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Force and kinetic barriers to initiation of DNA unzipping
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A semimicroscopic model of the binding of the two nucleotide strands in a double-stranded DNA is used to
describe the effects of applied tension on strand unpairing. We show that the model describes strand separation
by elevated temperature, applied torque, and applied force. In particular, we show how the interactions respon-
sible for stabilizing the double helix against thermal denaturation determine the'12 pN force threshold for
DNA strand separation. The larger rigidity of the strands when formed into double-stranded DNA, relative to
that of isolated strands, gives rise to a potential barrier to unzipping. We show that this barrier results in a'250
pN force barrier opposing the beginning of strand separation. The thermal-fluctuation-assisted ‘‘tunnelling’’
through the barrier is then analyzed using instanton calculations. The resulting kinetics of unzipping initiation
is shown to be consistent with solution-phase strand dissociation experiments, and can explain results of two
recent unzipping experiments done using atomic-force microscopy.
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I. INTRODUCTION

Genetic information in cells is stored in double-helic
B-form double-stranded DNAs~dsDNA!. The hydrogen
bonded and stacked bases are well protected in the interi
dsDNA. However, separation of the two strands is a key p
of both the ‘‘reading’’ of DNA sequences~transcription! and
DNA replication @1#. During transcription, a transien
‘‘bubble’’ of single-stranded DNA~ssDNA! is formed, to al-
low the enzyme that makes a RNA copy of the DNA s
quence to access the DNA bases. During replication, the
DNA strands are permanently separated, each strand
serving as a template for the synthesis of a new strand.

In biochemistry experiments, dsDNAs are routinely co
verted to separated ssDNAs by ‘‘melting’’ at elevated te
perature'80 °C; this approach uses thermal fluctuations
simply overwhelm thekBT scale base pairing and bas
stacking interactions that stabilize the double helix at ro
temperature. This is not how strand separation is driven
cells. Instead, DNA strands are separated by the applica
of force, or in chemical terms, by enzymes whose inter
tions with DNA make strand separation thermodynamica
favorable at ambient temperature.

Therefore, it is of basic biophysical interest to analyze
separation of DNA strands by force. A further motivation
provided by recent micromanipulation experiments, wh
accomplish precisely this feat. Essevaz-Roulet, Bockelm
and Heslot have shown that the two strands of a dsDNA
be pulled apart if a force'12 pN is applied@2#. Fluctuations
of the ‘‘unzipping’’ force about this mean corresponded
DNA sequence: slightly higher forces were shown to cor
spond to DNA regions with higherGC densities. This resul
was in accord with the fact thatGC-rich sequences hav
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stronger base-pairing interactions thanAT-rich sequences
causing them to thermally melt at higher temperatures@3#.

The micromanipulation experiments of Essevaz-Rou
Bockelman, and Heslot use optical microscopy, detect
force via observation of the deflection of a glass fiber
which one of the DNA strands is attached. That experim
does not observe the beginning of base unpairing since
distance between the two single strands extremities ca
be controlled on the Angstro¨m scale. However, similar ex
periments using atomic-force microscope~AFM! cantilevers
are, in principle, able to probe the unzipping of the first fe
base pairs. The initial opening of a ssDNA bubble can
expected to involve a large free energy barrier due to
large cooperativity of DNA strand separation known fro
thermal studies of melting. Thus, one can anticipate that
double helix will be stable against unzipping forces larg
than the macroscopic unzipping threshold force of 12 pN,
some finite amount of time.

In this paper, we present a semimicroscopic theory t
allows these effects to be described@4#. We begin by review-
ing the current experimental situation~Sec. II!, and by dis-
cussing our main theoretical results relevant to those exp
ments~Sec. III!. We then discuss the basic features of DN
unzipping using a simple mean-field theory~Sec. IV!, in-
cluding prediction of the modification of the 12 pN unzip
ping threshold by application of torque.

In Sec. V, we present a theory to describe unzipping at
base-pair scale, based on previous work@5–7# that studied
strand separation by temperature and torque. In Sec. VI,
analyze the equilibrium properties of this model, and sh
that the'12 pN threshold for complete unzipping emerg
in our detailed model with no fitting or calibration beyon
that done previously for temperature-torque unzipping@5#,
and that the basic unzipping behavior of our detailed mo
matches that of the simple mean-field theory.

In Sec. VII, we focus on the use of this model to analy
the force-distance behavior of the initial stages of unzippi
we find a large force barrier opposing initial double he
unzipping of'250 pN height. Although this barrier is high

de
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FIG. 1. Sketch of unzipping and stretching experiments; arrows indicate applied force.~a! Adjacent 58-38 unzipping experiment of
Bockelmann, Essevaz-Roulet, and Heslot@2#. ~b! Untethered strand removal, followed by annealing and subsequent unzipping of hairp
studied by Rief, Classen-Schaumann, and Gaub@11#. ~c! Opposite 58-58 unzipping experiment of Strunzet al. @10#. ~d! Spontaneous therma
opening of hairpin under zero force as studied by Bonnet, Krichevsky, and Libchaber@9#.
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it is also of base-pair dimensions in width, and can
crossed by thermal fluctuation on experimentally relevan
mescales. The basic kinetic theory for this is presented
Sec. VIII, and then the calculations of kinetics of unzippi
initiation are presented in Sec. IX. The connection of th
results to studies of spontaneous strand dissociation obse
for molecules in solution@8,9#, and to the kinetics of unzip
ping as probed by AFM experiments@10,11#, are discussed in
Sec. X. Conclusions are presented in Sec. XI.

II. DNA UNZIPPING EXPERIMENTS

In the experiment of Essevaz-Roulet, Bockelmann, a
Heslot @2#, the strands of al-phage DNA~the chromosome
of a virus that infects the bacterium Escherichia coli, of co
tour length'16 mm, '48 500 base pairs~bp!! in aqueous
buffer @phosphate buffered saline~PBS! at pH 7, 150 mM
NaCl, T525 °C# are pulled apart@Figure 1~a!#. One strand
was attached to a glass microscope slide and the other
'3-mm-diameter polystyrene bead. The tip of a glass m
croneedle is attached to the bead, and serves the fo
measuring cantilever. Bending of the needle is simply
served using the microscope on which the experimen
assembled; calibration of the needle stiffness allows the
served deflection to be converted to force.

The DNA is then forced to open by a lateral displacem
of the microscope slide, and the needle deflection is obta
by analysis of video frames. The stiffness of the micronee
k51.7 pN/micron, and the translational velocit
v540 nm/s, result in a loading rate~rate of force increase!
l5kv50.06 pN/s. When the force reaches'12 pN the un-
zipping of the DNA begins. The force is measured as a fu
tion of the displacement, and varies between 10 and 15
depending on sequence. The experimenters estimate tha
are able to resolve variations of base-pair sequence on
'102 base-pair scale.

In AFM experiments of Rief, Clausen-Schaumann, a
Gaub@11#, l-DNA ~48 502 bp!, poly(dA-dT) ~5100 bp!, and
poly(dG-dC) ~1260 bp! DNAs were studied, at room tem
perature in aqueous buffer~10 mM Tris 150 mM NaCl, 1
mM ethylenediamine tetra-acetic acid~EDTA!, pH 8!. These
molecules were attached to a gold substrate and to an A
tip, and then stretched longitudinally, at loading rates in
range of 200 to 6500 pN/s@Fig. 1~b!#. The molecules were
observed to go through two structural transitions. The m
ecules withGC content@l and poly(dG-dC)# underwent the
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well known sharpB-DNA to S-DNA transition @12,13# at
'65 pN. They then went through a second highly loadin
rate dependent and hysteretic strand-separation transitio
roughly 150 pN forl and at roughly 250 to 350 pN fo
poly(dG-dC). Only the strand-separation transition was o
served for the poly(dA-dT) molecule, at much lower force
'35 pN.

Thus Rief, Clausen-Schaumann, and Gaub found that
DNA could be converted to ssDNA by application of larg
longitudinal forces, with a force threshold correlated w
GC content. Moreover, they studied the unzipping of t
repeated-sequence poly(dA-dT) and poly(dG-dC) mol-
ecules, as follows. After force melting, tension on the m
ecules was relaxed, allowing them to reanneal into ‘‘hairp
structures. These hairpins could occur prodigiously due
the repeated sequence. Then, the hairpins could be unzi
by reapplication of force. This was observed to occur
forces of 2063 pN for poly(dG-dG) and 963 pN for
poly(dA-dT). To date, these experiments provide the on
calibrations for unzipping repeated sequences.

AFM experiments on much shorter molecules have b
done by Strunz, Oroszlan, Schafer, and Guntherodt@10#. This
group studied the unbinding forces between short com
mentary strands@Fig. 1~c!#, including the dependence of un
binding on the force loading rate. Molecules of 10, 20, or
bp lengths with about 60%GC content were studied in PBS
buffer. One 58, end was attached to the surface, and the ot
58 end to the AFM tip. The first step of an experiment was
move the tip near the surface, so as to hybridize~bind! the
two complementary strands. When a binding event was
served, the tip was then moved away from the surface
drive unbinding. Thus, this experiment studied unbinding
ing force applied to the 58 ends of the two strands at opposi
ends of the molecule. The probability distribution of the ru
ture force is obtained for loading rates ranging from 16
4000 pN/s.

In addition to these mechanical experiments, experime
on molecules in free solution can also give information ab
unzipping kinetics at zero applied force. These experime
are usually on short~'10 bp! dsDNAs, and usually focus on
spontaneous, thermally activated unzipping@Fig. 1~d!#. The
unzipping raten2 and closing raten1 of a 5 bp DNA ‘‘hair-
pin’’ ~58-CCCAA-loop-TTGGG-38! was investigated using
a combination of fluorescence energy transfer and fluo
cence correlation spectroscopy by Bonnet, Krichevsky,
Libchaber@9#. Use of a hairpin allows the study of unzippin
7-2
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FORCE AND KINETIC BARRIERS TO INITIATION OF . . . PHYSICAL REVIEW E 65 041907
in a unimolecular system, and is convenient for sing
molecule spectroscopy. The loop of this hairpin was varied
length from 12 to 21 bases, and was either aT or A polymer.
The buffer contained 0.1 M NaCl, 50mM EDTA, 5 mM
cacodylic acid at pH 7. The opening time~or lifetime of the
closed state! was found to bet251/n2.0.531023 s for
N55 bp, essentially independent of the loop length.

The recent single-molecule experiments of Bonn
Krichevsky, and Libchaber are in good accord with results
older spectroscopic measurements on ensembles of
ecules in solution. Of particular relevance to us, Po¨rschke@8#
found the dissociation rate for poly(dA)-poly(dU) mol-
ecules to vary with molecular lengthN asn2510a2dN with
d50.5 anda58, for molecules of lengthN58 to 18. The
method was a combination of temperature jump and tim
resolved spectroscopy. This work also suggested that st
separation starts with a nucleation ‘‘bubble’’'3 bp long.

III. PHYSICAL PICTURE AND OVERVIEW OF RESULTS

Unzipping can be described in terms of increasing
distance 2r between nucleotides originally belonging to th
same base pair of a double helix, beyond the equilibri
value in the double helix of 2R520 Å. This increase may be
the result of a change in temperature or chemical conditio
or of direct mechanical action. In the case of mechan
unzipping studied in this paper, the control parameters m
be the applied torqueG or forcef, the loading rated f /dt, or
the half-distancer itself ~Fig. 2!. In this paper, we will dis-
cuss unzipping driven by changes in each of these par
eters, using first macroscopic~essentially thermodynamic!
and then microscopic~statistical-mechanical! perspectives.

