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Analysis of symbolic sequences using the Jensen-Shannon divergence
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We study statistical properties of the Jensen-Shannon diver@&ngkich quantifies the difference between
probability distributions, and which has been widely applied to analyses of symbolic sequences. We present
three interpretations dd in the framework of statistical physics, information theory, and mathematical statis-
tics, and obtain approximations of the mean, the variance, and the probability distributidrinofandom,
uncorrelated sequences. We present a segmentation method bd3eladiis able to segment a nonstationary
symbolic sequence into stationary subsequences, and apply this method to DNA sequences, which are known
to be nonstationary on a wide range of different length scales.
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[. INTRODUCTION ematical properties. In Sec. lll we provide three interpreta-
tions of D, one in the framework of statistical physics, one in

The statistical analysis of symbolic sequences is of centrdhe framework of information theory, and one in the frame-
importance in various fields of science, such as symboligvork of mathematical statistics. In Sec. IV we discuss some
dynamics[1,2], linguistics (following the pioneering works statistical properties db, and we derive the mean, the vari-
of Shannor{3]), or DNA sequence analysfg—7]. One ad- ance, and the asymptotic probability distribution function of
vantage of using information theoretical functionals for theD- In Sec. V we apply the Jensen-Shannon divergence to the
analysis of symbolic sequences is that they do not require theroblem of segmenting a nonstationary sequence into sta-
Symbo"c sequence to be mapped to a numerical Sequenc@?nary Subsequences, and show that in this context the maxi-
which is necessary in spectral or correlation analy@s mMum value Dy, of the Jensen-Shannon divergenBe
One of these functionals is tdensen-Shannon divergence D sampled along a sequence becomes a quantity of central im-
[9-12, which quantifies the difference between twor portance. Hence, we study the probability distribution of
more probability distributions, and which can be used toDmax by means of Monte-Carlo simulations. In Sec. VI we
compare the symbol composition between different sepresent three examples of hdcan be applied to the prob-
quences. lem of segmenting nonstationary symbolic sequerisash

There are three reasons why we chobsas a measure of as DNA sequencgsnto stationary subsequences, and Sec.
divergence between probability distributiorig: D is related VIl concludes this paper.
to other information-theoretical functionals, such as the rela-
tive entropy or the Kullback divergence, and hence it shares
their mathematical properties as well as their intuitive inter-
pretability, (i) D can be generalized to measure the distance Several measures have been proposed to quantify the dif-
between more than two distributions, afiiél) the compared ference (sometimes calleddivergence¢ between two (or
distributions can be weighted, which allows us to take intomore probability distributiong9]. One of those measures is
account the different lengths of the subsequences from whicthe Jensen-Shannon divergence, which is defined as follows:
the probability distributions are computgii3]. let pM=(pM,p® ... pM) and p@P=(p{?,p?,...,p{?)

D has been used for measuring the distance between ragenote two probability distributions satisfying the usual con-
dom graphg10], for testing the goodness-of-fit of point es- straintss¥_,p'=1 and o<p'<1 for all i=1,2,...k and
timations[12], in the analysis Qf DNA sequen_c{a];3,14], N =1, 2; and letw® and =2 denote theweightsof the
the segmentation of texFure_d imadds], an_q in the d'e3|gn distributions p™ and p(?), satisfying the constraintsr(*
of a statistical characterization of the mobility edge in dlsor—+ +2=1 and 0= 7<1. Then the Jensen-Shannon diver-

?erbed materic"lt_lélg].t In additli)(_)tn, by makti)ng u?e ofbitsb?_kt)ilitg_ genceD between the probability distributions® and p()
0 be generalized to an arbitrary number of probability disin"\ueights 7 and 7@ is defined by[11]

Il. THE JENSEN-SHANNON DIVERGENCE

L : w
tributions, D has been used to quantify the complex hetero-

geneity of DNA sequencgd7-19 as well as to detect bor-

ders between coding and noncoding DINZ0]. D[p®,p@I=H[7MpP+ 7 @p2]— (7 H[pV]
Here we describe in det_ail some statistical propertied of + 7 @H[p?]) e

as well as some theoretical background relevant for the '

above-mentioned applications. This paper is organized as

follows: in Sec. Il we introduceD and some of its math- where
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k (2) D is symmetric in its argumeng ), p®,... p™ i.e.,
H[p]=—2 p; log,p; (2 D is invariant under any permutation of its arguments
=1 pM p@, . pm

S (3) D is well defined even if the probability distributions
denotes the Shannon entropy of the probability distributiony(1) h(2) 4™ are not absolutely continuous.
P=(P1,P2;---.PK)-

The Jensen-Shannon divergerizean be shown to be a
special case of thdensen difference divergenagroduced

by Burbea and Ra21]. Also, D can be shown to be a  |n the following three sections we will present three in-

special case of thep divergenceintroduced by Csiszar tuitive interpretations of the Jensen-Shannon diverg@&nhce
[12,22. Hence, the Jensen-Shannon divergebcghares all

mathematical properties of both the Jensen difference diver-
gence and the divergence. It is interesting to note that the
Jensen-Shannon divergence is the only measure that simul- In this section we show thdd can be interpreted as the
taneously belongs to the family of Jensen difference diverintensive mixture entropin the following way: let us con-
gences and the family af divergenceg12], i.e., the inter- ~ sider m vessels, each one containing a mixturekoideal
section of the family of Jensen difference divergences angases, lefV=(f{) ) .. 1)) denote the vector of molar
the family of ¢ divergences contains only a single measurefractions of thek gases in théth vessel foij =1,2,...m, and
and that measure is the Jensen-Shannon diverdence let n()) denote the total number of molecules in ik ves-

In the following two paragraphs we list some mathemati-sel. Then we know from the second law of thermodynamics
cal properties oD that turn out to be important for its ap- that the sum of the Boltzmann entropies of tineseparate

IIl. INTERPRETATIONS OF D

A. Interpretation of D in the framework of statistical physics

plication as a divergence measure. vessels is smaller thafor equal t9 the Boltzmann entropy
(1) By using the Jensen inequalif23] it is easy to see of the joint vessel that we obtain after mixing the gases from
that all m vessels, and we can easily show that the difference of
the sum of the entropies obtained before the ideal gases are
D[pY,p?]1=0, ®) mixed and the entropy obtained after the ideal gases are
mixed is equal to
with D [p™M),p®]=0 if and only if p=p(?), m
(2) D is symmetric in its arguments’™) andp‘?, i.e., H = Nka(In Z)H[f]_,z::l nWkg(In2)H[fD],  (7)
Dlp'",p®1=D[p?,p¥']. 4

wherekg denotes the Boltzmann constaht=3",n" de-

lutely continuous, i.eD is well-defined even ibi(l) vanishes notes the total number of ideal gas particles innalessels,

=3m )] () i
without vanishingp{? or if p® vanishes without vanishing andf=2,j_,(n"/N)f'"? denotes the vector of molar fractions
(1) of the k gases in the mixture containing the gas particles of
i .

. . . all of themvesselsH ., is commonly callednixing entro
D can be generalized to quantify the divergence betweeR, it is easy 10 see that y g Py

an arbitrary number of probability distributions. Let us con-

sider m probability distributionsp™®, p,..., p{™, and let H,...= Nkg(In 2)D )
us denote byr), 73 ... 7(™ the corresponding weights. mx e '

We can define the Jensen-Shannon divergence betweem thes e weights are chosen to bel’=n0)/N. Hence,D can

probability  distributions p®,p®,... p™ with weights  pe interpreted as thiatensive mixture entropgeasured in

(3) D is well defined even ip™ and p® are not abso-

1) (2 .
7B, 72 a7 py units ofkg In 2.
m m
D[p”),p(z), o ,p(m)]= H Z w(j)p(j)} _ 2 w(j)H[p(”]. B. Interpretation of D in the framework of information theory
=1 =1 In this section we show thdd can be interpreted as the

