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Plasticity and learning in a network of coupled phase oscillators
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A generalized Kuramoto model of coupled phase oscillators with a slow varying coupling matrix is studied.
The dynamics of the coupling coefficients is driven by the phase difference of pairs of oscillators in such a way
that the coupling strengthens for synchronized oscillators and weakens for nonsynchronized pairs. The system
possesses a family of stable solutions corresponding to synchronized clusters of different sizes. A particular
cluster can be formed by applying external driving at a given frequency to a group of oscillators. Once
established, the synchronized state is robust against noise and small variations in natural frequencies. The
phase differences between oscillators within the synchronized cluster can be used for information storage and
retrieval.
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I. INTRODUCTION

The mechanisms of adaptation and learning in natural
artificial systems are a subject of paramount interest in
neuroscience. Most of the experimental evidence point
the synaptic modification as the physiological basis of
long-term memory@1,2#. Hebb @3# was the first who sug-
gested that the synaptic coupling between two neuron
enhanced if both neurons are simultaneously active. Re
experimental data suggests that the synaptic connection
strengthened@long-term potentiation~LTP!# or weakened
@long-term depression~LTD!# depending on the precise rela
tive timing between presynaptic and postsynaptic spi
@2,4,5#.

Many current theoretical studies of learning in neural s
tems are based on the quasistatic Hopfield model@6# utilizing
McCulloch-Pitts neuronal units or simple ‘‘integrate-an
fire’’ models of neurons coupled via synapses that accu
late the presynaptic activity~spikes from other neurons! into
a growing membrane potential of a neuron@7#. The latter
generates its own spike~‘‘fires’’ ! once the membrane poten
tial exceeds a certain threshold. The synaptic strength i
fact not fixed, but changes in response to external stim
and/or interneural dynamics. Various models based on
general picture@8,9#, have been shown to yield differentia
Hebbian learning rules.

A complimentary approach to modeling neuronal activ
involves replacing neurons by periodic oscillators. Inde
rhythmic activity plays an important role in many neuron
systems and functions, including central pattern genera
visual and olfactory systems, etc.@10#. Neural networks can
often be described as networks of coupled oscillators, so
role of relative spike timing is played by the phases of in
vidual oscillators~see, for example,@11–14#!. Close to the
Hopf bifurcation, the dynamics of the array of coupled osc
lators can be described by the Landau-Stewart equation
complex amplitudes of the oscillators. Furthermore, one
reduce the dynamics of the oscillators to the pure phase
namics by assuming that the coupling is weak, and the
plitude of oscillations is slaved to the phase variations.
fact, the phase dynamics description may still be valid e
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away from the Hopf bifurcation point, where the Landa
Stewart description is not applicable. This idea was first
forth by Winfree@15# and later developed by Kuramoto@16#
and others@17#. The original Kuramoto model, in which th
coupling coefficients were chosen as fixed and equal,
lowed for an elegant analytical treatment within the mea
field approximation. It was shown that the system of globa
coupled oscillators with nonidentical frequencies exhibits
second-order phase transition as the coupling strength is
creased above some critical value.

In subsequent work, more complex coupling functio
were considered@14,18,19#. It was shown that depending o
the choice of the connectivity matrix, synchronized sta
with a nontrivial phase relationship among the oscillators c
emerge. Networks of coupled phase oscillators with an
propriately tuned coupling matrix were shown to have ne
rocomputing properties similar to those of the classi
Hopfield network, with an important distinction that mem
rized patterns are stored in the form of relative phases
synchronized oscillators rather than in static equilibria.