FIG. 2. A schematic view of a DNA molecule when unzipped
a force. The double-stranded DNA has paired bases, and a
strand rigidity. As a result of the mechanical stress,Nss base pairs
may separate, or unzip. The distance between the two single s
ends is defined as 2r . The unzipped region of the molecule is tw
single-stranded DNAs with low rigidity and unpaired bases. T
junction defines a boundary extending overN* .4 partly opened
base pairs with high strand rigidity, at the origin of the free ene
barrier opposing the initiation of unzipping. Denaturation may a
be the result of the application of torque. A positive torqueG over-
twists the double helix, andG,0 untwists it.
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In macroscopic terms, a DNA may exist either in dsDN
or ssDNA conformations, characterized by the free energ
gds and gss per bp. The denaturation free energy,Dg[gss
2gds depends on sequence and on control parameters
as force, torque, and temperature. These free energies ca
computed using models for DNA inferred from experimen
data. Algorithms such asMFOLD @14# provide base-pairing
free energiesgds, and fits of experimental data to polyme
models such as the freely jointed chain~FJC! give the elastic
free energygss of ssDNA as a function of force@13#. We
review in Sec. IV how important quantities, such as the
pendence of critical forcef u required to unzip large se
quences upon the applied torque~Fig. 3!, can be easily and
accurately extracted from an essentially thermodynamic
proach. The unzipping experiments of Bockelmann, Essev
Roulet, and Heslot, and Rief, Clausen-Schaumann, and G
are accurately described at this macroscopic level.

However, other experimentally observable aspects of
zipping are intrinsically related to the microscopic structu
of DNA, and cannot be understood thermodynamically.
particular interest to us is the barrier to initiation of unzi
ping, which we find to have strong consequences for
unzipping kinetics of short molecules. We find the force f
initiation of unzipping to have a strong dependence on
timescale and rates of application of force. We presen
semimicroscopic model of DNA, accounting for the bas
pairing interactions~hydrogen bonds and stacking forces! in
sufficient detail to understand these kinetic aspects of un
ping. By adopting a relatively simple semimicroscopic a
proach, we obtain a model that can be theoretically analy
in detail, and which allows a precise calculation of barr
effects.

The physical origin of this barrier is sketched in Fig.
The single- and double-stranded portions of the molecule
separated by a boundary region. In this boundary region,
bases are unpaired so that their bonding enthalpy is l
However, the bases are still partially stacked, so that they
unable to fluctuate as much as completely denatured ssD
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y
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FIG. 3. DNA unzipping phase diagram as a function of torqueG
in units ofkBT and forcef in pN. The solid line shows the result fo
the FJCL model of ssDNA elasticity, while the dashed line sho
the result for its Gaussian approximation~see text!; both results are
in close agreement. For zero torque, the unzipping force isf u

'12 pN, negative~unwinding! torques reducef u until at aboutG
522.4kBT, f u→0.
7-3
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SIMONA COCCO, RÉMI MONASSON, AND JOHN F. MARKO PHYSICAL REVIEW E65 041907
Thus, the bases in the boundary region lack both the fa
able free energy contributions of base-pairing enthalpy a
ciated with dsDNA, and the fluctuation entropy associa
with ssDNA. The simultaneous presence of unpaired ba
with large strand rigidity is responsible for the free ener
barrier.

We are able to compute the force necessary to keep
ends of the two unzipped ssDNAs at a fixed distance 2r ~Fig.
4!, as well as the shape of the opening fork~Fig. 5!. Due to
the free energy barrier, this force for smallr is an order of
magnitude larger than the asymptotic unzipping force of
to 20 pN depending on the sequence.

The presence of barriers makes strand dissociation an
tivated dynamical process that can be understood u
nucleation theory. Unzipping occurs through the nucleat
of a denatured ‘‘bubble,’’ whose length depends on con
parameters and is about 4 bp when located at the terminu
a DNA and 8 bp when located in the middle. We calcula
the shape and free energy of this critical bubble~.16.5kBT
at the critical force!, and the kinetic rates of dissociation, fo
different forces and molecule lengths~Fig. 6!. The results are
compared with the experiments of Bonnet, Krichevsky, a
Libchaber and of Po¨rschke. Adapting Evans’ theory for th
breaking of single bonds@29# to the case of a one
dimensional polymer@30#, we have also calculated the mo
probable rupture forcef * when the DNA molecule is sub
jected to a constant loading ratel ~Fig. 7!. The dependence
of f * uponl andN is a quantitative prediction that could b
tested by AFM experiments on unzipping. Moreover it sh
lights on the AFM experiments for DNA stretching o
Struntzet al. and of Rief, Clausen-Schaumann, and Gaub

FIG. 4. Unzipping forcef ds(r ) in pN required to be applied to
the ssDNA ends to maintain their half-separationr in Å. The mini-
mal separationr 510 Å corresponds to theB-DNA-double helix
structure. For sufficiently larger (.13 Å),f ds(r ) approaches the
thermodynamic valuef u'12 pN. Inset shows the work doneW(r )
in kBT for fixed r, i.e., the integral off (r ). For r .13 Å the slope
of W(r ) approaches its ‘‘thermodynamic’’ value off u'0.3kBT/Å
'12 pN.
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FIG. 5. Average number of unzipped based pairsNss as a func-
tion of the half-distancer between extremities. Due to the ver
large rigidity of dsDNA, bases pairs are initially unzipped with
very small increase of the separationr by its double helix structure
value,r 510 Å, see Fig. 2. For sufficiently larger (.13 Å), Nss(r )
increases linearly withr, with a slope 1/du predicted from the ther-
modynamical study of Sec. IV.

FIG. 6. Dissociation time~inverse rate! as a function of force in
pN, showing three regimes of behavior. First, forf , f u512 pN,
dissociation time depends on molecule lengthN ~curves are forN
510, 20, 30, from bottom to top, respectively!. Second, forf u, f
, f b5230 pN, dissociation time decreases as the applied fo
gradually reduces the barrier. Finally, forf . f b , no barrier is left
and dissociation is immediate. Inset shows the dissociation tim
zero applied force as a function of molecule lengthN in base pairs.
The logarithm of the dissociation time is approximately a line
function ofN ~see text!. Note that over the rangeN510 to 20 base
pairs, the zero-force dissociation time increases from a fraction
second to hours. Also note thatf b'230 pN is not in the range of the
main figure.
7-4
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IV. MACROSCOPIC DESCRIPTION OF DNA UNZIPPING
BY FORCE AND TORQUE

DNAs can be be either base paired to form the Wats
Crick double helix~dsDNA!, or the two strands can be sep
rated~ssDNA!. As shown in Fig. 2, a partially unzipped mo
ecule consists of regions of these two phases, separated
‘‘fork.’’ Under conditions comparable to thosein vivo
~roughly aqueous solution at temperature 20–37 °C, pH
8, Na1 concentration between 10 mM and 1 M!, and in the
absence of external stress, dsDNA is stable, with a free
ergy per bp less than that of ssDNA:gss2gds52g0.0. The
free energyg0 of course depends on base sequence, bu
this paper we do not consider sequence effects, and, th
fore, take an intermediate value ofg0521.4kBT. This value
corresponds to the denaturation free energy for a repe
poly(AC)-poly(GT) sequence, which is comparable to th
of the AT-rich region ofl-phage used in many experimen
@15,2#.

A. Unwinding of dsDNA by torque

We first consider the action of an external torqueG. Since
an unperturbed dsDNA has one right-handed twist each 1
bp, the twist per base isu0.2p/10.4; the twist per base fo
separated single strands is zero. The free energy of ssD
relative to dsDNA is, therefore,

Dg~G!52g01u0G. ~1!

The last term represents work done by the torqueG convert-
ing dsDNA into ssDNAs. WhenDg is negative, ssDNA be-
comes stable, and, therefore, there is a critical unwind
torque Gu5g0 /u0.22.4kBT beyond which dsDNA un-

FIG. 7. Most probable rupture forcef * ~pN! as a function of the
loading ratel ~pN/s! for b51.75. Results are shown for five dif
ferent lengths~N510, 20, 30, 50, and 100!. Arrows indicate the
critical loading rates for theN510 case. Values of these critica
rates ~in pN/s! and associated forces~in pN! are: for N510,
log10 l150.77, f * 52.3, and log10 l254.6; for N520, log10 l15
25.6, f * 51.5, and log10 l254.2. The two remaining critical rate
are sequence length independent with log10 l355.5, log10 l4512.
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winds to form ssDNA. This is in good accord with results
single-molecule unwinding experiments@15#.

B. Unzipping of dsDNA by force

The static aspects of force-induced unzipping can
largely understood using a simple Flory-like calculati
@16,17#. As a simple starting point, we suppose the ssDN
regions to be flexible polymers of monomer lengthl 57 Å,
with stretching free energy

Fstretch5
Cssr 0

2

2Nss
, ~2!

wherer 0 is the end-to-end extension of a chain ofNss bases.
The force constantCss53kBT/( l 2) is of the form of that of a
flexible, Gaussian polymer@16#. The unzipped ssDNA region
of Fig. 2 can be considered as one such chain of 2Nssmono-
mers with its endsr 052r apart.

1. Unzipping as a function of extension

If the ssDNA ends are separated a distance 2r ~Fig. 2!,
some average number of basesNss will open. The total free
energy is a sum of chain stretching and denaturation con
butions,

F~r ,Nss!5
Cr2

2Nss
2Nssg0 , ~3!

whereC52Css56kBT/( l 2). The value ofNss is obtained by
minimization of this free energy. Solution ofdF(r ,N)/dN
50 yields a linear relation between the number of unzipp
basesNss and r,

Nss~r !5
r

du
, ~4!

where du5A2(2g0)/C is the projection of the monome
length along the force direction. The free energy is

F~r !52S C

2
~2g0! D 1/2

r 522Nss~r !g0 . ~5!

The tension in the chain is just the derivative of this w
respect to 2r ,

f u5S C

2
~2g0! D 1/2

, ~6!

and is, therefore, a constant as unzipping proceeds. The
cess free energy per unpaired bp at fixedr is double the free
energy of denaturation because work done extending the
DNAs adds to the work done opening the molecule.

2. Unzipping as a function of force

For fixed unzipping forcef the excess free energy of th
molecule relative to dsDNA is
7-5
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SIMONA COCCO, RÉMI MONASSON, AND JOHN F. MARKO PHYSICAL REVIEW E65 041907
DG~r ,Nssf !5
Cr2

2Nss
2Nssg022r f . ~7!

The half-distancer between the ends adjusts to minimi
DG and equalsr 52 f Nss/C. The resulting free-energy dif
ference is

DG~Nss, f !5NssDg~ f !5NssS 2g02
2 f 2

C D . ~8!

This effective denaturation free-energy densityDg( f ) is
lower than2g0 , as expected, and vanishes at the criti
unzipping forcef u . For f , f u , dsDNA is stable, and iff
. f u , the double helix unzips.

C. Improving the description of ssDNA elasticity

The free energy per base pair at fixed force~8! is

Dg~ f !52g012gs~ f !, ~9!

wheregs( f ) is the stretching free energy at fixed force, p
base of ssDNA. This form of our Flory-like unzipping theo
is independent of the precise details ofgs . Above, we as-
sumed the simple Gaussian form

gs
gaus~ f !52

f 2

C
, ~10!

which is appropriate to describe a flexible polymer that is
stretched to near its maximum extension.

Although this formula provides an empirically accura
description of ssDNA elastic response in the force ran
where unzipping experiments are done, the actual elastic
sponse of ssDNA is far more complex than that of a sim
flexible polymer. The reason for this complexity is that s
DNA conformation is determined by a balance between s
attractive interactions between the exposed bases, and r
sive interactions between the (PO4

2) charges along the
backbone~for a rather complete theoretical discussion
this, see Ref.@18#!.

Under the conditions of the experiments described abo
ssDNA actually collapses at small extensions, and requir
threshold force of about 1.5 pN to begin to extend. Th
over forces from 1.5 pN to 25 pN ssDNA elastic response
reasonably well described by the Gaussian free energy
above, provided an appropriate value ofC is taken. However,
strictly speaking, the valuel 57 Å should not be interpreted
as the ‘‘true’’ segment length of ssDNA. This has been
source of confusion in some interpretations of ssDN
stretching data~e.g., the factor-of-two conflict between va
ues of ‘‘segment length’’ determined in Refs.@13# and@11#!.

The collapse effect means that the finite extensibility
ssDNA is difficult to globally fit to simple flexible polyme
models, for example the FJC model free energy,

gs
FJC~ f !52kBT lnFkBT

l f
sinhS l f

kBTD G . ~11!
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This model cannot be fit to ssDNA elasticity data at bo
high and low forces.