©) mutual information in the following way: let us consider a

o ) . _ sequenceS of N symbols chosen from the alphabet
Itis interesting to note that the three mathematical properties- 13, a, ... a.}, and let us denote by; the probability of

mentioned above for the binary case can be generalized ¥hding symbola; at an arbitrary but fixed position in se-
the m-ary case as follows: o quences, for i=1,2,..k. Suppose that the sequenSeis
(1) The Jensen inequalif3] implies that divided into m subsequencess® 5@, ... M of given

lengthsn®,n®, ... n(M and let us denote by the prob-

D[p,p?,... p™]1=0, (6)  ability of finding symbola; at an arbitrary but fixed position
in sequences, fori=1,2,..k andj=1,2,..m.
with D [p™M),p®,...,p(M]=0 if and only if all probability In order to establish the connection betwed@rand the
distributionsp®,p®, ... p(™ are identical, i.e., if and only if mutual information defined in the framework of information
pM=p@=...=pm, theory, we define the random vectar, (s), where the ran-
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oLL,8m
dom variablesa € A ands e {S®: 5"} are gener-

ated as follows: draw a random positionwith a uniform
probability distribution along the sequen& denote bya
the symbol at positiom, denote bys the subsequence that
contains positiom, and denote by;; the joint probability of
a=a; and s=80) for i=1,2,... k and j=1,2,...m.
Then we obtain that the random variall@ssumes the val-
ues aj,a,,...,ay with probabilitiespq,p,,...,px, and the
random variables assumes the valueg®,s?), ... SM with
probabilities 7V=n®/N, 7P=n@N..., #(M=nm/N,
where the marginal possibilitigg and 7\) are defined by

m k
pi=2 pij and LY Pij
j=1 i=1

fori=1,2,... kandj=1,2,... m.
Suppose that someone is drawing a symédtom the
entire sequencé, not telling us from which subsequense

PHYSICAL REVIEW E 65 041905

quences from which symbola was drawn. Suppose further
that it is our task to guess the identity of the drawn syn#ol
One question answered by information theory is: “How
much informationl can we obtain from learning the identity
of the subsequenceabout the identity of the drawn symbol
a, provided we know the probability distributiofp;;}.” It

can be mathematically proven that the mutual information in
a abouts is identical to the mutual information imabouta,
and hence we can state that the Jensen-Shannon divergence
D quantifies the amount of information we obtain from learn-
ing the identity of the subsequensabout the identity of the
drawn symbola.

If p=p@=...=p(M then it is clear that knowing the
identity of the symbok does not tell us anything about the
identity of the subsequensdrom whicha was drawn, as the
probability distributions ofa are identical in all subse-
guencess. Likewise, it is clear that in this case knowing the
subsequencs from which a was drawn does not tell us
anything about the identity af. Hence, it is intuitively clear

this symbol was drawn, and suppose it is our task to guesgat the mutual information im abouts (or the mutual in-

that subsequencé from which symbola was drawn. One

formation ins abouta) is equal to zero, and hence it is also

question answered by information theory is: “How much jntuitively clear that in this case the Jensen-Shannon diver-

information| can we obtain from learning the identity of the
symbol a about the identity of that subsequensefrom
which symbola was drawn, provided we know the probabil-
ity distribution {p;;}?”

| is called themutual information in a about and defined
by [3]

Pi;

20 ©)

k m
1= > pij log,
i=1j=1
Taking into account thap{’) denotes the conditional prob-
ability of finding symbola; at an arbitrary but fixed position
in a given (fixed) sequences’), it follows that pj;
=xp) | and Eq.(9) can be rewritten as

(1)

k m
=3 3 7 0p logo—. (10)
i=1i=1 Pi

By rewriting Eq.(10) we obtain

m k k

=3, #'3, piVlogzp{ -3
J =1 1

j=1 = 1=

m
(;l wmpf”) logy p; -
(11)

As =3, 7)p(" defines the probability of finding sym-
bol g; in the whole sequence, we obtain
I=D[p",p?,....p™]. 12

Hence,D is identical to the mutual information ia abouts,

genceD is equal to zero.

C. Interpretation of D in the framework of mathematical
statistics

In this section we show thdd can be interpreted as the
log-likelihood ratioin the following way: consider the prob-
lem of estimating the probabilitigz=(p4,p2,....px) from a
symbolic i.i.d.[24] sequence of lengthN, in which at each
position a symbog; e A={a; ,a,,...,as} is randomly drawn
with probability p; . The maximum likelihood principle sug-
gests to choose that probability vectprwhich maximizes
the likelihood

k
Lisim=11 ", (13
whereF; denotes the number of occurrences of syn&hoh
sequenceS. As the logarithm is a strictly monotonic func-
tion, one may equally search for thptwhich maximizes
In L=2ik:1Fi Inp;. It is easy to derive by using one Lagrange
multiplier for the constrainEikzlpizl thatp;=F; /N maxi-
mizes thdog-likelihoodIn L. Hence, we obtain as maximum
log-likelihood

k

INL =N, fiInf,=—N(In2)H[f], (14)
i=1

where f;=F;/N denotes the relative frequency of finding
symbola; in sequences of lengthN.

which quantifies the amount of information we obtain from  Now consider the slightly more complicated problem of a

learning the identity of the chosen symlambhbout the iden-
tity of that subsequencgfrom which symbola was chosen.
As | is symmetric in its arguments ands, we may also

nonstationary sequenceof lengthN consisting ofm station-
ary  subsequences M, 82, 8™  with  lengths
n n®, . n™ where the probabilityp{’) of generating

consider the following game: suppose someone is drawing symbola; in subsequencé’) may vary from subsequence

symbola from sequence, not telling us the identity of the
drawn symbola, but telling us the identity of that subse-

to subsequence. The likelihood of obtaining the entire se-
quencesS is equal to the product of the likelihoods of obtain-
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ing them subsequences™, 8@, ... 5™ Hence, the maxi- tations presented above, and—as we will see later—this
mum likelihood principle suggests to choose for egch choice of weights endows the Jensen-Shannon divergence
=1,2,..m that probability vectorp=(p{?,p{’,...pl))  with several statistical properties that maReparticularly
that maximizes the likelihood suitable for the analysis of symbolic sequences.

k
i i gD
L(S(l)|p(l))EHl (pi(J))Fi , (15) IV. STATISTICAL PROPERTIES OF D
=

Formally, D is a function of the probability distributions

where FO) is the number of occurrences of symtmlin  P®,p,....p™, but in analyses of experimental data those

subsequences®). It is again easy to derive by using probability distributions are nddirectly) observable. How-
(V=1 that ©€ver, When we study experimental symbolic sequences we

Lagrange multipliers for then constraintsS¥_, p! X NN A
p=FD/n0) maximizes the log-likelihood 1h®. Hence, ~Ca" estimate those p(jr?bab(ljlgty (cjj;stnbu(t;)qm(é from tz? fre-
we obtain as maximum log-likelihood quency dlstrlbu.noné =(fi’, 5, .. fk ),.Wherefi de-
notes the relative frequency of symbal in subsequence
_ _ _ . _ _ SV, fori=1,2,..k andj=1,2,..m.
INLY=n0> £ Infl=—n(n2)H[F], (16) In all analyses of experimental data the Jensen-Shannon
' divergenceD must be computed from thogebservablgfre-

wherefW=F{/n0) denotes the relative frequency of find- 44ENCY distributionsf!),f(2),... f™ rather than from the

ing symbola; in subsequencs’l) of lengthn(®, (nonobservable probability di_stributionsp(l),_p_(?),'...,p(’“).
As problem ondwith just one sequengés a special case AS @ consequence of replacing _the) probabnm)é% by the

of problem two (of having m sequences the sum of the corresponding relative frequencié§’ in Eq. (1), the nu-

maximum Iog-likelihoodsE}T‘:l INLY  cannot be smaller Mmerical values oD will fluctuate from data set to data set,

max .
than InL,.,, because in the “worst” case in which all of the €Ven if those data sets can be assumed to be generated from
the sameprobability distribution.

m subsequences of problem two wédentical problem two ' :
would just reduce to problem one, giving the same log- The fluctuation off()) from data set to data set may not
likelihood as in prob'em one. Hence, the quantity Only result in fluctuations of the numerical ValueS[D),f but
also in a systematic shitbiag of the numerical values d
m _ computed from the observed data as compared to the numeri-
AL=2 LU~ INL o (17 cal value ofD computed from the unobservable probability
=1 distributions. In order to illustrate the presence of those fluc-
tuations ofD as well as its systematic shiftalledbias), we
perform the following control experiments:
We generate an ensemble of 2000 binary sequerkes (
=2) of N=2500 symbols each, obtained by joining=2

is non-negative, andAL is commonly called the log-
likelihood ratio.
It is straightforward to see from Eqgél4), (16), and(17)

that
subsequences as follows: we generate the left sequence of
AL=N(In2)D. (18 lengthn=500 by concatenating random, uncorrelated sym-
bols drawn from the probability distributionp®
Hence, in the framework of mathematical statistids can ~ =(0.45,0.55), and the right sequence of length-n

be interpreted as the increase of the log-likelihood when se= 2000 symbols drawn from the probability distribution
quences, instead of being modeled as a sequence generatdd® = (0.55,0.45).
with a single probability vectop, is modeled as a concat- e move a cursor along the entire sequence, and we com-
enation ofm subsequenceS™), 5, ... 8™ (in that ordey ~ puteD between the subsequences at both sides of the cursor
generated from the probab””:y VethDgl'),p(z),...,p(m)- for all pOSitionS n(l)=1,2,..., N—-1 and n(2)=N—1, N

