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Force and kinetic barriers to initiation of DNA unzipping
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A semimicroscopic model of the binding of the two nucleotide strands in a double-stranded DNA is used to
describe the effects of applied tension on strand unpairing. We show that the model describes strand separation
by elevated temperature, applied torque, and applied force. In particular, we show how the interactions respon-
sible for stabilizing the double helix against thermal denaturation determine-12epN force threshold for
DNA strand separation. The larger rigidity of the strands when formed into double-stranded DNA, relative to
that of isolated strands, gives rise to a potential barrier to unzipping. We show that this barrier rese250 a
pN force barrier opposing the beginning of strand separation. The thermal-fluctuation-assisted “tunnelling”
through the barrier is then analyzed using instanton calculations. The resulting kinetics of unzipping initiation
is shown to be consistent with solution-phase strand dissociation experiments, and can explain results of two
recent unzipping experiments done using atomic-force microscopy.
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[. INTRODUCTION stronger base-pairing interactions thafd-rich sequences,
causing them to thermally melt at higher temperat(iBds
Genetic information in cells is stored in double-helical The micromanipulation experiments of Essevaz-Roulet,
B-form double-stranded DNAYdsDNA). The hydrogen Bockelman, and Heslot use optical microscopy, detecting
bonded and stacked bases are well protected in the interior édrce via observation of the deflection of a glass fiber to
dsDNA. However, separation of the two strands is a key parfvhich one of the DNA strands is attached. That experiment
of both the “reading” of DNA sequence@ranscription and  does not observe the beginning of base unpairing since the
DNA replication [1]. During transcription, a transient distance between the two single strands extremities cannot
“bubble” of single-stranded DNAssDNA) is formed, to al-  be controlled on the Angstno scale. However, similar ex-
low the enzyme that makes a RNA copy of the DNA se-periments using atomic-force microsco@éM) cantilevers
quence to access the DNA bases. During replication, the tware, in principle, able to probe the unzipping of the first few
DNA strands are permanently separated, each strand th@yase pairs. The initial opening of a sSDNA bubble can be
serving as a template for the synthesis of a new strand.  expected to involve a large free energy barrier due to the
In biochemistry experiments, dsDNAs are routinely con-large cooperativity of DNA strand separation known from
verted to separated ssDNAs by “melting” at elevated tem-thermal studies of melting. Thus, one can anticipate that the
perature~80 °C; this approach uses thermal fluctuations todouble helix will be stable against unzipping forces larger
simply overwhelm thekgT scale base pairing and base- than the macroscopic unzipping threshold force of 12 pN, for
stacking interactions that stabilize the double helix at roomsome finite amount of time.
temperature. This is not how strand separation is driven in In this paper, we present a semimicroscopic theory that
cells. Instead, DNA strands are separated by the applicatioallows these effects to be descrildd. We begin by review-
of force, or in chemical terms, by enzymes whose interacing the current experimental situatigBec. 1), and by dis-
tions with DNA make strand separation thermodynamicallycussing our main theoretical results relevant to those experi-
favorable at ambient temperature. ments(Sec. Il)). We then discuss the basic features of DNA
Therefore, it is of basic biophysical interest to analyze theunzipping using a simple mean-field theoi@ec. 1V), in-
separation of DNA strands by force. A further motivation is cluding prediction of the modification of the 12 pN unzip-
provided by recent micromanipulation experiments, whichping threshold by application of torque.
accomplish precisely this feat. Essevaz-Roulet, Bockelman, In Sec. V, we present a theory to describe unzipping at the
and Heslot have shown that the two strands of a dSDNA cabase-pair scale, based on previous wiGk7] that studied
be pulled apart if a force=12 pN is applied2]. Fluctuations  strand separation by temperature and torque. In Sec. VI, we
of the “unzipping” force about this mean corresponded toanalyze the equilibrium properties of this model, and show
DNA sequence: slightly higher forces were shown to correthat the~12 pN threshold for complete unzipping emerges
spond to DNA regions with higheBC densities. This result in our detailed model with no fitting or calibration beyond
was in accord with the fact thaBC-rich sequences have that done previously for temperature-torque unzippig
and that the basic unzipping behavior of our detailed model
matches that of the simple mean-field theory.
*Permanent address: CNRS, LDFC—Institut de Physique, 3 rue de In Sec. VII, we focus on the use of this model to analyze

I'Universite, 67000 Strasbourg, France. the force-distance behavior of the initial stages of unzipping;
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FIG. 1. Sketch of unzipping and stretching experiments; arrows indicate applied fardedjacent 5-3' unzipping experiment of
Bockelmann, Essevaz-Roulet, and He$fit (b) Untethered strand removal, followed by annealing and subsequent unzipping of hairpins as
studied by Rief, Classen-Schaumann, and Gadab (c) Opposite 3-5" unzipping experiment of Struret al.[10]. (d) Spontaneous thermal
opening of hairpin under zero force as studied by Bonnet, Krichevsky, and Libcf#ber

it is also of base-pair dimensions in width, and can bewell known sharpB-DNA to SDNA transition[12,13 at
crossed by thermal fluctuation on experimentally relevant ti=65 pN. They then went through a second highly loading-
mescales. The basic kinetic theory for this is presented imate dependent and hysteretic strand-separation transition, at
Sec. VIII, and then the calculations of kinetics of unzippingroughly 150 pN for\ and at roughly 250 to 350 pN for
initiation are presented in Sec. IX. The connection of thesgoly(dG-dC). Only the strand-separation transition was ob-
results to studies of spontaneous strand dissociation observegdryed for the polydA-dT) molecule, at much lower forces
for molecules in solutioii8,9], and to the kinetics of unzip- 35 pN.

ping as probed by AFM experimerjts0,11], are discussed in Thus Rief, Clausen-Schaumann, and Gaub found that ds-
Sec. X. Conclusions are presented in Sec. XI. DNA could be converted to ssDNA by application of large
longitudinal forces, with a force threshold correlated with
GC content. Moreover, they studied the unzipping of the
repeated-sequence poif-dT) and polydG-dC) mol-

In the experiment of Essevaz-Roulet, Bockelmann, anccules, as follows. After force melting, tension on the mol-
Heslot[2], the strands of a-phage DNA(the chromosome ecules was relaxed, allowing them to reanneal into “hairpin”
of a virus that infects the bacterium Escherichia coli, of con-structures. These hairpins could occur prodigiously due to
tour length~16 um, ~48500 base pairtbp)) in aqueous the repeated sequence. Then, the hairpins could be unzipped
buffer [phosphate buffered salinéBS at pH 7, 150 mM by reapplication of force. This was observed to occur at
NaCl, T=25°C] are pulled aparfFigure ¥a)]. One strand forces of 2G-3 pN for poly(dG-dG) and 9+3 pN for
was attached to a glass microscope slide and the other topoly(dA-dT). To date, these experiments provide the only
~3-um-diameter polystyrene bead. The tip of a glass mi-calibrations for unzipping repeated sequences.
croneedle is attached to the bead, and serves the force- AFM experiments on much shorter molecules have been
measuring cantilever. Bending of the needle is simply obdone by Strunz, Oroszlan, Schafer, and Gunthdrt@lt This
served using the microscope on which the experiment igroup studied the unbinding forces between short comple-
assembled; calibration of the needle stiffness allows the obmentary strandgFig. 1(c)], including the dependence of un-
served deflection to be converted to force. binding on the force loading rate. Molecules of 10, 20, or 30

The DNAis then forced to open by a lateral displacementp lengths with about 60%C content were studied in PBS
of the microscope slide, and the needle deflection is obtainepuffer. One 5, end was attached to the surface, and the other
by analysis of video frames. The stiffness of the microneedle5’ end to the AFM tip. The first step of an experiment was to
k=1.7 pN/micron, and the translational velocity, move the tip near the surface, so as to hybridizi@d) the
v=40nm/s, result in a loading rateate of force increage two complementary strands. When a binding event was ob-
A=Kkv=0.06 pN/s. When the force reached2 pN the un- served, the tip was then moved away from the surface to
zipping of the DNA begins. The force is measured as a funcerive unbinding. Thus, this experiment studied unbinding us-
tion of the displacement, and varies between 10 and 15 plhg force applied to the 5ends of the two strands at opposite
depending on sequence. The experimenters estimate that theyds of the molecule. The probability distribution of the rup-
are able to resolve variations of base-pair sequence on thare force is obtained for loading rates ranging from 16 to
~10? base-pair scale. 4000 pN/s.

In AFM experiments of Rief, Clausen-Schaumann, and In addition to these mechanical experiments, experiments
Gaub[11], A\-DNA (48 502 bp, poly(dA-dT) (5100 bp, and  on molecules in free solution can also give information about
poly(dG-dC) (1260 bp DNAs were studied, at room tem- unzipping kinetics at zero applied force. These experiments
perature in aqueous buffél0 mM Tris 150 mM NaCl, 1  are usually on shoit=10 bp dsDNAs, and usually focus on
mM ethylenediamine tetra-acetic adiDTA), pH 8). These  spontaneous, thermally activated unzippffgg. 1(d)]. The
molecules were attached to a gold substrate and to an AFMnzipping ratev_ and closing rate, of a 5 bp DNA *hair-
tip, and then stretched longitudinally, at loading rates in thepin” (5’-CCCAA-loop-TTGGG-3) was investigated using
range of 200 to 6500 pN/d=ig. 1(b)]. The molecules were a combination of fluorescence energy transfer and fluores-
observed to go through two structural transitions. The molcence correlation spectroscopy by Bonnet, Krichevsky, and
ecules withGC conten{A and polydG-dC)] underwent the Libchabef9]. Use of a hairpin allows the study of unzipping

II. DNA UNZIPPING EXPERIMENTS
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FIG. 2. A schematic view of a DNA molecule when unzipped by in units ofkgT and forcef in pN. The solid line shows the result for
a force. The double-stranded DNA has paired bases, and a largge FJICL model of ssDNA elasticity, while the dashed line shows
strand rigidity. As a result of the mechanical streg, base pairs  the result for its Gaussian approximatitsee text both results are
may separate, or unzip. The distance between the two single strari@d close agreement. For zero torque, the unzipping forcé,is
ends is defined asr2 The unzipped region of the molecule is two ~12 pN, negativunwinding torques reducé, until at aboutl’
single-stranded DNAs with low rigidity and unpaired bases. The=—2.4&gT, f,—0.
junction defines a boundary extending owf =4 partly opened . . . .
base pairs with high strand rigidity, at the origin of the free energy In macroscopic te_rms, a DNA may exist either in dSDNA
barrier opposing the initiation of unzipping. Denaturation may also®" sSDNA conformations, Charactgrlzed by the free_energ|es
be the result of the application of torque. A positive torduever- 9us and gss per bp. The denaturation free energyy=gss
twists the double helix. anB<0 untwists it. —Qggs depends on sequence and on control parameters such
' as force, torque, and temperature. These free energies can be

. . . . . computed using models for DNA inferred from experimental
in a unimolecular system, and is convenient for single- P 9 P

molecule spectroscopy. The loop of this hairpin was varied ir?ata' Algorithms such asiFoLD [14] provide base-pairing
length from 12 to 21 bases, and was eithdrar A polymer. ree energiegys, and fits of experimental data to polymer

The buffer contained 0.1 M NaCl, 5aM EDTA. 5 mM models such as the freely jointed ch&#JC give the elastic

) . 7 -~ free energygss of ssDNA as a function of forc¢l3]. We
cacodylic acid at pH 7. The opening tinfer Ilfet|m7e3of the  review in Sec. IV how important quantities, such as the de-
closed statewas found to bet_=1/v_=0.5x10° s for