However, Cuiet al. found that their data for ssDNA elas
ticity in 150 mM NaCl was well described by a slightl
modified version of Eq.~11!,

gs
FJCL~ f !52kBT

l ss

d
lnFkBT

d f
sinhS d f

kBTD G , ~12!

which we call a ‘‘freely-jointed-chain-like’’ model~note that
Cui et al.’s model for force versus extension has been in
grated to obtaings( f ); we ignore the helix stretching elasti
contribution that is not important at the low forces we a
considering!. This model effectively has two separate ‘‘se
ment length’’ parameters: the contour length per base
l ss527mm/48.5 kb.5.6 Å; and the segment lengthd
515 Å. Strictly speaking, neither of these should be
garded as anything more than fit parameters. The free en
for forces up to'20 pN is shown in Fig. 8 over the rang
0< f <20 pN. The free energy~12! gives an unzipping force
of f u511 pN and a segment projection ofdu54 Å.

D. Effective segment length for the Gaussian approximation to
ssDNA elasticity

The quadratic expansion ofgs
FJCL( f ) for small forces

reads

gs~ f !52
f 2

2Css
FJCL, ~13!

where Css
FJCL53kBT/(dlss). This result coincides with the

free energy of the Gaussian model withl 5Adlss.9 Å. We
show in Fig. 8 the results of this expansion. The choicl
57 Å gives a better approximation of the FJCL with
0.15kBT accuracy over the whole range 0< f <20 pN. Using
the Gaussian approximation withl 57 Å andg0521.4kBT
gives f u512 pN, du55 Å, i.e., essentially the same result
if a nonlinear ssDNA elasticity model such as Eq.~12! were
used.

E. Unzipping force-torque phase diagram

Combining Eqs.~1! and ~9!, we obtain the denaturation
free energy as a function of both torque and applied forc

Dg~G, f !52g01u0G12gs~ f !. ~14!

The predicted phase diagram as a function of torque
unzipping force is shown in Fig. 3. The two curves show
are for different forms ofgs : the FJCL model~12! with l ss
55.6 Å andd515 Å, and the Gaussian approximation~10!
with l 57 Å. The details of this phase diagram are not high
sensitive to the replacement of the FJCL model with
Gaussian approximation. Existing experiments have pro
only two points on this phase boundary, the zero torque@2#
and zero-force@15# intercepts. It would be interesting t
carry out controlled-torque experiments to verify the sha
of our predicted phase boundary.
7-6
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In conclusion, simple Flory-like models give a satisfyin
overview of DNA unzipping experiments at large~.100
base! scales. But, thermodynamic models of the sort d
cussed in this section cannot give much insight into eit
initiation of unzipping~i.e., the alteration off u during the
opening of the first few bases!, or into the kinetics of open-
ing. These questions are central to understanding the in
steps of opening of the double helix essential to a wide ra
of cellular machinery, and they form the focus of the rema
der of this paper.

We note that the Gaussian approximation~10! to ssDNA
elasticity discussed above will become an essential simp
cation in the base-pair-scale theory that follows. We emp
size that the Gaussian approximation can be used becaus
forces we are interested in,f ' f u512 pN, are both well
above the'2 pN threshold for pulling a collapsed ssDN
apart, and well below the'50 pN forces required to fully
extend a ssDNA.

V. SEMIMICROSCOPIC MODEL OF DNA UNZIPPING

A. Model with discrete base-pair degrees of freedom

We now develop a more detailed model of DNA unzi
ping based on our previous work on base-pairing interacti
@5,6,19#. To begin with, we number the base pairs along
dsDNA with a discrete indexn. The microscopic degrees o
freedom that we consider are the half-distances betw
basesr (n), and the twist angleu(n) and axial distancez(n)
between basesn andn21. Gaussian thermal fluctuations o
the angular and axial distance degrees of freedom can
integrated out, leaving an effective energyH @R# that de-
pends only on the set of inter-base-pair radiiR
5$r (0),r (1),...,r (n)% @6#, see Appendix A.

FIG. 8. Single strand free energy per basegs( f ) in units ofkBT
as a function of forcef in pN. Solid curve is the FJCL model fit by
Smith, Cui, and Bustamante@13# to their experimental stretching
data; long dashed curve is the FJC model with Kuhn lengthd
515 Å. Dotted line is the Gaussian approximation withd59 Å
~the best quadratic approximation to the FJCL at zero force!; dashed
curve is the Gaussian approximation withd57 Å ~the best qua-
dratic approximation to the FJCL at forces'12 pN!.
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In the dsDNA state, the radiir fluctuate around their av
erage valueR510 Å, in a potential well resulting from the
balance of attractive hydrogen-bond attraction with repuls
hardcore repulsion. This potential well can be described
ing the short-range Morse potential

UH~r !5D@~e2a~r 2R!21!221#, ~15!

as shown in Fig. 9. The Morse potential has a strong rep
sive barrier at small radiusr ,R, and a narrow attractive
well with minimum nearr 5R. Parameters of the Morse po
tential suitable to describe DNA base-pairing interactions
D55.84kBT, a56.3 Å21 @20,5#.

In addition to base-pairing interactions acting across
double helix, stacking interactions between successive b
pairs favor the successive radiir and r 8 to be similar in
value. This attractive interaction is strongest in dsDNA@i.e.,
whenr (n)'R# and is greatly reduced as the bases are pu
apart. We account for these effects with an enhancemen
the intrinsic ssDNA rigidityC discussed in Sec. IV, param
etrized by a strengthE and a range 1/b,

E~r ,r 8!5E exp$2b@ 1
2 ~r 1r 8!2R#%. ~16!

The interaction strength is determined from Raman spect
copy measurements of base-pair radii vibrational modes
dsDNA @21# to beE.58 kBT/Å 2 @6#.

The total energy for configurationR reads

FIG. 9. Inter-base-pair potentials in units ofkBT, as a function
of base-pair half-separationr in Å. Inset shows the Morse potentia
Vm(r ) describing the short-ranged hydrogen-bond interaction~the
energetic part of the base-pairing interaction in our theory!. Main
figure shows the total potentialV(r ) for zero torque, including
ssDNA conformational entropy~see text!. Once the entropic contri-
bution is included, an energy barrier appears. Note the differenc
distance scales on the main figure and inset. Zero force and to
free energies of separated ssDNAs and strands bound into
B-DNA double helix are indicated.
7-7
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H@R#5 (
n51

N
1

2
m„r ~n!,r ~n21!…„r ~n!2r ~n21!…2

1 (
n50

N

U„r ~n!…. ~17!

The net rigiditym includes both the intrinsic ssDNA rigidity
C and its enhancement by stacking interactions for dsDN

m~r ,r 8!5E~r ,r 8!1tC. ~18!

This quantity interpolates between dsDNA and ssDNA v
ues. The reduced temperaturet5T/T0 , whereT05298 K,
appears in front ofC, due to the largely entropic origin of th
intrinsic ssDNA chain rigidity~see Sec. IV! in the regime of
extension of interest to us.

The second term in Eq.~17! includes the hydrogen-bon
energyUH(r ) ~15! and the elastic torque energy,

U~r !5UH~r !2
G

t

R1

r
. ~19!

We show in Appendix A how the total energy~17! and the
elastic torque energy in Eq.~19! come from the microscopic
model of Ref.@5#, once the twist angles are integrated o
As calculated in Appendix A,R156 Å. Thus, for dsDNA,
the torsional energy is roughly equal to2G R1 /R from Eq.
~19!, in agreement with the expression2G 2p/10.4 of Eq.
~1!.

The partition function at inverse temperatureb51/kBT is
equal to

Z5E dR e2bH@R#, ~20!

where the measure over the chain configurations is

dR5)
j 51

N

dr~ j !, ~21!

B. Conversion of the discrete transfer matrix to a continuum
Schrödinger equation

A number of thermodynamical results were derived
Refs.@5#, @6# by diagonalizing the transfer matrix of the di
crete model. The dynamical analysis of this paper is fac
tated by treating the base-pair indexn as a continuous vari
able @22–24#. A configuration of the chain is then describe
by radii R5$r (n)%, with 0<n<N. The main difficulty in
taking the continuum limit comes from the source of ma
new and interesting results, ther dependence of the ‘‘mass
or stiffness~18!. Our approach will be to take the discret
model transfer matrix, and convert it to a continuum versi
which takes the form of a Schro¨dinger equation. We will
present an outline of this calculation, with some details
ferred to Appendix B.

The first step is to write the discrete-model transfer ma
as
04190
,

-

.

i-

,

-

x

T1
ass~r ,r 8!5exp$2b@ 1

2 m~r !~r 2r 8!21U~r !#%. ~22!

Here, the dependence ofm has been made local inr, which
amounts to keeping only derivative terms inr at the Gauss-
ian level. Thus,m(r )5E(r )1tC whereE(r )5E exp@2b(r
2R)#

Bouchiat@32# has communicated to us an alternate cal
lational scheme that allows an exact calculation at this s
which we describe in Appendix B. It turns out that the co
rections that our truncation approximation ignores are sim
a small shift in the net potential. We use the form~22! in
what follows since it leads to a substantial simplification
the calculations with only small quantitative changes in
results.

In the continuum limit, the transfer matrix and its eige
function are replaced by the differential equation

S 2
~kBT!2

2m~r !

]2

]r 2 1V~r ! Dck~r !5gkck~r !. ~23!

where the eigenfunctionsck(r ) and eigenvaluesgk are in-
dexed by the integerk. This has the form of a one
dimensional quantum-mechanical Schro¨dinger equation,
where the base-pair indexn plays the role of time, and the
Planck constanth is replaced bykBT.

A unique feature of Eq.~23! is that its ‘‘mass’’m is posi-
tion dependent,

m~r !5E exp@2b~r 2R!#1tC. ~24!

This feature results in the base-pair potential picking up
contribution fromm(r ),

V~r !5U~r !1
t

2
kBT0 ln@m~r !/m~`!#. ~25!

This additional contribution comes from the measure fac
required to carry out the usual Feynman-Hibbs derivation
Eq. ~23!. For convenience, we set the offset of the net pot
tial so thatV→0 asr→`. This choice sets the absolute fre
energy of separated ssDNAs under no force or torque
zero.

The net potentialV(r ) is shown on Fig. 9 forb
51.75 Å21, a value chosen in light of the results for kinetic
in Sec. VIII. As a result of ther dependence of the rigidity, a
barrier separating ds-DNA from ss-DNA has appeared. T
barrier has little effect on macroscopic aspects of equilibri
unzipping, but has large consequences for the denatura
kinetics.

The most negative eigenvalueg0 is related to the free
energy per base pair for a long molecule, byg0
52(kBT ln Z)/N. The corresponding ‘‘wave function’’c0(r )
determines the equilibrium probability distribution ofr. Far
from the ends of a chain, the probability to open a given p
of bases to have radiusr is uc0(r )u2. Alternately, at the chain
ends, the probability to open either the first or the last b
pair by r is c0(r ).
7-8
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C. Energy for path-integral formulation of continuous model

From the Schro¨dinger equation we obtain the continuo
counterpart of the discrete energyH ~17!,

G@R#5E
0

N

dnH 1

2
m„r ~n!…S dr

dnD 2

1V„r ~n!…J , ~26!

To obtain the same potentialV(r ) in the path integralG as in
the Schro¨dinger equation the path integral measure must

dR5 lim
e→0

)
j 50

N/e Abm„r ~ j !…

2pe
dr~ j !, ~27!

wheree is the ‘‘lattice constant,’’ equal to unity in the dis
crete version of the model, and taken to zero in the c
tinuum model. Note that whene51 the lnm term of the
exponential cancels the integration measure factor. Includ
the inverse temperatureb51/t, the partition function is for-
mally

Z5E dR e2bG@R#. ~28!

Below, we will use the continuum energy~26! to calculate
shapes of domain-wall structures, and as a basis for a La
vin equation for unzipping dynamics.