The inequality AL=0 states thatany partition of the —2,...,1. In order to illustrate the effect of different choices
original sequence inton subsequences increases the likeli-of the weightsz(), we compute the Jensen-Shannon diver-
hood of the second model over the first model. In order tcgence in two different ways(i) for the choice of equal
choose hypothesis tw@n subsequencesn favor of hypoth-  weights )= 1/m for all subsequences'’, and(ii) for the
esis oneonly one sequengewe require that\L be signifi-  natural choice of weightsz!)=n()/N. In the following we
cantly greater than zero, and it is the goal of this paper todenote byD,;, the Jensen-Shannon divergence with the
derive an approximation of the probability distribution func- choice of equal weight§), and we denote b the Jensen-
tion of AL. Shannon divergence with the natural choice of weighjs

Note that in all of the above interpretations bf the An ideal estimator oD, which quantifies the difference
weights of the distributionst®, 73, ..., 7(™ are propor- between two probability distributions, should reach its maxi-
tional to the “sizes’n™ n@, .. n(™ of them elements con- mum value exactly at that point which separates the subse-
sidered: the number of particles of each of thédeal ves- quences generated by different probability distributions, i.e.,
sels or the number of symbols in each of tme it should reach its maximum value whe!)=n=500 and
subsequences. It is interesting that this particular choice 0i®=N-n=2000. Figure 1a) shows(D) versusn® and
weights arises in a natural way from all of the three interpre{D,,;) versusn!), where the symbol:--) denotes the en-
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R semble average over all 2000 realizations.

: Figure 1a) shows that there are dramatic finite size ef-
fects when usind) /, (dashed linginstead ofD (solid ling).
While D clearly achieves its global maximum at position
n®~n=500 [marked with a vertical dotted line in Fig.
1(a)], Dy, achieves its highest values at the beginning and
3 the end of the horizontal axis, i.e., at very small and very
] large values oh™).

We perform a second control experiment similar to the
first experiment, in which we change the lengths of the two
subsequences tn=1250 as well alN—n=1250, and in
which we keep all other parameters the same as before. Fig-
ure 1(b) shows clearly that, agaif) achieves its maximum
] at nM~n=1250, whileD,,, achieves its highest values at
4 the beginning and the end of the horizontal axis, i.e., at very
] small and very large values ofY.

] These control experiments demonstrate two res(itthe
3 location of the maximum oD can separate regions of dif-
] ferent composition and size in a symbolic sequence,(&nd

- the estimation oD, andD from sequences of finite length
0 500 1000 1500 2000 2500 is affected by finite size effects. In order to illustrate point
P (i) directly, we perform a third control experiment in which
we generate the two subsequences ftbemsameprobability
distribution. In this case the experimentally obtained values
of D that are nonzero are due only to statistical fluctuations.

Figure 1c) shows(D) versusn® and(D,;,) versusn()
for an ensemble of 2000 stationary, binary sequences of

subsequences of length@ndN—n, where the left subsequence of length N,ZZSOO in \,Nh'Ch each SVmb?', IS gl;)enerated with
lengthn is generated from a probability distribution,{—x) and probability 0.5. We find that, for all posmomi , the values
the right subsequence of length-n is generated from a probabil- Of D are approximately the same, whereas the valDgs

ity distribution (y,1—y). We move a cursor along the entire se- depend dramatically on‘®). Figure Xc) also shows thatD)
guence and we compuf@ and D4/, between the subsequences at is not identical to zero, and we devote the following three
both sides of the cursor. Finally we plot the ensemble averdpjes Sections to derivations of approximations of the mean, the
(solid line) and({D;,) (dashed lingas a function of the position of Vvariance, and the probability distribution function Df

the cursorn®=1,2,...N—1. In (a) we choosen=500, x=0.45,

andy=0.55, and find thaD achieves its global maximum af A. Mean of D

~500 in the vicinity of the true fusion point of the two subse-
quences ah=500, wherea®,,, achieves its global maximum at
the edgesn®—0 or NY—2500 far away from the true fusion qf .the. r.“ea” value oD when computed from an ensemble of
point of the two subsequencesrat 500. This finding indicates that finite i.i.d. sequences of lengt. . .

D might serve as an appropriate divergence measure to quantify the 't follows directly from the Jensen inequality that the ex-
compositional differences between symbolic subsequences, whereB§cted value(H[f]), of the entropy computed from an en-
D,,, might not. In(b) we choosen=1250,x=0.45, andy=0.55, Semble of finite-length sequences cannot be greater than the
and find again thab achieves its global maximum af?~1250in  theoretical valueH[p], of the entropy computed from the
the vicinity of the true fusion point of the two subsequences at (unobservableprobabilities[25], i.e.,

=1250, wherea®,,, achieves its global maximum at the edges

n—0 orn®—2500 far away from true fusion point of the two (HIf[)<H[p], (19

subsequences at=1250, confirming the finding fronta) that D where(- --) denotes the expectation value over the ensemble

might serve as an appropriate divergence measure to quantify the . .- . -
compositional differences between symbolic subsequences, whereget% finite-length i.i.d. sequences generated by the probability

D, might not. In(c) we choosen=1250 andx=y=0.5, and we Istrlt_)utlonp. . .

find thatD stays quite constant at a small value of approximately Th's_ mathematlpal Statemen_t is intuitively clear: due to
2.9x 10 *bits, reflecting the fact that the analyzed sequences ard€ finite sample size, the relative frequency veétiuctu-
stationary, wherea®,, is clearly increasing as®—0 or n»  ates from sgm_ple to sample around the _probab|l|ty vegtor
2500, confirming the finding frorte) and (b) thatD might serve ~ @nd the majority of these fluctuations will makdess uni-

as an appropriate divergence measure to quantify the compositionfrm thanp. Since the entropy[p] quantifies the unifor-
differences between symbolic subsequences, whebggsmight ~ mity of the probability distributionp, we expect that the
not. The effect that even in the case of i.i.d. sequences the expectédajority of the values oH[f] computed from an ensemble
value ofD is greater than zero is referred to as finite-size effect, andf fluctuating frequency vectors will be smaller than the
we address this finite-size effect in Sec. IV. value ofH[p].

<D>, <D > [bits]

FIG. 1. Comparison ob andD,,. We generate an ensemble of
2000 binary sequences of lendth= 2500, obtained by joining two

In this section we will derive an analytical approximation
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Up to first order the expected value Biff f] can be ap- w'f ' ]
proximated by[26—-3Q
107 1
k—1 A
(HIf)=HIP]~ 5x7r 3 (20) Q10°} o o5y 1
4l *nV=06N ]
wherek is the number of components of the probability and 10 o nV=07N
frequency vectorp and f, N is the sample size, and the 107 ‘ ‘ . .
symbol = indicates that we neglect terms of the order of 10" 10° 10° 10 10°
O(1/N?). By applying Eq.(20) to each of them subse- N

guences we obtain i
FIG. 2. Mean value oD as a function of the total sequence

length N, ranging fromN=10 to N=1C°, averaged over an en-
R —— (21) semble of 2000 i.i.d. sequences generated from a four-letters alpha-
2nin2 bet (k=4), where each symbol occurs with probability 1/4. For
each sequence lengti we choose three different cutting points
for j=1,2,...m, where the symbok indicates that we ne- nM=0.5N, n(M=0.aN, andn®=0.7N, and we compute for each
glect terms of the order @ (1/(n")?). We will use approxi- N and eacm® and each of the 2000 i.i.d. sequences the Jensen-
mations(20) and(21) to derive in the remainder of this sec- Shannon divergencB between the composition of the left subse-
tion the expected value of the Jensen-Shannon divergenégience of lengtim and the composition of the right subsequence
D[fM),f@, . fM] computed from an ensemble of i.i.d.  ©f length n@=N-n®. For eachN andn® we compute the av-
sequences of total lengtk. erage ofD over the ensemble of all 2000 i.i.d. sequences, and the

. : i i @
In order to avoid lengthy expressions, we deflDgF] 33”;,6 Zhﬁwslthe e[r)‘szmb'e avlera@s)lgs a‘;“”C"o”f oN andn™.
=D[fD,f@), .. fM] and D[P]=D[p®D,p?,... p™M], and e find that log, (D) decays almost linearly as a function jgiy,

- . . with a slope very close te-1, for eachn®=0.5N (circles, nt¥
by substituting Eqs(20) and(21) into Eq. (1) we obtain =0.6N (triangles, and n=0.7N (diamond$, and we also find
that the approximation gD) from Eqg.(24) (solid line) agrees very

well with the simulation results.