In those studies, the connectivity matrix, however, co
plicated, was imposed externally to achieve the desired
work dynamics. In fact, in order to achieve certain behav
~for example, to memorize an image!, in a system ofN neu-
rons, N2 coupling coefficients have to be specified. Th
would present significant difficulties in operating such a s
tem at a largeN. In biological neural networks this task is no
assigned to any central control unit, but is performed in
distributed manner via the mechanism of synaptic plastic
i.e., long-term potentiation or depression of synapses in
sponse to the dynamics of presynaptic and postsynaptic
rons@2,8#. External stimuli directly affect only the dynamic
of individual neurons and not their connections, while t
synaptic plasticity is a result of the interneuronal intera
tions. This evolution of connectivity matrix has been intr
duced in Ref.@13# for the Landau-Stewart model of couple
oscillators, however, no analysis of the joint dynamics of
network of oscillatorsand the connectivity matrix has bee
presented. In this paper, we study the simplest poss
model of this process, based on the generalization of
Kuramoto model. In particular, we assume that the coupl
©2002 The American Physical Society06-1
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coefficient for a link between two oscillators is a slow fun
tion of their phase difference.

The paper is organized as follows. In Sec. II we introdu
the generalized Kuramoto model with additional equatio
describing the slow evolution of the coupling matrix. In Se
III, a simple case of two coupled oscillators is investigat
We show that for a large separation of time scales of fast
slow motions, the system is bistable: depending on ini
conditions, oscillators can be either synchronized or nons
chronized. In Secs. IV and V, we study the existence a
stability of the family of synchronized cluster solutions in t
continuum limitN→`. In Sec. VI, we show that the gene
alized Kuramoto system can serve as a very simple mode
learning and memory. Information is stored within the sy
chronized cluster in the form of phase differences betw
oscillators. Section VII summarizes our conclusions.

II. MODEL

Let us consider the dynamics of an ensemble ofN coupled
phase oscillators

ḟ i5v i2
1

N (
j 51

N

Ki j F~f i2f j !. ~1!

Here v i are natural frequencies andf i are phases of indi-
vidual oscillators,F(f) is a 2p-periodic coupling function,
andKi j is theN3N matrix of coupling coefficients.

In order to include the mechanism of adaptation in
model~1!, we assume that an element of the coupling ma
describing interaction between two oscillators,i andj, is con-
trolled by the following equation:

K̇ i j 5e@G~f i2f j !2Ki j #, ~2!

whereG(f) is a 2p-periodic function of its argument. Th
particular form of the coupling functionF(f) and adaptation
functionG(f) can be derived from the underlying equatio
describing the dynamics of oscillators through the reduct
to the phase description. Following Kuramoto@16#, we
choose the simplest possible periodic functionF(f)5sinf.
Furthermore, we choose the adaptation functionG(f)
5a cosf. This choice implies that the coupling coefficie
grows fastest for two oscillators that are in phase and dec
fastest for out-of-phase oscillators. This form of the adap
tion function directly corresponds to the Hebbian rule
learning@3# and has been proposed before@13# in a similar
context. There are certain indications in the biological lite
ture~see Ref.@2#! that the maximal LTP and LTD correspon
to small positive and negative phase shifts between pre
aptic and postsynaptic neuronal oscillations. However,
are going to ignore this complication in our model for t
sake of simplicity. With the chosen functions, our model b
comes

ḟ i5v i2
1

N (
j 51

N

Ki j sin~f i2f j !, ~3!

K̇ i j 5e@a cos~f i2f j !2Ki j #. ~4!
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For smalle, the dynamics of the coupling coefficients
slow, and one can expect that for two oscillators which
nonsynchronized, the driving terma cos(fi2fj) is oscillat-
ing around zero, and the resultant coupling coefficient is a
oscillating around zero and is smallO(e). On the other hand
a pair of synchronized oscillators produces a constant n
zero driving for the corresponding coupling coefficient, an
therefore, for large enougha, the connection between th
two will be strengthened. Thus, we anticipate a multista
behavior, when a group of oscillators can either be sta
synchronized or nonsynchronized depending on the in
conditions for their coupling coefficient. To illustrate th
point, we first consider a simple case of two oscillators sy
metrically coupled through a single link.

III. TWO COUPLED OSCILLATORS

In this case model~3! and ~4! reduces to a set of two
coupled equations,

ḟ5Dv2K sinf,

K̇5e~a cosf2K !. ~5!