VI. EQUILIBRIUM STATES OF THE SEMIMICROSCOPIC
MODEL

A. Zero applied force

1. ssDNA

The ‘‘free particle’’ continuum states of Eq.~23!, where
the strands are far away from one another (r @R), corre-
spond to isolated ssDNAs under zero force and torque. T
situation is described by

2
~kBT!2

2C

]2

]r 2 css~r !5gsscss~r !. ~29!

Thus, ssDNA is treated as a sugar-phosphate polymer
Gaussian entropic elasticity, with rigidityC56kBT/ l 2 ~Sec.
IV C!. The eigenfunctions. are plane waves, and the low
energy ssDNA states have free energy per base pairgss50.

2. dsDNA

The double helix is the bound state of the potentialV
~Fig. 9!. This bound state can be found numerically, but
accurate analytical calculation of its free energy per base
gds can be obtained by consideringcds(r ) to be essentially
confined inside the Morse well. The only potential that va
ates significantly forr .R is the Morse potential represen
ing the hydrogen bonds; asa/b@1 the entropic and torque
terms vary relatively slowly.

We, therefore, obtain the Morse equation

S 2
~kBT!2

2E

]2

]r 2 1Vds~r ! Dcds~r !5gdscds~r !, ~30!
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where

Vds~r !5UH~r !1
t

2
kBT0 ln@m~R!/m~`!#2

G

t

R1

R
.

~31!

The ground state of this equation is exactly known@25#,
giving the zero-force free energy,

gds~ f 50,G!5g02Gu0 , ~32!

with u0 defined in Eq.~1!, and

g0.2D1
t

2
aA2D/E2~ ta!2/~8E!1

t

2
ln@11E/~ tC!#.

~33!

At room temperature (t51) and zero applied force,g0
.21.42kBT; therefore, at zero force the critical unwindin
torque isGc522.35kBT, in good agreement with the ex
perimental results obtained by the group of Bensimon a
Croquette@15#.

3. Thermal denaturation

Our expression forDg52gds ~32! can, in principle, be
used to determine the temperatureTm at which dsDNA
‘‘melts’’ into isolated ssDNAs in the absence of mechanic
stress (f 50,G50). The resulting value,Tm5410 K, is,
however, too large with respect to thermodynamical m
surements of melting temperatures. The main reason is
our model as formulated above does not account for
change in the hydrogen-bonding potential energy with te
perature.

The correct melting temperature can be obtained by m
ing D, the depth of the Morse potential, depend explicitly
the temperatureT. Assuming that the depth behaves asD
5D02D1(t21), with D055.84kBT, and requiring melting
temperatureTm5350 K, we haveD155 kBT/K. When T
ranges from 298 to 350 K,D(T) thus decreases from
5.84kBT to 5kBT. The order of magnitude of this variatio
caused by temperature is similar to that discussed by Pro
sky et al. @20#.

B. Unzipping by external force

1. Schrödinger equation

In presence of an unzipping forcef applied on the last
base pairn50, the discrete model transfer matrix~22! needs
an additional term 2f r (0)/kBT included in the exponential
This leads to the one-dimensional Schro¨dinger equation~see
Appendix B!,

F2
~kBT!2

2m~r !

]2

]r 2 1
2 f ~kBT!

m~r !

]

]r
1V̂~r !Gc~r !5gc~r !.

~34!

Here the potentialV̂ is just

V̂~r !5V~r !2
2 f 2

m~r !
. ~35!
7-9
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The potential~35! accounts for the decrease of ssDNA fr
energy relative to that of dsDNA by an amount that tends
the value22 f 2/C at large radii~8!, ~9!, ~10!. The path in-
tegral effective energy corresponding to Eq.~34! is

G@R#5E
0

N

dnH 1

2
m„r ~n!…S dr

dnD 2

1V„r ~n!…J 22 f r ~0!.

~36!

This expression can be rewritten as

G@R#5E
0

N

dnH 1

2
m„r ~n!…S dr

dn
2

2 f

m„r ~n!…D
2

1V„r ~n!…

2
2 f 2

m„r ~n!…J 12 f r ~N!. ~37!

Below we will assume that deep inside the dsDNA phase,
base-pair radius does not fluctuate much around its equ
rium value R, so that the last term on the right-hand si
~rhs! of Eq. ~37! can be considered to be an additive co
stant, which we will not write.

2. Phase diagram in the force-torque plane

From Eq.~35!, the potential at nonzero force is lowere
by 2 f 2/C at large radii, and essentially left unchanged
small r. As a result, the free-energygss of ssDNA is de-
creased by 2f 2/C, while gds is unaffected, relative to thei
zero-force values. This allows us to reobtain Eq.~14!, and
therefore the ‘‘thermodynamic’’ phase diagram~Fig. 3!.

VII. EQUILIBRIUM FORCE BARRIER TO INITIATION OF
UNZIPPING

In the previous section we saw that the semimicrosco
model was consistent with the simple thermodynamic mo
of Sec. IV. We now move on to examine the initial stages
unzipping, when the two ssDNA ends are just beginning
be unpaired. We carry out these calculations in the ensem
of fixed extension, since at fixed-force equilibrium one w
simply pass from dsDNA to ssDNA at the unzipping forc

A. Work done initiating unzipping

The work done in pulling the last base pairs to a giv
separation follows simply from the equilibrium probabili
distribution of end radiusr. This is determined in turn by the
dsDNA ‘‘wave function’’cds(r ). As mentioned in Sec. VI, in
the base-pairing potential wellcds(r ) is well approximated
by the exactly known Morse ground state wave function.
turn, the average force that must be applied to keep the
DNA ends a certain fixed distance apart will be just the
rivative of the work done with end separation.

For radius values outside of the Morse well, i.e.,r 2R
@1/a, this expression is not valid anymore. However, t
wave function can in this case be calculated using the s
dard quantum-mechanical WKB approximation@26#. Defin-
ing r ds as the value of the radius for whichV(r ds)5gds we
obtain
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cds~r !5
A

Ap~r !
expS 2E

r ds

r

dr8 p~r 8!/t D ~r .r ds!,

~38!

where p(r )5A2m(r )@V(r )2gds# @26#. The coefficientA
can be calculated by connecting the two expressions
cds(r ), in such a way that both the wave function and
derivative are continuous functions ofr.1

The logarithm of the end base-pair radius distribution

W~r !52kBT0t ln cds~r !, ~39!

is shown in the upper curve of Fig. 4.W(r ) is the free energy
associated with the separation 2r . i.e., the work done in pull-
ing the two ends apart.

Two regimes can be seen asr grows. The work done
initially grows quickly with r, up to a valueW* [W(r * )
.36kBT/b, see Appendix C. This initial regime correspon
to the separated strands still being within the large ene
barrier. Forr .r * , one enters a second regime where t
portion of the molecule in the barrier region is no long
changing, and, therefore, where the additional work do
approaches its thermodynamically expected value,W(r )
'rA2C(2g0)5(2r ) f u , independent ofb @23#. The deriva-
tive of W(r ) with respect to 2r gives the average force
f ds(r ) that must be applied to the molecule ends to keep th
half-separation atr ~Fig. 4!.

This calculation gives a prediction for the small-r behav-
ior that is not possible from the thermodynamical perspec
of Sec. IV. At very short distances we predict a surprising
large force barrier. We do not know of any direct measu
ment of this force barrier, although we will show below th
experiments on the spontaneous unpairing of short dou
helicies@8# provide indirect but quantitative evidence for i

The physical origin of the large force barrier is in th
potential well due to hydrogen bonding plus the addition
barrier associated with the reduction in DNA strand rigid
as one passes from dsDNA to ssDNA. The hydrog
bonding interactionsUH alone have a well depth of'2kBT,
and vary over a range of 0.5 Å~Inset of Fig. 9!. Thus, ini-
tiation of the first broken base pair requires an initial for
barrier of roughly 40kBT/nm'160 pN to be crossed. Th
additional'2kBT barrier in the potentialV resulting from
the change in strand rigidity withr boosts the total force
barrier to the'300 pN of Fig. 4. The potential barrier heigh
is roughly (kBT/2)ln(E/C) and corresponds to the change
partition function per segment associated with this rigid
change.

1The connection condition requires thatc(r ) and c8(r ) be con-
tinuous at some pointr A . At zero torque, we find thatr ds

.10.11 Å andr A.10.19 Å. The connecting pointr A lies thus in
the validity regions of the Morse wave function,a(r 2R)<1, and
of the WKB approximation,m(r )V8(r )/p(r )3/2!1, which holds as
soon asr is slightly above the classical turning pointr ds @26#.
7-10
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B. Free energy functional and shape of opening fork

For a partially opened dsDNA, the average shape of
opening ‘‘fork’’ can be calculated by finding a suitable st
tionary point of the energy functional~26!. This average con-
figuration r * (n) obeys the equation

m~r * !
d2r *

dn2 52
1

2
m8~r * !S dr*

dn D 2

1V8~r * ! ~40!

where ( )8 denotes derivative with respect tor. Equation
~40! is just the ‘‘classical’’ equation of motion for a particl
with coordinater * where the role of ‘‘time’’ is played byn,
and where the potential energy is2V(r ). Again, we have
the unusual feature of a position-dependent massm(r ).

This equation of motion, combined with the equilibriu
initial condition r * (n50)5r ds, dr* /dn50, can be solved
numerically. Inverting the solutionr * (n), we obtain the
shape of the opening fork, that is the optimal value of ope
basesNss as a function of the end-opening radiusr ~Fig. 2!.
The behavior ofNss(r ) is plotted in Fig. 5.

As the strands are progressively pulled apart, the num
of bases unzipped initially grows as the square root gro
of distance between the strand ends:Nss(r )
.2AE(r 2r ds)/V8(r ds). For large distances, the number
unzipped bases tends to an asymptotically linear depend
on r, Nss(r )}rAC/2/(2g0) in accord with the thermody
namic result of Sec. IV. These predicted features of ini
unzipping would be interesting to test experimentally.

VIII. KINETIC THEORY OF UNZIPPING

We have so far studied the equilibrium unzipping of t
chain, and now we turn to the kinetics of denaturation. F
ure 11 shows a tridimensional representation of the poten
V ~Fig. 9! that the molecule has to overcome to denatu
Denaturation is an activated process that we now st
within Langer’s nucleation theory@27,28#.

We consider the Langevin dynamics of unzipping at ro
temperature, using the energy~26!,

z
]r ~n,t !

]t
52

dG
dr ~n,t !

1e~n,t !. ~41!

The random forcese(n,t) are uncorrelated Gaussian va
ables with zero mean and variance 2kBTz. The friction co-
efficient is on the order ofz56phR with R510 Å, where
the viscosity of the water ish51023 Pa sec. Opening of a
dsDNA is in general an activated process, requiring ther
fluctuation over the energy barrier of the last section.

A. Nucleation transition-state theory

1. Phase space, energy hypersurface, and saddle point

Consider the phase space in which the unzipping dyn
ics take place. A molecular configurationR is represented by
a point in space, and is assigned a~free! energyG@R# ~26!.
The ds and ssDNA states are separated by high-energy
figurations that are only briefly visited during an unzippi
transition. Depending on force, torque, and temperature,
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tial dsDNA or ssDNA configurations are metastable and w
eventually decay to the thermodynamically stable state
general, this requires a free energy barrier to be crossed,
the most likely barrier crossing point will be the saddle-po
R* of the free energy hypersurfaceG@R#. R* is a particular
configuration that is a deformation of the initial metastab
state that includes a critical bubble of the stable state. T
‘‘bubble’’ will then grow, as the configurationR moves away
from R* down in free energy toward the stable state.

The kinetic rate for leaving a metastable state in this p
ture is given by an Arrhenius-like formula@27,28#,

n.n0e2bG* . ~42!

HereG* is the free energy of the saddle point relative to t
metastable phase. CalculatingR* and G* requires the
saddle points of the functional~26!, i.e., solution of Eq.~40!
with boundary conditions of the departure phase.

2. Use of the free energy

In his original formulation of nucleation theory, Lange
considered escape from metastable states at temperature
were low relative to the purely energetic barrier heightE* .
In the limit of zero temperature, the waiting time for a flu
tuation that can stimulate a transition from the metastable
stable states goes to infinity. As the temperature is m
finite, but small with respect to the energetic barrier heig
activated processes allow the equilibrium state to be reac
with a relaxation time of the order of exp„2E* /(kBT)….

