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Plasticity and learning in a network of coupled phase oscillators
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A generalized Kuramoto model of coupled phase oscillators with a slow varying coupling matrix is studied.
The dynamics of the coupling coefficients is driven by the phase difference of pairs of oscillators in such a way
that the coupling strengthens for synchronized oscillators and weakens for nonsynchronized pairs. The system
possesses a family of stable solutions corresponding to synchronized clusters of different sizes. A particular
cluster can be formed by applying external driving at a given frequency to a group of oscillators. Once
established, the synchronized state is robust against noise and small variations in natural frequencies. The
phase differences between oscillators within the synchronized cluster can be used for information storage and
retrieval.
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[. INTRODUCTION away from the Hopf bifurcation point, where the Landau-
Stewart description is not applicable. This idea was first put
The mechanisms of adaptation and learning in natural antbrth by Winfree[15] and later developed by Kuramaofb6]
artificial systems are a subject of paramount interest in thand otherg17]. The original Kuramoto model, in which the
neuroscience. Most of the experimental evidence points taoupling coefficients were chosen as fixed and equal, al-
the synaptic modification as the physiological basis of thdowed for an elegant analytical treatment within the mean-
long-term memory[1,2]. Hebb[3] was the first who sug- field approximation. It was shown that the system of globally
gested that the synaptic coupling between two neurons isoupled oscillators with nonidentical frequencies exhibits a
enhanced if both neurons are simultaneously active. Recesecond-order phase transition as the coupling strength is in-
experimental data suggests that the synaptic connections ateeased above some critical value.
strengthenedlong-term potentiation(LTP)] or weakened In subsequent work, more complex coupling functions
[long-term depressiofLTD)] depending on the precise rela- were consideref14,18,19. It was shown that depending on
tive timing between presynaptic and postsynaptic spikeshe choice of the connectivity matrix, synchronized states
[2,4,5. with a nontrivial phase relationship among the oscillators can
Many current theoretical studies of learning in neural sysemerge. Networks of coupled phase oscillators with an ap-
tems are based on the quasistatic Hopfield mp@laltilizing propriately tuned coupling matrix were shown to have neu-
McCulloch-Pitts neuronal units or simple “integrate-and- rocomputing properties similar to those of the classical
fire” models of neurons coupled via synapses that accumukopfield network, with an important distinction that memo-
late the presynaptic activitispikes from other neurohato  rized patterns are stored in the form of relative phases of
a growing membrane potential of a neurpfl. The latter synchronized oscillators rather than in static equilibria.
generates its own spikéfires” ) once the membrane poten-  In those studies, the connectivity matrix, however, com-
tial exceeds a certain threshold. The synaptic strength is iplicated, was imposed externally to achieve the desired net-
fact not fixed, but changes in response to external stimulwork dynamics. In fact, in order to achieve certain behavior
and/or interneural dynamics. Various models based on thi§or example, to memorize an imagén a system oN neu-
general picturd8,9], have been shown to yield differential rons, N?> coupling coefficients have to be specified. This
Hebbian learning rules. would present significant difficulties in operating such a sys-
A complimentary approach to modeling neuronal activitytem at a largé\. In biological neural networks this task is not
involves replacing neurons by periodic oscillators. Indeedassigned to any central control unit, but is performed in a
rhythmic activity plays an important role in many neuronal distributed manner via the mechanism of synaptic plasticity,
systems and functions, including central pattern generatorgge., long-term potentiation or depression of synapses in re-
visual and olfactory systems, efd.0]. Neural networks can sponse to the dynamics of presynaptic and postsynaptic neu-
often be described as networks of coupled oscillators, so theons[2,8]. External stimuli directly affect only the dynamics
role of relative spike timing is played by the phases of indi-of individual neurons and not their connections, while the
vidual oscillators(see, for example11-14). Close to the synaptic plasticity is a result of the interneuronal interac-
Hopf bifurcation, the dynamics of the array of coupled oscil-tions. This evolution of connectivity matrix has been intro-
lators can be described by the Landau-Stewart equations foluced in Ref[13] for the Landau-Stewart model of coupled
complex amplitudes of the oscillators. Furthermore, one cawscillators, however, no analysis of the joint dynamics of the
reduce the dynamics of the oscillators to the pure phase dyietwork of oscillatorsand the connectivity matrix has been
namics by assuming that the coupling is weak, and the anpresented. In this paper, we study the simplest possible
plitude of oscillations is slaved to the phase variations. Inmodel of this process, based on the generalization of the
fact, the phase dynamics description may still be valid everlKuramoto model. In particular, we assume that the coupling
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coefficient for a link between two oscillators is a slow func-  For smalle, the dynamics of the coupling coefficients is
tion of their phase difference. slow, and one can expect that for two oscillators which are
The paper is organized as follows. In Sec. Il we introducenonsynchronized, the driving teracos(® — ¢;) is oscillat-
the generalized Kuramoto model with additional equationdng around zero, and the resultant coupling coefficient is also
describing the slow evolution of the coupling matrix. In Sec.oscillating around zero and is smél €). On the other hand,
[, a simple case of two coupled oscillators is investigated.a pair of synchronized oscillators produces a constant non-
We show that for a large separation of time scales of fast andero driving for the corresponding coupling coefficient, and,
slow motions, the system is bistable: depending on initiakherefore, for large enough, the connection between the
conditions, oscillators can be either synchronized or nonsynawvo will be strengthened. Thus, we anticipate a multistable
chronized. In Secs. IV and V, we study the existence andhehavior, when a group of oscillators can either be stably
stability of the family of synchronized cluster solutions in the synchronized or nonsynchronized depending on the initial
continuum limitN—. In Sec. VI, we show that the gener- conditions for their coupling coefficient. To illustrate this
alized Kuramoto system can serve as a very simple model gjoint, we first consider a simple case of two oscillators sym-
learning and memory. Information is stored within the syn-metrically coupled through a single link.
chronized cluster in the form of phase differences between

