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We study statistical properties of the Jensen-Shannon divergenceD, which quantifies the difference between
probability distributions, and which has been widely applied to analyses of symbolic sequences. We present
three interpretations ofD in the framework of statistical physics, information theory, and mathematical statis-
tics, and obtain approximations of the mean, the variance, and the probability distribution ofD in random,
uncorrelated sequences. We present a segmentation method based onD that is able to segment a nonstationary
symbolic sequence into stationary subsequences, and apply this method to DNA sequences, which are known
to be nonstationary on a wide range of different length scales.
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I. INTRODUCTION

The statistical analysis of symbolic sequences is of cen
importance in various fields of science, such as symb
dynamics@1,2#, linguistics ~following the pioneering works
of Shannon@3#!, or DNA sequence analysis@4–7#. One ad-
vantage of using information theoretical functionals for t
analysis of symbolic sequences is that they do not require
symbolic sequence to be mapped to a numerical seque
which is necessary in spectral or correlation analyses@8#.
One of these functionals is theJensen-Shannon divergence
@9–12#, which quantifies the difference between two~or
more! probability distributions, and which can be used
compare the symbol composition between different
quences.

There are three reasons why we chooseD as a measure o
divergence between probability distributions:~i! D is related
to other information-theoretical functionals, such as the re
tive entropy or the Kullback divergence, and hence it sha
their mathematical properties as well as their intuitive int
pretability, ~ii ! D can be generalized to measure the dista
between more than two distributions, and~iii ! the compared
distributions can be weighted, which allows us to take in
account the different lengths of the subsequences from w
the probability distributions are computed@13#.

D has been used for measuring the distance between
dom graphs@10#, for testing the goodness-of-fit of point e
timations@12#, in the analysis of DNA sequences@13,14#, in
the segmentation of textured images@15#, and in the design
of a statistical characterization of the mobility edge in dis
dered materials@16#. In addition, by making use of its ability
to be generalized to an arbitrary number of probability d
tributions,D has been used to quantify the complex hete
geneity of DNA sequences@17–19# as well as to detect bor
ders between coding and noncoding DNA@20#.

Here we describe in detail some statistical properties oD
as well as some theoretical background relevant for
above-mentioned applications. This paper is organized
follows: in Sec. II we introduceD and some of its math
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ematical properties. In Sec. III we provide three interpre
tions ofD, one in the framework of statistical physics, one
the framework of information theory, and one in the fram
work of mathematical statistics. In Sec. IV we discuss so
statistical properties ofD, and we derive the mean, the var
ance, and the asymptotic probability distribution function
D. In Sec. V we apply the Jensen-Shannon divergence to
problem of segmenting a nonstationary sequence into
tionary subsequences, and show that in this context the m
mum value Dmax of the Jensen-Shannon divergenceD
sampled along a sequence becomes a quantity of centra
portance. Hence, we study the probability distribution
Dmax by means of Monte-Carlo simulations. In Sec. VI w
present three examples of howD can be applied to the prob
lem of segmenting nonstationary symbolic sequences~such
as DNA sequences! into stationary subsequences, and S
VII concludes this paper.

II. THE JENSEN-SHANNON DIVERGENCE

Several measures have been proposed to quantify the
ference ~sometimes calleddivergence! between two ~or
more! probability distributions@9#. One of those measures
the Jensen-Shannon divergence, which is defined as follo
let p(1)[(p1

(1) ,p2
(1) ,...,pk

(1)) and p(2)[(p1
(2) ,p2

(2) ,...,pk
(2))

denote two probability distributions satisfying the usual co
straints( i 51

k pi
( j )51 and 0<pi

( j )<1 for all i 51,2,...,k and
j 51, 2; and letp (1) and p (2) denote theweights of the
distributions p(1) and p(2), satisfying the constraintsp (1)

1p (2)51 and 0<p ( j )<1. Then the Jensen-Shannon dive
genceD between the probability distributionsp(1) and p(2)

with weightsp (1) andp (2) is defined by@11#

D@p~1!,p~2!#[H@p~1!p~1!1p~2!p~2!#2~p~1!H@p~1!#

1p~2!H@p~2!# !, ~1!

where
©2002 The American Physical Society05-1
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H@p#52(
i 51

k

pi log2pi ~2!

denotes the Shannon entropy of the probability distribut
p[(p1 ,p2 ,...,pk).

The Jensen-Shannon divergenceD can be shown to be a
special case of theJensen difference divergenceintroduced
by Burbea and Rao@21#. Also, D can be shown to be a
special case of thew divergence introduced by Csisza
@12,22#. Hence, the Jensen-Shannon divergenceD shares all
mathematical properties of both the Jensen difference di
gence and thew divergence. It is interesting to note that th
Jensen-Shannon divergence is the only measure that s
taneously belongs to the family of Jensen difference div
gences and the family ofw divergences@12#, i.e., the inter-
section of the family of Jensen difference divergences
the family of w divergences contains only a single measu
and that measure is the Jensen-Shannon divergenceD.

In the following two paragraphs we list some mathema
cal properties ofD that turn out to be important for its ap
plication as a divergence measure.