_ ! pendence of critical forcd, required to unzip large se-

N=5bp, essentially independent of the loop length. quences upon the applied torq(fig. 3), can be easily and

The recent single-molecule experiments of Bonnetaccurately extracted from an essentially thermodynamic ap-
Krichevsky, and Libchaber are in good accord with results ofproach. The unzipping experiments of Bockelmann, Essevaz-
older spectroscopic measurements on ensembles of makoulet, and Heslot, and Rief, Clausen-Schaumann, and Gaub
ecules in solution. Of particular relevance to us;gebke| 8] are accurately described at this macroscopic level.
found the dissociation rate for polyf)-poly(dU) mol- However, other experimentally observable aspects of un-
ecules to vary with molecular length asv_=10*"N with zipping are intrinsically related to the microscopic structure
6=0.5 anda=38, for molecules of lengttN=8 to 18. The of DNA, and cannot be understood thermodynamically. Of
method was a combination of temperature jump and timeparticular interest to us is the barrier to initiation of unzip-
resolved spectroscopy. This work also suggested that strarfing, which we find to have strong consequences for the

separation starts with a nucleation “bubble’3 bp long. unzipping kinetics of short molecules. We find the force for
initiation of unzipping to have a strong dependence on the
lIl. PHYSICAL PICTURE AND OVERVIEW OF RESULTS timescale and rates of application of force. We present a

semimicroscopic model of DNA, accounting for the base-
Unzipping can be described in terms of increasing thepairing interactionghydrogen bonds and stacking fortés

distance 2 between nucleotides originally belonging to the sufficient detail to understand these kinetic aspects of unzip-
same base pair of a double helix, beyond the equilibriunping. By adopting a relatively simple semimicroscopic ap-
value in the double helix ofR=20 A. This increase may be proach, we obtain a model that can be theoretically analyzed
the result of a change in temperature or chemical conditionsn detail, and which allows a precise calculation of barrier
or of direct mechanical action. In the case of mechanicakffects.
unzipping studied in this paper, the control parameters may The physical origin of this barrier is sketched in Fig. 2.
be the applied torquE or forcef, the loading ratelf/dt, or ~ The single- and double-stranded portions of the molecule are
the half-distance itself (Fig. 2). In this paper, we will dis- separated by a boundary region. In this boundary region, the
cuss unzipping driven by changes in each of these paraniases are unpaired so that their bonding enthalpy is lost.
eters, using first macroscopiessentially thermodynamic However, the bases are still partially stacked, so that they are
and then microscopitstatistical-mechanicaperspectives. unable to fluctuate as much as completely denatured ssDNA.
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FIG. 4. Unzipping forcef 4(r) in pN required to be applied to )
the ssDNA ends to maintain their half-separation A. The mini- FIG. 5. Average number of unzipped based paigsas a func-
mal separatiorr =10 A corresponds to th8-DNA-double helix  tion of the half-distance between extremities. Due to the very
structure. For sufficiently large(>13 A),f.(r) approaches the large rigidity of dsDNA, bases pairs are initially unzipped with a
thermodynamic valué,~ 12 pN. Inset shows the work dog(r) very small increase of the separatioby its double helix structure
in kT for fixedr, i.e., the integral of (r). Forr>13 A the slope  Value,r=10A, see Fig. 2. For sufficiently largg>13 A), N(r)

of W(r) approaches its “thermodynamic” value 6f~0.3gT/A increases linearly with, with a slope 1d, predicted from the ther-
~12 pN. modynamical study of Sec. IV.

Thus, the bases in the boundary region lack both the favor-
able free energy contributions of base-pairing enthalpy asso 15
ciated with dsDNA, and the fluctuation entropy associated
with ssDNA. The simultaneous presence of unpaired base’Q
with large strand rigidity is responsible for the free energy @ 10
barrier.
We are able to compute the force necessary to keep thig
ends of the two unzipped ssDNAs at a fixed distancéR2g.
4), as well as the shape of the opening foRig. 5. Due to
the free energy barrier, this force for smalls an order of
magnitude larger than the asymptotic unzipping force of 10
to 20 pN depending on the sequence.
The presence of barriers makes strand dissociation an ac® -5 |
. . . 10
tivated dynamical process that can be understood usingg /
nucleation theory. Unzipping occurs through the nucleation u
of a denatured “bubble,” whose length depends on control -10
parameters and is about 4 bp when located at the terminus ¢
a DNA and 8 bp when located in the middle. We calculate Force f (pN)
the shape and free energy of this critical bubltel6.%gT
at the critical forcg and the kinetic rates of dissociation, for
different forces and molecule lengttfSig. 6). The results are
compared with the experiments of Bonnet, Krichevsky, an
Libchaber and of Pschke. Adapting Evans’ theory for the
breakmg of single bond§29] to the case of a one- gradually reduces the barrier. Finally, fér-f,, no barrier is left
dimensional polymef30], we have also calculated the most 5y gissociation is immediate. Inset shows the dissociation time at
probable rupture forcé” when the DNA molecule is sub-  zerq applied force as a function of molecule lenbjtin base pairs.
jected to a constant loading rate(Fig. 7). The dependence The logarithm of the dissociation time is approximately a linear
of f* upon\ andN is a quantitative prediction that could be function of N (see text Note that over the rangs=10 to 20 base
tested by AFM experiments on unzipping. Moreover it shedairs, the zero-force dissociation time increases from a fraction of a
lights on the AFM experiments for DNA stretching of second to hours. Also note thiai~230 pN is not in the range of the
Struntzet al. and of Rief, Clausen-Schaumann, and Gaub. main figure.
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FIG. 6. Dissociation timginverse ratgas a function of force in
pN, showing three regimes of behavior. First, fox f,=12 pN,
Gdissociation time depends on molecule lenbtticurves are foN
=10, 20, 30, from bottom to top, respectivel\Becond, forf ,<f
<f,=230pN, dissociation time decreases as the applied force

041907-4



FORCE AND KINETIC BARRIERS TO INITIATION CF . .. PHYSICAL REVIEW E 65 041907

15

winds to form ssDNA. This is in good accord with results of
single-molecule unwinding experimentss].

—~ 12
%_ B. Unzipping of dsDNA by force
;,/ 10 i The static aspects of force-induced unzipping can be
1SS largely understood using a simple Flory-like calculation
o [16,17. As a simple starting point, we suppose the ssDNA
o regions to be flexible polymers of monomer length7 A,
*g_ st 1 with stretching free energy
= 2
o Csdo
Fstretci™ ONL’ (2
)\‘1 SS
1;-3 w0 10° 10 10° wherer is the end-to-end extension of a chainNf; bases.
. The force constant.=3kgT/(1?) is of the form of that of a
Loading rate A (pN/s) flexible, Gaussian polyméi6]. The unzipped ssDNA region

of Fig. 2 can be considered as one such chain df{ganono-

FIG. 7. Most probable rupture ford® (pN) as a function of the mers with its ends ,=2r apart.

loading raten (pN/s) for b=1.75. Results are shown for five dif-
ferent lengths(N=10, 20, 30, 50, and 100Arrows indicate the

critical loading rates for thé&N=10 case. Values of these critical 1. Unzipping as a function of extension

rates (in pN/9 and associated force§n pN) are: for N=10, If the ssDNA ends are separated a distance(Fdg. 2),
log;oA;=0.77, f*=2.3, and logo\,=4.6; for N=20, logo\;=  some average number of baség will open. The total free
—5.6,f*=1.5, and logy\,=4.2. The two remaining critical rates energy is a sum of chain stretching and denaturation contri-
are sequence length independent with;§0g=>5.5, logy\,=12. butions,
IV. MACROSCOPIC DESCRIPTION OF DNA UNZIPPING Cr?
BY FORCE AND TORQUE F(r:Nsd = 55~ NsDo, (€)
Ss

DNAs can be be either base paired to form the Watson-
Crick double helix[dsDNA), or the two strands can be sepa- whereC=2Cg~=6kgT/(1%). The value olNgis obtained by
rated(ssDNA). As shown in Fig. 2, a partially unzipped mol- minimization of this free energy. Solution afF(r,N)/dN
ecule consists of regions of these two phases, separated by=a) yields a linear relation between the number of unzipped
“fork.” Under conditions comparable to thosén vivo  basesNgandr,
(roughly aqueous solution at temperature 20—37 °C, pH 7 to
8, Na" concentration between 10 mM and 1) Mind in the r
absence of external stress, dsDNA is stable, with a free en- Nsdr)= d,’ (4)
ergy per bp less than that of SSDN@ss— ggs= —do=>0. The

frge energyg, of course depends on base sequence, but ihere d,=2(—go)/C is the projection of the monomer

this paper we do not consider sequence effects, and, therﬁe‘ngth along the force direction. The free energy is

fore, take an intermediate value @f= — 1.4kgT. This value

corresponds to the denaturation free energy for a repeated c 112

poly(AC)-poly(GT) sequence, which is comparable to that F(r):2<5(—go)) r=—2Ngr)gg. (5)

of the AT-rich region ofA-phage used in many experiments

15,2]. L L o o

[15.2 The tension in the chain is just the derivative of this with

A. Unwinding of dsDNA by torque respect to 2,
We first consider the action of an external torquesince C 12

an unperturbed dsDNA has one right-handed twist each 10.4 fu=|5(=090) | .

bp, the twist per base i&,=27/10.4; the twist per base for

separated single strands is zero. The free energy of ssDN

relative to dsDNA is, therefore,

(6)

Ahd is, therefore, a constant as unzipping proceeds. The ex-
cess free energy per unpaired bp at fixad double the free
Ag(T)=—go+ 6T (1) energy of denaturation because work done extending the ss-
DNAs adds to the work done opening the molecule.

The last term represents work done by the torfumnvert- . i

ing dsDNA into ssDNAs. Wherg is negative, ssDNA be- 2. Unzipping as a function of force

comes stable, and, therefore, there is a critical unwinding For fixed unzipping forcd the excess free energy of the
torque I',=gq/0g=—2.4kgT beyond which dsDNA un- molecule relative to dsDNA is
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Cr? This model cannot be fit to sSSDNA elasticity data at both
AG(r Nsf )= 55~ Ns@o— 2rf. (7)  high and low forces.
s However, Cuiet al. found that their data for ssDNA elas-
ticity in 150 mM NaCl was well described by a slightly

The half-distance between the ends adjusts to minimize modified version of Eq(11).

AG and equals =2 fNg/C. The resulting free-energy dif-

ference is |
e )=—kgT I

keT r(df
WSII’] kB—T) , (12)

which we call a “freely-jointed-chain-like” mode{note that

Cui et al's model for force versus extension has been inte-
grated to obtairgg(f ); we ignore the helix stretching elastic
contribution that is not important at the low forces we are
considering. This model effectively has two separate “seg-
ment length” parameters: the contour length per base pair
l—=27 um/48.5kb=5.6 A; and the segment lengtfl

21f2
AG(Ngs, f)=NgAg(f )=Nss( —do— T) 8

This effective denaturation free-energy densitg(f) is
lower than—g,, as expected, and vanishes at the critical
unzipping forcef,. For f<f,, dsDNA is stable, and if
>f,, the double helix unzips.