oscillators. Section VII summarizes our conclusions.
I1l. TWO COUPLED OSCILLATORS

Il. MODEL In this case mode(3) and (4) reduces to a set of two

Let us consider the dynamics of an ensemblbl abupled coupled equations,

phase oscillators ,
d=Aw—Ksing,

. 13
pi=wi— 5 2 KiF(i— ). (1)
=1 K=e(acosp—K). (5

Here w; are natural frequencies angl are phases of indi-

vidual oscillatorsF(¢) is a 2m-periodic coupling function, Here¢=¢;— ¢,, K=K,=K;;, andAw=w;— w,. By in-

andK;; is theNx N matrix of coupling coefficients. troducing new variable$=Awt, K=K/Aw, a=alAw, €
In order to include the mechanism of adaptation into=e/Aw, system(5) is simplified to

model(1), we assume that an element of the coupling matrix

describing interaction between two oscillatarandj, is con-

trolled by the following equation: ¢=1-Ksing,
whereG(¢) is a 2mr-periodic function of its argument. The
particular form of the coupling functioR(¢) and adaptation The nullclines of this systemK=acos¢ and K

functionG(¢) can be derived from the underlying equations
describing the dynamics of oscillators through the reductio
to the phase description. Following Kuramof@6], we
choose the simplest possible periodic functiofy) = sin ¢.

=1/sing intersect ata>a.=2. In this case, within each
rberiod of the relative phasé, there are four intersections
corresponding to two stable and two unstable fixed points

Furthermore, we choose the adaptation functics) LS€€ Figs. @) and Zc)]. For smalle, the dynamics of the
=« cosé. This choice implies that the coupling coefficient system can be separated into fast and slow motions. If initial

grows fastest for two oscillators that are in phase and decay&lue Ko>1, the phase variable rapidly approaches the
fastest for out-of-phase oscillators. This form of the adaptaguasistatic value arcsiy,* corresponding to the nullcline,
tion function directly corresponds to the Hebbian rule ofwithout any significant change df. Then, depending on
learning[3] and has been proposed bef¢is] in a similar  \hetherK, is greater or smaller than the valife, corre-
context. There are certain indications in the biological litera-sponding to the unstable fixed point, the solution either
ture (see Ref[2]) that the maximal LTP and LTD correspond slowly approaches the stable fixed pok (synchronized

to small positive and .negative phase shifts between presyr}égime’ or it reaches the minimum of the nullcline and then

are going to ignore this complication in our model for the%ranchgs off to infinity along the fast trajectory. The same

sake of simplicity. With the chosen functions, our model be-0ccurs ifKo<'1. This corresponds to the regime of nonsyn-
comes chronized oscillations. For larger values @fthe dynamics
can no longer be reduced to fast and slow motions. More-

N ~ o~
. 1 over, for any fixedx> «., there exists some critical value of
= — — K.: si i— o), 3 ~ ’ ~ o~ e .
Pz eim | 121 iy Sin(i=&y) ® €. such that aie> ¢, there are no unbounded solutions cor-
responding to the nonsynchronized motion. On the other
Kij= el a cog ¢ — ;) — K;; 1. (4)  hand, ifa<a,, there are no fixed points corresponding to
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FIG. 1. Phase diagrara,(a) for the model of two coupled
oscillators(6). Symbols show the results of numerical simulations 3L
with 50 uniformly distributed oscillators. Circles correspond to the b
nonsynchronized regime, and stars indicate an onset of synchroni 2|
zation of pairs of oscillators, which usually precedes spontaneous
cluster formation. 1F