~1! By using the Jensen inequality@23# it is easy to see
that

D@p~1!,p~2!#>0, ~3!

with D @p(1),p(2)#50 if and only if p(1)5p(2) .
~2! D is symmetric in its argumentsp(1) andp(2), i.e.,

D@p~1!,p~2!#5D@p~2!,p~1!#. ~4!

~3! D is well defined even ifp(1) and p(2) are not abso-
lutely continuous, i.e.,D is well-defined even ifpi

(1) vanishes
without vanishingpi

(2) or if pi
(2) vanishes without vanishing

pi
(1) .

D can be generalized to quantify the divergence betw
an arbitrary number of probability distributions. Let us co
sider m probability distributionsp(1), p(2),..., p(m), and let
us denote byp (1),p (2),...,p (m) the corresponding weights
We can define the Jensen-Shannon divergence betweenm
probability distributions p(1),p(2),...,p(m) with weights
p (1),p (2),...,p (m) by

D@p~1!,p~2!,...,p~m!#5HF (
j 51

m

p~ j !p~ j !G2(
j 51

m

p~ j !H@p~ j !#.

~5!

It is interesting to note that the three mathematical proper
mentioned above for the binary case can be generalize
the m-ary case as follows:

~1! The Jensen inequality@23# implies that

D@p~1!,p~2!,...,p~m!#>0, ~6!

with D @p(1),p(2),...,p(m)#50 if and only if all probability
distributionsp(1),p(2),...,p(m) are identical, i.e., if and only if
p(1)5p(2)5¯5p(m).
04190
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~2! D is symmetric in its argumentsp(1),p(2),...,p(m), i.e.,
D is invariant under any permutation of its argumen
p(1),p(2),...,p(m) .

~3! D is well defined even if the probability distribution
p(1),p(2),...,p(m) are not absolutely continuous.

III. INTERPRETATIONS OF D

In the following three sections we will present three i
tuitive interpretations of the Jensen-Shannon divergenceD.

A. Interpretation of D in the framework of statistical physics

In this section we show thatD can be interpreted as th
intensive mixture entropyin the following way: let us con-
sider m vessels, each one containing a mixture ofk ideal
gases, letf( j )[( f 1

( j ) , f 2
( j ) , ...,f k

( j )) denote the vector of mola
fractions of thek gases in thej th vessel forj 51,2,...,m, and
let n( j ) denote the total number of molecules in thej th ves-
sel. Then we know from the second law of thermodynam
that the sum of the Boltzmann entropies of them separate
vessels is smaller than~or equal to! the Boltzmann entropy
of the joint vessel that we obtain after mixing the gases fr
all m vessels, and we can easily show that the difference
the sum of the entropies obtained before the ideal gases
mixed and the entropy obtained after the ideal gases
mixed is equal to

Hmix5NkB~ ln 2!H@ f#2(
j 51

m

n~ j !kB~ ln 2!H@ f~ j !#, ~7!

wherekB denotes the Boltzmann constant,N[S j 51
m n( j ) de-

notes the total number of ideal gas particles in allm vessels,
andf[S j 51

m (n( j )/N)f( j ) denotes the vector of molar fraction
of the k gases in the mixture containing the gas particles
all of them vessels.Hmix is commonly calledmixing entropy,
and it is easy to see that

Hmix5NkB~ ln 2!D, ~8!

if the weights are chosen to bep ( j )[n( j )/N. Hence,D can
be interpreted as theintensive mixture entropymeasured in
units of kB ln 2.

B. Interpretation of D in the framework of information theory

In this section we show thatD can be interpreted as th
mutual information in the following way: let us consider
sequenceS of N symbols chosen from the alphabetA
5$a1 ,a2 ,...,ak%, and let us denote bypi the probability of
finding symbolai at an arbitrary but fixed position in se
quenceS, for i 51,2,...,k. Suppose that the sequenceS is
divided into m subsequencesS(1),S(2),...,S(m) of given
lengthsn(1),n(2),...,n(m), and let us denote bypi

( j ) the prob-
ability of finding symbolai at an arbitrary but fixed position
in sequenceS( j ), for i 51,2,...,k and j 51,2,...,m.

In order to establish the connection betweenD and the
mutual information defined in the framework of informatio
theory, we define the random vector (a, s), where the ran-
5-2
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dom variablesa P A ands P $S(1), S(2), . . . ,S(m)

% are gener-
ated as follows: draw a random positionn with a uniform
probability distribution along the sequenceS, denote bya
the symbol at positionn, denote bys the subsequence tha
contains positionn, and denote bypi j the joint probability of
a5ai and s5S( j ) for i 51,2, . . . ,k and j 51,2, . . .m.
Then we obtain that the random variablea assumes the val
ues a1 ,a2 ,...,ak with probabilities p1 ,p2 ,...,pk , and the
random variables assumes the valuesS(1),S(2),...,S(m) with
probabilitiesp (1)[n(1)/N, p (2)[n(2)/N..., p (m)[n(m)/N,
where the marginal possibilitiespi andp ( j ) are defined by

pi[(
j 51

m

pi j and p~ j ![(
i 51

k

pi j

for i 51,2, . . . ,k and j 51,2, . . . ,m.
Suppose that someone is drawing a symbola from the

entire sequenceS, not telling us from which subsequences
this symbol was drawn, and suppose it is our task to gu
that subsequenceS from which symbola was drawn. One
question answered by information theory is: ‘‘How mu
informationI can we obtain from learning the identity of th
symbol a about the identity of that subsequences from
which symbola was drawn, provided we know the probab
ity distribution $pi j %?’’