C. Improving the description of sSDNA elasticity =15A. Strictly speaking, neither of these should be re-
The free energy per base pair at fixed fotegis garded as anything more than fit parameters. The free energy
for forces up to~20 pN is shown in Fig. 8 over the range
Ag(f)=—gp+294f), (99 0=<f=<20pN. The free energ§l?2) gives an unzipping force

of f,=11 pN and a segment projection @f=4 A.
wheregg(f) is the stretching free energy at fixed force, per
base of ssDNA. This form of our Flory-like unzipping theory p_ Effective segment length for the Gaussian approximation to
is independent of the precise details qf. Above, we as- ssDNA elasticity

sumed the simple Gaussian form ) ) FiC
The quadratic expansion ajg Yf) for small forces

2 reads
au _
gf)=- ¢, (10 2

gs(f)=— >CFIcL (13
which is appropriate to describe a flexible polymer that is not ss
stretched to near its maximum extension. . — .
Although this formula provides an empirically accurate where CS%= BkBT/(dISS)'_ This result coincides with the
description of ssDNA elastic response in the force rangd'€® energy of the Gaussian model with Vf“sszg'&' We
where unzipping experiments are done, the actual elastic réNOW in Fig. 8 the results of this expansion. The chdice
sponse of ssDNA is far more complex than that of a simple:7A gives a better approximation of the FJCL with a
flexible polymer. The reason for this complexity is that ss-0-1XsT accuracy over the whole range<d <20 pN. Using
DNA conformation is determined by a balance between selfthe Gaussian approximation with=7 A and go=—1.4ksT
attractive interactions between the exposed bases, and rep@ivesfu=12 pN,d,=5 A, i.e., essentially the same result as
sive interactions between the (PQ charges along the if a nonlinear ssDNA elasticity model such as Et2) were
backbone(for a rather complete theoretical discussion ofused.
this, see Ref[18]).
Under the conditions of the experiments described above, E. Unzipping force-torque phase diagram
ssDNA actually collapses at small extensions, and requires a - . :
. Combining Egs(1) and (9), we obtain the denaturation
threshold force of about 1.5 pN to begin to extend. Then . .
over forces from 1.5 pN to ZS%N ssDN?A elastic response igree energy as a function of both torque and applied force,
reasonably well described by the Gaussian free energy used AQ(T,f)=—go+ o' +2g4(f). (14
above, provided an appropriate valuedis taken. However,
St”‘iﬂy s“;;)ealflng, the Vta:UE:tLAfShOIlIJ)IIC\jIEOEI'E? Irrl]terptr)eted The predicted phase diagram as a function of torque and
as the ‘rue” segment length of ss - IS has Been a,nzinping force is shown in Fig. 3. The two curves shown
source of confusion in some interpretations of sSDNA4re for different forms of),: the FICL model12) with |
stretching datde.g., the factor-of-two conflict between val- _g ¢ & andd=15A. and the Gaussian approximaticto)
ues of “segment length” determined in Refd3] and[11).  \ith =7 A. The details of this phase diagram are not highly
The collapse effect means that the finite extensibility Ofsensitive to the replacement of the FICL model with a
ssDNA is difficult to globally fit to simple flexible polymer  c,,ssjan approximation. Existing experiments have probed
models, for example the FJC model free energy, only two points on this phase boundary, the zero torifi]e
and zero-force[15] intercepts. It would be interesting to
kB_TSim,(i) (11) carry out controlled-torque experiments to verify the shape
If kgT) |’

FJ _
95" (1) =—ksTln of our predicted phase boundary.
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FIG. 9. Inter-base-pair potentials in units lofT, as a function
as a function of forcé in pN. Solid curve is the FICL model fit by of base-pair_hglf-separaticrrin A. Inset shows the Mqrse potential
Smith, Cui, and Bustamanfd 3] to their experimental stretching Vin(1) d'escrlblng the short-rapged_hydrog_en-l?ond |nterac¢ipa
data; long dashed curve is the FIC model with Kuhn lergyth gnergetlc part of the base-palrlng Interaction in our th}adﬂa{n
—15A. Dotted line is the Gaussian approximation with9 A figure shows the total potentiaf(r) for zero torque, including

(the best quadratic approximation to the FICL at zero fodashed ssDNA conformational entropsee text Once the entropic contri-
curve is the Gaussian approximation widh=7 A (the best qua- bution is included, an energy barrier appears. Note the difference of
dratic approximation to the FICL at forcesl2 pN) distance scales on the main figure and inset. Zero force and torque

free energies of separated ssDNAs and strands bound into the
In conclusion, simple Flory-like models give a satisfying B-DNA double helix are indicated.
overview of DNA unzipping experiments at large-100
base scales. But, thermodynamic models of the sort dis- |n the dsDNA state, the radii fluctuate around their av-
cussed in this section cannot give much insight into eithegrage valueR=10 A, in a potential well resulting from the
initiation of unzipping(i.e., the alteration of, during the  palance of attractive hydrogen-bond attraction with repulsive

opening of the first few basgsor into the kinetics of open- hardcore repulsion. This potential well can be described us-
ing. These questions are central to understanding the initighg the short-range Morse potential

steps of opening of the double helix essential to a wide range
of cellular machinery, and they form the focus of the remain- Uy(r)=D[(e 3R —-1)2-1], (15)
der of this paper.

We note that the Gaussian approximatid@) to ssDNA
elasticity discussed above will become an essential simplifias shown in Fig. 9. The Morse potential has a strong repul-
cation in the base-pair-scale theory that follows. We emphaSive barrier at small radius<R, and a narrow attractive
size that the Gaussian approximation can be used because tell with minimum near =R. Parameters of the Morse po-
forces we are interested if~f,=12 pN, are both well tential suitable to describe DNA base-pairing interactions are
above the~2 pN threshold for pulling a collapsed ssDNA D=5.8%gT, a=6.3 A~* [20,5].

FIG. 8. Single strand free energy per bag€f ) in units ofkgT

apart, and well below the=50 pN forces required to fully In addition to base-pairing interactions acting across the
extend a ssDNA. double helix, stacking interactions between successive base
pairs favor the successive radiiandr’ to be similar in
V. SEMIMICROSCOPIC MODEL OF DNA UNZIPPING value. This attractive interaction is strongest in dsDNA.,

whenr (n)~R] and is greatly reduced as the bases are pulled

apart. We account for these effects with an enhancement of
We now develop a more detailed model of DNA unzip- the intrinsic sSDNA rigidityC discussed in Sec. IV, param-

ping based on our previous work on base-pairing interactionstrized by a strengtk and a range b/,

[5,6,19. To begin with, we number the base pairs along a

dsDNA with a discrete inder. The microscopic degrees of

freedom that we consider are the half-distances between E(r,r')=Eexp—b[3(r+r’)—R]}. (16)

bases (n), and the twist angl®(n) and axial distance(n)

between bases andn— 1. Gaussian thermal fluctuations of

the angular and axial distance degrees of freedom can bEhe interaction strength is determined from Raman spectros-

integrated out, leaving an effective energiy[R] that de- copy measurements of base-pair radii vibrational modes of

pends only on the set of inter-base-pair radR dsDNA[21] to beE=58 kgT/A? [6].

={r(0),r(1),...r(n)} [6], see Appendix A. The total energy for configuratioR reads

A. Model with discrete base-pair degrees of freedom
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N as N — _pri —_r")2
H[R]=n§lElm(r(n),r(n—1))(r(n)—r(n—1))2 TS ) =exp{— BLAM(N(r— )2+ U(D T (22

Here, the dependence of has been made local in which

N
amounts to keeping only derivative termsrimt the Gauss-
+ 2 U(r(n). A7 jan level. Thusm(r)=E(r)+tC whereE(r)=E exq —b(r
—R)]

The net rigiditym includes both the intrinsic ssDNA rigidity ~ Bouchiat[32] has communicated to us an alternate calcu-

C and its enhancement by stacking interactions for dsDNA Jational scheme that allows an exact calculation at this step,
which we describe in Appendix B. It turns out that the cor-

m(r,r')=E(r,r')+tC. (18)  rections that our truncation approximation ignores are simply
a small shift in the net potential. We use the fof&®) in
This quantity interpolates between dsDNA and ssDNA val-what follows since it leads to a substantial simplification of
ues. The reduced temperature T/T,, whereT,=298 K,  the calculations with only small quantitative changes in the
appears in front o€, due to the largely entropic origin of the results.

intrinsic ssDNA chain rigidity(see Sec. IYin the regime of In the continuum limit, the transfer matrix and its eigen-
extension of interest to us. function are replaced by the differential equation

The second term in Ed17) includes the hydrogen-bond
energyUy(r) (15) and the elastic torque energy, (kgT)? 92

—2m(r) W—’_V(r) (1) =guih(r). (23

IR
U(r)=Upy(r)— Tl (19)

t where the eigenfunctiong,(r) and eigenvalueg, are in-
dexed by the integek. This has the form of a one-
dimensional quantum-mechanical Sadfirger equation,
where the base-pair indexplays the role of time, and the
Planck constant is replaced bykgT.

A unique feature of Eq(23) is that its “mass"m is posi-

tion dependent,

We show in Appendix A how the total energ$7) and the
elastic torque energy in E¢19) come from the microscopic
model of Ref.[5], once the twist angles are integrated out.
As calculated in Appendix AR;=6 A. Thus, for dsDNA,
the torsional energy is roughly equal ta" R, /R from Eq.
(19), in agreement with the expressionl” 27/10.4 of Eq.
2).

The partition function at inverse temperate 1/kgT is
equal to

m(r)=E exd —b(r—R)]+tC. (24

This feature results in the base-pair potential picking up a

contribution fromm(r),
z= f dR e PHRI, (20)
t
where the measure over the chain configurations is V(n=U(n+ EkBTO InLm(r)/m(e=)]. 25
N
_ . This additional contribution comes from the measure factor
dR—le dr(j), @1 required to carry out the usual Feynman-Hibbs derivation of

Eq. (23). For convenience, we set the offset of the net poten-
tial so thatV—0 asr—o. This choice sets the absolute free
energy of separated ssDNAs under no force or torque, to
zero.

A number of thermodynamical results were derived in The net potentialV(r) is shown on Fig. 9 forb
Refs.[5], [6] by diagonalizing the transfer matrix of the dis- =1.75 A%, a value chosen in light of the results for kinetics
crete model. The dynamical analysis of this paper is faciliin Sec. VIII. As a result of the dependence of the rigidity, a
tated by treating the base-pair indeas a continuous vari- barrier separating ds-DNA from ss-DNA has appeared. This
able[22-24. A configuration of the chain is then described barrier has little effect on macroscopic aspects of equilibrium
by radii R={r(n)}, with 0<n=<N. The main difficulty in  unzipping, but has large consequences for the denaturation
taking the continuum limit comes from the source of mainkinetics.
new and interesting results, thelependence of the “mass” The most negative eigenvalug is related to the free
or stiffness(18). Our approach will be to take the discrete- energy per base pair for a long molecule,
model transfer matrix, and convert it to a continuum version,= — (kg T In Z)/N. The corresponding “wave functiong(r)
which takes the form of a Schilimger equation. We will determines the equilibrium probability distribution ofFar
present an outline of this calculation, with some details defrom the ends of a chain, the probability to open a given pair

B. Conversion of the discrete transfer matrix to a continuum
Schrodinger equation

ferred to Appendix B. of bases to have radiuss | io(r)|?. Alternately, at the chain
The first step is to write the discrete-model transfer matrixends, the probability to open either the first or the last base
as pair by r is iq(r).
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C. Energy for path-integral formulation of continuous model where
From the Schidinger equation we obtain the continuous t I'R,
counterpart of the discrete energy (17), Vgdr)=Uy(r)+ EkBTO In[m(R)/m()]— TR
2 (31

(N1 dr
ar= [ anfmen| Fo +vem], 29

The ground state of this equation is exactly kno{@b],

iving the zero-force free energy,
To obtain the same potenti®(r) in the path integra§j as in giving 9y

the Schrdinger equation the path integral measure must be ged f=0I)=g,—T 6y, (32)
N/e v . . .
m(r with 6, defined in Eq(1), and
ar—tm [] /PPy o - o a(D)
c0]=0 2me

t t
_ . o _ goz—D+Ea\/ZD/E—(ta)Z/(SE)+Eln[1+E/(tC)].
where e is the “lattice constant,” equal to unity in the dis-
crete version of the model, and taken to zero in the con- (33
tinuum mpdel. Note tha_t whe_=1 the Inm term of the At room temperatureti=1) and zero applied forcey,
exponential cancels the integration measure factor. '”ClUd'”Q—lAz(BT- therefore, at zero force the critical unwinding

the inverse temperatug@= 1/, the partition function is for- torque isT,=—2.3%,T, in good agreement with the ex-
Cc . )

mally perimental results obtained by the group of Bensimon and
Croquette 15].
Z= f dR e PRI, (29
3. Thermal denaturation
Below, we will use the continuum enerd26) to calculate Our expression folg= —gqs (32) can, in principle, be
shapes of domain-wall structures, and as a basis for a Langesed to determine the temperatufg, at which dsDNA
vin equation for unzipping dynamics. “melts” into isolated ssDNAs in the absence of mechanical
stress {=0,'=0). The resulting valueT,,=410K, s,
VI. EQUILIBRIUM STATES OF THE SEMIMICROSCOPIC however, too large with respect to thermodynamical mea-
MODEL surements of melting temperatures. The main reason is that
_ our model as formulated above does not account for the
A. Zero applied force change in the hydrogen-bonding potential energy with tem-
1. ssDNA perature.

