5A:277L0f ds—2mL,
0

—4 %0 _ cot? \/ZKL —AXO 29
= wcosf—cot? wWho=AX (e), (29

whereLy=Rgsin . As for 6V~ SA \, it follows that it is
equal toV X O(€?) sinceh;=L X O(e€) [see Eq(27)]. Note
also that since in the limitW—o the vesicle’s shape is ac-
tually a spherical cap, we havA=A.{Ry,6,) and V
=VeadRo, 6o)-

Setting = 65+ §6 and R=Ry+ R, we obtain the first-
order correctionsSd and SR by solving the systeni28) to
first order ine. This yields

0
Z(Sin?O—l (2+cosbo) 5
— _ 2
56 R, \ iy tOled, (30a
0
2(1—sin—0)sin200
SR= 2 V2L O(Ree).  (30B)
(1—cosfy)> W o=
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FIG. 4. Coefficientd (solid line) andl; (dashed ling of the
expansion(31g of the radiusL of the adhesion disk, as a function
of the reduced volume of the vesicle.

cog 6y/2)
1+sin(6y/2) "

|1:_\/E

(319

Note thaté, is linked to the prescribed reduced volumef
the vesicle through expressid). In Fig. 4 we have plotted
lo andl; as a function ob.

As for H, since the osculatory spherical cap is tangent to
the top of the vesicle, we have simgh/=R(1—cosé). Us-
ing Egs.(30) we obtain

B hython/ =0 = 32
\/_K_ ot \wa WA/ (329
with
h _Ho 1—-cosé, 32b
0=~ Va(a+costy)’ (320
6o
h1:—2\/§(1—3|n?). (320

The plots ofhy andh, as a function ofy are shown in Fig.

These results show that, in order to compensate the area cdstNote thathy andl, stem from simple geometrical consid-

SA of the contact-angle region, the vesicle’s shape flatten
(6R<0) with respect to the asymptotic case of infinite ad-
hesion.

We are now able to determine the first-order corrections to

L, the radius of the adhesion disk, andHpthe height of the

vesicle. Since the intersection between the substrate and the

osculatory spherical cap, described By, ¢), is a circle of
radiusR sin 6, we havelL =R sin 6—\,. Using Eqs.(30) and
(27), L can be written in the dimensionless form

[ K K
with
| = Lo [ 1+cosb, 31b
" JA NV m(3+cosby) (31b

srations, whileh, andl, originate from curvature elasticity
effects.

T T T [ T T T 1
ho, by [ /
0 7

7
L Prge
-
-
L PA ]
P
-
- / -
-
-
2 _” —
-
L ]
/
[ NN NN N NN NN S M|
0.0 0.5 1.0

FIG. 5. Coefficientsh, (solid line) and h; (dashed ling of the
expansion(32a of the total height of the vesicle, as a function of
the reduced volume of the vesicle.
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I e L can be assimilated to its equilibrium shape on a substrate
fo i P . with a constant adhesion potentidequal to the average of
L S 4 W in the real adhesion disk. The force exerted on the vesicle
~ .
| ~ _ is then
~
4 - \\ —]
R f=— 2 W= foA+ =, Lol X lvw
i S~ ] Toow T [T 2N w e Tt lw) T
I o (36)
ok = where V is the gradient on the substrate. Sinfgeand f,
T have opposite signs, the curvature elasticity decreases the
0.0 0.5 " 1.0 haptotactic force with respect to the infinite adhesion limit.

Moreover, for a giverVW the haptotactic force is not con-
FIG. 6. Coefficientsf, (solid line) and f, (dashed lingof the  stant but actually increases with.

expansion(35a of the free energy of the vesicle, as a function of  Tg check the order of magnitude of the haptotactic force,
the reduced volume of the vesicle. let us consider a 1Qum vesicle A=10"° m?) with «
=10"1° J, subject to a contact potential varying uniformly
from W=10"% mJ/nf to W=10"3 mJ/nf on a distance
We now turn to the determination of the analytical devel-=1 mm. Assuming a reduced volunee=0.77 correspond-

4. Free energy of adhering vesicles

opment of the total free energy of the vesicle ing to 6,=m/2 [see Eq(6)], we obtain a force varying from
) 0.26 pN to 0.29 pN (8% variationWith a simple Stokes
F=—mL"W+Fg, (33 law, this corresponds to velocities of the order ofudm s *

Note that in infinite adhesion this gradient would give rise to

whereF is the curvature free energy. The latter is the sum 2 force equal to 0.3 pN.