As we have seen in the preceding sections, the situa
we face here is formally slightly different. The absolute te
perature is not small, and in fact the barrier between ssD
and dsDNA is of mainly entropic origin. However, applic
tion of nucleation theory is possible even when the effect
HamiltonianG ~26!, ~36! includes a temperature-depende
~entropic! potential, since the starting point of the theory
the Langevin equation, which may contain temperatu
dependent potential terms.

3. Identifying the metastable and stable states

When a forcef, larger than the critical unzipping forcef u ,
is applied to the molecule, the dsDNA phase is metasta
with respect to the open ssDNA state~Fig. 3!. Nucleation
will, therefore, take place around the saddle point, wh
includes an open fork in the dsDNA@Fig. 10~a!#. The disso-
ciation raten2 is in this case directly given by formula~42!.

At forces f , f u below the equilibrium unzipping thresh
old, dsDNA is thermodynamically stable, but in a finite mo
ecule may reach the metastable ssDNA phase by the
fluctuation. In this case, we can infer the unzipping rate fr
the rate for thereversereaction, which is of the form of a
decay of a metastable~ssDNA! state.

Let n2 be the kinetic rate for dissociation andn1 the
kinetic rate for recombination when the two strands are
ready in close contact. Bothn2 , n1 depend on the lengthN
of the sequence and on applied forcef. The forward and
reverse rates are related by detailed balance,

n2~N, f !5n1~N, f !e2bNDg~ f !, ~43!
7-11
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FIG. 10. Sequences of states used to calculate kinetics of barrier crossing during unzipping.~a! When f . f u , the unzipped double helix
is thermodynamically favored@Dg( f ),0# and the unzipping raten2 can be calculated directly.~b! When f , f u , theB-DNA double helix
is thermodynamically favored@Dg( f ).0# and the unzipping raten2 must be calculated using the closing raten1 , where theB-DNA
double helix is the final state. The nucleation bubble in this process is 4 bp long. Then, the detailed balance conditionn25n1e2NbDg( f ) can
be used to determine the opening raten2 .
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where Dg( f ) is the free energy excess per bp of ssDN
relative to dsDNA. Knowingn1 andDg( f ), therefore, gives
the dissociation raten2 . The recombination raten1 mea-
sures the escape rate for the metastable ssDNA phase
saddle-point configuration for this transition is a bubble o
few paired bases, at the end of two nearly completely
zipped ssDNAs@Fig. 10~b!#.

We next compute the probability to nucleate a bubble
stable phase inside the metastable phase, as a function o
applied force, i.e.,n2( f ) for f . f u and n1( f ) for f , f u .
We discuss how to calculate the activation barrier free ene
G* using an instanton technique. In Appendix D we sh
how the WKB approximation may be used to obtain t
same results.

B. Nucleation bubble

1. Extremization of the free energy functional

The activated configuration in the phase space, and
activation free energy are~Sec. VIII A 1!

G* 5G@R* #2G@RM#, ~44!

whereRM is the average configuration of the chain in t
metastable stateM ~noteM5ds or ss!. As discussed in Sec
VIII A 1, the activated configuration can be thought of
made of two pieces. All but a finite number of monome
~numbered byn running from 2N1N* to 0! are in the
metastable, initial phase, with a small nucleation bubble
<n<N* ) of the stable phase located at the extremity of
molecule~Fig. 11!.

From Eq.~44!, the activation free energy is just the fre
energy excess of the nucleation bubble with respect to
metastable phase. We therefore extremize
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G* 5E
0

N*
dnH 1

2
m„r * ~n!…S dr*

dn D 2

1V„r * ~n!…2gMJ
22 f „r * ~0!2r * ~N* !…, ~45!

to find the shape of the bubble,r * (n). Note thatG* is not
simply equal to the potential barrier height as it would be
a single particle moving in the potentialV, but also takes
into account the rigidity of the strands.

For 0,n,N* , r * (n) satisfies Eq.~40!, expressing the
balance of forces at each point along the chain. The ana

FIG. 11. Schematic representation of the saddle-point poly
conformationr * (n), which crosses the barrier ofV(r ). Here, r i

and r f are the radii of the extremities of the nucleation bubble.
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with the equation of motion of a unidimensional particle w
coordinater evolving with ‘‘time’’ n is useful. At the ex-
tremities of the bubble, the functional differentiation of E
~45! gives back the equation of motion~40! with an addi-
tional contribution to the rhs of Eq.~40! equal to
22 f „d(n)2d(n2N* )…. Integrating out this equation o
motion over the vanishingly small interval2e<n<1e
(N* 2e<n<N* 1e), with e→01, shows that the velocity
dr* /dn is discontinuous at the extremities of the bubble, a
leads to the following boundary conditions:

dr*

dn U
n501

5
2 f

m„r * ~0!…
, ~46!

dr*

dn U
n5~N* !2

5
2 f

m„r * ~N* !…
. ~47!

These two boundary conditions are not sufficient to solve
~40! since N* is not determined yet. We need one mo
condition, which expresses the continuity between the m
stable bulk of the chain (n,0) and the adjacent extremity o
the nucleus (n.0). From Eq.~45!, the free energy per bas
pair at positionn in the nucleus is equal to

g* ~n!5
1

2
m„r * ~n!…S dr*

dn D 2

1V„r * ~n!…22 f
dr*

dn
,

~48!

and must coincide with the metastable valuegM in n50.
Using the boundary value of the velocity~46! and definition
~35!, we obtain

V̂„r * ~0!…5gM . ~49!

Equation~40! can now be integrated by determiningr * (0)
from Eq. ~49! and using the boundary condition~46! for the
velocity. Once the bubble trajectoryr * (n) is known, the
activation free energy can be computed from Eq.~45!.

2. Nucleation bubble free energy

The transition state free energyG* can be expressed i
terms of a first integral of Eq.~40!,

Q52
1

2
m„r * ~n!…S dr*

dn D 2

1V„r * ~n!…. ~50!

From Eqs.~46! and ~49!, Q5gM . Along the bubble trajec-
tory, the velocity is a simple function of the radius,

dr*

dn
5A2@V„r * ~n!…2gM#

m„r * ~n!…
. ~51!

Using Eq.~47! and ~51!, we find that the radiusr * (N* ) at
the extremity of the bubble is given byV̂„r * (N* )…5gM . A
similar relation holds at the other end of the bubble, see
~49!. In addition, Eq.~51! can be used to change the variab
in Eq. ~45! from n to r.

We thus obtain the following expression for the nuc
ation bubble free energy:
04190
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G* 5E
r i

r f
drA2m~r !@V~r !2gM#22 f ~r f2r i !, ~52!

wherer i@5r * (0)# andr f@5r * (N* ).r i # are the radii at the
two endpoints, fixed using

V̂~r i !5V̂~r f !5gM , ~53!

with V̂(r ) defined in Eq.~35!. Note that when ssDNA is the
metastable phase, the integration limits of Eq.~52! are r i ,
with V̂(r i)5gss522 f 2/C, and r f5`. The activation free
energyG* , therefore, is finite.

Appendix D shows how these results can be alterna
obtained from the Schro¨dinger equations~23!, ~34! using the
WKB method.

3. Nucleation bubble shape

Oncer i andr f are determined by the boundary conditio
~53!, the activation free energyG* follows by numerical
integration of Eq.~52!. The shape of the bubble is obtaine
by numerical solution of Eq.~40!. For f . f u , both r i andr f
are finite and the numberN* of base pairs in the bubble ma
be obtained from integration of Eq.~51!,

N* ~ f !5E
r i

r f
drA m~r !

2@V~r !2gM#
. ~54!

For forces larger thanf u , we find thatN* ( f ) decreases
slowly with f, with, e.g., N* ( f u512 pN)54, N* ( f
540 pN)53.

For forcesf , f u , r f goes to infinity because the potenti
is flat at infinite radius, and formula~54! must be used with
care. The number of base pairs in the bubble can then
defined from the change of slope of the correspondingr * (n)
curve. Beyond some radiusr t5r * (N* ), the average half
distancer * 5n(2 f )/C between extremities increases lin
early with n, and thus corresponds to ssDNA@Sec. IV B 2
and Fig. 10~b!#. We precisely defineN* as the bp index at
which the second derivatived2r * /dn2 is maximal. We find
N* ( f ).4 for all the forcesf , f u . The opening forks for
f 50, 5, and.12 pN are shown in Fig. 12.2

A simple approximate calculation ofN* at the critical
force f 5 f u shows thatN* .AE/b for ratios E/C ranging
from 100 to 1000~E/C.490 in our model!, see Appendix C.
The linear dependence ofN* upon 1/b is reasonable, since
the wider the barrier, the longer the nucleus to overcome
The square root dependence on the dsDNA stiffnessE fol-
lows from the form of Eq.~54!.

2No confusion should be made between the opening forks at
force ~Fig. 12! and at fixed distances between extremities~Fig. 5!.
The latter corresponds to fluctuations around dsDNA equilibri
represented by ssDNA bubbles as in Fig. 10~a!, while the former
corresponds to the case of metastable ssDNA, with an activ
bubble sketched in Fig. 10~b!.
7-13
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4. Saddle-point values of angular variables

In the previous calculation, we considered the Lange
dynamics using an effective Hamiltonian forr (n) once an-
gular degrees of freedom were integrated out. To be m
complete, one might consider the coupled dynamics of tw
anglesu(n) and radii r (n). In doing so, the saddle-poin
configuration for the radiusr * (n) turns out to be identical to
the motion equation~40!. The optimal solutionu* (n) for the
twist angle reads

u* ~n!52 arcsinSAL22H2

2r * ~n!
D , ~55!

where L, H are defined in Appendix A. Here,u* (n) de-
creases quickly from its dsDNA valueu0.2p/10.4 to zero
asn runs from 0 toN* .

C. The kinetic rate n0

So far we have discussed the most likely transition s
for escape from a metastable state. To ascertain the c
sponding time of escape, we need to know the raten0 ; see
Eq. ~42!. n0 is a rate describing the growth of the activat
bubble along the unique descending path from the sa
configuration. Following Refs.@27#, @28#, we have

n05
ul* u

z
, ~56!

where l* is the only negative eigenvalue of the Hessi
matrix M(n,n8) of G around the saddle pointR* . The lead-

FIG. 12. Saddle-point trajectoriesr * (n) connecting dsDNA and
ssDNA states, calculated with the instanton technique for diffe
values of the unzipping force (f 50,5,.12 pN). For f , f u , the
trajectory goes to infinity@see Figure 10~b!#, and the size of the
nucleation bubble is defined from the base-pair indexn at which the
slope changes, givingN* .3. For f . f u , all trajectories lie roughly
on the same curve~dashed line!, starting fromr i.r ds.10 Å and
halting at some force dependent radiusr f at a finite bp indexN* ,
see Figure 10~a!. The locations ofr f( f ) are shown for forcesf
512, 15, 30 pN~top to bottom, heavy dots!.
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ing contribution toM is given by the second derivative o
the Morse potential.UH9 „r * (n)…d(n2n8). The minimum of
UH9 , reached inr * 5R1 ln 4/a and equal to2Da2/4, is our
estimate forl* . We therefore obtain the raten051012 s21.

Here we have focused only on the initial nucleation tim
and have not discussed the time required for the unzipp
‘‘fork’’ to move down the molecule. For long repeated mo
ecules, an additional contribution, of the order ofN ( f . f u)
or N2 ( f 5 f u), accounting for the propagation of the bubb
along the chain up to complete opening should be inclu
in the net time@30#.

IX. RESULTS FOR DYNAMICS OF UNZIPPING

We now discuss results of the theory discussed in
preceding section. We treat first the case where the forc
held constant. We then discuss the case of constant loa
rate, where the force is increased as a linear function of ti

A. Constant force

The average dissociation timet2( f )51/n2( f ), is plotted
in Fig. 6 for molecules of lengthN510, 20, and 30 bp, for
fixed unzipping force. Below the threshold force for unzi
ping (f , f u), this ‘‘lifetime’’ is exponentially dependent on
molecule length, which is to be expected from the growth
the total denaturation free energy as;N ~43!.