M 0
the synchronized solutions, and the oscillators are desyn
chronized for any values @f. Figures 2b) and Zc) show the

structure of the phase plane for systédh for e>¢, and'e -2 A\
<'e., respectively. Figure 1 shows the dependence.ofs
. As expectede. diverges asr— a.+. This line together
with vertical line ?&=ch divides the parameter plane into
three regions. Fow<a,, there can only be nonsynchro-

nized solutiongFig. 2a)], for a>a.,e> €. there are only 3 .
synchronized solution§Fig. 2(b)], and for a>a,,e<e., ¢
there is a bistable state when both desynchronized and syr 2

chronized regimes are staljleig. 2(c)]. 1t

The results of this section can be applied to a more ge-
neric case of many coupled oscillators. Indeeds asd/or« M0
is increased, the spontaneous clustering usually begins fror
synchronization of pairs of neighboring oscillators. For this
process, the coupling between these oscillators and other o
cillators can be neglected. Symbols in Fig. 1 show the results
of numerical experiments with a population of 50 oscillators -3 ¢
uniformly distributed within a rangé =1 starting from 0 T A In e
small randomized initial couplind;;. The bifurcation to )
random pairing of oscillators that precedes the cluster forma-
tion, occurs close to the theoretical line predicted for a FIG. 2. Phase plane of Eq&): (a) for a<a, there are no fixed

simple case of two coupled oscillators. points corresponding to synchronized reginia); for «=2.7 and
'e=0.33 all initial conditions lead to stable fixed points) for a
=2.7 ande=0.1 unbounded solutions coexist with fixed points.

IV. MANY COUPLED OSCILLATORS: STATIONARY

STATES \
In this section we return to the dynamics of the original bi=w,— Bl > sin2(¢i— ¢))]1, (7)
model(3) and(4). As was pointed out in Sec. Il, for sma 2N =1

in the asymptotic regime the coupling coefficients are either

nonstationary but smalfor two oscillators operating at dif-

ferent frequenciesor fixed for two oscillators that are syn- Where unlike Ref[16] summation only applies to oscillators
chronized. So, in the limite—0, we can neglect aK;; for ~ within the same cluster, ang; = w; for oscillators outside
nonsynchronized oscillators, and defikg =« cos@—¢;)  synchronized cluster. It is easy to see that &yis formally

for synchronized oscillators. Substituting this into E8g), equivalent to the Kuramoto model for the double phases
we obtain for oscillators within a cluster, 2¢; .
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One can investigate this model in the mean-field lidit  in the population that belong to the cluster. The phases of the
— oo using the order parameter methidd]. In this case, the oscillators inside the cluster are given by
complex order parameter reads

1 r( 2(0;—Q)
| N, | i = 0+ Zarcsin — — ©
7%= lim N*lEl e?vi= f n(y)e*’dy, (8 ’ '
N— o0 = o

and the phase distributiam(¢) can be easily expressed via
where = ¢—Qt, Q is the frequency of the synchronized the frequency distribution of the synchronized oscillators
cluster, andh(¢) is the phase distribution of the oscillators g(w),

mg(a{sinz(w—awﬂ cog2(y—6)] for B<2(y—0)<A

n(y)= (10)
0, outside
|
whereA,B determine size and position of the synchronized a (A )
cluster, (- w/2<B<A< /2). Substituting Eq(10) into Eq. 280 ) ;0% e*dx=1, (13
(8), we obtain the equation for the magnitude of the order -
parameterr, which reduces to an algebraic equation for phase width of the
A clusterA,
EJ- Dsinx+Q | cosx e*dx=1 (12)
2 Bg 5 SInX : 1 2A0
A+ Ssin(2A) = ——. (14
The frequency spread inside the synchronized cluster is de-
termined by the formula The phase width of the clustérdepends only om/A(Q and
does not depend on the cluster sizeThis dependence is
AQC=£(sinA—sinB), (12) shovvpl in Fig. 3. For largea, A~AQ/a. At a—aq
2 =477 -AQ, A— /2. The frequency spread inside the syn-