of a contributionF, ; arising from the contact-angle region
and a contributiorF, , arising from the top spherical cap.
Since both the size and the curvature radius of the contact-
angle region are of ordeyx/W, Fg , is of orderL «/W
X k(VW/k)?=WL2X O(€). As for Fg ,, it can be neglected We expect the asymptotic expansions given in Secs.
since it is of orderk X O(1)= WL2><O(62) as for a free 1lIC3 and llIC4 to be accurate in the regime of strong
vesicle. adhesion. To check their validity, we have compared them
In the strong adhesion regime, the orthoradial curvaturavith the exact values of the vesicle’s observables, obtained
(siny)/r of the contact-angle region is negligible as justified by numerically integrating Eqg12) and (13).

IV. COMPARISON WITH THE EXACT NUMERICAL
RESULTS

in Sec. Il C 1. Therefore, using E§24), we obtain In order to avoid numerical instabilities when approach-
ing the axis of revolution {=0), we have chosen to inte-
1—sin(6y/2) grate the equations starting from the top of the vesisle (
Fer= WKLOJ YPds=2mLo\2kW Tcog6,2) =s,, see Fig. 2 To this aim, we impose the four initial
(34) conditions
Using the expression of given by Eq.(31a, we finally H(s1)=0, (373
obtain
r(s;)=0, (370
ot —rof = 35 -0 37
WA~ PN wa Ol wa) (353 ¥(s)=0, (379
with Y(s1)=Co, (379
1+ cosf, where(s) is the first integral of the equilibrium equations
fo=—5—— (35  given by Eq.(14) andcg is an arbitrary initial curvature. The

O 1
3+cosfo integration proceeds backwards, starting frems; (the ac-

tual value ofs, is arbitrary, and is stopped wheg= 7,

f :8\/;1_3”‘(00/2) (350 meaning that the substrate has been reached. To span more
! V3+ cosé, ' easily all the values of the dimensionless parameteY «

for a given reduced volume, we proceed as follows. For a
The plots offy andf in terms of the reduced volumeare  given fixed value of the initial curvaturey, we vary the
shown in Fig. 6. Lagrange multipliez in Egs.(12) until the solution has the
As an application of this result, let us determine the forcedesired reduced volume. During this search, the other
acting on an adhering vesicle in the presence of weak adhé-agrange multiplierP, is fixed to a value(positive for
sion gradients: haptotaxi®2]. If the dynamical deforma- weakly adhering vesicles and negative for strongly adhering
tions during the movement are weak, the shape of the vesickesicle$ assuring that the size of the vesicle is of order one
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0.0 01 & 1x10™

FIG. 7. Numerically calculated radiusof the adhesion disk as ~ FIG. 9. Same as Fig. 8 but for the total heighbf the vesicle.
a function ofx/(WA) (solid lines for vesicles of reduced volume
v=0.77 andv=0.93, along with its asymptotic expansid¢8l)  adhesion limitL, by more than 30%: significant deviations
(dashed lines The vertical bars indicate the threshold at which the from the infinite adhesion limit are, therefore, predicted with
relative error between the exact valuelofind its analytical esti- 4 good precision by the asymptotic formuBd).
mate reaches 5%. For vesicles of reduced volume in the range 625
o ) ) <0.95, we have determined the threshold foi(WA) at
in dimensionless units. Once the correct valu&dias been  \yhich the relative error between our analytical approxima-
obtained, we determine the area of the vesicle and its curvajons and the exact results reaches 5%. In Fig. 8 we show
ture at the point)=, where it touches the substrate. The thjs threshold for the adhesion disk’s radiusin Fig. 9 for
corresponding value &V A/ « is obtained through the bound- the total vesicle's height, and finally in Fig. 10 for the
ary condition(17b). The set of all the solutions for a fixed  gerivatived F/dW of the free energy with respect to the ad-
and all values oWA/« corresponds to a trajectory in the hesion energy. The latter quantity is linked to the haptotactic
(2,¢o) plane that has to be reconstructed by varyiggand  force (36).
2. Sometimes, a giveq, corresponds to two or more values  Typically, the 5% threshold occurs for valuesf(WA)
of %, which yields different values oiVA/« for the same  comprised between 16 and 103 (see Figs. 8-10 Let us
reduced volume. o consider the case of “giant vesicles” since they are optically
To exemplify our results, we show in Fig. 7 the radlus  ghservabletypical size=10-100 um). Supposing an area
of the adhesion disk, as a function of the reduced inversgf ~10® ,m? and a bending rigidityk=10"1° J, the 5%
adhesion energy/(WA), for vesicles of reduced volume  threshold occurs for values &¥ in the weak adhesion range
=0.77 (or 6o=m/2) andv=0.93. High adhesion energies 10-5-10"* mJ/nf. Our analytical estimates seem, there-
correspond to low values of/(WA), where our asymptotic  fore able to describe the adhesion of giant vesicles up to the
formula (31) closely fits the exact numerical results. The |owest values oW experimentally accessible. For smaller
vertical bars indicate the threshold above which the errogesicles, the threshold is more limitative, as it corresponds to
associated with the analytical approximation is larger thamigher adhesion energi@4. Note also that in the case of
5%. At this thresholdl_ differs nonetheless from its infinite weak adhesion’ the picture could be quantitative'y different
for vesicles filled with a fluid denser than the outside me-
dium, because of gravity effects.