) N . The correct melting temperature can be obtained by mak-
The “free particle” continuum states of Eq23), where 4 the depth of the Morse potential, depend explicitly on

the strands are far away from one anothe>R), COrMe-  he temperaturd. Assuming that the depth behaves @s
spond to isolated ssDNAs under zero force and torque. This. Do—D4(t—1), with Do="5.84T, and requiring melting

situation is described by temperatureT ,,= 350 K, we haveD;=5 kgT/K. When T
(kgT)? 42 ranges from 298 to 350 KP(T) thus decreases from
- ;—C 2 Yed 1) =0sdlsd1). (299  5.84%gT to 5kgT. The order of magnitude of this variation

caused by temperature is similar to that discussed by Prohof-

Thus, ssDNA is treated as a sugar-phosphate polymer witﬁky et al.[20].
Gaussian entropic elasticity, with rigidi@=6kgT/1? (Sec.

IV C). The eigenfunctions. are plane waves, and the lowest-

energy ssDNA states have free energy per basegaitO. 1. Schradinger equation

B. Unzipping by external force

2 dsDNA In presence of an unzipping fordeapplied on the last
o ] base pain=0, the discrete model transfer mat(2) needs
The double helix is the bound state of the potential  4p aqditional term 2r(0)/ksT included in the exponential.

(Fig. 9). This bound state can be found numerically, but antp;s |eads to the one-dimensional Sdtirmer equatiorisee
accurate analytical calculation of its free energy per base pai&ppendix B,

O4s Can be obtained by consideriny(r) to be essentially

confined inside the Morse well. The only potential that vari- (kgT)? 9% 2f(kgT) 0 .
ates significantly for =R is the Morse potential represent- T 2min a2 mn o TV () =gy(r).
ing the hydrogen bonds; agb>1 the entropic and torque (34)
terms vary relatively slowly.
We, therefore, obtain the Morse equation Here the potentiaV/ is just
keT)” 7 = 30 Uo—vir)- 25 35
~ g o2 T Vadn) | Yadr) =Gashadr), (30 (r)=V(r) mir)’ (35
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The potential(35) accounts for the decrease of ssDNA free A ;

energy relative to that of dSDNA by an amount that tends to  ¢y{r)= —=exp — f dr’ p(r)/t
the value—2 f2/C at large radii(8), (9), (10). The path in- Vp(r) s

tegral effective energy corresponding to E84) is (38)

(r>rge,

2

+V(r(n))]—2fr(0). where p(r)=+v2m(r)[V(r)—gqd [26]. The coefficientA
can be calculated by connecting the two expressions of
(36) Jgr), in such a way that both the wave function and its
derivative are continuous functions of
The logarithm of the end base-pair radius distribution

N 1 (dr
Q[R]—fo dn(zm(r(n)) an

This expression can be rewritten as

qr- | d [3 oo g s vy
[R]= o " 2™ (") gy m(r(n)) r(n) W(r)=—KkgTot In ghgd1), (39
2
© m(r(n)) +21r(N). (37 is shown in the upper curve of Fig. W(r) is the free energy

associated with the separation.2.e., the work done in pull-
Below we will assume that deep inside the dsDNA phase, thing the two ends apart.
base-pair radius does not fluctuate much around its equilib- Two regimes can be seen asgrows. The work done
rium value R, so that the last term on the right-hand sideinitially grows quickly with r, up to a valueW* =W(r*)
(rhg of Eq. (37) can be considered to be an additive con-=36kgT/b, see Appendix C. This initial regime corresponds

stant, which we will not write. to the separated strands still being within the large energy
_ _ barrier. Forr>r*, one enters a second regime where the
2. Phase diagram in the force-torque plane portion of the molecule in the barrier region is no longer

From Eq.(35), the potential at nonzero force is lowered changing, an_d, therefore, Whe_re the additional work done
by 2f%C at large radii, and essentially left unchanged at@Pproaches its thermodynamically expected valgr)
small . As a result, the free-energys of SsDNA is de- ~TV2C(—do)=(2r)f,, independent ob [23]. The deriva-
creased by 22/C, while gy is unaffected, relative to their tive of W(r) with respect to 2 gives the average force
zero-force values. This allows us to reobtain Etg), and  fadr) that must be applied to the molecule ends to keep their

therefore the “thermodynamic” phase diagrdfig. 3. half-separation at (Fig. 4). o
This calculation gives a prediction for the smalbehav-

ior that is not possible from the thermodynamical perspective
of Sec. IV. At very short distances we predict a surprisingly
large force barrier. We do not know of any direct measure-
In the previous section we saw that the semimicroscopiénent of this force barrier, although we will show below that
model was consistent with the simple thermodynamic modegxperiments on the spontaneous unpairing of short double
of Sec. IV. We now move on to examine the initial stages ofhelicies[8] provide indirect but quantitative evidence for it.
unzipping, when the two ssDNA ends are just beginning to The physical origin of the large force barrier is in the
be unpaired. We carry out these calculations in the ensembfeotential well due to hydrogen bonding plus the additional
of fixed extension, since at fixed-force equilibrium one will barrier associated with the reduction in DNA strand rigidity
simply pass from dsDNA to ssDNA at the unzipping force. as one passes from dsDNA to ssDNA. The hydrogen-
bonding interactions); alone have a well depth e 2kgT,
and vary over a range of 0.5 finset of Fig. 9. Thus, ini-
tiation of the first broken base pair requires an initial force
The work done in pulling the last base pairs to a givenparrier of roughly 4@;T/nm~160 pN to be crossed. The
separation follows simply from the equilibrium probability additional ~2kgT barrier in the potentiaV resulting from
distribution of end radius. This is determined in turn by the the change in strand rigidity with boosts the total force
dsDNA “wave function” /q{(r). As mentioned in Sec. VI, in  parrier to the~300 pN of Fig. 4. The potential barrier height
the base-pairing potential wedk,(r) is well approximated s roughly (zT/2)In(E/C) and corresponds to the change in

by the exactly known Morse ground state wave function. Inpartition function per segment associated with this rigidity
turn, the average force that must be applied to keep the sghange.

DNA ends a certain fixed distance apart will be just the de-
rivative of the work done with end separation.

For radius values outside of the Morse well, i.e<R The connection condition requires thagr) and ¢'(r) be con-
>1/a, this expression is not valid anymore. However, theiinuous at some point,. At zero torque, we find that g
wave function can in this case be calculated using the stan=10.11 A andr,~10.19 A. The connecting point, lies thus in
dard quantum-mechanical WKB approximati@6]. Defin-  the validity regions of the Morse wave functioa(r — R)<1, and
ing rgs as the value of the radius for whidl(ry) =ggs We  of the WKB approximationm(r)V’(r)/p(r)*?<1, which holds as
obtain soon ag is slightly above the classical turning poin, [26].

VII. EQUILIBRIUM FORCE BARRIER TO INITIATION OF
UNZIPPING

A. Work done initiating unzipping
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B. Free energy functional and shape of opening fork tial dsDNA or ssDNA configurations are metastable and will

For a partially opened dsDNA, the average shape of thgventually _decay_to the thermodynamigally stable state. In
opening “fork” can be calculated by finding a suitable sta- general, this requires a free energy barrier to be crossed, and

tionary point of the energy functioné26). This average con- the most likely barrier crossing point will be _the sad(_dle-point
figurationr* (n) obeys the equation R* of the free energy hypersurfaggR]. R* is a particular
configuration that is a deformation of the initial metastable

2 state that includes a critical bubble of the stable state. This
+V/(r*) (400 “pubble” will then grow, as the configuratio® moves away
from R* down in free energy toward the stable state.

where ( y denotes derivative with respect to Equation The kinetic rate for Ieaving a metastable state in this piC-
(40) is just the “classical” equation of motion for a particle ture is given by an Arrhenius-like formu(@7,28§,

with coordinater* where the role of “time” is played by, .

and where the potential energy isV(r). Again, we have v=roe P (42)

the unusual feature of a position-dependent nmags .

This equation of motion, combined with the equilibrium
initial conditionr* (n=0)=rg, dr*/dn=0, can be solved
numerically. Inverting the solutiom*(n), we obtain the
shape of the opening fork, that is the optimal value of opene
basesNg as a function of the end-opening radiugFig. 2).
The behavior oN(r) is plotted in Fig. 5. o ] )

As the strands are progressively pulled apart, the number In his original formulation of nucleation theory, Langer
of bases unzipped initially grows as the square root growtt¢onsidered escape from metastable states at temperatures that
of distance between the strand endsNg(r) Were low relative to the purely energetic barrier heiffit
=2\E(r—rg/V'(rq). For large distances, the number of In the limit of zero temperature, t_h_e waiting time for a fluc-
unzipped bases tends to an asymptotically linear dependené¢ation that can stimulate a transition from the metastable to

onr, No{r)er ’—C/2/(—go) in accord with the thermody- stable states goes to infinity. As the temperature is made
il S . . . . . .
namic result of Sec. IV. These predicted features of initialfiNite; but small with respect to the energetic barrier height,

unzipping would be interesting to test experimentally. ac_:tivated processes allow the equilibrium state to be reached,
with a relaxation time of the order of ekp E*/(kgT)).
As we have seen in the preceding sections, the situation
we face here is formally slightly different. The absolute tem-
We have so far studied the equilibrium unzipping of theperature is not small, and in fact the barrier between ssDNA
chain, and now we turn to the kinetics of denaturation. Fig-and dsDNA is of mainly entropic origin. However, applica-
ure 11 shows a tridimensional representation of the potentidlon of nucleation theory is possible even when the effective
V (Fig. 9 that the molecule has to overcome to denatureHamiltoniang (26), (36) includes a temperature-dependent
Denaturation is an activated process that we now studyentropig potential, since the starting point of the theory is
within Langer’s nucleation theorj27,28§|. the Langevin equation, which may contain temperature-
We consider the Langevin dynamics of unzipping at roomdependent potential terms.
temperature, using the ener@6),

r*

m(r*) dn2 :_Em/(r*)( dn

HereG* is the free energy of the saddle point relative to the
metastable phase. Calculatif@* and G* requires the
saddle points of the functioné&26), i.e., solution of Eq(40)
(\_jvith boundary conditions of the departure phase.