At zero force, there is, in addition to the length-depend
part of the denaturation free energy, an activation free ene
G0* 513kBT. This leads to the unzipping timet2(N)
510212 e1311.4N51026.310.6N s ~Fig. 6, inset!. This formula
corresponds to the time associated with spontaneous un
ping of anN-nucleotide double helix in free solution, and fo
N55 bp is the relatively short timescalet2(5)50.3 ms. For
a 30 bp DNA,t2(30)'40 years. Thus dsDNAs beyond'25
bp are essentially stable in free solution.

For f . f u , t( f ) is, within the theory of the preceding
section, independent of molecule length, and decreases
ponentially withf up to f 5 f b5230 pN. In this regime, once
the initial force barrier is crossed, the applied force is la
enough to continue unzipping the DNA. For forces beyo
the force barrierf . f b dissociation is immediate~i.e., t2

51/n0!.
The size of the nucleation bubbleN* .4 bp depends

weakly on the force, and is essentially fixed by the shape
the barrier.

1. Linearization of the dissociation rate near fu

The logarithm of the dissociation rate is generally no
linear function of forcef ~Fig. 6!, as it would be for a single
degree of freedom@29#, but, rather, shows a strong quadra
dependence onf at small forces. This nonlinearity come
from Eq. ~43! and the functional dependence of the po
meric chain free energy upon force, e.g., Eq.~10!. However,
for forces near the critical forcef u , an approximate linear
relationship of this sort holds~Fig. 6!.

The derivative of the dissociation rate with force is,
part, determined by the derivative ofG* ~52!. Below the
unzipping force (f , f u) we have

t
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dG*

d f
5 lim

r f→`

2S 2 f

C
N* ~ f ,r f !2@r f2r i~ f !# D

52S 2 f

C
N* ~ f !2@r t~ f !2r i~ f !# D . ~57!

To obtain this expression we have used expression~54!. Here
r i depends on the force whiler t corresponds to the inflectio
point of r * (n) ~Sec. VIII B 3!.

For forces larger than the critical force (f . f u), we use
the boundary condition~53! to obtain

dG*

d f
522@r f~ f !2r i~ f !#. ~58!

For f < f u , see Eq.~43!, we also need the derivative of th
free energy differenceDg( f ) with force

N
d

d f
Dg~ f !52N

f

C
. ~59!

In the vicinity of f u we therefore obtain

ln t2~ f ,N!5H 2 ln n01bGu* 22bx,~ f 2 f u! ~ f < f u!

2 ln n01bGu* 22bx.~ f 2 f u! ~ f > f u!,
~60!

where

x,5du~N2N* !1r t~ f u!2r i~ f u!, ~61!

x.5r t~ f u!2r i~ f u!. ~62!

The energies and lengths entering into the linearized
pression~60! have a straightforward physical interpretatio
In the vicinity of the critical force (f ' f u), the ds and ss-
DNA states have nearly the same free energy. The trans
state bubble separating them has free energyGu*
516.5kBT; this is the free energy barrier involved in diss
ciation of a dsDNA~or for the reverse recombination rea
tion of two ssDNAs!. The lengthdu55 Å is the projection of
a DNA monomer in the force direction,N* 54 bp is the
number of base pairs in the nucleation fork, andr t( f u)
2r i( f u)54 Å is the difference in radii between the first an
last base of the fork. These lengths define the position of
transition state along the reaction coordinate. The total
tance between the two DNA extremities in this transiti
state is 2@R1r t( f u)2r i( f u)#528 Å.

B. Constant loading rate

1. Rupture force distribution

We now consider the situation where the unzipping fo
is a linear function of time. The time at which the molecu
opens, or ruptures, is stochastic in nature, thanks to the
fluctuations. The distribution of the rupture force as
function of the loading ratel ~measured in pN/sec! is given
by @29#
04190
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ln P~ f !52
1

l E
0

f

d f8 n2~N, f 8!1 ln n2~N, f !, ~63!

wheren2(N, f ) is the dissociation rate at fixed forcef and
lengthN computed in the previous subsection. We recall t
for f , f u , n2 has a strongN dependence, while forf . f u it
is independent ofN ~43!. The rupture force distribution is
shown forN510 and for a few loading rates in Fig. 13.

2. Most probable rupture force

The most probable rupture forcef * (N,l) is given by the
location of the maximum of the function~63! shown in Fig.
13, and is plotted in Fig. 7 for a few molecule lengthsN. The
curves forN510 can be understood in terms of the ruptu
force distributions of Fig. 13. For small loading rates~e.g.,
l50.5 pN/s! P( f ) has a single maximum atf 50, so the
most probable rupture forcef * ~Fig. 7! is zero. As loading
rate is increased, a second local maximum appears fol
'100.75, but still the most probable rupture force is zero.
this regime the loading rate is so slow that thermal fluct
tions open the molecule before force can become sign
cantly different from zero.

However, atl15100.7856 pN/s, the second maximum a
Fig. 13 exceeds the maximum atf 50, and the most probable
rupture forcef * ~Fig. 7! jumps to f * 52.5 pN. As loading
rate is further increased,f * grows as the peak of Fig. 13
moves to higher force values. Nearl54 pN0/s the rupture
force distribution~63! develops a cusp atf 5 f u , due to the
discontinuous derivative ofn2(N, f ) ~see Fig. 6!.

For l,l25104.6 ~e.g.,l54.4 pN/s in Fig. 13! the maxi-
mum of the rupture force distribution is located on the part
the curve determined by the dissociation ratesn2(N, f
, f u), for forces smaller than the critical force. In this ran
unzipping occurs while dsDNA is thermodynamically stab
so f * shows a strong dependence on molecule lengthN.

For l2,l,l35105.5 pN/s the rupture force distribution
maximum is at the cusp of the curve inf 5 f u , generating a
plateau in the most probable rupture force of Fig. 7. F
l.l3 the maximum of the rupture force distribution is lo
cated at a force abovef u , where the dissociation rate in
creases with force, but isN independent. Thusf * increases
for l.l3 until the loading rate approachesl4
.1014 pN/sec. Beyond this point, the rupture force rema
constant and equal tof * 5 f b5230 pN. Forl.l3 , unzip-
ping occurs out of equilibrium, with the force increasing to
rapidly for the molecule to respond. The loading ratel3 thus
separates equilibrium and nonequilibrium timescales for c
stant loading-rate unzipping experiments.

Both l1 andl2 depend onN and diminish asN increases.
For N sufficiently large, e.g.N5100, f * does not substan
tially differ from f u for all loading ratesl,l3 . The most
probable rupture force is thusf u for l,l3 , but becomes
loading-rate dependent forl.l3 .

3. Linearization near critical force

The linearized result for the log of the dissociation ra
~60! can be used to compute the dependence of the m
probable rupture force on loading rate near the criti
force f u ,
7-15
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FIG. 13. Logarithm of rupture force distributionP( f ) for N510 and different loading ratesl5100.5, 100.75, 100.78, 101, 104.4, 105, and
105.7 pN/s. For small loading rates, the maximum of the rupture force distribution is located at zero force, and jumps discontinuou
finite force whenl.l15100.77 pN/s. Forl25104.6,l,l35105.5 pN/s, P( f ) displays a cusp inf 5 f u , which is thus the most probabl
rupture force. Abovel3 , a new maximum develops and the typical rupture force starts growing again as a function ofl. At very high loading
ratel.l451012 pN/s, the rupture force reaches its highest value of'250 pN ~not shown!.
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f * ~N,kv !5 f u15
kBT

2x,
lnul/l2u, l<l25kBTnu/2/x

0, l2<l<l35kBTnu/2/x

kBT

2x.
ln@l/l3#, l>l3 ,

~64!

with nu[n2( f u ,N), and x, and x. as in Eqs.~61!, ~62!.
From Eq.~64!, we see thatl3 is inversely proportional to the
time to cross the barrier separating dsDNA and ssDNA
coexistence, and to the difference in opening between
first and the last base pair of the transition state bubble.

X. COMPARISON WITH EXPERIMENTS

Many of the theoretical conclusions of the preceding s
tions are in accord with published experimental data. O
theoretical result for the critical unzipping forcef u is in ac-
cord with results of Bockelmann, Essevaz-Roulet, and He
@2# and Rief, Clausen-Schaumann, and Gaub@11#; our disso-
ciation rate at zero force as a function of the number of b
pairs N of Fig. 6 is in agreement with the experiments
Pörschke@8# and Bonnet, Krichevsky, and Libchaber@9#, and
the behavior of the rupture forcef * as a function ofN and of
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the loading ratel shown in Fig. 7 is in rough accord with
data from AFM experiments on DNA unpairing by force b
Strunzet al. @10#.

A. Equilibrium and macroscopic unzipping

The experiments of Bockelmann, Essevaz-Roulet,
Heslot and of Rief, Clausen-Schaumann, and Gaub exam
the opening of a large number of base pairs and accordin
Fig. 7 are performed with loading ratel,l2 . Therefore, as
for the N5100 curve, the rupture forcef * at which the two
strands separate is approximately equal to the critical fo
f u , as is observed experimentally.

The macroscopic description of Eq.~9! within the Gauss-
ian and FJCL approximations allows us to relate the criti
force to the free energy of denaturation. From our Gauss
approximation we obtainf u

gaus.12 pN, and from the more
microscopic model of Sec. V we obtainf u

FJCL.11 pN. These
force values correspond to a total DNA denaturation f
energyDg51.4kBT. This critical force is in accord with the
unzipping forces between 10 and 15 pN observed
Essevaz-Roulet, Bockelmann, and Heslot forl-DNA @2#.
Our critical force is also in the midrange of results of Rie
Clausen-Schaumann, and Gaub for homogeneous-sequ
7-16



f
es

ce
th
ke
f

a

h
ef

ic
at
o

tt

ie

d
e

ly

s
s
ita-

d
nz

ng

on
e
effi-

ead
and

ur
h
A

e
c-
r

t
om
i

FORCE AND KINETIC BARRIERS TO INITIATION OF . . . PHYSICAL REVIEW E 65 041907
DNA, f u
AT59 pN for poly AT poly TA, andf u

GC520 pN for
poly CG poly GC.

Equation ~9! with the f u
gaus ~10!, f u

FJCl ~12! ~see Fig. 8!
leads to an estimate of the free energy of denaturation
different sequences, directly from the critical force valu
The Bockelmann-Heslot range 10, f u,15 pN corresponds
to values for the FJCL model in the range 1.3kBT,DgFJCL

,2.4kBT, and for the Gaussian model 1.0kBT,Dggaus

,2.3kBT. Thel-DNA used has a roughly random sequen
with GC content ranging between 30% and 60%. Using
FJCL expression for the single strand free energy Boc
mann and Heslot@2# have fit the experimental variations o
the critical force along thel DNA.

The critical forces found by Riefet al.—f u
AT59 pN and

f u
GC520 pN—via Fig. 8 give Dggaus

AT 50.8kBT, DgFJCL
AT

51.1kBT, Dggaus
GC 54.2kBT, and DgFJCL

GC 53.5kBT, respec-
tively. These values for the free energy of denaturation
compatible with the ones listed by Breslaner@3#: DgAT

'2kBT, DgGC'5.6kBT for a ionic concentration of 1 M
NaCl buffer, which is greater than the 150 mM used in t
experiments of Bockelmann and Heslot and of Ri
Clausen-Schaumann, and Gaub

The torque-force phase diagram of Fig. 3 gives a pred
tion for the critical unzipping force for an experiment th
combines the unzipping experiment done in the group
Essevaz-Roulet, Bockelmann, and Heslot@2# and the twist-
ing experiment done by Strick, Bensimon, and Croque
@15# and by Legeret al. @31#.

B. Unzipping kinetics

Figure 6 shows the dissociation timet2 at zero force as a
function of the molecule length. The dissociation time var
as 102a1dN, with

a5 log10n02
G0*

ln 10
56.3 ~65!

and

d5
Dg

ln 10
50.6. ~66!