I is called themutual information in a about sand defined
by @3#

I[(
i 51

k

(
j 51

m

pi j log2

pi j

p~ j !pi
. ~9!

Taking into account thatpi
( j ) denotes the conditional prob

ability of finding symbolai at an arbitrary but fixed position
in a given ~fixed! sequenceS( j ), it follows that pi j

5p ( j )pi
( j ) , and Eq.~9! can be rewritten as

I[(
i 51

k

(
j 51

m

p~ j !pi
~ j ! log2

pi
~ j !

pi
. ~10!

By rewriting Eq.~10! we obtain

I 5(
j 51

m

p~ j !(
i 51

k

pi
~ j ! log2 pi

~ j !2(
i 51

k S (
j 51

m

p~ j !pi
~ j !D log2 pi .

~11!

As pi5S j 51
m p ( j )pi

( j ) defines the probability of finding sym
bol ai in the whole sequence, we obtain

I 5D@p~1!,p~2!,...,p~m!#. ~12!

Hence,D is identical to the mutual information ina abouts,
which quantifies the amount of information we obtain fro
learning the identity of the chosen symbola about the iden-
tity of that subsequences from which symbola was chosen.

As I is symmetric in its argumentsa ands, we may also
consider the following game: suppose someone is drawin
symbola from sequenceS, not telling us the identity of the
drawn symbola, but telling us the identity of that subse
04190
ss

a

quences from which symbola was drawn. Suppose furthe
that it is our task to guess the identity of the drawn symboa.
One question answered by information theory is: ‘‘Ho
much informationI can we obtain from learning the identit
of the subsequences about the identity of the drawn symbo
a, provided we know the probability distribution$pi j % . ’’ It
can be mathematically proven that the mutual information
a abouts is identical to the mutual information ins abouta,
and hence we can state that the Jensen-Shannon diverg
D quantifies the amount of information we obtain from lear
ing the identity of the subsequences about the identity of the
drawn symbola.

If p(1)5p(2)5¯5p(m), then it is clear that knowing the
identity of the symbola does not tell us anything about th
identity of the subsequences from whicha was drawn, as the
probability distributions ofa are identical in all subse
quencess. Likewise, it is clear that in this case knowing th
subsequences from which a was drawn does not tell u
anything about the identity ofa. Hence, it is intuitively clear
that the mutual information ina abouts ~or the mutual in-
formation ins abouta! is equal to zero, and hence it is als
intuitively clear that in this case the Jensen-Shannon div
genceD is equal to zero.

C. Interpretation of D in the framework of mathematical
statistics

In this section we show thatD can be interpreted as th
log-likelihood ratio in the following way: consider the prob
lem of estimating the probabilitiesp[(p1 ,p2 ,...,pk) from a
symbolic i.i.d.@24# sequenceS of lengthN, in which at each
position a symbolaiPA[$a1 ,a2 ,...,ak% is randomly drawn
with probability pi . The maximum likelihood principle sug
gests to choose that probability vectorp which maximizes
the likelihood

L~Sup![)
i 51

k

pi
Fi, ~13!

whereFi denotes the number of occurrences of symbolai in
sequenceS. As the logarithm is a strictly monotonic func
tion, one may equally search for thatp which maximizes
ln L5(i51

k Fi ln pi . It is easy to derive by using one Lagrang
multiplier for the constraintS i 51

k pi51 thatpi5Fi /N maxi-
mizes thelog-likelihoodln L. Hence, we obtain as maximum
log-likelihood

ln Lmax5N(
i 51

k

f i ln f i52N~ ln 2!H@ f#, ~14!

where f i[Fi /N denotes the relative frequency of findin
symbolai in sequenceS of lengthN.

Now consider the slightly more complicated problem o
nonstationary sequenceS of lengthN consisting ofm station-
ary subsequences S(1),S(2),...,S(m) with lengths
n(1),n(2),...,n(m), where the probabilitypi

( j ) of generating
symbol ai in subsequenceS( j ) may vary from subsequenc
to subsequence. The likelihood of obtaining the entire
quenceS is equal to the product of the likelihoods of obtai
5-3
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ing them subsequencesS(1),S(2),...,S(m). Hence, the maxi-
mum likelihood principle suggests to choose for eachj
51,2,...,m that probability vectorp( j )[(p1

( j ) ,p2
( j ) , ...,pk

( j ))
that maximizes the likelihood

L~S~ j !up~ j !![)
i 51

k

~pi
~ j !!Fi

~ j !
, ~15!

where Fi
( j ) is the number of occurrences of symbolai in

subsequenceS( j ). It is again easy to derive by usingm
Lagrange multipliers for them constraints( i 51

k pi
( j )51 that

pi
( j )5Fi

( j )/n( j ) maximizes the log-likelihood lnL(j). Hence,
we obtain as maximum log-likelihood

ln Lmax
~ j ! 5n~ j !(

i
f i

~ j ! ln f i
~ j !52n~ j !~ ln 2!H@ f~ j !#, ~16!

where f i
( j )[Fi

( j )/n( j ) denotes the relative frequency of find
ing symbolai in subsequenceS( j ) of lengthn( j ).