(HLIO])=HLp]

k—1

i N
(D[F])=D[P]+ m(}; W(')W—l). (22)

With the naive choice of weights())=1/m we obtain for
This expression shows that, in general, the biB{F]) the e_xpe_cted value of the Jensen-Shannon divergence the ap-
—D[P] depends on the lengté!) of the subsequences.  Proximation
It is easy to see that one choice of weights that makes Eq.
(22) independent of the subsequence lengtfisis k-1 (N

(Dyml F1)=Dym[P]+ SNInz mA L

. (29

a=nUN, (23
whereA=3" ;1/n0) denotes the harmonic mean of the sub-
for j=1,2,..m. This finding is interesting because this par- sequence lengths’)). Clearly (D) depends on the subse-
ticular choice of weights turns out to be identical to the natuqguence lengths"), and we see thatD,;,,) becomes mini-
ral choice of weights in all of the three interpretationsidf  ma| for n)=N/m, while (D,,) diverges to infinity for

presented in Sec. IIl. _ n()—0. This analytical approximation of the expected value
With this choice of weights, the expected value of thept b s consistent with the dramatic increase of the dashed
Jensen-Shannon divergeriebecomes line (corresponding t¢D 1,)) close to the edge®®—0 or
n®)—0) of the abscissa of Fig. 1. i
- — _ There is another advantage of choosing the weigft
(DIF1)=DLp]+ 2NIn2 (m=1), @9 by Eg. (23). We will show in the following section that the
choice of the weightsr)=n0)/N minimizes the quadratic
which is independent of the subsequence lengths Figure  deviation of the observed from the true Jensen-Shannon di-
2 illustrates the independence of the mean valuP aof the  vergence. This advantage is more important than the advan-
subsequence lengté”, and it also shows that ER4) isa  tage of having a bias that is independenn8t, because the
reasonable approximation of the mean valuéof bias can be corrected analytically, in a first-order approxima-
Hence, expressiof24) can be used as a reference to de-tion, whereas the quadratic deviation of the observed from
cide if a difference in composition between two sequences ithe true Jensen-Shannon divergefie, the quadratic errpr
larger than expected. Note that in Figc)lthe average value cannot be reduced. Hence, it is desirable to obtain an estima-
of D fits the value predicted by E@24), namely,(D)=2.9  tor of D that minimizes the quadratic deviation of the ob-
X 10”4 bits. In addition, from Eq(24) we see that the bias of served from the true Jensen-Shannon divergeneg the
the quantityND is independent of the sequence len§ith quadratic error, and we will show in the following section
which allows us to compare Jensen-Shannon divergence vahat the choice of the weights()=nU)/N yields exactly
ues obtained from sequences of different sizes. that optimal estimator.
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B. Variance of D andH[f1)] [Eq. (29)] is equal to the first-order approxima-
The variance oD[F] is given by tion of the variance oH[f] [Eq. (27)].
By substituting the expressions from E@27), (28), and
m ) (29) into Eqg. (26) we obtain for the variance of the Jensen-
o?(D[F])=0?| H[f]- >, mH[{V] Shannon  divergence  with  arbitrary  weights
=1 7D 7@

=a?(H[f])+ >, m2o?(H[f1)]) m 0
= o—Z(D):< D) 02— %) o2(logyp),  (30)
P

m

— ) (1)
2,21 mCOWLTL (HITD) under the null hypothesis thgt®=p@=-..=pM=p,

o m where the symbot= indicates that we neglect terms of the
. order of O(1/N?).
: (1) (h :
+2j21 |=]§11 mmCOMHLF], HLFD). Let us now consider that choice of weight$!) which
minimizes the quadratic deviation of the observed from the
(26 true Jensen-Shannon divergence

As the set of vectors{f® {2  fMl s product- _ 2y— 2(D) + _ 2
multinomially distributed, we obtain thad[f()] andH[f(] {(BIF]=DIP)%)=0"(D)+((DE))~DIPD" (3D

are statistically independent for afjy 1. Hence, the terms
cov(H[fD],H[f"]) are all equal to zero, and we need to
consider only the termsc?(H[f]), o?(H[f?]), and
cov(H[f],H[f17]).

By Taylor-expandindd[ f] aboutp we obtain a first-order
approximation of the variance ¢f[f] [5,6,27,28§,

As the second term on the right hand side of B{) is of
the order ofO(1/N?), the minimization of the quadratic de-
viation of the observed from the true Jensen-Shannon diver-
gence reduces to the minimization of the variance of the
Jensen-Shannon divergence estimator.
By using one Lagrange multiplier for the normalization
1 constraintS; 7)=1 we obtain that the set of weights'))
o2(H[f])= N02(|092 p), 27) =nW/N minimizes the variance of the Jensen-Shannon di-
vergenceD. This finding is intriguing, because this set of
) weights is(i) identical to the natural choice of weights in all
where n; denotes the length of subsequencg), of the three interpretations & presented in Sec. Il as well
oz(logzpe”) denotes the variance of the numbers,lpg as(ii) identical to the special choice of weights that makes
with respect to the probability distributidip;}, and the sym-  the bias ofD independent of the subsequence lengtH$
bol = indicates that we neglect terms of the order of[Eq. (24)].
O(1N?). Furthermore, we find that for the special choice of
Likewise, we obtain a first-order approximation of the weights#()=n{)/N the variance oD vanishes irO(1/N).
variance ofH[f(0'], This means that for the special choice of weight§)
=nW/N the leading term ofr?(D) decreases with the se-
quence lengtiN as 1N?, whereas—in general—it decreases
as 1N. It is clear that for the special choice of weights
7=n0/N the O(1/N) term of o?(D) becomes indepen-
where N denotes the length of the whole sequencedent of bothn) andp, and it is interesting that for this
o?(log,p") denotes the variance of the numberszln@ special choice of weights th@(l/Nz) term of o?(D) also
with respect to the probability distributiofp®} for every ~ tums out to be independent of bath? andp. _
j=1,2,..m, and the symbok= indicates that we neglect In contrast, we find that for the naive _ch0|cg of weights
terms of the order 0®(1/(n))?). m=1/m the variance oD, neither vanishes i©(1/N)
In the Appendix we derive a similar first-order approxi- Nor does it become independent of the subsequence lengths

mation of the covariance terms, and under the null hypothn!”, and we obtain for the variance of the Jensen-Shannon
esis thatp(l): p(z): ee— p(m) =p we obtain divergenCd:)l/m s

) 1 )
02(H[f<l>])2F02(|ogz phy, (28)
i

(1 N
cov(H[f],H[f(j)])z%oz(logz p) (29 oZ(D)z%(WA—l), (32

for all j=1,2,...m, wherea?(log, p) denotes the variance of whereA=3[",1/n{) denotes the harmonic mean of the sub-
the numbers logp; with respect to the probability distribu- sequence lengthe(). Note that the expression inside the
tion {p;}, and the symbok= indicates that we neglect terms parentheses on the right-hand side of Bp) is similar to

of the order ofO(1/N?). It is interesting to note that the the expression inside the parentheses on the right-hand side
first-order approximation of the covariance betwedff] of Eq. (25). Hence, the variance d,;, shows a singular
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behavior similar to that of the mean bBf;;,, when the length Y[ v/2N(In 2)x]
of at least one subsequence becomes very small. s(x)=F,[2N(In2)x]= T (39)
C. Probability distribution of D wherey(a,x) andI'(a) denote thencompleteandcomplete

Expression(24) provides a good criterion to tell whether gamma functions, respecfuveﬂ;%l,SZ]. . .
an experimentally observed Jensen-Shannon divergBnce The fapt thatD can b_e _mterpreted as mutual mfor_matlon
betweenm frequency distributions is greater than expected"’.‘grees with Eq(38), as it IS knowr_1 that, up to a multiplica-
by chance, but it does not tell B is significantly greater tve constant, the mutual '”fOfmat;f’” converges—for asymp-
than expected by chance. In this section we will derive thdetically large values oN—to the x* probability distribution
probability distribution ofD in order to quantify the statisti- With »=(k=1)(m—1) degrees of freedoifit].
cal significance of experimentally observed value®of