2. Use of the free energy

VIIl. KINETIC THEORY OF UNZIPPING

3. Identifying the metastable and stable states

Jr(n.t) - 69 +e(n,t). (41) _ Whep a forcd, larger than the critical unzippin_g forde,
ot or(n,t) is applied to the molecule, the dsDNA phase is metastable
) . with respect to the open ssDNA stateig. 3). Nucleation
The random forces(n,t) are uncorrelated Gaussian vari- || - therefore, take place around the saddle point, which
ab!e_s Wlt_h zero mean and varlanckBZ_{g“. The friction co-  jncludes an open fork in the dsDNI&ig. 10@)]. The disso-
efficient is on the order of_szy@gmth R=10A, where  ciation ratev_ is in this case directly given by formul@?2).
the viscosity of the water ig=10"~ Pasec. Opening of & At forces f<f, below the equilibrium unzipping thresh-
dsDNA is in general an activated process, requiring thermabig gsDNA is thermodynamically stable, but in a finite mol-

fluctuation over the energy barrier of the last section. ecule may reach the metastable ssDNA phase by thermal
fluctuation. In this case, we can infer the unzipping rate from
A. Nucleation transition-state theory the rate for thereversereaction, which is of the form of a

decay of a metastablssDNA) state.
Let v_ be the kinetic rate for dissociation and, the
Consider the phase space in which the unzipping dynankinetic rate for recombination when the two strands are al-
ics take place. A molecular configurati@is represented by  ready in close contact. Both_, v, depend on the lengtN
a point in space, and is assignedfi@e) energyG[R] (26).  of the sequence and on applied forteThe forward and

The ds and ssDNA states are separated by high-energy cofeverse rates are related by detailed balance,
figurations that are only briefly visited during an unzipping
transition. Depending on force, torque, and temperature, ini- v_(N,f)=v,(N,f)e ANAIT) (43

1. Phase space, energy hypersurface, and saddle point

041907-11



SIMONA COCCO, REMI MONASSON, AND JOHN F. MARKO PHYSICAL REVIEW E65 041907

a—

(a)

<

(b)

FIG. 10. Sequences of states used to calculate kinetics of barrier crossing during unZgpiiigenf>f,, the unzipped double helix
is thermodynamically favorepAg(f )<0] and the unzipping rate_ can be calculated directlyp) Whenf<f,,, the B-DNA double helix
is thermodynamically favoreflAg(f )>0] and the unzipping rate_ must be calculated using the closing rate, where theB-DNA
double helix is the final state. The nucleation bubble in this process is 4 bp long. Then, the detailed balance canditipa™N#29(") can
be used to determine the opening rate.
where Ag(f) is the free energy excess per bp of ssDNA N* 1 *\2
relative to dsDNA. Knowing’, andAg(f ), therefore, gives G* =j dn‘im(r*(n))(ﬁ) +V(f*(n))—gM]
the dissociation rater_ . The recombination rate, mea- 0
sures the escape rate for the metastable ssDNA phase. The —2f(r*(0)—r*(N*)), (45)
saddle-point configuration for this transition is a bubble of a
few paired bases, at the end of two nearly completely unto find the shape of the bubble* (n). Note thatG* is not
zipped ssDNAdFig. 1Qb)]. simply equal to the potential barrier height as it would be for

We next compute the probability to nucleate a bubble ofa single particle moving in the potenti®l, but also takes
stable phase inside the metastable phase, as a function of timto account the rigidity of the strands.
applied force, i.e.p_(f) for f>f, and v, (f) for f<f,. For 0<n<N*, r*(n) satisfies Eq(40), expressing the
We discuss how to calculate the activation barrier free energipalance of forces at each point along the chain. The analogy
G* using an instanton technique. In Appendix D we show
how the WKB approximation may be used to obtain the
same results.

B. Nucleation bubble n
1. Extremization of the free energy functional /

The activated configuration in the phase space, and its
activation free energy argsec. VIIIA 1)

G*=0[R*]-G[Rml, (44)

where Ry, is the average configuration of the chain in the
metastable staths! (note M =ds or s$. As discussed in Sec.
VIIIA1, the activated configuration can be thought of as |
made of two pieces. All but a finite number of monomers :
(numbered byn running from —N+N* to 0) are in the |
metastable, initial phase, with a small nucleation bubble (0 : i
<n=<N*) of the stable phase located at the extremity of the r. r
molecule(Fig. 17). ! f

From Eq.(44), the activation free energy is just the free  FIG. 11. Schematic representation of the saddle-point polymer
energy excess of the nucleation bubble with respect to theonformationr* (n), which crosses the barrier af(r). Here,r,
metastable phase. We therefore extremize andr; are the radii of the extremities of the nucleation bubble.
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with the equation of motion of a unidimensional particle with re
coordinater evolving with “time” n is useful. At the ex- G*:f dry2m(n[V(r)—gul—2f(r¢—ry), (52
tremities of the bubble, the functional differentiation of Eq. fi

(45) gives back the equation of motigd0) with an addi- -
tional contribution to the rhs of Eq(40) equal to Whereri[=r*(0)] andr{ =r*(N*)>r;] are the radii at the
—2f(8(n)— 8(n—N*)). Integrating out this equation of WO endpoints, fixed using

motion over the vanishingly small intervat esn<-+e¢

(N* —e<n<N*+¢), with e—~0", shows that the velocity V(r)=V(r)=gu., (53
dr*/dnis discontinuous at the extremities of the bubble, and

leads to the following boundary conditions: with V(r) defined in Eq(35). Note that when ssDNA is the

dr* 2f metastable phase, the integration limits of E8R) arer;,
an = i (0))’ (46)  with V(r;)=gs= —2 %/ C, andr;=c. The activation free
n=0" energyG*, therefore, is finite.
dr* 2f Appendix D shows how these results can be alternately
- e — (47) obtained from the Schdinger equation$23), (34) using the
dn m(r* (N*))
n=(N*)~ WKB method.

These two boundary conditions are not sufficient to solve Eq.
(40) since N* is not determined yet. We need one more
condition, which expresses the continuity between the meta- Oncer; andr¢ are determined by the boundary condition
stable bulk of the chainn(<0) and the adjacent extremity of (53), the activation free energ* follows by numerical

pair at pOSitionn in the nucleus is equa| to by numerical solution of EC(40) Forf>fu, bOthri andrf

are finite and the numbét* of base pairs in the bubble may
be obtained from integration of E¢51),

(48) e [ [ m(r)
N (f)—fri dr m (54)

and must coincide with the metastable valug in n=0.
Using the boundary value of the veloci@6) and definition

3. Nucleation bubble shape

2 *
+V(*(n))—2f an

*

1
g*(n)=§m(r*(n))( an

(35), we obtain For forces larger tharf,, we find thatN*(f) decreases
. slowly with f, with, e.g., N*(f,=12 pN)=4, N*(f
V(I*(0))=0gy- (49 =40pN)=3.

For forcesf<f, r; goes to infinity because the potential
is flat at infinite radius, and formulé4) must be used with
care. The number of base pairs in the bubble can then be
defined from the change of slope of the correspondingn)
curve. Beyond some radiug=r*(N*), the average half
distancer* =n(2 f )/C between extremities increases lin-
early with n, and thus corresponds to ssDN8ec. IV B2
The transition state free energy* can be expressed in and Fig. 10b)]. We precisely defindl* as the bp index at

Equation(40) can now be integrated by determining(0)
from Eq. (49) and using the boundary conditi¢d6) for the
velocity. Once the bubble trajectony* (n) is known, the
activation free energy can be computed from Eh).

2. Nucleation bubble free energy

terms of a first integral of Eq40), which the second derivativé®r* /dn? is maximal. We find
1 dr+ 2 N* (f )=4 for all the forcesf<f,. The opening forks for

0=-— —m(r*(n))( ) V@ (). (50 f=0.5,and>12 pN are shown in Fig. 12. N
2 dn A simple approximate calculation dfi* at the critical

) force f=f, shows thatN* = /E/b for ratios E/C ranging
From Eqs.(46) and(49), Q=gy . Along the bubble trajec- 4 100 to 1000E/C=490 in our model see Appendix C.
tory, the velocity is a simple function of the radius, The linear dependence df* upon 1b is reasonable, since
dr* B \/Z[V(r*(n))—gM] the wider the barrier, the longer the nucleus to overcome it.

(51)  The square root dependence on the dsDNA stiffriedsl-

dn m(r*(n)) lows from the form of Eq(54).
Using Eq.(47) and (51), we find that the radius* (N*) at
the extremity of the bubble is given BY(r* (N*))=gy . A 2No confusion should be made between the opening forks at zero

similar relation holds at the other end of the bubble, see Etforce (Fig. 12 and at fixed distances between extremitigiy. 5).
(49). In addition, Eq(51) can be used to change the variable The latter corresponds to fluctuations around dsDNA equilibrium

in Eq. (45 from nto r. _ _ represented by ssDNA bubbles as in Fig(al0while the former
We thus obtain the following expression for the nucle-corresponds to the case of metastable ssDNA, with an activated
ation bubble free energy: bubble sketched in Fig. 16).
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ing contribution toM is given by the second derivative of

*

half base pair distance r (A)
3

30 T v T = T
o8 | // | the Morse potentialU},(r* (n))8(n—n’). The minimum of
! I, reached im* =R+ In 4/a and equal to- Da?%/4, is our
] estimate forA*. We therefore obtain the ratg=10?s 1.
Here we have focused only on the initial nucleation time,
and have not discussed the time required for the unzipping

“fork” to move down the molecule. For long repeated mol-

ecules, an additional contribution, of the ordermMb{f>f )
or N (f=f,), accounting for the propagation of the bubble

along the chain up to complete opening should be included
in the net time[30].

B fxf,
24 | ;
/

22

P/
=0 pN

IX. RESULTS FOR DYNAMICS OF UNZIPPING

12
We now discuss results of the theory discussed in the
' 15 20 preceding section. We treat first the case where the force is
held constant. We then discuss the case of constant loading
rate, where the force is increased as a linear function of time.

0, 5 10 |
base pair index n

FIG. 12. Saddle-point trajectorie (n) connecting dsDNA and
A. Constant force

ssDNA states, calculated with the instanton technique for different
values of the unzipping forcef €0,5>12 pN). Forf<f,, the
trajectory goes to infinitysee Figure 1db)], and the size of the The average dissociation time(f )=1/v_(f), is plotted
nucleation bubble is defined from the base-pair index which the i Fig. 6 for molecules of lengthN=10, 20, and 30 bp, for
slope changes, giviny* =3. Forf>f,, all trajectories lie roughly  fixed unzipping force. Below the threshold force for unzip-
ping (f<f,), this “lifetime” is exponentially dependent on
molecule length, which is to be expected from the growth of

on the same curvédashed ling starting fromr;=r4~=10 A and
halting at some force dependent radiysat a finite bp indexN*,

see Figure 1@). The locations ofr¢(f ) are shown for forceg
=12, 15, 30 pN(top to bottom, heavy dots

the total denaturation free energy adN (43).
At zero force, there is, in addition to the length-dependent

4. Saddle-point values of angular variables part of the denaturation free energy, an activation free energy
. ] )  G§=13kgT. This leads to the unzipping time_(N)
In the previous calculation, we considered the Langevin_ 1g-12 g13+14N_ 1= 6.3+0.6N (Fig. 6, inset. This formula
corresponds to the time associated with spontaneous unzip-
ing of anN-nucleotide double helix in free solution, and for

dynamics using an effective Hamiltonian fofn) once an-
=5 bp is the relatively short timescatie(5)=0.3 ms. For

gular degrees of freedom were integrated out. To be mor

complete, one might consider the coupled dynamics of twisE

angles¢(n) and radiir(n). In doing so, the saddle-point 5 30 pp DNAt_(30)~40 years. Thus dsDNAs beyoreR5

configuration for the radius®(n) turns out to be identical to  pj are essentially stable in free solution.

the motion equatio40). The optimal solutiorg* (n) for the For f>f,, t(f) is, within the theory of the preceding
section, independent of molecule length, and decreases ex-

ponentially withf up tof=f,=230 pN. In this regime, once

twist angle reads
the initial force barrier is crossed, the applied force is large
enough to continue unzipping the DNA. For forces beyond

JLZ—H?2
), (55
the force barrierf>f, dissociation is immediatéi.e., t

o .
6*(n)=2 arcsw(—Zr*(n)
:1/1/0).