As problem one~with just one sequence! is a special case
of problem two ~of having m sequences!, the sum of the
maximum log-likelihoods( j 51

m ln Lmax
(j) cannot be smaller

than lnLmax, because in the ‘‘worst’’ case in which all of th
m subsequences of problem two wereidentical, problem two
would just reduce to problem one, giving the same lo
likelihood as in problem one. Hence, the quantity

DL[(
j 51

m

ln Lmax
~ j ! 2 ln Lmax ~17!

is non-negative, andDL is commonly called the log-
likelihood ratio.

It is straightforward to see from Eqs.~14!, ~16!, and~17!
that

DL5N~ ln 2!D. ~18!

Hence, in the framework of mathematical statisticsDL can
be interpreted as the increase of the log-likelihood when
quenceS, instead of being modeled as a sequence gener
with a single probability vectorp, is modeled as a conca
enation ofm subsequencesS(1),S(2),...,S(m) ~in that order!
generated from the probability vectorsp(1),p(2),...,p(m).

The inequality DL>0 states thatany partition of the
original sequence intom subsequences increases the like
hood of the second model over the first model. In order
choose hypothesis two~m subsequences! in favor of hypoth-
esis one~only one sequence!, we require thatDL be signifi-
cantly greater than zero, and it is the goal of this paper
derive an approximation of the probability distribution fun
tion of DL.

Note that in all of the above interpretations ofD the
weights of the distributionsp (1),p (2),...,p (m) are propor-
tional to the ‘‘sizes’’n(1),n(2),...,n(m) of them elements con-
sidered: the number of particles of each of them ideal ves-
sels or the number of symbols in each of them
subsequences. It is interesting that this particular choice
weights arises in a natural way from all of the three interp
04190
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tations presented above, and—as we will see later—
choice of weights endows the Jensen-Shannon divergenD
with several statistical properties that makeD particularly
suitable for the analysis of symbolic sequences.

IV. STATISTICAL PROPERTIES OF D

Formally, D is a function of the probability distributions
p(1),p(2),...,p(m), but in analyses of experimental data tho
probability distributions are not~directly! observable. How-
ever, when we study experimental symbolic sequences
can estimate those probability distributionsp( j ) from the fre-
quency distributionsf( j )[( f 1

( j ) , f 2
( j ) , ...,f k

( j )), where f i
( j ) de-

notes the relative frequency of symbolai in subsequence
S( j ), for i 51,2,...,k and j 51,2,...,m.

In all analyses of experimental data the Jensen-Shan
divergenceD must be computed from those~observable! fre-
quency distributionsf(1),f(2),...,f(m) rather than from the
~nonobservable! probability distributionsp(1),p(2),...,p(m).
As a consequence of replacing the probabilitiespi

( j ) by the
corresponding relative frequenciesf i

( j ) in Eq. ~1!, the nu-
merical values ofD will fluctuate from data set to data se
even if those data sets can be assumed to be generated
the sameprobability distribution.

The fluctuation off i
( j ) from data set to data set may n

only result in fluctuations of the numerical values ofD, but
also in a systematic shift~bias! of the numerical values ofD
computed from the observed data as compared to the num
cal value ofD computed from the unobservable probabili
distributions. In order to illustrate the presence of those fl
tuations ofD as well as its systematic shift~calledbias!, we
perform the following control experiments:

We generate an ensemble of 2000 binary sequencek
52) of N52500 symbols each, obtained by joiningm52
subsequences as follows: we generate the left sequenc
length n5500 by concatenating random, uncorrelated sy
bols drawn from the probability distributionp(1)

5(0.45,0.55), and the right sequence of lengthN2n
52000 symbols drawn from the probability distributio
p(2)5(0.55,0.45).

We move a cursor along the entire sequence, and we c
puteD between the subsequences at both sides of the cu
for all positions n(1)51,2,..., N21 and n(2)5N21, N
22,...,1. In order to illustrate the effect of different choic
of the weightsp ( j ), we compute the Jensen-Shannon div
gence in two different ways:~i! for the choice of equal
weightsp ( j )51/m for all subsequencesS( j ), and~ii ! for the
natural choice of weightsp ( j )5n( j )/N. In the following we
denote byD1/m the Jensen-Shannon divergence with t
choice of equal weights~i!, and we denote byD the Jensen-
Shannon divergence with the natural choice of weights~ii !.