Given an observed value @ =x, we will calculate the V. STATISTICAL PROPERTIES OF D pa
probability of obtaining this value or a lower value by
chance under the null hypothesis that @mlsequences are
generated from the same probability distribution. We call thi
probability thesignificance threshol@f the given valuex,
and we denote it by

Expression(38) gives the significance threshold of a
single value ofD computed between two samples of fixed
ﬁength. From the practical point of view this is equivalent to
preselecting a fixed point that divides a sequence into two
subsequences and asking for the probability that both subse-
s(x)=ProfD<x}. (33  quences have been generated from different probability dis-
tributions. But, in general, when facing an unknown se-

As s(x) does not seem to admit an easy analytical expresduénce we do not have arg priori knowledge of the
sion, we will obtain an approximation by using the Taylor location of the possible cutting point.

expansion The problem of finding the point where a nonstationary
sequence can be most likely divided into two stationary sub-
X x—a (x—a)? sequences has been widely studied in mathematics. There,
X Iogzg =2t azin2 +0((x—a)?), (34  the problem is known as thehange-point problerid3—-35,

which consists of finding oufi) whether there exists a
change point in the studied sequence, éndat which posi-
tion in the sequence the change point is located, provided it
M () exists. TasKi) corresponds to determining whether the stud-

to approximateD in terms of quadratic functions as follows:

k
p=> p ) jog, P m ied sequence is nonstationary, and t&sk corresponds to
== p; ') determining thgmost likely) location of the nonstationarity,
K m L ) K m L ) provided it exists.
_ pi ) —py) +S (p) 7 —pm))? Since N(In2)D can be interpreted as the log-likelihood
1= In2 == pin(21In2) ratio of the model with change point and the model without

change point, the maximization d along the sequence
yields a natural way of determining the most likely location
Cm 0 ) 2 of t'he change point. Hence, we move a cursor along the
Y (pi ™ —pim") (36 entire sequence, compufe between't.he subsequences at
“ & pir(2In2) both sides of the cursor for all positions, and choose that
position as the optimal change point at whibhreaches its

It is interesting to note that in this quadratic approxima-Maximum ValueD may. _ . _
tion of D there are no constant or linear terms because the !N Se€c.Vlwe describe a recursive segmentation algorithm
first double sum of Eq(35) vanishes exactly due to normal- that is based on this idea. The problem we will address in
ization of the probability distributionp{’, p;, and (). this section is to decide if the valu® . of the Jensen-

If we express tha/? statistic[31] in the same notation, we Shannon divergence at the optimal change point is suffi-
obtain ciently large to partition the sequence at that point, or if the

value D, is sufficiently small to consider the entire se-

™ (o)) p )2 quence as stationary and not partition it at all. Hence, we will

! ! ~2N(In2)D. (37) address in this section the problem of computing the statis-
i=1j=1 pimt) tical significance of experimentally observed value®qgf,,.

Even if the studied sequence has been generated from a

The abovey? statistic is known to converge—for asymptoti- single probability distribution, we fin® ,,,,>0 due to statis-
cally large values oN—to the x? distribution with v=(k tical fluctuations. Moreover, we find thdd . increases
—1)(m—1) degrees of freedofi31]. Hence, also R(In2)D  above any significance thresha@d¢omputed in Sec. IV ahl
converges—for asymptotically large valueshy-to the y? increases. To decide if the obtained valg,=Xx is statis-
distribution withv=(k—1)(m—1) degrees of freedom, i.e., tically significant we need to compute the probability of ob-
we obtain for asymptotically large values Nfthe approxi- taining this value or a lower value by chance in a random
mation sequence, i.e., we need to compute

(39

041905-8



ANALYSIS OF SYMBOLIC SEQUENCES USING TH. ..
Smax X) = PrOk:{DmaxS X}- (39

Obviouslys,(X)#s(X). In fact, if each value oD at each

position of the cursor were independent of the others, we

would obtain[36]

Smax(X) =S()"={Fy_1[ 2N(In 2)x]}", (40

whereN denotes the sequence length. Note that we are deal-

ing with the comparison between only two distributioms (
=2), and hence the number of degrees of freedom=ik
—1.

It is clear that the random variablBssampled at different

PHYSICAL REVIEW E 65 041905

positions of the same sequence are not statistically indepen-

dent, because the value Df at a given position is almost
identical to the value oD at the neighboring positions.

For binary k=2) i.i.d. sequences Horvaff87] derives
an analytic expression fa,,(X) in the limit of asymptoti-
cally large sequence lengths and Csorgo and Horvafi38]
generalize that result to arbitrakyby deriving that the prob-
ability  distribution  function of Zy=2N(In2)D .
converges—for asymptotically large valueshsfto

Pro ANZy<[Bn(v) + X%t =exp(—2e7%),  (41)

whereN denotes the sequence lengtksk—1 denotes the
number of degrees of freedomy, is defined by

Any=2InInN, (42
andBy(v) is defined by
BN(v)EZInInN+gInInInN—InF g) 43)
By converting Eq(41) into our notation we obtain
s (X) = exp( — 2eBN() ~ VANEN N 2)x) (44)

015 ——/—— 17—

x=2NIn2 D

FIG. 3. Histograms§,(x) of x=2N(In2) D, and their
asymptotic approximations;,.(x) obtained from ensembles of 10
quaternary k=4) i.i.d. sequences of lengti=10?, 1¢*, 1¢°, and
108, (a) shows that the asymptotic approximaticsfs,(X) are not
very accurate for finite-size sequences ranging in lehgitom 107
to 1%, and that the largest deviations betwegn,(x) and s ,(X)
occur in the right tails of the distributiongb) shows a plot of the
differences between the histograggs,(x) and their asymptotic ap-
proximationss;,,(X) versusx=2N(In2) D... We find that the
accuracy of the approximations increases with increaijrgut that
even for sequences of lengih= 10° the deviations betwees),,(X)
ands;,(x) are greater than 0.04.

In the following paragraphs we test how accurately the

asymptotic approximatios;,,(X) agrees with the finite-size

ands,.(X) are particularly large in the right tail, where we

histograms,,,,,(X) obtained by Monte-Carlo simulations of desire both distributions agree particularly well.

sequences of lengtN ranging from 16 to 1¢°. For each
sequence lengtN=10?%, 10%, 1P, and 16, we generate an
ensemble of 10 quaternary k=4) i.i.d. sequences of

Figure 3b) illustrates the deviations betweép,(x) and
Smax{X) by plotting3,4(X) —Smax(X) Versus N(In 2)x. We find
that the deviations betwees),(x) and s, ,(X) tend to be-

lengthN, and for each sequence of each ensemble we moveome smaller as the sequence lenbjtincreases, but even
a cursor along the sequence and compute at each positigor sequences of lengttN=10° the deviations between

15<n<N-15 the Jensen-Shannon divergerizg¢39]. We
define D,y @s the maximum of all values d computed
from one sequence, and by collecting all vallgs,, of each
ensemble of 1random i.i.d. sequences of lengthwe ob-
tain the histogram§,,,,(X) for eachN.

Figure 3a shows the histograms,,,(x) for k=4 and
N=10% 10 1Cf, and 16 (symbol$ together with the
asymptotic approximationsy,,(X) (solid lineg. We find that
the asymptotic approximatiorsy,,(X) are not very accurate,
and that even for sequence lengths as largad0® there
is still a significant deviation betwees),,(X) and s;,,(X).
Figure 3a) also shows that the deviations betwegn,(X)

SnadX) ands;, . (x) are greater than 0.04.

As the asymptotic approximatiosy,,(X) is not very ac-
curate for sequences ranging in length frohe 107 to 107,
we recruit Monte-Carlo simulations to obtain numerical ap-
proximations of5,,,(X) as a function of the sequence length
N and the alphabet size We find that the functional form of
Sma{X) seems to be very similar to the functional form stated
in Eq. (40) if we replace the sequence lendthby aneffec-
tive length Ny, and if we introduce acaling factorg<1,
by which we multiply the argument d¥,_,.

Specifically, we find that the probability distribution of
D max Mmay be approximated by
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Smax X) =[S(8x) ]Neft={Fy_1[ 2N(In 2) Bx]}Nef.  (45)

Nes can be understood as the effective number of indepen-

dent cutting points, and the scaling factBraccomplishes

that the variance ob ., is reduced due to correlations be-
tween the values dd computed at different positions of the

same sequence.
Note that, in principle, both paramete¥s; and 8 depend

on bothN andk. To find an approximation of that depen-

dence ofNgs and 8 on N andk, we perform the following
simulations:

(1) We generate, for a given alphabet skzand a given
sequence lengtiN, an ensemble of POrandom i.i.d. se-
guences.