These values are close to results obtained by Po¨rschke
et al. for poly A-poly U DNAs, a58 andd50.5. The value
of d is just Dg51.4kBT only, and the result found by Po¨r-
schke givesDg51.2kBT. The inverse width of the barrierb
has been set tob51.75 to obtain the opening time forN
55 bp t2.0.331023 s found by Bonnet, Krichevsky, an
Libchaber,t2.0.531023 s.3 Our calculations give the siz
of the nucleation bubble to be equal toN* .4 bp, in agree-
ment with the estimate of Po¨rschke. This value depends on
weakly on applied force.

3For such a short sequence, no extra contribution to the time c
ing from the propagation of the opening fork along the chain
expected.
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C. Dissociation under fixed loading rate

1. Opposing58-58 strand unbinding experiment of Strunz et al.

In the experiment of Strunzet al. @10#, the stretching
force is applied to opposite 58-ends. In our model, the stres
is applied on the adjacent 58 and 38 ends of opposite strand
@Fig. 1~c!#. This basic difference makes a precise, quant
tive comparison of our results for the rupture forcef * as a
function of the molecule lengthN and loading ratel impos-
sible.

However, the general features of the dependence off *
upon N and l shown in Fig. 7 should be quite robust, an
applicable at least qualitatively to the experiments of Stru
et al. @10#. Experimentally the dependence off * upon N
~Fig. 3 of Ref.@10#! was observed meaning that the loadi
rate is in the rangel1,l,l2 . The experimental data show
a linear dependence of the log of the dissociation rate
force close tof u , as in our theory. From a linear fit to th
data it is possible to deduce the characteristic length co
cients, activation free energy and critical force~see results of
Sec. IX A 1!.

For f , f u , we write, as in Ref.@10# and in Eq.~60!,

n~ f !5 ñebx f, ~67!

wherex52x, from formula~60!. However, we note that~in
contrast to the interpretation of Ref.@10#!

ñ5n0e2Gu* 1bx fu ~68!

is not the thermal dissociation rate at zero force, but inst
is related to the activation energy of the transition state,
the length coefficients at the critical force. We write~again
formally as in Ref.@10#!

ñ510a12a2N. ~69!

Again, we do not identify the fitted parametersa1 , a2 as the
zero-force dissociation parametersa ~65! and d ~66! of the
preceding section. Instead, we have

a15 log10n02~Gu* 1bx0f u!/ ln 10 ~70!

and

a25bx1f u / ln 10. ~71!

The length coefficients entering Eqs.~68! and ~69! are
x5x01x1N where x052@r t( f u)2r i( f u)2duN* # and x1
52du from formula ~60!. The coefficientsx0 and x1 have
been also fitted by Strunzet al. from the slope of the linear
fit of the loading rate. In the interpretation given by o
kinetic theory,x1 is the projection of the monomer lengt
difference between the final ssDNA and the initial dsDN
states in the force direction;x0 is the difference between th
length 2(r t2r i) of the transition state along the force dire
tion and the lengthduN* of a ssDNA with the same numbe
of bases of the activated bubble.

From the experimental data of Strunzet al. we find x1
50.760.3 Å and x05763 Å. These values are differen
from the values we found in the case of unzipping,x1

-
s
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52du510 Å and x052@r l( f u)2r i( f u)2duN* #5232 Å
because they refer to a different geometry and a differ
kind of transition. Indeed, in the experiment of Strunzet al.,
the force is applied along the molecular axis; as pointed
by the experimenters@10#, the valuedu.1 Å is roughly the
difference in axial length per base pair between overstretc
S-DNA ~which they consider as the initial state! and com-
pletely stretched and denatured ssDNA.

Finally, from the data of Strunzet al. we can deduce the
stretching force at which the rupture force shows a plate
f u5a2 /x1 ln 1050.5kBT/0.7 Å.70 pN. The fact thatf u is
larger than the value for transverse unzipping of'12 pN is
due to the lower displacement and hence energy gain a
ciated with longitudinal stretching, relative to that occuri
during transverse unzipping@10#.

2. Experiments of Rief, Clausen-Schaumann, and Gaub

Rief, Clausen-Schaumann, and Gaub observed aB-DNA
to S-DNA transition, followed by aS-DNA to ssDNA transi-
tion, when DNA was stretched by a force acting on the o
posite 58-38 ends of the same polynucleotide strand. In e
periments onl-DNA, the B-Stransition forcef * showed no
dependence on loading rate, so in that casef * is the critical
force f u , and the experiments were, therefore, done in
regimel,l3 . In addition, the ds-S transition was found to
have a highly sequence dependentf u .

By contrast, theS-ss transitionf * depends on loading
rate, indicating that the loading ratekv is larger thanl3 ,
indicating thatl3.6500 pN/s. Thusf * gives only an upper
bound forf u . These different behaviors for theB-SandS-ss
transitions, obtained for the same loading rates suggest@see
Eq. ~64!#, that the energy barrier is higher for theS-ss tran-
sition than for theB-S transition.

XI. CONCLUSION

In this paper we have analyzed the equilibrium and n
equilibrium aspects of unzipping of double-stranded DNA
applied force. This subject is of intrinsic theoretical impo
tance, but is also highly relevant to the unpairing of DN
strands that occursin vivo, and also directly addresses singl
molecule micromanipulation unzipping experiments do
under totally controlled conditions. We have mainly focus
on a semimicroscopic model that accounts for the fin
range of base-pairing interactions. This model has eno
detail to analyze mechanical behavior at the few-Å scale
evant to molecular-biological events, but is still simp
enough to allow a detailed mathematical analysis with
having to resort to numerical simulations.

Our semimicroscopic model is constrained so as to h
its large-scale equilibrium behavior in accord with ‘‘therm
dynamic’’ descriptions of unzipping. In particular, this mea
that the hybridization free energy per base must be'1.4kBT
and that the elastic behavior assumed for the unpaired sin
stranded regions must be consistent with results of di
micromanipulation experiments.

Given these thermodynamic constraints, our model na
rally leads to an important conclusion, namely, that
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semimicroscopic potential well that holds adjacent bases
gether in the double helix includes an appreciablebarrier.
The origin of this barrier is in the free energy difference d
to nucleic acid backbone conformational fluctuations b
tween dsDNA and ssDNA forms. This free energy barr
~about 2kBT per base! adds to the base-pairing potenti
~about another 2kBT per base in depth! to produce
a '4kBT total barrier that must be traversed over a few
distance to separate two bases. This leads to a total f
barrier of.250 pN.

This remarkably high force barrier is at first worrisom
since the forces observed during essentially ‘‘macroscop
experiments are close to the'12 pN critical force for unzip-
ping. However, this high barrier is difficult to directly ob
serve since most experiments are carried out under co
tions where distance between extremities cannot
controlled on the Å scale.

However, we have shown that the barrier to initiation
unzipping has been observed indirectly, in the initiation fr
energy for conversion of dsDNA to ssDNA. Our theory r
lates this well-known feature of DNA hybridization free e
ergy to the base-pairing interactions and backbone elasti
It would be of great interest to carry out AFM fixed
extension single-molecule experiments to directly meas
the forces encountered in equilibrium as unzipping is in
ated.

We have shown that a second way to gain insight into
unzipping initiation barrier is to study the kinetics of unzi
ping. We have treated this problem as a Kramers-type a
vated barrier-crossing problem, although one with many
grees of freedom. Our result is a rich kinetic theory, w
results in accord with available experimental data@8,10#.
However, many of our results await detailed study expe
mentally. Our kinetic theory underscores two important fe
tures. First, a transition state of'4 bp extent, which plays a
critical role in the unzipping dynamics, has been identifie
This ‘‘fork’’ structure is the analog of a transition state in
chemical reaction. One could imagine that this state could
a target for enzymes that accelerate DNA unzippingin vivo,
since a fork of'4 bp is about the size of ‘‘typical’’ DNA-
binding proteins. Second, a rich behavior of the most pr
able rupture force as a function of the loading rate and
sequence length has been obtained~Fig. 7!, and has allowed
us to interpret unbinding AFM experiments@10#. In this re-
spect, our work extends Evans’ theory@29# to the unbinding
of polymeric objects, and complements recent works in
field @33#.

The clearest limitation of our current analysis is that w
do not treat the inhomogeneity in hybridization free ener
due to inhomogeneous sequence along real DNAs. In
present paper, our aim was study of the initiation barr
which is rather large compared to the effect that seque
can have at short scales. However, at large length sca
sequence inhomogeneity will play a crucial role in unzippi
kinetics. Associated with this limitation is our neglect of th
dynamics of fork propagation after unzipping initiation. O
Kramers-type treatment with its focus on the transition st
‘‘fork,’’ is appropriate for understanding only the initia
stages of unzipping. This makes our theory adequate for
scribing the kinetics of denaturation of short sequence m
7-18
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FORCE AND KINETIC BARRIERS TO INITIATION OF . . . PHYSICAL REVIEW E 65 041907
ecules. Rather distinct theoretical approaches closer to t
used to study domain-growth kinetics are in order to stu
the motion of a ds-ss fork down a long~.100 bp! DNA.

Our results may be relevant to other problems, includ
the unzipping of helix-loop RNA and DNA structures, whic
have recently been studied using single-molecule microm
ipulation techniques@34,35#. Also, our results are a startin
point for consideration of more complex problems involvi
dsDNA–ssDNA–protein interactions. Both the role of pr
teins bound near an fork on unzipping, and the effect
unzipping on bound proteins are biologically relevant, a
open to detailed study using single-molecule micromani
lation techniques.
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APPENDIX A: ENERGY OF THE DISCRETE MODEL

In this appendix, we show how the discrete model
Refs.@5#, @6# can be converted to Eq.~17!, once the angular
variables are integrated out, and a continuum limit is tak

A. Radial transfer matrix

The discrete model transfer matrix has the fo
T0(r ,r 8)5X(r ,r 8) Y0(r ,r 8), with X andY0 given by formu-
las ~10! and ~12! of Ref. @6#. The radial portionX is

X~r ,r 8!5Arr 8 exp$2b@Vs~r ,r 8!1 1
2 UH~r !1 1

2 UH~r 8!#%,
~A1!

whereUH is the Morse potential~denotedVm in Ref. @6#!.
The backbone interaction isVs(r ,r 8)5E(r ,r 8)(r 2r 8)2 with
E(r ,r 8)[E exp@2b(r1r822R)# as in Eq.~5! of Ref. @6#.

B. Simplifying form for the angular transfer matrix

Consider the angular part of the transfer matrix, and
fine the on-site potentialy(r ) via

Y0~r ,r !5
1

r
exp$2by~r !%, ~A2!

y(r ) can be computed for large radii (r @R) from the defi-
nition of Y0(r ,r ),

Y0~r ,r !5E
0

p

du expb@Vb~r ,r ,u!1Gu# ~A3!

.E
0

L dx

r
exp@2bK~AL22x22H !2#S 11

bGx

r D
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~u5x/r !, ~A4!

from which we obtain

y~r !.2G
R1

r
,

R1[
*0

Ldx xexp@2bK~AL22x22H !2#

*0
Ldx exp@2bK~AL22x22H !2#

.6 Å. ~A5!

A numerical check shows that Eq.~A5! is a good approxi-
mation to 2kBT ln Y0(r,r), up to anr-independent additive
constant, even whenr .R. Since small values ofr are dis-
allowed from contributing by the strong repulsive part of t
potential, Eq.~A5! can be taken as a global approximatio

Now define

r̂~r ,r 8!5
Y0~r ,r 8!

Y0~r ,r !
. ~A6!

At large distancer, r 8, with r 2r 8 smaller or equal to the
‘‘rigid-rod’’ length L @5,6#, p̂ may be interpreted, up to a
r, r 8-independent multiplicative constant, as the joint pro
ability r that the extremities of a rigid rod of lengthL be at
distancesr 8,r from a fixed reference axis~Fig. 14!:

r~r ,r 8!5
1

4p E
0

2p

duE
0

p

dw sinwd„r 2g~u,w,r 8!…,

~A7!

where

FIG. 14. Given the distancer 8 from one end of the rod to the
left axis ~helical axis of the molecule of dsDNA!, the other end lies
with a uniform probability on the sphere of radiusd ~denoted byL
on the figure as in Appendix A! centered around the first end. W
call r the distance of the second end to the axis. Let us callx8, y8
the coordinates of the projection of the second extremity onto
equatorial plane of the sphere, perpendicular to the left axis:x8
5d sinw sinu, y85d sinw cosu. The equation givingr as a func-
tion of r 8, x8, y8 is shown on left side of the figure. See text fo
further details.
7-19
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g~u,w,r 8!5Ar 821L2 sin2 w12Lr 8 sinu sinw. ~A8!