An ideal estimator ofD, which quantifies the difference
between two probability distributions, should reach its ma
mum value exactly at that point which separates the sub
quences generated by different probability distributions, i
it should reach its maximum value whenn(1)5n5500 and
n(2)5N2n52000. Figure 1~a! shows ^D& versusn(1) and
^D1/2& versusn(1), where the symbol̂¯& denotes the en-
5-4
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FIG. 1. Comparison ofD andD1/2. We generate an ensemble
2000 binary sequences of lengthN52500, obtained by joining two
subsequences of lengthsn andN2n, where the left subsequence o
length n is generated from a probability distribution (x,12x) and
the right subsequence of lengthN2n is generated from a probabil
ity distribution (y,12y). We move a cursor along the entire s
quence and we computeD and D1/2 between the subsequences
both sides of the cursor. Finally we plot the ensemble averages^D&
~solid line! and^D1/2& ~dashed line! as a function of the position o
the cursorn(1)51,2,...,N21. In ~a! we choosen5500, x50.45,
and y50.55, and find thatD achieves its global maximum atn(1)

'500 in the vicinity of the true fusion point of the two subs
quences atn5500, whereasD1/2 achieves its global maximum a
the edgesn(1)→0 or n(1)→2500 far away from the true fusion
point of the two subsequences atn5500. This finding indicates tha
D might serve as an appropriate divergence measure to quantif
compositional differences between symbolic subsequences, wh
D1/2 might not. In ~b! we choosen51250,x50.45, andy50.55,
and find again thatD achieves its global maximum atn(1)'1250 in
the vicinity of the true fusion point of the two subsequences an
51250, whereasD1/2 achieves its global maximum at the edg
n(1)→0 or n(1)→2500 far away from true fusion point of the tw
subsequences atn51250, confirming the finding from~a! that D
might serve as an appropriate divergence measure to quantify
compositional differences between symbolic subsequences, wh
D1/2 might not. In ~c! we choosen51250 andx5y50.5, and we
find that D stays quite constant at a small value of approximat
2.931024 bits, reflecting the fact that the analyzed sequences
stationary, whereasD1/2 is clearly increasing asn(1)→0 or n(1)

→2500, confirming the finding from~a! and~b! thatD might serve
as an appropriate divergence measure to quantify the composit
differences between symbolic subsequences, whereasD1/2 might
not. The effect that even in the case of i.i.d. sequences the expe
value ofD is greater than zero is referred to as finite-size effect,
we address this finite-size effect in Sec. IV.
04190
semble average over all 2000 realizations.
Figure 1~a! shows that there are dramatic finite size e

fects when usingD1/2 ~dashed line! instead ofD ~solid line!.
While D clearly achieves its global maximum at positio
n(1)'n5500 @marked with a vertical dotted line in Fig
1~a!#, D1/2 achieves its highest values at the beginning a
the end of the horizontal axis, i.e., at very small and ve
large values ofn(1).

We perform a second control experiment similar to t
first experiment, in which we change the lengths of the t
subsequences ton51250 as well asN2n51250, and in
which we keep all other parameters the same as before.
ure 1~b! shows clearly that, again,D achieves its maximum
at n(1)'n51250, whileD1/2 achieves its highest values a
the beginning and the end of the horizontal axis, i.e., at v
small and very large values ofn(1).

These control experiments demonstrate two results:~i! the
location of the maximum ofD can separate regions of dif
ferent composition and size in a symbolic sequence, and~ii !
the estimation ofD1/2 andD from sequences of finite lengt
is affected by finite size effects. In order to illustrate po
~ii ! directly, we perform a third control experiment in whic
we generate the two subsequences fromthe sameprobability
distribution. In this case the experimentally obtained valu
of D that are nonzero are due only to statistical fluctuatio

Figure 1~c! shows^D& versusn(1) and ^D1/2& versusn(1)

for an ensemble of 2000 stationary, binary sequences
length N52500 in which each symbol is generated wit
probability 0.5. We find that, for all positionsn(1), the values
of D are approximately the same, whereas the valuesD1/2

depend dramatically onn(1). Figure 1~c! also shows that̂D&
is not identical to zero, and we devote the following thr
sections to derivations of approximations of the mean,
variance, and the probability distribution function ofD.

A. Mean of D

In this section we will derive an analytical approximatio
of the mean value ofD when computed from an ensemble
finite i.i.d. sequences of lengthN.

It follows directly from the Jensen inequality that the e
pected value,̂H@ f#&, of the entropy computed from an en
semble of finite-length sequences cannot be greater than
theoretical value,H@p#, of the entropy computed from th
~unobservable! probabilities@25#, i.e.,

^Hufu&<H@p#, ~19!

where^¯& denotes the expectation value over the ensem
of finite-length i.i.d. sequences generated by the probab
distributionp.

This mathematical statement is intuitively clear: due
the finite sample size, the relative frequency vectorf fluctu-
ates from sample to sample around the probability vectop,
and the majority of these fluctuations will makef less uni-
form thanp. Since the entropyH@p# quantifies the unifor-
mity of the probability distributionp, we expect that the
majority of the values ofH@ f# computed from an ensembl
of fluctuating frequency vectorsf will be smaller than the
value ofH@p#.
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Up to first order the expected value ofH@ f# can be ap-
proximated by@26–30#

^Hufu&.H@p#2
k21

2N ln 2
, ~20!

wherek is the number of components of the probability a
frequency vectorsp and f, N is the sample size, and th
symbol . indicates that we neglect terms of the order
O(1/N2). By applying Eq. ~20! to each of them subse-
quences we obtain

^H@ f~ j !#&.H@p~ j !#2
k21

2n~ j !ln 2
, ~21!

for j 51,2,...,m, where the symbol. indicates that we ne
glect terms of the order ofO„1/(n( j ))2

…. We will use approxi-
mations~20! and~21! to derive in the remainder of this sec
tion the expected value of the Jensen-Shannon diverg
D@ f(1),f(2),...,f(m)# computed from an ensemble ofm i.i.d.
sequences of total lengthN.