Heref5f12f2 , K5K125K21, andDv5v12v2. By in-
troducing new variablest̃ 5Dvt, K̃5K/Dv, ã5a/Dv, ẽ
5e/Dv, system~5! is simplified to

ḟ512K̃ sinf,

K̇̃5 ẽ~ ã cosf2K̃ !. ~6!

The nullclines of this systemK̃5ã cosf and K̃

51/sinf intersect atã.ãc52. In this case, within each
period of the relative phasef, there are four intersection
corresponding to two stable and two unstable fixed po
@see Figs. 2~b! and 2~c!#. For small ẽ, the dynamics of the
system can be separated into fast and slow motions. If in
value K̃0.1, the phase variablef rapidly approaches the
quasistatic value arcsinK̃0

21 corresponding to the nullcline
without any significant change ofK. Then, depending on
whetherK̃0 is greater or smaller than the valueK̃u corre-
sponding to the unstable fixed point, the solution eith
slowly approaches the stable fixed pointK̃s ~synchronized
regime!, or it reaches the minimum of the nullcline and the
branches off to infinity along the fast trajectory. The sam
occurs if K̃0,1. This corresponds to the regime of nonsy
chronized oscillations. For larger values ofẽ, the dynamics
can no longer be reduced to fast and slow motions. Mo
over, for any fixedã.ãc , there exists some critical value o
ẽc such that atẽ. ẽc there are no unbounded solutions co
responding to the nonsynchronized motion. On the ot
hand, if ã,ãc , there are no fixed points corresponding
6-2
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PLASTICITY AND LEARNING IN A NETWORK OF . . . PHYSICAL REVIEW E 65 041906
the synchronized solutions, and the oscillators are des
chronized for any values ofe. Figures 2~b! and 2~c! show the

structure of the phase plane for system~6! for ẽ. ẽc and ẽ

, ẽc , respectively. Figure 1 shows the dependence ofẽc vs

ã. As expected,ẽc diverges asã→ãc1. This line together

with vertical line ã5ãc divides the parameter plane int
three regions. Forã,ãc , there can only be nonsynchro
nized solutions@Fig. 2~a!#, for ã.ãc ,ẽ. ẽc there are only
synchronized solutions@Fig. 2~b!#, and for ã.ãc ,ẽ, ẽc ,
there is a bistable state when both desynchronized and
chronized regimes are stable@Fig. 2~c!#.

The results of this section can be applied to a more
neric case of many coupled oscillators. Indeed, ase and/ora
is increased, the spontaneous clustering usually begins
synchronization of pairs of neighboring oscillators. For th
process, the coupling between these oscillators and othe
cillators can be neglected. Symbols in Fig. 1 show the res
of numerical experiments with a population of 50 oscillato
uniformly distributed within a rangeDV51 starting from
small randomized initial couplingKi j . The bifurcation to
random pairing of oscillators that precedes the cluster for
tion, occurs close to the theoretical line predicted for
simple case of two coupled oscillators.

IV. MANY COUPLED OSCILLATORS: STATIONARY
STATES

In this section we return to the dynamics of the origin
model~3! and~4!. As was pointed out in Sec. II, for smalle,
in the asymptotic regime the coupling coefficients are eit
nonstationary but small~for two oscillators operating at dif
ferent frequencies! or fixed for two oscillators that are syn
chronized. So, in the limite→0, we can neglect allKi j for
nonsynchronized oscillators, and defineKi j 5a cos(fi2fj)
for synchronized oscillators. Substituting this into Eq.~3!,
we obtain for oscillators within a cluster,

FIG. 1. Phase diagramẽc(ã) for the model of two coupled
oscillators~6!. Symbols show the results of numerical simulatio
with 50 uniformly distributed oscillators. Circles correspond to t
nonsynchronized regime, and stars indicate an onset of synch
zation of pairs of oscillators, which usually precedes spontane
cluster formation.
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ḟ i5v i2
a

2N (
j 51

Nc

sin@2~f i2f j !#, ~7!

where unlike Ref.@16# summation only applies to oscillator
within the same cluster, andḟ i5v i for oscillators outside
synchronized cluster. It is easy to see that Eq.~7! is formally
equivalent to the Kuramoto model for the double pha
2f i .