=
o

o

31 ] 1 ] ] | 1
110 04 0.6 0.8 /
FIG. 8. White area: region of thev(x/WA) plane where the 1x10” | 1 | 1 L 1
analytical estimate of the radilisof the adhesion disk differs from 0.4 0.6 0.8
its exact numerical evaluate by less than 5%. Above the dashed line

(not fully showr) the axisymmetric oblate shapes correspond to an  FIG. 10. Same as Fig. 8 but for the derivatile/dW of the free
unphysical self-crossing of the membrane. energy of the vesicle with respect to the adhesion endigy
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V. DISCUSSION AND POSSIBLE APPLICATIONS exact position of which is always slightly ambiguous. The
extrapolation length measurement relies on the existence of a
well defined asymptote of the vesicle’s profile close to the
ai:_ontact—angle region: it is, therefore, suitable only for the
trongest adhesions. The expressiond. agind H found in

Taking into account the effect of membrane elasticity to
first order inyx/(WA), we have analytically determined the
global observables characterizing adhering vesicles. Our ¢
culation is based on the fact that if adhesion prevails oveP

elasticity, most of the elastic contributions to the free energ ec. Il C 3 allow one to en\(lsgge different mgasurements of
are located in the “contact-angle region.” We have numeri-"V: based omglobal characteristics of the adhering vesicle. To
cally determined the region of validity of our analytical ex- this @aim, one needs to know also the vesicle’s total area and

pansions, in they,x/WA) parameter space, corresponding volume. They can be either directly determined by imaging a
to a 5% maximum error. It turns out that for “giant vesicles” Side view of the vesiclg25], or inferred by osmotically de-
(typical radius 10—100um), this region comprises practi- flating a spherical vesicle of known radius in a controlled
cally all the accessible adhesion surface enefgieBesides, way. The fact thatW can be determined through two inde-
our analytical estimates correctly describe significant deviapendent measurements @ndH) allows to better estimate
tions with respect to the infinite adhesion limit. the experimental errors and to validate the model. Moreover,
We have throughout assumed that the akend volume  such global measurements are complementary to the above-
V of the vesicle were strictly fixed, while vesicles actually cited local ones, since they are more adapted for measuring
possess small but finite stretching elasticity and osmotigveaker values ofW. The precision of the measurement
compressibility. It is easily shown, however, that a self-should increase a#/ decreases, as long as one remains in-
consistent choice of the Lagrange multipli&rsandP yields  side the authorized zone of Figs. 8 and 9. In fact,ibtoo
the same equilibrium solution in the presence of arbitrarystrong,L andH saturate, while fokV too weak the analytical
stretching and osmotic potentials. It follows that our expreseypansions ot. andH lose their validity. However, as we
sions of 56, SR, L, andH remain correct provided th@®  haye seen, the lowV limitation is not relevant for “giant
andV are the actual area and volurfttat now depend on yegicles.”
W). Finally, the haptotactic forc€36) suggests the possibility
Measurements of the contact potentfdlare usually per- to determine the size of suboptical vesicles by measuring
formed by RICM imaging of the contact-angle region theijr velocity of migration on a substrate presenting a con-
[18,21. The value ofW is inferred either from the local trolled adhesion gradient, supposing a linear viscous friction
curvaturey(0) through Eq(17b), or from the extrapolation law. Fitting the evolution of the vesicle’s velocity as a func-
length \; through Eq.(27) (an approximated formula valid tion of W allows to determine the vesicle’s area and volume,
for m— 6,<1 is actually used18]). The precision of the provided that the dependence of the friction coefficient on
former measurement is limited by the fact that the vesicle’sx/(WA) and v is known. The latter could be determined
curvature varies abruptly close to its detachment point, theising giant vesicles of known area and volume.
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