The size of the nucleation bubble* =4 bp depends

where L, H are defined in Appendix A. Heref* (n) de-
weakly on the force, and is essentially fixed by the shape of

creases quickly from its dsDNA valug,=2/10.4 to zero
the barrier.

asn runs from 0 toN*.
1. Linearization of the dissociation rate near,f

C. The kinetic rate v,
So far we have discussed the most likely transition state

for escape from a metastable state. To ascertain the corre- The logarithm of the dissociation rate is generally not a
sponding time of escape, we need to know the igtesee linear function of forcef (Fig. 6), as it would be for a single
Eq. (42). v, is a rate describing the growth of the activated degree of freedorf29], but, rather, shows a strong quadratic
bubble along the unique descending path from the saddidependence ofi at small forces. This nonlinearity comes
configuration. Following Refd.27], [28], we have from Eq. (43) and the functional dependence of the poly-

meric chain free energy upon force, e.g., Ef)). However,
for forces near the critical forcé,, an approximate linear

I
- (56) relationship of this sort holdg=ig. 6).
The derivative of the dissociation rate with force is, in

14 1
oy
where \* is the only negative eigenvalue of the Hessianpart, determined by the derivative &* (52). Below the
unzipping force {<f,) we have

matrix M(n,n") of G around the saddle poifR*. The lead-
041907-14
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G*_ . 2f N A ,
ar lim Z(FN (f,rf)—[rf—ri(f)]) In P(f)__ondf v_(N,f")+Inv_(N,f), (63

rg—>
2 wherev_(N,f) is the dissociation rate at fixed foréeand
=2(?N*(f Y—=[ri(f)—r(f )]). (57) lengthN computed in the previous subsection. We recall that
for f<f,, v_ has a strondN dependence, while fdr>f, it
is independent oN (43). The rupture force distribution is

To obtain this expression we have used expreséidn Here shown forN=10 and for a few loading rates in Fig. 13.

r; depends on the force whitg corresponds to the inflection
point of r*(n) (Sec. VIIIB 3. 2. Most probable rupture force
For forces larger than the critical forcé*f,), we use

the boundary conditiof53) to obtain The most probable rupture foré& (N,\) is given by the

location of the maximum of the functiof®3) shown in Fig.
" 13, and is plotted in Fig. 7 for a few molecule lengtthsThe
dG = —2[r((f)—r,(f)]. (58) curves _forN=_10 can b_e understood in terms of the rupture
df ' force distributions of Fig. 13. For small loading rat@sg.,
AN=0.5pN/9 P(f) has a single maximum &t=0, so the
Forf<f,, see Eq(43), we also need the derivative of the most probable rupture forcg&* (Fig. 7) is zero. As loading
free energy differencag(f) with force rate is increased, a second local maximum appears\ for
~10°75, but still the most probable rupture force is zero. In
this regime the loading rate is so slow that thermal fluctua-
tions open the molecule before force can become signifi-
cantly different from zero.
In the vicinity of f, we therefore obtain However, ath;=10""8=6 pN/s, the second maximum at
Fig. 13 exceeds the maximumfat 0, and the most probable
—Invo+ BG] —2px(f—f,) (f<f,) rupture forcef* (Fig. 7) jumps tof* =2.5 pN. As loading
—Invo+BG] —2Bx-(f—f,) (f=f,), rate is further increased grows as the peak of Fig. 13
(60) moves to higher force values. Near4 pNO/s the rupture
force distribution(63) develops a cusp dt=f,, due to the
where discontinuous derivative of _(N,f) (see Fig. 6.
ForA\<\,=10*® (e.g.,\=4.4 pN/s in Fig. 13the maxi-
X<=dy(N=N*)+r(fy)—ri(fy), (61)  mum of the rupture force distribution is located on the part of
the curve determined by the dissociation rates(N,f
Xs=r(fy)—ri(fy). (62  <f,), for forces smaller than the critical force. In this range
unzipping occurs while dsDNA is thermodynamically stable,
The energies and lengths entering into the linearized exso f* shows a strong dependence on molecule lehgth
pression(60) have a straightforward physical interpretation.  For \,<\ <\3=10>° pN/s the rupture force distribution
In the vicinity of the critical force {~f,), the ds and ss- maximum is at the cusp of the curve i f,, generating a
DNA states have nearly the same free energy. The transitioplateau in the most probable rupture force of Fig. 7. For
state bubble separating them has free enei@y  \>\; the maximum of the rupture force distribution is lo-
=16.%5T; this is the free energy barrier involved in disso- cated at a force abovg,, where the dissociation rate in-
ciation of a dsDNA(or for the reverse recombination reac- creases with force, but i independent. Thu* increases
tion of two ssDNAS. The lengthd, =5 A is the projection of for A>\5 until the loading rate approaches\,
a DNA monomer in the force directio\N*=4bp is the =10 pN/sec. Beyond this point, the rupture force remains
number of base pairs in the nucleation fork, andf,) constant and equal tb* =f,=230 pN. ForA>\g, unzip-
—ri(fy)=4 A is the difference in radii between the first and ping occurs out of equilibrium, with the force increasing too
last base of the fork. These lengths define the position of theapidly for the molecule to respond. The loading ragethus
transition state along the reaction coordinate. The total disseparates equilibrium and nonequilibrium timescales for con-
tance between the two DNA extremities in this transitionstant loading-rate unzipping experiments.

d f
NEAg(f)ZZNE. (59)

Int_(f,N)=

state is ZR+r(f,)—r(f,)]=28 A. Both \; and\, depend orN and diminish ad increases.
For N sufficiently large, e.gN=100, f* does not substan-
B. Constant loading rate tially differ from f, for all loading rates\ <\3. The most

probable rupture force is thuf, for N<<\3, but becomes
loading-rate dependent far> ;.

We now consider the situation where the unzipping force
is a linear function of time. The time at which the molecule
opens, or ruptures, is stochastic in nature, thanks to thermal The linearized result for the log of the dissociation rate
fluctuations. The distribution of the rupture force as a(60) can be used to compute the dependence of the most
function of the loading rata (measured in pN/seds given  probable rupture force on loading rate near the critical
by [29] forcef,,

1. Rupture force distribution

3. Linearization near critical force
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FIG. 13. Logarithm of rupture force distributid®(f ) for N=10 and different loading rates=10°>, 1¢°5, 178 10!, 104 10, and
10°>7 pN/s. For small loading rates, the maximum of the rupture force distribution is located at zero force, and jumps discontinuously to a
finite force when\ >x ;=177 pN/s. Fork,=10*5<A<\3=10>° pN/s, P(f ) displays a cusp ifi=f,, which is thus the most probable
rupture force. Above 3, a new maximum develops and the typical rupture force starts growing again as a funatiaxt géry high loading
rateA>\*= 10" pN/s, the rupture force reaches its highest value-860 pN (not shown.

oT the loading rate\ shown in Fig. 7 is in rough accord with
E'”P\/)\ﬂ, A<Ap=KgTw,/2/x data from AFM experiments on DNA unpairing by force by
Strunzet al.[10].
f*(N,kv):fu—}— O, )\2$)\S}\3:kBTVU/2/X
kgT
K'”D\/)\a], A=A3, A. Equilibrium and macroscopic unzipping
(64) The experiments of Bockelmann, Essevaz-Roulet, and
Heslot and of Rief, Clausen-Schaumann, and Gaub examine
with v,=v_(f,,N), andx. andx. as in Eqs.(61), (62.  the opening of a large number of base pairs and according to
From Eq.(64), we see thak ; is inversely proportional to the  rig. 7 are performed with loading rate<\,. Therefore, as
time to cross the barrier separating dsDNA and ssDNA atq; the N= 100 curve, the rupture forcg at which the two

;:_oexistgnﬁe,landbto the _diﬁ}erﬁnce in opening bke)tvt\alﬁlen therands separate is approximately equal to the critical force
irst and the last base pair of the transition state bubble. ¢ i hearved experimentally.

The macroscopic description of E®) within the Gauss-
X. COMPARISON WITH EXPERIMENTS ian and FJCL approximations allows us to relate the critical

Many of the theoretical conclusions of the preceding SeC1‘orce to the free energy of denaturation. From our Gaussian

tions are in accord with published experimental data. OufPProximation we obtairij**>~12 pN, and from the more
theoretical result for the critical unzipping fordg is in ac-  microscopic model of Sec. V we obtaffj’*'=11 pN. These

cord with results of Bockelmann, Essevaz-Roulet, and Hesldiorce values correspond to a total DNA denaturation free
[2] and Rief, Clausen-Schaumann, and GpLL; our disso- energyAg=1.4kgT. This critical force is in accord with the
ciation rate at zero force as a function of the number of basenzipping forces between 10 and 15 pN observed by
pairs N of Fig. 6 is in agreement with the experiments of Essevaz-Roulet, Bockelmann, and Heslot feDNA [2].
Parschke[8] and Bonnet, Krichevsky, and Libchadé®i, and  Our critical force is also in the midrange of results of Rief,
the behavior of the rupture fordé as a function oN and of  Clausen-Schaumann, and Gaub for homogeneous-sequence
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DNA, fﬁng pN for poly AT poly TA, andquC= 20 pN for C. Dissociation under fixed loading rate

poly CG poly GC. 1. Opposing5’-5' strand unbinding experiment of Strunz et al.
Equation (9) with the £3"S (10), /3¢ (12) (see Fig. 8 _ _

leads to an estimate of the free energy of denaturation fo, In the experiment of Strunztal. [10], the stretching

different sequences, directly from the critical force values!Orc€ IS applied to opposite gends. In our model,_ the stress
The Bockelmann-Heslot range 40,<15 pN corresponds is applied on the adjacent &and 3 ends of opposite strands

to values for the FICL model in the range KgB< Ag™C- [Fig. 1(c)]. This basic difference makes a precise, quantita-
<2.4kgT, and for the Gaussian model kg <Agoas tive comparison of our results for the rupture forice as a

<2.3gT. TheA-DNA used has a roughly random sequence,ﬂ.mCtion of the molecule lengtN and loading rate. impos-
with GC content ranging between 30% and 60%. Using thes'b:j th | feat f the d dence* of
FJCL expression for the single strand free energy Bockel- owever, the general teatures of the dependenceto

mann and Heslof2] have fit the experimental variations of upon N andX shown |n'F|g. 7 should be quﬁe robust, and
the critical force along tha DNA. applicable at least qualitatively to the experiments of Strunz

. . AT et al. [10]. Experimentally the dependence 6f upon N
ng'zhgoanIc_aIViforcEis fo;nd iE)/y i'eth azlg;z ;9 pAN A?nd (Fig. 3 of Ref.[10]) was observed meaning that the loading
u P Gg 9- give Ag c S dricL  rate is in the ranga ;<A <\,. The experimental data show
=1.1kgT, AQgys=4.%T, and Ageyc =3.KgT, r€SPEC- 4 |inear dependence of the log of the dissociation rate on

tively. These values for the free energy of denaturauETn %orce close tof,, as in our theory. From a linear fit to the
compatible with the ones listed by Breslangd]: Ag data it is possible to deduce the characteristic length coeffi-