ni-
us

FIG. 2. Phase plane of Eqs.~6!: ~a! for ã,ãc there are no fixed

points corresponding to synchronized regime;~b! for ã52.7 and

ẽ50.33 all initial conditions lead to stable fixed points;~c! for ã

52.7 andẽ50.1 unbounded solutions coexist with fixed points.
6-3
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One can investigate this model in the mean-field limitN
→` using the order parameter method@16#. In this case, the
complex order parameter reads

te2iu5 lim
N→`

N21(
i 51

Nc

e2ic i5E
2p

p

n~c!e2icdc, ~8!

wherec5f2Vt, V is the frequency of the synchronize
cluster, andn(c) is the phase distribution of the oscillato
ed

e

d

-
n
i-
s

m

of

04190
in the population that belong to the cluster. The phases of
oscillators inside the cluster are given by

c i5u1
1

2
arcsinS 2~v i2V!

at D ~9!

and the phase distributionn(c) can be easily expressed v
the frequency distribution of the synchronized oscillato
g(v),
n~c!5H atgS at

2
sin 2~c2u!1V D cos@2~c2u!# for B,2~c2u!,A

0, outside

~10!
the

n-

rs.
u-

cil-
whereA,B determine size and position of the synchroniz
cluster, (2p/2,B,A,p/2). Substituting Eq.~10! into Eq.
~8!, we obtain the equation for the magnitude of the ord
parametert,

a

2EB

A

gS at

2
sinx1V D cosx eixdx51. ~11!

The frequency spread inside the synchronized cluster is
termined by the formula

DVc5
at

2
~sinA2sinB!, ~12!

which follows directly from Eq.~9!. Thus, this system exhib
its degeneracy so that a variety of synchronized states ca
formed depending on initial conditions. It is particularly ev
dent for the uniform distribution of oscillator frequencie
within frequency intervalDV, g(v)5DV21. In this case,
the cluster size drops out, the limits of integration are sy
metric,B52A, and we arrive at

FIG. 3. Phase spread of the clusterA as a function ofa/DV
from Eq.~14!. Dots indicate the results of numerical simulations
Eqs. ~3! and ~4! with 50 uniformly distributed oscillators with
DV51, e50.002.
r

e-

be

-

a

2DVE
2A

A

cosx eixdx51, ~13!

which reduces to an algebraic equation for phase width of
clusterA,

A1
1

2
sin~2A!5

2DV

a
. ~14!

The phase width of the clusterA depends only ona/DV and
does not depend on the cluster sizet. This dependence is
shown in Fig. 3. For largea, A'DV/a. At a→a0
54p21DV, A→p/2. The frequency spread inside the sy
chronized cluster is equal toDVc5at sinA @cf. Eq. ~12!#.
At a,a0, there can be no stationary synchronized cluste
These findings are confirmed by the direct numerical sim
lations of Eqs.~3! and ~4!. In Fig. 3 the phase width of the
cluster is shown for several values ofa/DV, and in Fig. 4
the evolution of an unstable cluster ata51.25,a0 is

FIG. 4. Gray-scale plot of the evolution of instantaneous os

lator frequenciesḟ i for an unstable cluster ata51.25 Parameters
of the simulation areN550, e50.002,DV51. Black corresponds

to ḟ59.5, and white toḟ510.5.
6-4
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PLASTICITY AND LEARNING IN A NETWORK OF . . . PHYSICAL REVIEW E 65 041906
shown. The parameters of simulations wereN550, DV
51, e50.002, and the initial cluster width was chos
DVc50.5.