(2) For each sequence, we move a cursor along the se-

guence and compute at each positionsiz=N-15 the
Jensen-Shannon divergenBe[39], and we defineD ., as
the maximum of all values oD computed from one se-
guence.

(3) For each ensemble of 1@andom i.i.d. sequences we

obtain the histogrand,,,(X), and we fit the parameteis
and B of s,,,(X) given by expressiof5) to 5,,(X) by mini-
mizing the Kolmogorov-Smirnov distand8,.,{X) — Smax{X)|-

(4) We repeat the above procedure for different values of

k andN.

Figure 4a) shows the histogram§,,,(x) for k=4 and
N=10?, 10, 10°, and 16 (symbol$ together with the
finite-size approximatiors,,,,(X) obtained by the above pro-
cedure. We find by visual inspection of Fig(ajt and by

extensive analysis of the Kolmogorov-Smirnov distances be

tweens§,,(X) and s,.(X) for k varying from 2 to 12 andN
varying from 1@ to 10° thats,,,(X) from Eq. (45) provides
a good approximation d§,5,(X).

Figure 4b) shows the deviations betweesn, . (x) and
SmaxX) by plotting §,,,2(X) — Smax(X) versus N(In 2)x, and we
find that the maximum deviation betwegg.,(X) andsy (X

PHYSICAL REVIEW E 65 041905

§mw(x)’ Smax(x)

0.15 ———————— —
(b) —o—N=10° |
o
0.10 |- —AN=101
——N=10
L —0—N=10" |
0.05 | -

ax(x) - Smax(x)

x=2NIn2 D

FIG. 4. Histogram$,,,,(X) of x=2N(In 2) D o and their finite-
size approximations,,,,(x) obtained from ensembles of % Quater-
nary (k=4) i.i.d. sequences of lengti=10%, 10, 1¢f, and 16.

(a) shows that the approximatiors,,(X) are more accurate for
sequences of lengtiN ranging from 18 and 1§ than the
asymptotic approximationsy,,(X) presented in Fig. 3, and that the
largest deviations betwees, () ands;..(X) do not occur in the
right tails of the distributions, which we desire to approximate as
accurately as possibléb) shows a plot of the differences between
the histograms,,,,(X) and their finite-size approximatiorss,,,(X)
versusx=2N(In2) D We find that the deviations between

stays below 0.02 for all of the cases we analyze, ranging,.(x) ands;,.(x) are smaller than 0.02. Moreover, we find that the

from k=2 tok=12 and fromN=10? to N=10°. Moreover,
we find that the maximum deviation betwe8p,(X) and

deviations betwees,,,(X) ands;,,(X) are smaller than 0.01 if we
restrict the comparison o§,,,(X) and s,,{(X) to the tails of the

SmadX) Stays below 0.01 if we restrict the comparison of distributions, which we desire to approximate as accurately as pos-

Sna(X) and s, (X) to the right tails of the distributions,

where we want the approximations to be particularly accu-

rate.
Next, we study how the parametéds; and 8 obtained by

sible.
VI. APPLICATIONS OF D

In this section we illustrate how the results obtained in the

the fitting procedure described above depend on the alphabptevious sections may be used to develop an algorithm that

sizek and the sequence length Figure 5 showdN.4 and 8
versusN for varying values ofk. First, we find thatg is
practically independent dfl. Second, we find that for eadh
the effective number of cutting pointdy4 admits a good
linear fit as a function of I, i.e.,

Ner=alnN-+b. (46)

Both parametera andb depend on the alphabet sikeand
we present the least-squares values@hdb as a function
of k in Table I.

can partition a nonstationary sequence into stationary subse-
quences. We describe this segmentation algorithm based on
the Jensen-Shannon diverger2ean detail, and we present
three application examples of this recursive segmentation al-
gorithm.

Many sequence analysis techniques rely on the stationar-
ity of the analyzed sequence, i.e., they rely on the assump-
tion that all portions of the sequence have at least the same
composition. Thisa priori assumption is very often in con-
flict with experimental data, such as, for example, in case of
DNA sequencef40]. The algorithm described here, which is
an improved version of the algorithm presented in R3]
and[18], allows us to decompose a nonstationary sequence
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function of the sequence lenghl ranging from 200 to 19 for an < "
alphabet sizé&=4. We find thatg is almost independent df, 8 cquence position
=0.80, whileN 4 admits a good linear fit to IN. The least-squares

i ! FIG. 6. Segmentation of a computer generated binary sequence
fit to Ngg=aln N+b yieldsa=2.44 andb= —6.15.

of length 5x 10* obtained by joining patches of different length and
composition. The solid line represents the walk of the sequesese
into stationary subsequences of homogeneous compositid®xt and the vertical dotted lines represent the locations of the cuts
as follows: obtained by the recursive segmentation procedure at significance
First, we move along the sequence a cursor that divides lereshoIdSO:QS%. We find that the recursive segmentation proce-
o . ure is indeed capable of partitioning the nonstationary input se-
each position the sequence into two subsequences, and we . ; "

. guence into stationary subsequences at those peietscal dotted
computeD for each p03|t-|0n of Fhe cursor. We select thatIines) at which the local composition of the sequence changes, in-
point at whichD reaches its maximum valu@p,,,, and We  gicated by changes of the slope of the sequence vealkd line).
compute its statistical significaneg,,y. If this sy, eXceeds
a given threshold,, the sequence is cut at this point, and n
the procedure continues recursively for each of the two re- W(n):E Yi. (47)
sulting subsequences. Otherwise, the sequence remains undi- =1
vided. The process stops when none of the possible cuttin

points has a significance threshold exceedingand we say , . . .
) o abundance oft-1's, and regions with a negative slope corre-
that the sequence is segmentedighificance thresholdgs !
spond to an abundance efl’s.

In the following three sections we present three examples )
. . ] . We apply the segmentation procedure presented above to
that illustrate this recursive segmentation process. . . . P
this example sequence, and the vertical lines in Fig. 6 corre-
spond to the cuts obtained by means of the segmentation
A. Segmentation of a model sequence with known procedgre: Figure 6 show; clearly thaf[ the positions of the
L - cuts coincide accurately with changes in the slopav(f).
compositional domains - .
_ _ _ Moreover, regions without any cut do not seem to show a
In order to test if the segmentation algorithm works, wesijgnificant change of the slope wf(n).
generate a binary sequence of length B)* obtained by This observation allows us to conjecture that the subse-
joining patches of different length and composition. Wequences obtained by the segmentation procedure are indeed
choose the sizes of the patches randomly from a power-lajomogeneous at the considered significance threshold. It is
distribution in order to obtain a wide range of different sizes,worth mentioning that the method does not rely on any initial
and we choose the composition of the patches randomlgssumption about the size distribution of the subsequences,
from a truncated Gaussian distribution centered at 1/2. and as we can verify by inspecting Fig. 6 the resulting sub-

~To show graphically the variation in composition along sequences have indeed a great variety of sizes.
this sequence, we plot in Fig. 6 the walk of the sequence.

Given a binary sequendg;}, i=1,...N, wherey; can as-
sume the valuest1l or —1, the walk of the sequence at
positionn is defined by[41]

gegions with a positive slope in Fig. 6 correspond to an

B. Length distribution of compositionally stationary domains
in prokaryotic and eukaryotic DNA

In this subsection we present one example in which we
apply the recursive segmentation procedure to DNA se-
quences with the goal of studying the length distribution of
compositionally stationary domains in prokaryotic and eu-
karyotic DNA. We segment at a significance threshold of

TABLE I. Values of the parameters, b, and g obtained by
least-squares fitting &,,,,(X) for three values of the alphabet size

k a b A So=95% the complete genome of the bacteribstherichia
2 2.96 —7.88 0.80 coli [42] with a length of 4 639 221 base pail®p) as well as
4 2.44 -6.15 0.80 the human major histocompatibility complékHC) region

12 232 —432 0.85 of chromosome $43] with a similar size of 3673 777 bp. In

both cases we use the natural four-letter alphalet
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FIG. 7. Normalized distributions of segment sizes for the com- 10 sl il vl
plete genome of the bacteriukh coli of length 4 639 221 bp and a 10 10 10 . 10 10

contiguous human DNA sequence—the 3673777 bp long humar Segment size [ [bp]