) i ) _ chronized cluster is equal tAQ).= a7sinA [cf. Eq. (12)].
which follows directly from Eq(9). Thus, this system exhib- At o<, there can be no stationary synchronized clusters.
its degeneracy so that a variety of synchronized states can B ese findings are confirmed by the direct numerical simu-
formed depending on initial conditions. It is particularly evi- |ations of Eqs.(3) and (4). In Fig. 3 the phase width of the
dent for the uniform distribution of oscillator frequencies ¢jyster is shown for several values @fAQ, and in Fig. 4

within frequency intervall 2, g(w)=AQ"". In this case, the evolution of an unstable cluster ai—1.25<aq is
the cluster size drops out, the limits of integration are sym-

metric,B=—A, and we arrive at 90
80
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FIG. 3. Phase spread of the clusteras a function ofa/AQ FIG. 4. Gray-scale plot of the evolution of instantaneous oscil-
from Eq.(14). Dots indicate the results of numerical simulations of lator frequenciesp; for an unstable cluster at=1.25 Parameters
Egs. (3) and (4) with 50 uniformly distributed oscillators with ~©f the simulation aré&i=50, ¢=0.002,AQ=1. Black corresponds
AQ=1, €=0.002. to ¢=9.5, and white tap=10.5.
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shown. The parameters of simulations we\e=50, A 0.1

=1, €=0.002, and the initial cluster width was chosen

AQ.=0.5. 0.08 |
V. STABILITY OF THE CLUSTERED STATE 0.06 |

As we have seen in the previous section, the order param- @

eter r that characterizes the cluster size, can take any value 0.04 r

from 0 to 7,4y (for the uniform frequency distribution the

latter corresponds to the whole population being synchro- 0.02

nized, max=AQ/a sinA). However, this is true only for

small enougke. Just as in the case of two coupled oscillators 0

(Sec. lll), at sufficiently largee> €., the multistability dis- 0

appears, and the only stable stateata, is the one involv-

ing the whole population of oscillatora,Q2c=A. In order FIG. 5. Parameter planex(e). A cluster is stable at> o and
to determinee., we analyze the following problem. Suppose .~ €o. For a< ay, clusters do not exist, far< a, ande> ¢, clus-

we have a synchronized cluster oscillating at frequeficy ter size increases spontaneously. Dashed line shows the stability
and characterized by the order parametdret us consider a |imit for synchronization of two neighboring oscillators, far

single oscillator with frequencyw, adjacent to the cluster >q. and e>¢., random pairing of oscillators outside the main
(wo=Q+AQ/2), and study its dynamics neglecting its in- cluster occurs.

teraction with all other oscillators and the the feedback in-

fluence of the oscillator on the cluster. Clearly, since the A2

frequency difference between this oscillator and the cluster is Q= f K(y)cosy cos 2pdy. (21)
smaller than that for any other non-synchronized oscillator, A2

the adjacent oscillator will be the first to get entrainedat
The equation for the relative phagg= ¢o— (.t of this os-
cillator reads

Equations forP,Q can be obtained using E(L8),

P=e(aF_siny,—P), (22)

CAQ, 1
Yo=— +—2‘,1 Ki sin( ¢ — o) (15) Q=e(aF, cosyp—Q), (23

, _ . wherdF . = 3sinA+(3A+3sin2A). The set of equations
and_ the equatlop for the coupling coefficient between the(lg),(ZZ), and(23) exhibits the dynamics similar to Eqé)
oscillator and theth member of the cluster, for two coupled oscillators. A< ay=47"1AQ, the only

. attractor of the system is the solution with perio8i@andQ

Ki= el @ cos ¢ — o) — K] (16) and unbounded phas¢ that corresponds to “nonentrain-

o ) ) . ment” of the oscillator by the cluster. For the phase variable
The summation in Eq15) is carried only over synchronized takenmodulo2, this solution corresponds to a limit cycle
oscillators. The phaseg of the synchronized oscillators are encircling the phase cylinder. At larger>a,, two fixed

determined by Eq(9). _ ~ points appear, one of whicfstablé corresponds to the en-
n the continuum limit for the uniform frequency distribu- trainment of the oscillator by the cluster. At>eq(a), the
tion, these equations become limit cycle disappears, and the entrained state is the only

stable state of the system. Thus, the critical l&géa) sepa-
rates the region of cluster stability with respect to entraining
additional oscillators. This line is shown in Fig. 5. This line
(17) should be compared with the critical line for pairing of two
neighboring oscillatorgéFig. 1). Note that we have to rescale

. AQ  ar (A2 ;
do=—+ mf_A/ZK(¢)co§21,b)sm( Y= o)dy,

K ()= el a cos th— o) — K()]. (189 € and a back into original e and a using e=eN, @
=2al/AQ. For largeN, this line lies belowey(«), which
Equation(17) can be rewritten in the form indicates that the random pairing outside the cluster occurs

before the main cluster loses its stability. This conclusion
. AQ. ar agrees with our numerical simulations.
ho=—— m(P cosp—Q siny), (19