In order to avoid lengthy expressions, we defineD@F#
[D@ f(1),f(2),...,f(m)# and D@P#[D@p(1),p(2),...,p(m)#, and
by substituting Eqs.~20! and ~21! into Eq. ~1! we obtain

^D@F#&.D@P#1
k21

2N ln 2 S (
j 51

m

p~ j !
N

n~ j !21D . ~22!

This expression shows that, in general, the bias^D@F#&
2D@P# depends on the lengthsn( j ) of the subsequences.

It is easy to see that one choice of weights that makes
~22! independent of the subsequence lengthsn( j ) is

p~ j ![n~ j !/N, ~23!

for j 51,2,...,m. This finding is interesting because this pa
ticular choice of weights turns out to be identical to the na
ral choice of weights in all of the three interpretations ofD
presented in Sec. III.

With this choice of weights, the expected value of t
Jensen-Shannon divergenceD becomes

^D@F#&.D@p#1
k21

2N ln 2
~m21!, ~24!

which is independent of the subsequence lengthsn( j ). Figure
2 illustrates the independence of the mean value ofD of the
subsequence lengthsn( j ), and it also shows that Eq.~24! is a
reasonable approximation of the mean value ofD.

Hence, expression~24! can be used as a reference to d
cide if a difference in composition between two sequence
larger than expected. Note that in Fig. 1~c! the average value
of D fits the value predicted by Eq.~24!, namely,^D&52.9
31024 bits. In addition, from Eq.~24! we see that the bias o
the quantityND is independent of the sequence lengthN,
which allows us to compare Jensen-Shannon divergence
ues obtained from sequences of different sizes.
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With the naive choice of weightsp ( j )51/m we obtain for
the expected value of the Jensen-Shannon divergence th
proximation

^D1/m@F#&.D1/m@P#1
k21

2N ln 2 S N

m
A21D , ~25!

whereA[( j 51
m 1/n( j ) denotes the harmonic mean of the su

sequence lengthsn( j ). Clearly ^D1/m& depends on the subse
quence lengthsn( j ), and we see that̂D1/m& becomes mini-
mal for n( j )5N/m, while ^D1/m& diverges to infinity for
n( j )→0. This analytical approximation of the expected val
of D1/m is consistent with the dramatic increase of the das
line ~corresponding tôD1/m&! close to the edges~n(1)→0 or
n(2)→0! of the abscissa of Fig. 1.

There is another advantage of choosing the weightsp ( j )

by Eq. ~23!. We will show in the following section that the
choice of the weightsp ( j )[n( j )/N minimizes the quadratic
deviation of the observed from the true Jensen-Shannon
vergence. This advantage is more important than the ad
tage of having a bias that is independent ofn( j ), because the
bias can be corrected analytically, in a first-order approxim
tion, whereas the quadratic deviation of the observed fr
the true Jensen-Shannon divergence~i.e., the quadratic error!
cannot be reduced. Hence, it is desirable to obtain an est
tor of D that minimizes the quadratic deviation of the o
served from the true Jensen-Shannon divergence~i.e., the
quadratic error!, and we will show in the following section
that the choice of the weightsp ( j )[n( j )/N yields exactly
that optimal estimator.

FIG. 2. Mean value ofD as a function of the total sequenc
length N, ranging fromN510 to N5105, averaged over an en
semble of 2000 i.i.d. sequences generated from a four-letters al
bet (k54), where each symbol occurs with probability 1/4. F
each sequence lengthN we choose three different cutting poin
n(1)50.5N, n(1)50.6N, andn(1)50.7N, and we compute for each
N and eachn(1) and each of the 2000 i.i.d. sequences the Jens
Shannon divergenceD between the composition of the left subs
quence of lengthn(1) and the composition of the right subsequen
of lengthn(2)5N2n(1). For eachN andn(1) we compute the av-
erage ofD over the ensemble of all 2000 i.i.d. sequences, and
figure shows the ensemble average^D& as a function ofN andn(1).
We find that log10 ^D& decays almost linearly as a function log10 N,
with a slope very close to21, for eachn(1)50.5N ~circles!, n(1)

50.6N ~triangles!, and n(1)50.7N ~diamonds!, and we also find
that the approximation of̂D& from Eq.~24! ~solid line! agrees very
well with the simulation results.
5-6
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B. Variance of D

The variance ofD@F# is given by

s2~D@F# !5s2S H@ f#2(
j 51

m

p jH@ f~ j !# D
5s2~H@ f# !1(

j 51

m

p j
2s2~H@ f~ j !# !

22(
j 51

m

p jcovH@ f#,~H@ f~ j !# !

12(
j 51

m

(
l 5 j 11

m

p jp lcov~H@ f~ j !#,H@ f~ l !# !.

~26!