V. STABILITY OF THE CLUSTERED STATE

As we have seen in the previous section, the order par
etert that characterizes the cluster size, can take any v
from 0 to tmax ~for the uniform frequency distribution th
latter corresponds to the whole population being synch
nized, tmax5DV/a sinA). However, this is true only for
small enoughe. Just as in the case of two coupled oscillato
~Sec. III!, at sufficiently largee.ec , the multistability dis-
appears, and the only stable state ata.ac is the one involv-
ing the whole population of oscillators,DVc5DV. In order
to determineec , we analyze the following problem. Suppo
we have a synchronized cluster oscillating at frequencyV
and characterized by the order parametert. Let us consider a
single oscillator with frequencyv0 adjacent to the cluste
(v05V1DVc/2), and study its dynamics neglecting its i
teraction with all other oscillators and the the feedback
fluence of the oscillator on the cluster. Clearly, since
frequency difference between this oscillator and the cluste
smaller than that for any other non-synchronized oscilla
the adjacent oscillator will be the first to get entrained atec .
The equation for the relative phasec05f02Vt of this os-
cillator reads

ċ05
DVc

2
1

1

N (
i 51

Nc

Ki sin~c i2c0! ~15!

and the equation for the coupling coefficient between
oscillator and thei th member of the cluster,

K̇ i5e@a cos~c i2c0!2Ki #. ~16!

The summation in Eq.~15! is carried only over synchronize
oscillators. The phasesc i of the synchronized oscillators ar
determined by Eq.~9!.

In the continuum limit for the uniform frequency distribu
tion, these equations become

ċ05
DVc

2
1

at

DVE
2A/2

A/2

K~c!cos~2c!sin~c2c0!dc,

~17!

K̇~c!5e@a cos~c2c0!2K~c!#. ~18!

Equation~17! can be rewritten in the form

ċ05
DVc

2
1

at

DV
~P cosc02Q sinc0!, ~19!

where

P5E
2A/2

A/2

K~c!sinc cos 2cdc, ~20!
04190
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Q5E
2A/2

A/2

K~c!cosc cos 2cdc. ~21!

Equations forP,Q can be obtained using Eq.~18!,

Ṗ5e~aF2 sinc02P!, ~22!

Q̇5e~aF1 cosc02Q!, ~23!

whereF65 1
2 sinA6(1

4A11
8sin 2A). The set of equations

~19!,~22!, and~23! exhibits the dynamics similar to Eqs.~6!
for two coupled oscillators. Ata,a054p21DV, the only
attractor of the system is the solution with periodicP andQ
and unbounded phasef that corresponds to ‘‘nonentrain
ment’’ of the oscillator by the cluster. For the phase varia
takenmodulo2p, this solution corresponds to a limit cycl
encircling the phase cylinder. At largera.a0, two fixed
points appear, one of which~stable! corresponds to the en
trainment of the oscillator by the cluster. Ate.e0(a), the
limit cycle disappears, and the entrained state is the o
stable state of the system. Thus, the critical linee0(a) sepa-
rates the region of cluster stability with respect to entrain
additional oscillators. This line is shown in Fig. 5. This lin
should be compared with the critical line for pairing of tw
neighboring oscillators~Fig. 1!. Note that we have to rescal
ẽ and ã back into original e and a using ẽ5eN, ã
52a/DV. For largeN, this line lies belowe0(a), which
indicates that the random pairing outside the cluster occ
before the main cluster loses its stability. This conclus
agrees with our numerical simulations.

VI. LEARNING AND MEMORY

Information can be stored within the cluster in the form
relative phases of the oscillators in the synchronized st
Initial learning can be accomplished via driving a group
oscillators by external signals with identical frequencyv0

FIG. 5. Parameter plane (a,e). A cluster is stable ata.a0 and
e,e0. Fora,a0, clusters do not exist, fora,a0 ande.e0, clus-
ter size increases spontaneously. Dashed line shows the sta
limit for synchronization of two neighboring oscillators, fora
.ac and e.ec , random pairing of oscillators outside the ma
cluster occurs.
6-5
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and magnitudeK0, but with different phasesf i
0 ,

ḟ i5v i2
1

N (
j 51

N

Ki j sin~f i2f j !1K0 sin~f i2v0t2f i
0!,

~24!

K̇ i j 5e@a cos~f i2f j !2Ki j #. ~25!