—~ GC__ H H i . . . ..
~2kgT, Ag="~5.6kgT for a ionic concentration of 1 M gients, activation free energy and critical fofsee results of
NaCl buffer, which is greater than the 150 mM used in thegg. |x A 7).

experiments of Bockelmann and Heslot and of Rief, prqorfct e write, as in Ref[10] and in Eq.(60),
Clausen-Schaumann, and Gaub

The torque-force phase diagram of Fig. 3 gives a predic- v(f)=pe* (67)
tion for the critical unzipping force for an experiment that
combines the unzipping experiment done in the group ofvherex=2x_ from formula(60). However, we note th&in
Essevaz-Roulet, Bockelmann, and He$®}t and the twist- contrast to the interpretation of R¢fL0])
ing experiment done by Strick, Bensimon, and Croquette N
[15] and by Legeret al. [31]. = vge Cu Al (68)

is not the thermal dissociation rate at zero force, but instead

is related to the activation energy of the transition state, and
Figure 6 shows the dissociation tirhe at zero force as a the length coefficients at the critical force. We wriggain

function of the molecule length. The dissociation time variesformally as in Ref[10])

as 107N with

B. Unzipping kinetics

V=101 2N, (69
*
a=logpvg— ﬁ): 6.3 (65  Again, we do not identify the fitted parametexs, a, as the
zero-force dissociation parametaers(65) and 6 (66) of the

q preceding section. Instead, we have
an

a1=|0910 Vo_(G: +ﬁX0fu)/|n 10 (70)
Ag

0=1n10~

0.6. (66) and
These values are close to results obtained bysdhixe

et al. for poly A-poly U DNAs, «=8 andé=0.5. The value The length coefficients entering Eq&8) and (69) are

of §is just Ag=1.4kgT only, and the result found by Ro  X=Xo+X;N where xo=2[r(f,)—r(f,)—d,;N*] and x;

schke givesAg=1.%&gT. The inverse width of the barridr ~ =2d, from formula (60). The coefficientsx, and x; have

has been set tbh=1.75 to obtain the opening time fod  been also fitted by Strunet al. from the slope of the linear

=5bpt_=0.3x10 3 s found by Bonnet, Krichevsky, and fit of the loading rate. In the interpretation given by our

Libchaber,t_=0.5x 102 s.2 Our calculations give the size kinetic theory,x; is the projection of the monomer length

of the nucleation bubble to be equal X =4 bp, in agree- difference between the final ssDNA and the initial dsDNA

ment with the estimate of Pechke. This value depends only states in the force direction is the difference between the

weakly on applied force. length 2¢.—r;) of the transition state along the force direc-
tion and the lengtld ,N* of a ssDNA with the same number
of bases of the activated bubble.

3For such a short sequence, no extra contribution to the time com- From the experimental data of Struetal. we find x,
ing from the propagation of the opening fork along the chain is=0.7=0.3 A andx,=7=3 A. These values are different
expected. from the values we found in the case of unzipping,
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=2d,=10A and xo=2[r,(f,)—ri(f,)—d,N*]=—32A  semimicroscopic potential well that holds adjacent bases to-
because they refer to a different geometry and a differengether in the double helix includes an appreciaiéerier.

kind of transition. Indeed, in the experiment of Strwetzl, The origin of this barrier is in the free energy difference due
the force is applied along the molecular axis; as pointed outo nucleic acid backbone conformational fluctuations be-
by the experimenterl0], the valued,~1 A is roughly the ~ tween dsDNA and ssDNA forms. This free energy bamer
difference in axial length per base pair between overstretche@bout XgT per basg adds to the base-pairing potential

SDNA (which they consider as the initial statend com- (about another RsT per base in depthto produce
pletely stretched and denatured ssDNA. a ~4kgT total barrier that must be traversed over a few A

Finally, from the data of Strunet al. we can deduce the distance to separate two bases. This leads to a total force
stretching force at which the rupture force shows a plateaP@ier of>250 pN. o . .
f,=a,/x, In 10=0.5gT/0.7 A=70 pN. The fact thaf, is _ This remarkably high force _bamer is at first worrisome,
Ie;jrgerzth;n the va.lueror .transverse anippingaOIfZ pKI i since _the forces observed during es_s_entlally “macroscopic”
due to the lower displacement and hence energy gain assexperlments are close to thel2 pN critical force for unzip-

) . Lo ! . . Bl'ng. However, this high barrier is difficult to directly ob-
ciated with longitudinal stretching, relative to that occuring serve since most experiments are carried out under condi-

during transverse unzippir{g.0]. tions where distance between extremities cannot be
_ ) controlled on the A scale.
2. Experiments of Rief, Clausen-Schaumann, and Gaub However, we have shown that the barrier to initiation of

Rief, Clausen-Schaumann, and Gaub observ8dDNA unzipping has been observed indirectly, in the initiation free
to SDNA transition, followed by é5-DNA to ssDNA transi- energy for conversion of dsDNA to ssDNA. Our theory re-
tion, when DNA was stretched by a force acting on the opJates this well-known feature of DNA hybridization free en-
posite B-3’ ends of the same polynucleotide strand. In ex-€rgy to the base—pairing_ interactions and backbone el_asticny.
periments or\-DNA, the B-Stransition forcef* showed no It would be of great interest to carry out AFM fixed-
dependence on loading rate, so in that cisés the critical ~ €xtension single-molecule experiments to directly measure
force f,, and the experiments were, therefore, done in thdéhe forces encountered in equilibrium as unzipping is initi-
regimex<\3. In addition, the dsS transition was found to ated.

have a highly sequence dependént We have shown that a second way to gain insight into the
By Contrast, theS'SS transitionf* depends on |Oading unzipping initiation barrier iS to Study the kinetiCS of UnZip'
rate, indicating that the loading rate is larger thanks, ping. We have treated this problem as a Kramers-type acti-

indicating that\;>6500 pN/s. Thus* gives only an upper vated barrier-crossing problem', althqugh one with many 'de-
bound forf, . These different behaviors for tlR2SandSss ~ 9grees of freedom. Our result is a rich kinetic theory, with
transitions, obtained for the same loading rates sudgest 'esults in accord with available experimental dgga10].

Eq. (64)], that the energy barrier is higher for ti8ess tran- However, many of our results await detailed.study experi-
sition than for theB-S transition. mentally. Our kinetic theory underscores two important fea-

tures. First, a transition state ef4 bp extent, which plays a
critical role in the unzipping dynamics, has been identified.
XI. CONCLUSION This “fork” structure is the analog of a transition state in a
chemical reaction. One could imagine that this state could be
In this paper we have analyzed the equilibrium and nona target for enzymes that accelerate DNA unzippmgivo,
equilibrium aspects of unzipping of double-stranded DNA bysince a fork of~4 bp is about the size of “typical” DNA-
applied force. This subject is of intrinsic theoretical impor- binding proteins. Second, a rich behavior of the most prob-
tance, but is also highly relevant to the unpairing of DNAable rupture force as a function of the loading rate and the
strands that occuiis vivo, and also directly addresses single- sequence length has been obtaifd. 7), and has allowed
molecule micromanipulation unzipping experiments doneus to interpret unbinding AFM experimenis0]. In this re-
under totally controlled conditions. We have mainly focusedspect, our work extends Evans’ thedg] to the unbinding
on a semimicroscopic model that accounts for the finiteof polymeric objects, and complements recent works in the
range of base-pairing interactions. This model has enougfield [33].
detail to analyze mechanical behavior at the few-A scale rel- The clearest limitation of our current analysis is that we
evant to molecular-biological events, but is still simple do not treat the inhomogeneity in hybridization free energy
enough to allow a detailed mathematical analysis withoutlue to inhomogeneous sequence along real DNAs. In the
having to resort to numerical simulations. present paper, our aim was study of the initiation barrier,
Our semimicroscopic model is constrained so as to havevhich is rather large compared to the effect that sequence
its large-scale equilibrium behavior in accord with “thermo- can have at short scales. However, at large length scales,
dynamic” descriptions of unzipping. In particular, this meanssequence inhomogeneity will play a crucial role in unzipping
that the hybridization free energy per base musttiedkgT kinetics. Associated with this limitation is our neglect of the
and that the elastic behavior assumed for the unpaired singlelynamics of fork propagation after unzipping initiation. Our
stranded regions must be consistent with results of diredkramers-type treatment with its focus on the transition state
micromanipulation experiments. “fork,” is appropriate for understanding only the initial
Given these thermodynamic constraints, our model natustages of unzipping. This makes our theory adequate for de-
rally leads to an important conclusion, namely, that thescribing the kinetics of denaturation of short sequence mol-
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ecules. Rather distinct theoretical approaches closer to thos z
used to study domain-growth kinetics are in order to study
the motion of a ds-ss fork down a lorig-100 bp DNA.

Our results may be relevant to other problems, including
the unzipping of helix-loop RNA and DNA structures, which = (r+x’y+y" I
have recently been studied using single-molecule microman
ipulation technique$34,35. Also, our results are a starting
point for consideration of more complex problems involving r
dsDNA-ssDNA—protein interactions. Both the role of pro-
teins bound near an fork on unzipping, and the effect of
unzipping on bound proteins are biologically relevant, and
open to detailed study using single-molecule micromanipu- y
lation techniques.

ACKNOWLEDGMENTS

We thank C. Bouchiat for communication of his results ) )

prior to publication, and for useful discussions. Work at UuiC _ FIG. 14. Given the distance’ from one end of the rod to the
was supported by NSF Grant DMR-9734178, by the Petrol-e,ft axis (hellcal axis of Fhe molecule of dsDI\)Athe other end lies
leum Research Foundation of the American Chemical SociWIth a u_mform pr_obablhty on the sphere of rad|ds{der_10ted by
ety, and by the Research Corporation. S.C. was partly funded’ the f'gu.re as in Appendix centered arounq the first end.’We
by an A. della Riccia grant. R.M. was supported in part byc®! " the distance of the second end to the axis. Let usxcaly

y 9 PP P Ythe coordinates of the projection of the second extremity onto the
the MRSEC Program of the NSF under Award numberequatorial plane of the sphere, perpendicular to the left ais:
DMR-9808595. =dsinegsing, y'=dsingcosd. The equation giving as a func-
tion of r’, x’, y' is shown on left side of the figure. See text for
APPENDIX A: ENERGY OF THE DISCRETE MODEL further details.