As the set of vectors $f(1),f(2),...,f(m)% is product-
multinomially distributed, we obtain thatH@ f( j )# andH@ f( l )#
are statistically independent for anyj Þ l . Hence, the terms
cov(H@ f( j )#,H@ f( l )#) are all equal to zero, and we need
consider only the termss2(H@ f#), s2(H@ f( j )#), and
cov(H@ f#,H@ f( j )#).

By Taylor-expandingH@ f# aboutp we obtain a first-order
approximation of the variance ofH@ f# @5,6,27,28#,

s2~H@ f# !.
1

N
s2~ log2 p!, ~27!

where nj denotes the length of subsequenceS( j ),
s2(log2 p( j )) denotes the variance of the numbers log2 pi
with respect to the probability distribution$pi%, and the sym-
bol . indicates that we neglect terms of the order
O(1/N2).

Likewise, we obtain a first-order approximation of th
variance ofH@ f( j )#,

s2~H@ f~ j !# !.
1

nj
s2~ log2 p~ j !! , ~28!

where N denotes the length of the whole sequen
s2(log2 p( j )) denotes the variance of the numbers log2 pi

(j)

with respect to the probability distribution$pi
( j )% for every

j 51,2,...,m, and the symbol. indicates that we neglec
terms of the order ofO„1/(n( j ))2

….
In the Appendix we derive a similar first-order approx

mation of the covariance terms, and under the null hypo
esis thatp(1)5p(2)5¯5p(m)5p we obtain

cov~H@ f#,H@ f~ j !# !.
1

N
s2~ log2 p! ~29!

for all j 51,2,...,m, wheres2(log2 p) denotes the variance o
the numbers log2 pi with respect to the probability distribu
tion $pi%, and the symbol. indicates that we neglect term
of the order ofO(1/N2). It is interesting to note that the
first-order approximation of the covariance betweenH@ f#
04190
f
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andH@ f( j )# @Eq. ~29!# is equal to the first-order approxima
tion of the variance ofH@ f# @Eq. ~27!#.

By substituting the expressions from Eqs.~27!, ~28!, and
~29! into Eq. ~26! we obtain for the variance of the Jense
Shannon divergence with arbitrary weigh
p (1),p (2),...,p (m),

s2~D !.S (
j 51

m

p~ j !
p~ j !

n~ j ! 2
1

NDs2~ log2 p!, ~30!

under the null hypothesis thatp(1)5p(2)5¯5p(m)5p,
where the symbol. indicates that we neglect terms of th
order ofO(1/N2).

Let us now consider that choice of weightsp ( j ) which
minimizes the quadratic deviation of the observed from
true Jensen-Shannon divergence

^~D@F#2D@P# !2&5s2~D !1~^D@E#&2D@P# !2. ~31!

As the second term on the right hand side of Eq.~31! is of
the order ofO(1/N2), the minimization of the quadratic de
viation of the observed from the true Jensen-Shannon di
gence reduces to the minimization of the variance of
Jensen-Shannon divergence estimator.

By using one Lagrange multiplier for the normalizatio
constraint( jp

( j )51 we obtain that the set of weightsp ( j )

5n( j )/N minimizes the variance of the Jensen-Shannon
vergenceD. This finding is intriguing, because this set
weights is~i! identical to the natural choice of weights in a
of the three interpretations ofD presented in Sec. III as wel
as ~ii ! identical to the special choice of weights that mak
the bias ofD independent of the subsequence lengthsn( j )

@Eq. ~24!#.
Furthermore, we find that for the special choice

weightsp ( j )[n( j )/N the variance ofD vanishes inO(1/N).
This means that for the special choice of weightsp ( j )

[n( j )/N the leading term ofs2(D) decreases with the se
quence lengthN as 1/N2, whereas—in general—it decreas
as 1/N. It is clear that for the special choice of weigh
p ( j )[n( j )/N the O(1/N) term of s2(D) becomes indepen
dent of bothn( j ) and p, and it is interesting that for this
special choice of weights theO(1/N2) term of s2(D) also
turns out to be independent of bothn( j ) andp.

In contrast, we find that for the naive choice of weigh
p ( j )[1/m the variance ofD1/m neither vanishes inO(1/N)
nor does it become independent of the subsequence len
n( j ), and we obtain for the variance of the Jensen-Shan
divergenceD1/m ,

s2~D !.
s2~ log2 p!

N S N

m2 A21D , ~32!

whereA[( j 51
m 1/n( j ) denotes the harmonic mean of the su

sequence lengthsn( j ). Note that the expression inside th
parentheses on the right-hand side of Eq.~32! is similar to
the expression inside the parentheses on the right-hand
of Eq. ~25!. Hence, the variance ofD1/m shows a singular
5-7
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behavior similar to that of the mean ofD1/m when the length
of at least one subsequence becomes very small.

C. Probability distribution of D

Expression~24! provides a good criterion to tell whethe
an experimentally observed Jensen-Shannon divergencD
betweenm frequency distributions is greater than expec
by chance, but it does not tell ifD is significantly greater
than expected by chance. In this section we will derive
probability distribution ofD in order to quantify the statisti
cal significance of experimentally observed values ofD.

Given an observed value ofD5x, we will calculate the
probability of obtaining this value or a lower value b
chance under the null hypothesis that allm sequences are
generated from the same probability distribution. We call t
probability thesignificance thresholdof the given valuex,
and we denote it by

s~x![Prob$D<x% . ~33!