MHC region of chromosome 6—of similar size. In both cases we

use the natural four-letter alphabet and a significance thresgold ~ FIG. 8. Normalized distributions of segment sizes for several
=95%. We find that the human MHC region is more heterogeneouyalues of the significance threshagl, for the complete genome of
than theE. coli genome, which is reflected by the longer t@hd  the bacteriunE. coli of length 4 639 221 bp and a contiguous hu-
the greater mean valuef the segment length distribution of tie ~ man DNA sequence—the 3 673 777 bp long human MHC region of
coli genome as compared to the human MHC region. The inseghromosome 6—of similar size. In all cases we use the natural

shows a double-logarithmic representation of the same distribufour-letter alphabet, and we find that the length distributions are
tions. quite robust against changes of the significance thresold

={A,C,G, T}, whereA stands for the basadenine, Gstands In order to check the robustness of the results against a
for the basecytosine, Gstands for the basguaning andT  change of the significance threshalg, we repeat the seg-

stands ffor tr;]e ba;]smymine_ _ mentation of these two sequences at different values, of
We find that the recursive segmentation procedure partigiq,re g shows that the distributions are not identical, but

tions the human MHC region into 6169 segments with any,a+ the main features of them, described above, remain un-
average size of 595 bp, while it partitions the complete gebhanged.

nome of the bacteriunk. coli into 1534 segments with an
average size of 3024 bp. This finding is consistent with th
numbers of domains obtained by [44], who computes the
significance threshold, based on the Bayesian information  In this section we describe a recently presented applica-
criterion, and the finding that the number of domains ob-tion of the recursive segmentation procedure to detect bor-
tained for the human MHC region is significantly greaterders between coding and noncoding DINZD].
than the number of domains obtained for the bacterfim One well-known statistical feature of coding regions is the
coli is consistent with reports on the presence of large comronuniform codon usade@8], which means that inside cod-
positional inhomogeneities in human DNA sequencedng regions not all triplets of nucleotidésalled codonsoc-
[18,40,49. cur with the same probability. In particular, the probabifity
Figure 7 shows the histogram of segment sizes for botlef finding nucleotidea; e {A,C,G, T} varies from position to
the E. coligenome and the human MHC sequence. One noteposition[5,49,50. This variation may originate from the re-
worthy feature of these histograms is the high density ofstrictions imposed by the genetic code and also from some
segments in the range below 30 bp. The high abundance gfreferences in the synonymous codon usage, but irrespective
those short domains may be related to the presence of pe its origin, this variation is not present in noncoding DNA.
odicities of about 10.5 bp in DNA sequendets]. We find  Hence, this property can be used to distinguish coding from
by inspection of the resulting segments in this small-sizenoncoding DNA, and in fact the first gene prediction pro-
range that most of those short segments are made up of fograms[50] were based on the presence or absence of the
types of stacks consisting of either a majority AT or a  positional variation of the nucleotide probabilitips.
majority of AG/CT, respectively. In order to take into account this statistical property of
We find a weak signal indicating a second characteristicoding DNA, we introduce the following 12-letter alphabet:
segment size in the range of 200—400 bp, which is again idlefine the phase of positianby | =n modulo 3. Hence, each
agreement with previous studi€46,47). The slower decay of the nucleotides of the DNA sequences can be substituted
of the distribution of segment sizes found for the bacteriunby one of the following symbols from the alphabgt;,
E. coli (inset of Fig. 7 indicates a larger abundance of long ={A,,A;,A,,Cy,C;,C5,Gy,G1,G,Ty,T1,T2,}, where,
segments and seems to be a generic feature of the segmdot example, T, denotes the nucleotid€ with phasel =2.
size distribution of most prokaryotes. Using this alphabet we define the 12-letter frequency vector

eC. Searching for borders between coding and noncoding DNA
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fi..=(f; ), whereie{A,C,G,T}, 1€{0,1,2, and f;; de- subsequences) andS® aredifferentwe propose to com-
notes the relative number of counts of nucleoiide phasd. pute the Jensen-Shannon divergebcbetween the two fre-
Although coding and noncoding DNA may have the samequency vectors™) and f) associated withS*) and S,
or a similar composition when being described using theand in order to decide if the maximum Jensen-Shannon di-
standard four-letter alphabet, the compositions giverf,py vergenceD ., is significant we propose to compute the
can be quite different. In noncoding DNA the probability of probability that this(or a greatervalue of D, could have
finding a given nucleotide is almost the same in all threb€en obtained by chance. .
phases, whereas in coding DNA this probability clearly var- One reason why we suggest the Jensen-Shannon diver-
ies from phase to phase. Even when comparing two coding€nce as a measure of stationarity is its easy interpretability
regions whose starting positions are in different phases, thé three different subfields of science. As we show in this
composition given by, is usually different. Hence, we pro- Paper, lthe Jgnsen_—Shannon d|ve.rgence can be mterpretgd as
pose the following modification of the segmentation proce-() the intensive mixture entropy in the framework of statis-
dure described above with the goal of detecting borders beical physics(ii) the mutual information in the framework of
tween coding and noncoding DNA. information theory, anc{|_||) the I_og-hkehhood ratio in the
Instead of computing in terms off,, we now compute framework of mathematical statistics. o
D in terms off;,, and we hope that the resulting borders  In general, the weightsr') enter the definition of the
between stationary subsequences will be highly correlated téensen-Shannon divergeridas free parameters, which may
the borders between coding and noncoding DNA. The resultge chosen in a problem-specific manner. It is interesting to
obtained by segmenting complete prokaryotic genomes ardote that all three interpretations bf suggesone i.e., the
fairly promising, taking into account that the segmentationsame natural choice of weights proportional to the siné3
procedure may be supplemented by additional biological inof the subsystems'”). Moreover, we find that this natural
formation (see Ref[20] for more details on the results choice of weights makes the mean, the variance, and the
A technical question related to the computation of theprobability distribution function of Ri(In2) D independent
significance threshold for the 12-letter modification of theof the subsystem sizes!), which is important for practical
Jensen-Shannon segmentation procedure is worth mentioapplications, where subsequences of different sizes must be
ing: following Sec. V one could naively think that we should compared.
obtains,{(x) from Eq. (45) with k=12, using Eq(46) and We devote Sec. IV to the derivation of the mean, the
the fitting parameters given in Table |. However, when usingvariance, and the probability distribution function of
the frequency vectof;, we have to satisfy three constraints 2N(In2) D, and we find that—for the natural choice of
and not only one3,;f; ,=1/3 for|=0,1,2, because the num- weights 7"’ =n{)/N—expressiong22) and (30) reduce to
ber of nucleotides in each phase is 1/3 of the total. Hence, thde classical results of the mean and the variance of the mix-
number of degrees of freedom is=k—3=9, and for this ing entropy, mutual information, or log-likelihood ratio. We
case Eq(45) reads also show that for the naive choice of weightd)=1/M the
mean and the variance become singular as the leméttof
SmaxX) =[S(Bx)|Net={Fo[ B(2N In2)x]}Nef.  (48) 4t least one of the subsequences becomes very small. This
singularity makes the naive choice of weights inappropriate
By means of numerical simulations we obtain tjggt., and  for many practical applications, where subsequences with a
Ner are well fitted by B34=0.84 and Ngg=as.4INN  wide range of different lengths!) are to be analyzed.
+bay4, With agy,=2.34 andbs,,= —3.69. The natural choice of weights does not only make the
mean, the variance, and the asymptotic probability distribu-
tion function of 2N(In 2) D independent of the subsequence
lengthsn{, but also independent of the composition of the
One important task in analyses of experimental data is tstudied sequence. Moreover, we find that the natural
partition a nonstationary sequence into stationary subseshoice of weights minimizes the variance®in a first-order
guences. This task is important because many statisticalpproximation, and thatii) with the natural choice of
analysis techniques rely on the stationarity of the analyzedveights the variance db decays as N? with the total se-
sequence, and the results of those analyses may be severglyence lengthN, whereas in general the variance Dfde-
affected by nonstationarities of the analyzed data. Detectingays as M. The combination of all of the above features are
nonstationarities in experimental data is nontrivial, andthe reason why we prefer the natural choice of weights in our
hence there is no standard solution to this problem. Manwpplications of the Jensen-Shannon divergence to analyses of
measures that can detect deviations from stationarity in ongymbolic sequences.
way or another have been proposed in the past, and one of In order to declare a sequence stationary we require there
the goals of this paper is to motivate the use of the Jenserbe no pointn at which the studied sequence could be parti-
Shannon divergence as a measure of stationarity for symioned into two subsequences of significantly different com-
bolic sequences. positions. This requirement is the motivation for our goal of
We propose to declare a sequetstationary if we can-  finding an approximation of the probability distribution func-
not find any pointn at which S could be divided into two  tion Sy, (X)=ProgD»=x} for an ensemble of i.i.d. se-
subsequenceS™® and S with significantly differenicom-  quences of lengtiN. If all of the D values computed along
position. In order to decide if the compositions of the twothe same sequence were statistically independgit(X)