In this appendix, we show how the discrete model of

Refs.[5], [6] can be converted to E¢l7), once the angular (6=xIr), (A4)
variables are integrated out, and a continuum limit is taken . .
from which we obtain
A. Radial transfer matrix R,
The discrete model transfer matrix has the form y(n=-I-,
To(r,r")=X(r,r") Yo(r,r"), with XandY, given by formu-
las (10) and (12) of Ref.[6]. The radial portionX is Sdx xexd — BK(VLZ—x2—H)2]
, : L . , Ri=— —————=6A. (A5)
X(r,r")y=~rr’exp{—=BIVs(r,r')+3zUpn(r)+zUu(r")]}, Jodxexd — BK(YL“=x“=H)"]

(A1)
A numerical check shows that EA5) is a good approxi-
whereUy, is the Morse potentialdenotedV,, in Ref.[6]).  mation to —kgT In Yy(r,r), up to anr-independent additive
The backbone interaction ¥&(r,r")=E(r,r')(r—r’)?>with  constant, even when=R. Since small values aof are dis-

E(r,r')=Eexd—b(r+r'—2R)] as in Eq.(5) of Ref.[6]. allowed from contributing by the strong repulsive part of the
potential, Eq.(A5) can be taken as a global approximation.
B. Simplifying form for the angular transfer matrix Now define
Consider the angular part of the transfer matrix, and de- Yo(r,r')
fine the on-site potential(r) via prr’)=——-—. (A6)
Yo(r,r)
1
Yo(r,r)= Fexp[—,@y(r)}, (A2) At large distance, r’, with r—r’ smaller or equal to the

“rigid-rod” length L [5,6], p may be interpreted, up to an
r, r'-independent multiplicative constant, as the joint prob-
ability p that the extremities of a rigid rod of lengthbe at
distances’,r from a fixed reference axié-ig. 14):

y(r) can be computed for large radii$ R) from the defi-
nition of Yq(r,r),

Yo(r,r)=jowdaexpB[Vb(r,r,e)+F9] (A3)

18

1 27 T
o)== | a0 [ "agsingatc — g0,
47T 0 0

L dx (A7)
= fo ——exif — BK(VL?=x*=H)?]

where
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9(0,0,r")=r'?+L?sir? o+2Lr' sinfsing. (A8)

Integrating the angl® out and definingc=cose, we find

2 (1 dx
pr)== | o0 (A9)
0 vh(x)
where
r2L2 12 2 2
h(x)= (1—x2)—(r—7—7<1—x2) :
(A10)
and wherey(z)=1 if z=0, and 0 otherwise. In the large
r’ limit with r=r—r’, we obtain
, — 1 (\1=)2 dx
lim p(l”+l’,r/)5pm=—f —_—
- mL J1=x2=(TIL)?
— if —L<r<L,
0 otherwise.
(A11)

The above calculation follows from the fact that single

strands are represented as freely-jointed chains in our model,
For small wave numbersk&1/L) relevant to a con-

tinuum representation of our model, the Fourier transform of

p is approximately

pik= | drpme

_sin(kL)
kL
2

L
=1—€k2+0(k4)

L2
zexp< - —k2) , (A12)
6
which is the Fourier transform of
Pgaudl 1) = — D( B—(r )),
gau SS
(A13)
with
3kgT
ss:?- (A14)
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We determine the multiplicative constang(r,r’)/
Pgaudl.r") by requiring pga {r,r'=r)=1 from Eq. (A6),
and find

p(rr’)= exr{ ,6’—(r r'?|. (A15)

We finally find the following approximate expression for the
transfer matrix; see Eq$Al), (A2), (A5), (A6), (AL5):

To(r,r’)zexp[—g{(Eexp{—b(rJrr’—ZR)]thCSS)

><(r—r’)2+U(r)+U(r’)}], (A16)

whereU is defined in Eq(19).

C. Hamiltonian for radial variables

In the discrete version of the model of REB], [6] the
single strands were assumed to be symmetrically distributed
around the helical axis of the moleculene strand was free
to fluctuate while the other was just its axial reflecjion
Here, we resolve fluctuations of both strands, doubling the
total length of independent segments, and leading to the ef-
fective entropic stiffnes€=2Cy;.

Taking these contributions into account gives the transfer
matrix

To(r,r’)zexp[ —g[m(r,r’)(r—r’)2+U(r)+U(r’)]].
(A17)

The stiffnessm(r,r’) (18) is a sum of dsDNA stacking in-
teractions and intrinsic sSDNA entropic stiffness. There is a
slight change of notation from Rdf6], in the stacking func-
tion E(r,r’): both stacking constari and inverse lengti
have been multiplied by a factor of two in the present paper.
The effective Hamiltoniaf17) for a configuration of radial
variablesR={r(0),r(1),...r(n)} comes immediately from
Eq. (A17).

APPENDIX B: CONTINUUM FORMULATION
A. Extension of n to a continuous variable

An alternative, nonsymmetric choice for the transfer ma-
trix with the same eigenvalues ag (A17) is

To-tr.r')=exp[— BLam(r,r')(r=r" )+ U(r}.
(B1)

In a continuous version of this model, we look for a similar
formula when the base-pair index is increased fronto
n+e with e<1. In this regime,yr andr’ do not differ by
more than/e, allowing some simplifications to be made. We

This result simply indicates that the freely jointed chain hagiow present two replacement§*and T, for Tg*, Ty re-

the long-wavelength behavior of a Gaussian polyrmgys.

spectively, obtained from such apprOX|mat|of‘F§'SS andT,

HereCgis the three-dimensional Gaussian entropic stiffnesseduce to exactyf§>, T, respectively, when the stiffness is

of the single strand.

r-independent.
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Nonsymmetric model of this papeOur continuum
scheme uses an approximation to E§1). Assumingr
=r', we transform the transfer matrii¢>*into

T r ) =exp{—BLsm(r)(r—r")2+U(r)]}, (B2)

where the stiffness is defined in E@4).

Bouchiat’s symmetric modefn alternative scheme was
proposed by Bouchidi32]. Let us define the function(r)
= [Rrdxy/m(x). Bouchiat considered the following symmet-
ric transfer matrix:

Tl(r.f’)=exp{ - g{[x(r)—x(r')]erU(r)JrU(F’)}]-
(B3)

B. Schradinger operator for the nonsymmetric model with
zero force

The eigenvector the transfer

T3(r.r') is

equation for

| arste e —en-popn.  ©4

In the continuum limit of the axial distandegoing to zero
we introduce in Eq(B4) a parametee which goes to zero as
h!

ex;{—ﬂ%U(r))fdr’ex;{—ﬂ%r)h(r—r’)z Y(r')dr’

=w%—ﬁ§@ww» (B5)

matrix
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corresponding Schdinger operator can be written down.
After returning to ther variables this is

-

This is symmetric, since the scalar product between func-

o o) UM Inmn), B7)

tions @1, ¢, reads (@iez)=Sdx ¢1(x)¥2(x)
= [drym(r) @.(r)ea(r).

D. Relation between symmetric and nonsymmetric models

Defining ¢,(r) to be the ground state wave function of

Eq. (B7). Bouchiat has shown thag,(r)=[m(r)]¥4y(r)
obeys Eq.(23) with an additional contribution to the poten-
tial V,

5m’(r)2—4m(r)m’(r)
32m(r)3

8V, (r)=t? (B8)

The extra contribution is a small correction both inside and
beyond the Morse well, and does not lead to a significant
change to the values gfs;andgs. In addition, Bouchiat has
shown that the presence of a kernel in the symmetric scalar
product induces a small additional contributio$f(r)
=tm’(r)/[4m(r)] to the forcefy(r) (Sec. VII A) needed to
keep the two strands at fixed distance s stated in Sec.

V B, the transfer matrixT$*° we chose can be seen as a
Gaussian approximation to the exact transfer mafgixpro-
posed by Bouchiat.

E. Schradinger equation including force

The transfer matrix including forckis

Since the Gaussian term concentrates the integral contribu-

tion of r’ nearr, we can expand the eigenfunctiaf(r’)
nearr. Introducing the integration variable=(r —r’)/ /e,

neglecting additive constants and expanding we obtain Obén

tain

€ 1
[1—BH(U(|')+ ﬁ'ﬂ

h,Bm(r)) [2Bhm(r)
€T 2

xf dzexp(— Bhm(r)z?)
€z’ &

x| 9(0)+ =2 () +O(e)

=(1—ﬁ§g)wu» (86)

Integrating the Gaussian terms, and putting beck we
obtain Eq.(23)

C. Schradinger operator for Bouchiat's symmetric model

Bouchiat has shown that EB3) allows a simple change
of variables from the radii to the new variableg. Then, the

Ti(r,r')=exp{—BLzm(r)(r—r")?+U(r)—2f(r—r")1,
(B9)

d

2

f dr’ Tf(r,r’)zp(r’):expl’—,BE(U(r)—

m(r)
+iln hAm(r)

) [2Bhm(r)
2B €T 2
xf dzexp{—ﬁh(

2
—ﬁf/\/m(r)) Hw(r)

72 92
2 2

m(r)

2\e

VA

d
ez y(r)+

+0(€?) |, (B10)

kinetic term in they variables has a constant stiffness and thefrom which we obtain Eq(34).
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APPENDIX C: NUCLEATION BUBBLE LENGTH AND Within the above approximation, we f|rﬂ: =(36h)kgT
FREE ENERGY andN}, = (6/b) bp.

We now derive simple expressions for the free enésdy
and lengthN* of the nucleation b_u_bble. Our qim is to obtain  AppENDIX D: WKB CALCULATION EFOR NUCLEATION
the dependence of these quantities on the inverse ldngth BUBBLE FREE ENERGY
this parameter is not critical to the description of macro-
scopic unzipping, but is central to the kinetics of unzipping The free energygy and wave functiony(r) of the
initiation. In this appendix we calculate results at externalmetastable phase obey Sdtiirger equatiori34). The WKB
force equal to the critical valug, . method can be used to calculate the tunneling amplitude of
To simplify our results we approximate the potentiain  the wave function through the barrier. We note that we must
the barrier region by the following piecewise linear form introduce a new parameter to control the WKB calculation,

(Fig. 9): since we are unable to consider arbitrary absolute tempera-
. ture (the ssDNA phase free energy is dominated by thermal
IN(E/C)(R+Ry—r)/R, if RKI<R+Ry, fluctuation, as is the barrier between dsDNA and ssDNA
Vapp= 0 if r>R+R,, We therefore introduce a parametgrmodifying Eq.(34) to
(cy be
where

(kgT)?2 _ 3> 2f(kgT) o .
—mﬂszfwﬂgﬂLV(f) Pm(r)

Rb=%ln(E/C), (C2)
=gmim(r). (D1)

is an approximate value for the width of the barrier. The
nucleation bubble free enerdy; in the presence of an ex- Notice that Eq.(34) is recovered wheny=1, and that a

ternal forcef=f is WKB approximation will be accurate fop—0. The activa-
- tion energyG* (#) will be computed for small;, and theny
+ b . . . _
* — will be extrapolated to provide an estimate faf (»=1).
Cu JR dr (v2m(r)[Vapd 1)~ gol =2 1) The WKB approximation gives the wave function in the
barrier ranger;<r <r; defined through Eq(53) under the
v2C semiclassical form
ZTQ(E/C,_go)v (ox)
W(r)
where = - 2
() exn[ Ty | o)+ man(D) + mPap(r) -}

(D2)

G(y,2)= Ly%( (J(x+1)(Inx+22)—+2z). (C4

This result can then be put into into E¢D1), giving at
The length of the activated bubbl] can be computed |owest order in» the following quadratic equation for
similarly. An accurate approximation for the value of the w’(r)=dw/dr:
radius at which the slope aof* (n) changedi.e., where the
third derivative ofr* (n) vanishe$isr,=R+R,. Using Egs.
(40) and(51) we obtain

N = R+Rbdr [ m(r) ~EJ\/ EIC.—g0) Solving Eq.(D3) we obtain the activation energ/(r)
u“Jr 2[Vapp(r)—g0]_ b ( "~ 90) for any radiusr inside the barrier, plus the corresponding

(C5) wave function from Eq(D2). The activation free energg*
for leaving the metastable state equal& ;) and is given by

[W'(r)]?+4fW'(r)—2m(r)[V(r)—gyu]=0. (D3)

where Eq. (52). The radiir; andr; are the classical turning points at
which the “momentum”W’ (r) vanishes. We have checked
J\/'(y,Z)Efyi( \/ x+1 _ (C6) the validity of the WKB approximation in the range<r
1 X Vinx+2z <r¢, see Sec. VIIA.
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