If K0@1, every oscillator in the group will be entrained
the external frequencyv0. So, the external driving signal
force the oscillators to oscillate in synchrony and, via sl
synaptic dynamics Eq.~25!, form a tightly coupled cluster. If
the phasesf i

0 are taken to be 0 orp, the relative phases
f i2f j within the cluster will be also close to 0 orp, and so
the coupling coefficientsKi j will approach6a. After the
learning is completed aftert'O(e21) time, the external sig-
nal is disconnected (K0→0). If the external frequencyv0
5V, the mean frequency of oscillators within the cluster,
cluster remains synchronized at the same frequency. M
over, the phase relations among the oscillators are effecti
preserved. Even significant random fluctuations affecting
dynamics of individual oscillators, do not change the rob
structure of the synchronized cluster, see Fig. 6.

For small e, after a cluster is formed, it becomes ve
stable with respect to external noise. Furthermore, it rem
stable with respect to random variations of their natural f
quencies. We let the cluster form similarly to that describ
above, and then at some timet1, we perturbed the natura
frequencies of all oscillators,v̄ i5v i1Dvj i , wherej i are
independent Gaussian random variables with variance 1
can quantify the robustness of the cluster by measuring

FIG. 6. Relative phase distribution of oscillators within the clu
ter with respect to the ‘‘middle’’ oscillatori 525. Gray-scale colors
encode phases from 0 to 2p. The cluster is initialized by externa
forcing of oscillators 15-37 at frequencyv05V510.0 for 0,t
,t0520. At t.t0, the external forcing was turned off, but th
phase distribution within the cluster survived. Att.t1575, oscil-
lators were driven by random external fluctuation of magnitu
0.01. Despite of this forcing, the phase pattern ‘‘memorized’’ by
cluster, was preserved.
04190
e
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correlation between the synchronized cluster structure be
and after the random fluctuations of natural frequencies h
been applied. The correlation was calculated using the
mula

C5

(
i 51

N

pi`qi

(
i 51

N

pi~qi

, ~26!

wherepi(qi) is the binary variable describing the state of t
oscillator before~after! perturbing the natural frequencie
pi(qi)51 if the oscillator is entrained in the main cluster a
pi(qi)50 otherwise. Symbols~ and` denote Boolean ad
dition and multiplication, respectively. It is easy to see th
C51 when the cluster remains unchanged, andC50 if all
oscillators leave the cluster.

Figure 7 shows correlationC as a function of the pertur
bation magnitudeDv for several values ofa. As seen in the
figure, the cluster becomes more robust with the incre
of a.

VII. CONCLUSION

In summary, we have demonstrated that a generali
Kuramoto model with additional equations that describe
slow dynamics of the coupling matrix can be used to elu
date the underlying mechanism of synaptic plasticity. Sl
dynamics lead to multistability: synchronized clusters of d
ferent sizes and with different phase relationships among
cillators can be stabilized. The phase differences among
oscillators can be used as a way of storing and retrieving
information in this system. One natural limitation of the r
duced phase description of the oscillators is that all osci

-

e

FIG. 7. Stability of cluster measured with the correlation of t
cluster before and after perturbation of natural frequencies.
different curves are for several values ofa, e increases the stability
of the cluster only slightly and falls off parallel to the curves f
similar a.
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PLASTICITY AND LEARNING IN A NETWORK OF . . . PHYSICAL REVIEW E 65 041906
tors are assumed to be in the excited~‘‘firing’’ ! state. How-
ever, in natural systems~such as biological neural networks!,
some of the neurons may be in a quiescent~‘‘nonfiring’’ !
state. A more general description of this system should
corporate equations for complex amplitudes of oscillat
similar to Ref.@12#.

We should emphasize that our model is very generic,
of course cannot be applied directly to the description
biological neurons. Nevertheless, we believe that our res
may have important biological implications. In particula
they suggest that there are fundamental reasons for the
separation of time scales of fast neuronal dynamics~e.g.,
nc

ce

,

04190
-
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d
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membrane potential oscillations! and slow synaptic variabil-
ity. They also present a very simple~possibly, the simplest!
model of thesynaptic reentry reinforcementthat has been
suggested to be the foundation of the long-term memory
bility @1#.
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