VII. CONCLUSIONS
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could be derived easily, but the nontrivial statistical depen-algorithm proposed by Bernaokt al. [13], and which dif-
dences between th2 values computed along the same se-fers from the original algorithm by computing the probability
quence makes the derivation gf,,(x) hard. of performing a segmentation step from the probability dis-
Even in the limit of asymptotically large sequence lengthstribution function s,,,(X) rather than from the probability
N, finding an approximation of,,.,(X) is such a challenging distribution functions(x). While the original algorithm tends
problem that it could be attacked by mathematicians only irfO partition even a stationary sequence into domains of aver-
the last two decades. Pettitt, one of the pioneers in the fiel@9€ Size 1/(¥so), the recursive segmentation algorithm
of change-point analysis, wrote in 1980 thahé null distri- ~ Pased orsna,(X) does not suffer from this artifact. _
bution of the likelihood-ratio statistic is completely intrac- ~ ON€ question that has been raised in previous years is the
table’ [51], and it was only in 1989 when Horvath succeededduestion for the length distribution of compositionally homo-

in deriving an asymptotic approximatiat,.,(x) of the prob- geneous domains in DNAlsequences of _different _organisms.
S o ) s Here we apply the recursive segmentation algorithm based
ability distribution function oD ,,,, for the special case of an

. AN 0N SyaX) to the complete genome of the bacteri@ncoli
ensemb_le of b'F‘aW“(—Z) Lid. sequenceE’:E?]. ... and the human MHC region on chromosome 6. Both DNA
One interesting feature of the asymptotic probability dis-

oo 2 . o sequences have a similar length of approximately14°
tribution functionsy,,(X) and its generalizatiof38] to the 1, cjeotides, and we find in Figs. 7 and 8 that the recursive

multinomial case is its scaling with Iq M, which s.ta.te.s that segmentation algorithm based sp.(X) yields in both cases
the expected value ofN(In 2) D, diverges to infinity as  ompositionally homogeneous domains with a wide range of
N—oe, but that this divergence is extremely slow. domain sizes. When comparing the two resulting segment
_For practical applications the asymptotic scaling 0fgjze distributions to each other, we find that the human MHC
Sma{X) is not as important as the accuracy sjf.(X) for  yegion consists of more and shorter compositionally homo-
finite N ranging from 16 to 1(? The |0ngeSt of the Currently geneous domains than tEe coli genome, which is in agree-
identified DNA sequences have a length of the order 6f 10 ment with previous findings on the complex organization of
nucleotides, and the shortest identifiable DNA subsequenceskaryotic genomes.
of homogeneous nucleotide Comp()Sition have a Iength of the In a second app”cation examp|e we Study if the recursive
order of 10 nucleotides. Hence, we are interested in ﬁndingegmentation a|gorithm could possib|y be used to detect bor-
an approximation of,(X) that is accurate for length  ders between coding and noncoding DNA sequences, and we
ranging roughly from 19to 10° nucleotides. find that—by choosing an appropriate representation of DNA

We find that the asymptotic approximatisfi,,(x) to the  sequences by 12 rather than four letters, encoding not only
finite-size distributionS,,,(X) is not very accurate in that the identity of each nucleotide but also its position in the
range ofN, and so we recruit Monte-Carlo simulations to reading frame—the recursive segmentation algorithm based
obtain a finite-size approximatias),,(X) that is more accu- on s,,(X) can detect borders between coding and noncoding
rate thans;,.(x) for N ranging from 16 to 1 and fork  DNA sequences more accurately than conventional sliding-
ranging from 2 to 12. In particular, we are interested in anwindow technique$20].
approximations,,5,(X) that is accurate in the right tail of the There is a whole plethora of problems in DNA sequence
distribution, because this is the region where an accuratenalysis that could be attacked by the recursive segmentation
computation of the probabilitg,,,(X) is needed in practical process, such as the identification of CpG islands or isoch-
applications. ores, the determination of origins and termini of replication,

We find thats,,(X) may be well approximated by Eq. or the detection of complex repeats or regulatory elements
(45), which states that the probability distribution function of [52]. As the results presented in this paper are not restricted
the maximum of aIN— 1 statisticallydependentalues ofD  to quaternary sequences, they might possibly be useful in a
computed along a sequence of lendthis similar to the wide variety of applications involving the problem of parti-
probability distribution function of the maximum &f . sta-  tioning a nonstationary symbolic sequence into its stationary
tistically independentandom variableg3D, whereN.; de-  Subsequences.
notes theeffectivesequence length, and whegds a scaling
factor that we introduce to account for the decrease of the ACKNOWLEDGMENTS
variance oD ,,, due to correlations between the valueof
computed at different positions of the same sequence. Thlg-|
finding thatsy,o(X) given by Eq.(45) yields an accurate ap-
proximation forN ranging from 18 to 10® and fork ranging
from 2 to 12 is the central result of this paper.

When studying the dependence @fand Ng on the se-
guence lengtiN and the alphabet sizk, we find that the
scaling factorg is almost independent of botk andk, and
that the effective sequence lendth; admits a surprisingly
accurate fit toaIn N+b, wherea and b are constants that
depend only on the alphabet sikze

In the last section of this paper we introduce a recursive In this appendix we derive a first-order approximation of
segmentation algorithm, which is an improved version of thethe covariance between the entroidyf] sampled from the
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APPENDIX: APPROXIMATION OF THE ENTROPY
COVARIANCE
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entire sequenceS of length N and the entropyH[f()]
sampled from subsequend®’ of lengthn) under the null
hypothesis thaf is an i.i.d. sequence.

We start with a Taylor expansion &f f] about the vector
p, and by using the definitions

H=H[f],

H=H[p],

we obtain

k k

(Af;)?
AH—_; Af |092pi—§1 2pIn2’

(A1)

where the symbot= indicates that we neglect terms of the
order of O((Af;)3).

Analogously, we Taylor-expanHi[f()] about the vector
p{), and by using the definitions

AO=H[f0)],
H(j)EH[p(j)],
AHO=R/DO —HD),
AfD=¢)—p
we obtain
AHU):—é‘,1 A" log, pf“—él%, (A2)

where the symbok= indicates that we neglect terms of the
order of O((Af{1")3).

We next express the covariance cdyf],H[f()]) in
terms ofAH andAH{), and by using the above definitions
we obtain

cov(F, D) =((A—H)(AD—HO)Y)
=(AHAHD) —(AH)(AHD).  (A3)

Since the productAH){(AH®) is of the order ofO(1/N?),
we can neglect it in a first-order approximation of

cov(H,HY), and by plugging the Taylor expansions of Egs.

(Al) and(A2) into Eq.(A3) we obtain

PHYSICAL REVIEW E 65 041905

k
coH, A= > (Af A1) ogpylogyp!!’, (A4)
g,i=1

where the symbok= indicates that we neglect terms of the
order of O(1/N?). .

The derivation of(Angfi(”> is straightforward, because
we can use the equalities

SR SR
fg:thng and pg=thTpg (A5)
to obtain
. " p® N
<Angf§J>>=h§=‘,lW(Af;J AT, (A6)

and we can work out the ternfa f{VAf{(") by completely
elementary methods.

The product-multinomial sampling of the frequency vec-
torsf() implies that the drawing of symbal, e .4 from sub-
sequenceS(™ and the drawing of symba,; e A from sub-
sequenceS!) are statistically independent, which in turn
implies

(AFPATDY= (AT (AfD) =0, (A7)
forallg,i=1,2,...k andh, j=1,2,...m with h+j. In case of
h=j we find

Py (54— p")

(MPAf) = =,

(A8)
where 6y denotes Kronecker’s delta, which is equal to 1 if

g=i and equal to O otherwise.
By plugging Egs(A7) and (A8) into Eq. (A6) we obtain

(i) _
oo Pg’(8gi—pi)

n_ g gl 1
(AfgAf()= 28 (A9)
Under the null hypothesis thap™=p) for all h, j

=1,2,..m, Eq. (A9) simplifies to

pg( 5gi_pi)

(AfAf)==—F

(A10)

and by plugging Eq(A10) into Eq. (A4) we obtain

o o~ 1
cov(H,H)= N a?(log,p), (A11)

where the symbok= indicates that we neglect terms of the
order ofO(1/N?), and wherer?(log, p) denotes the variance

of the numbers logp; with respect to the probability distri-
bution{p;}.
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