Integrating the angleu out and definingx5cosw, we find

r~r ,r 8!5
2

p E
0

1 dx

Ah~x!
x„h~x!…, ~A9!

where

h~x!5
4r 82L2

r 2 ~12x2!2S r 2
r 82

r
2

L2

r
~12x2! D 2

,

~A10!

and wherex(z)51 if z>0, and 0 otherwise. In the larger,
r 8 limit with r̄ 5r 2r 8, we obtain

lim
r 8→`

r~r 81 r̄ ,r 8![r~ r̄ !5
1

pL E
0

A12~ r̄ /L !2 dx

A12x22~ r̄ /L !2

5H 1

2L
if 2L, r̄ ,L,

0 otherwise.
~A11!

The above calculation follows from the fact that sing
strands are represented as freely-jointed chains in our mo

For small wave numbers (k,1/L) relevant to a con-
tinuum representation of our model, the Fourier transform
r is approximately

r̄~k!5E
2`

`

dr̄ r~ r̄ !eikr̄

5
sin~kL!

kL

512
L2

6
k21O~k4!

.expS 2
L2

6
k2D , ~A12!

which is the Fourier transform of

rgaus~r ,r 8!5
1

A2pbCss

expS 2b
Css

2
~r 2r 8!2D ,

~A13!

with

Css5
3kBT

L2 . ~A14!

This result simply indicates that the freely jointed chain h
the long-wavelength behavior of a Gaussian polymer,rgaus.
HereCss is the three-dimensional Gaussian entropic stiffn
of the single strand.
04190
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We determine the multiplicative constantr̂(r ,r 8)/
rgaus(r ,r 8) by requiring rgaus(r ,r 85r )51 from Eq. ~A6!,
and find

r̂~r ,r 8!5expS 2b
Css

2
~r 2r 8!2D . ~A15!

We finally find the following approximate expression for th
transfer matrix; see Eqs.~A1!, ~A2!, ~A5!, ~A6!, ~A15!:

T0~r ,r 8!5expH 2
b

2
$~E exp@2b~r 1r 822R!#1tCss!

3~r 2r 8!21U~r !1U~r 8!%J , ~A16!

whereU is defined in Eq.~19!.

C. Hamiltonian for radial variables

In the discrete version of the model of Ref.@5#, @6# the
single strands were assumed to be symmetrically distribu
around the helical axis of the molecule~one strand was free
to fluctuate while the other was just its axial reflection!.
Here, we resolve fluctuations of both strands, doubling
total length of independent segments, and leading to the
fective entropic stiffnessC52Css.

Taking these contributions into account gives the trans
matrix

T0~r ,r 8!5expH 2
b

2
@m~r ,r 8!~r 2r 8!21U~r !1U~r 8!#J .

~A17!

The stiffnessm(r ,r 8) ~18! is a sum of dsDNA stacking in-
teractions and intrinsic ssDNA entropic stiffness. There i
slight change of notation from Ref.@6#, in the stacking func-
tion E(r ,r 8): both stacking constantE and inverse lengthb
have been multiplied by a factor of two in the present pap
The effective Hamiltonian~17! for a configuration of radial
variablesR5$r (0),r (1),...,r (n)% comes immediately from
Eq. ~A17!.

APPENDIX B: CONTINUUM FORMULATION

A. Extension of n to a continuous variable

An alternative, nonsymmetric choice for the transfer m
trix with the same eigenvalues asT0 ~A17! is

T0
ass~r ,r 8!5exp$2b@ 1

2 m~r ,r 8!~r 2r 8!21U~r !#%.
~B1!

In a continuous version of this model, we look for a simil
formula when the base-pair index is increased fromn to
n1e with e!1. In this regime,r and r 8 do not differ by
more thanAe, allowing some simplifications to be made. W
now present two replacementsT1

ass and T1 for T0
ass, T0 re-

spectively, obtained from such approximations.T1
ass and T1

reduce to exactlyT0
ass, T0 respectively, when the stiffness i

r-independent.
7-20
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Nonsymmetric model of this paper. Our continuum
scheme uses an approximation to Eq.~B1!. Assuming r
.r 8, we transform the transfer matrixT0

ass into

T1
ass~r ,r 8!5exp$2b@ 1

2 m~r !~r 2r 8!21U~r !#%, ~B2!

where the stiffness is defined in Eq.~24!.
Bouchiat’s symmetric model. An alternative scheme wa

proposed by Bouchiat@32#. Let us define the functionx(r )
5*R

r dxAm(x). Bouchiat considered the following symme
ric transfer matrix:

T1~r ,r 8!5expH 2
b

2
$@x~r !2x~r 8!#21U~r !1U~r 8!%J .

~B3!

B. Schrödinger operator for the nonsymmetric model with
zero force

The eigenvector equation for the transfer mat
T1

ass(r ,r 8) is

E dr8T1
ass~r ,r 8!c~r 8!5exp~2bg!c~r !. ~B4!

In the continuum limit of the axial distanceh going to zero
we introduce in Eq.~B4! a parametere which goes to zero as
h,

expS 2b
e

h
U~r ! D E dr8 expS 2b

m~r !h

e
~r 2r 8!2Dc~r 8!dr8

5expS 2b
e

H
gDc~r !. ~B5!

Since the Gaussian term concentrates the integral cont
tion of r 8 near r, we can expand the eigenfunctionc(r 8)
near r. Introducing the integration variablez5(r 2r 8)/Ae,
neglecting additive constants and expanding we obtain
tain

F12b
e

h S U~r !1
1

2b
ln

hbm~r !

ep D GA2bhm~r !

2p

3E dzexp„2bhm~r !z2
…

3Fc~r !1
ez2

2

]2

]r 2 c~r !1O~e2!G
5S 12b

e

h
gDc~r !. ~B6!

Integrating the Gaussian terms, and putting backe5h we
obtain Eq.~23!

C. Schrödinger operator for Bouchiat’s symmetric model

Bouchiat has shown that Eq.~B3! allows a simple change
of variables from the radiir to the new variablesx. Then, the
kinetic term in thex variables has a constant stiffness and
04190
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corresponding Schro¨dinger operator can be written down
After returning to ther variables this is

O152S kBT

A2m~r !

]

]r D 2

1U~r !1
kBT

2
ln m~r !, ~B7!

This is symmetric, since the scalar product between fu
tions w1 , w2 reads ^w1uw2&5*dx w1(x)w2(x)
5*drAm(r )w1(r )w2(r ).

D. Relation between symmetric and nonsymmetric models

Defining c̄1(r ) to be the ground state wave function
Eq. ~B7!. Bouchiat has shown thatc1(r )5@m(r )#1/4c̄1(r )
obeys Eq.~23! with an additional contribution to the poten
tial V,

dV1~r !5t2
5m8~r !224m~r !m9~r !

32m~r !3 . ~B8!

The extra contribution is a small correction both inside a
beyond the Morse well, and does not lead to a signific
change to the values ofgds andgss. In addition, Bouchiat has
shown that the presence of a kernel in the symmetric sc
product induces a small additional contributiond f 1(r )
5tm8(r )/@4m(r )# to the forcef ds(r ) ~Sec. VII A! needed to
keep the two strands at fixed distance 2r . As stated in Sec.
V B, the transfer matrixT1

ass we chose can be seen as
Gaussian approximation to the exact transfer matrixT1 pro-
posed by Bouchiat.

E. Schrödinger equation including force

The transfer matrix including forcef is

Tf~r ,r 8!5exp$2b@ 1
2 m~r !~r 2r 8!21U~r !22 f ~r 2r 8!#%,

~B9!

and

E dr8 Tf~r ,r 8!c~r 8!.expH 2b
e

h S U~r !2
2 f 2

m~r !

1
1

2b
ln

hbm~r !

ep D JA2bhm~r !

2p

3E dzexpH 2bhSAm~r !

2Ae
z

2& f /Am~r !D 2J Fc~r !

1Aez
]

]r
c~r !1

ez2

2

]2

]r 2 c~r !

1O~e2!G , ~B10!

from which we obtain Eq.~34!.
7-21
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APPENDIX C: NUCLEATION BUBBLE LENGTH AND
FREE ENERGY

We now derive simple expressions for the free energyG*
and lengthN* of the nucleation bubble. Our aim is to obta
the dependence of these quantities on the inverse lengb;
this parameter is not critical to the description of mac
scopic unzipping, but is central to the kinetics of unzippi
initiation. In this appendix we calculate results at exter
force equal to the critical valuef u .

To simplify our results we approximate the potentialV in
the barrier region by the following piecewise linear for
~Fig. 9!:

Vapp5H ln~E/C!~R1Rb2r !/Rb if R,r ,R1Rb ,

0 if r .R1Rb ,
~C1!

where

Rb5
1

b
ln~E/C!, ~C2!

is an approximate value for the width of the barrier. T
nucleation bubble free energyGu* in the presence of an ex
ternal forcef 5 f u is

Gu* .E
R

R1Rb
dr„A2m~r !@Vapp~r !2g0#22 f u…

.
A2C

b
G~E/C,2g0!, ~C3!

where

G~y,z![E
1

y dx

d
„A~x11!~ ln x12z!2A2z…. ~C4!

The length of the activated bubbleNu* can be computed
similarly. An accurate approximation for the value of th
radius at which the slope ofr * (n) changes@i.e., where the
third derivative ofr * (n) vanishes# is r t5R1Rb . Using Eqs.
~40! and ~51! we obtain

Nu* .E
R

R1Rb
drA m~r !

2@Vapp~r !2g0#
.

AC

b
N~E/C,2g0!,

~C5!

where

N~y,z![E
1

y dx

x
A x11

ln x12z
. ~C6!
.

a

04190
-
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Within the above approximation, we findGu* .(36/b)kBT
andNu* .(6/b) bp.

APPENDIX D: WKB CALCULATION FOR NUCLEATION
BUBBLE FREE ENERGY

The free energygM and wave functioncM(r ) of the
metastable phase obey Schro¨dinger equation~34!. The WKB
method can be used to calculate the tunneling amplitude
the wave function through the barrier. We note that we m
introduce a new parameter to control the WKB calculatio
since we are unable to consider arbitrary absolute temp
ture ~the ssDNA phase free energy is dominated by therm
fluctuation, as is the barrier between dsDNA and ssDN!.
We therefore introduce a parameterh, modifying Eq.~34! to
be

F2
~kBT!2

2m~r !
h2

]2

]r 2 1
2 f ~kBT!

m~r !
h

]

]r
1V̂~r !GcM~r !

5gMcM~r !. ~D1!

Notice that Eq.~34! is recovered whenh51, and that a
WKB approximation will be accurate forh→0. The activa-
tion energyG* (h) will be computed for smallh, and thenh
will be extrapolated to provide an estimate forG* (h51).

The WKB approximation gives the wave function in th
barrier range,r i,r ,r f defined through Eq.~53! under the
semiclassical form

cM~r !5expF2
W~r !

~kBT!hG$a0~r !1ha1~r !1h2a2~r !1¯%.

~D2!

This result can then be put into into Eq.~D1!, giving at
lowest order in h the following quadratic equation fo
W8(r )5dW/dr:

@W8~r !#214 f W8~r !22m~r !@V~r !2gM#50. ~D3!

Solving Eq. ~D3! we obtain the activation energyW(r )
for any radiusr inside the barrier, plus the correspondin
wave function from Eq.~D2!. The activation free energyG*
for leaving the metastable state equalsW(r f) and is given by
Eq. ~52!. The radiir i andr f are the classical turning points a
which the ‘‘momentum’’W8(r ) vanishes. We have checke
the validity of the WKB approximation in the ranger i,r
,r f , see Sec. VII A.
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