VI. LEARNING AND MEMORY

where Information can be stored within the cluster in the form of

Ao relative phases of the oscillators in the synchronized state.
P:f K (4)siny cos 24d i, (20) Initigl learning can be ac_:complished. via Qriving a group of
A2 oscillators by external signals with identical frequensy
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FIG. 6. Relative phase distribution of oscillators within the clus-
ter with respect to the “middle” oscillator=25. Gray-scale colors FIG. 7. Stability of cluster measured with the correlation of the
encode phases from 0 tor2 The cluster is initialized by external cluster before and after perturbation of natural frequencies. The
forcing of oscillators 15-37 at frequenay,==10.0 for 0<t different curves are for several valuesaf e increases the stability
<ty=20. At t>t,, the external forcing was turned off, but the Of the cluster only slightly and falls off parallel to the curves for
phase distribution within the cluster survived. &i¢t,;=75, oscil-  similar .
lators were driven by random external fluctuation of magnitude
0.01. Despite of this forcing, the phase pattern “memorized” by thecorrelation between the synchronized cluster structure before

cluster, was preserved. and after the random fluctuations of natural frequencies have
been applied. The correlation was calculated using the for-
and magnitudeé,, but with different phaseé?, mula
N N
. 1 ) ) 0 S oA
di=wi—y ]2::1 Kij sin(¢; — ¢;) + Ko sin( ¢ — wot — ), < P
(24) C=x——". (26)
_ ;1 (SAVAST
Kij = el @ coq ¢ — ¢j) — Kj; 1. (25)

wherep;(q;) is the binary variable describing the state of the
oscillator before(after) perturbing the natural frequencies:
pi(g;) =1 if the oscillator is entrained in the main cluster and
pi(q;) =0 otherwise. Symbols/ and/\ denote Boolean ad-

If Ko>1, every oscillator in the group will be entrained to
the external frequencw,. So, the external driving signals
force the oscillators to oscillate in synchrony and, via slow
synaptic dy”g‘m'cs Eq25), form a tightly C°”p'e‘?' cluster. If dition and multiplication, respectively. It is easy to see that
the phasesp;’ are taken to be 0 om, the relative phases ¢ _1 \yhen the cluster remains unchanged, &0 if all

@i — ¢; within the cluster will be also close to 0 @r, and SO qgijlators leave the cluster.

the coupling coefficients<;; will fthroach +a. After the Figure 7 shows correlatiof as a function of the pertur-
learning is completed aftér=O(e™7) time, the external sig-  pation magnitude\ w for several values of. As seen in the

nal is disconnectedK,—0). If the external frequencywo  figure, the cluster becomes more robust with the increase
=}, the mean frequency of oscillators within the cluster, theys

cluster remains synchronized at the same frequency. More-
over, the phase relations among the oscillators are effectively
preserved. Even significant random fluctuations affecting the Vil. CONCLUSION
dynamiCS of individual OSCi||at0rS, do not Change the robust In summary, we have demonstrated that a genera”zed
structure of the synchronized cluster, see Fig. 6. Kuramoto model with additional equations that describe the
For smalle, after a cluster is formed, it becomes very sjow dynamics of the coupling matrix can be used to eluci-
stable with respect to external noise. Furthermore, it remaingate the underlying mechanism of synaptic plasticity. Slow
stable with respect to random variations of their natural fredynamics lead to multistability: synchronized clusters of dif-
quenCieS. We let the cluster form Similarly to that describqurent sizes and with different phage re|ationships among 0s-
above, and then at some timg, we perturbed the natural cillators can be stabilized. The phase differences among the
frequencies of all oscillatorsy; = w; +Awé&;, where& are  oscillators can be used as a way of storing and retrieving the
independent Gaussian random variables with variance 1. Weaformation in this system. One natural limitation of the re-
can quantify the robustness of the cluster by measuring thduced phase description of the oscillators is that all oscilla-
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tors are assumed to be in the excitéfiring” ) state. How- membrane potential oscillationand slow synaptic variabil-
ever, in natural systen{such as biological neural netwopks ity. They also present a very simp{possibly, the simplest
some of the neurons may be in a quiescénbnfiring” ) model of thesynaptic reentry reinforcemerthat has been
state. A more general description of this system should insuggested to be the foundation of the long-term memory sta-
corporate equations for complex amplitudes of oscillatorsility [1].
similar to Ref.[12].
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