As s(x) does not seem to admit an easy analytical exp
sion, we will obtain an approximation by using the Tayl
expansion

x log2

x

a
5

x2a

ln 2
1

~x2a!2

a~2 ln 2!
1O„~x2a!3

…, ~34!

to approximateD in terms of quadratic functions as follows

D[(
i 51

k

(
j 51

m

pi
~ j !p~ j ! log2

pi
~ j !p~ j !

pip
~ j !

.(
i 51

k

(
j 51

m pi
~ j !p~ j !2pip

~ j !

ln 2
1(

i 51

k

(
j 51

m
~pi

~ j !p~ j !2pip
~ j !!2

pip
~ j !~2 ln 2!

~35!

5(
i 51

k

(
j 51

m
~pi

~ j !p~ j !2pip
~ j !!2

pip
~ j !~2 ln 2!

. ~36!

It is interesting to note that in this quadratic approxim
tion of D there are no constant or linear terms because
first double sum of Eq.~35! vanishes exactly due to norma
ization of the probability distributionspi

( j ) , pi , andp ( j ).
If we express thex2 statistic@31# in the same notation, we

obtain

x2[N(
i 51

k

(
j 51

m
~pi

~ j !p~ j !2pip
~ j !!2

pip
~ j ! .2N~ ln 2!D. ~37!

The abovex2 statistic is known to converge—for asympto
cally large values ofN—to the x2 distribution with n5(k
21)(m21) degrees of freedom@31#. Hence, also 2N(ln 2)D
converges—for asymptotically large values ofN—to thex2

distribution withn5(k21)(m21) degrees of freedom, i.e
we obtain for asymptotically large values ofN the approxi-
mation
04190
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s~x!.Fn@2N~ ln 2!x#[
g@n/2,N~ ln 2!x#

G~n/2!
, ~38!

whereg(a,x) andG(a) denote theincompleteandcomplete
gamma functions, respectively@31,32#.

The fact thatD can be interpreted as mutual informatio
agrees with Eq.~38!, as it is known that, up to a multiplica
tive constant, the mutual information converges—for asym
totically large values ofN—to thex2 probability distribution
with n5(k21)(m21) degrees of freedom@6#.

V. STATISTICAL PROPERTIES OF Dmax

Expression~38! gives the significance threshold of
single value ofD computed between two samples of fixe
length. From the practical point of view this is equivalent
preselecting a fixed point that divides a sequence into
subsequences and asking for the probability that both su
quences have been generated from different probability
tributions. But, in general, when facing an unknown s
quence we do not have anya priori knowledge of the
location of the possible cutting point.

The problem of finding the point where a nonstationa
sequence can be most likely divided into two stationary s
sequences has been widely studied in mathematics. Th
the problem is known as thechange-point problem@33–35#,
which consists of finding out~i! whether there exists a
change point in the studied sequence, and~ii ! at which posi-
tion in the sequence the change point is located, provide
exists. Task~i! corresponds to determining whether the stu
ied sequence is nonstationary, and task~ii ! corresponds to
determining the~most likely! location of the nonstationarity
provided it exists.

Since 2N(ln 2)D can be interpreted as the log-likelihoo
ratio of the model with change point and the model witho
change point, the maximization ofD along the sequence
yields a natural way of determining the most likely locatio
of the change point. Hence, we move a cursor along
entire sequence, computeD between the subsequences
both sides of the cursor for all positions, and choose t
position as the optimal change point at whichD reaches its
maximum valueDmax.

In Sec. VI we describe a recursive segmentation algorit
that is based on this idea. The problem we will address
this section is to decide if the valueDmax of the Jensen-
Shannon divergence at the optimal change point is su
ciently large to partition the sequence at that point, or if t
value Dmax is sufficiently small to consider the entire s
quence as stationary and not partition it at all. Hence, we
address in this section the problem of computing the sta
tical significance of experimentally observed values ofDmax.

Even if the studied sequence has been generated fro
single probability distribution, we findDmax.0 due to statis-
tical fluctuations. Moreover, we find thatDmax increases
above any significance thresholds computed in Sec. IV asN
increases. To decide if the obtained valueDmax5x is statis-
tically significant we need to compute the probability of o
taining this value or a lower value by chance in a rand
sequence, i.e., we need to compute
5-8
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smax~x!5Prob$Dmax<x%. ~39!

Obviouslysmax(x)Þs(x). In fact, if each value ofD at each
position of the cursor were independent of the others,
would obtain@36#

smax~x!5s~x!N5$Fk21@2N~ ln 2!x#%N, ~40!

whereN denotes the sequence length. Note that we are d
ing with the comparison between only two distributions (m
52), and hence the number of degrees of freedom isn5k
21.

It is clear that the random variablesD sampled at different
positions of the same sequence are not statistically inde
dent, because the value ofD at a given position is almos
identical to the value ofD at the neighboring positions.

For binary (k52) i.i.d. sequences Horvath@37# derives
an analytic expression forsmax(x) in the limit of asymptoti-
cally large sequence lengthsN, and Csorgo and Horvath@38#
generalize that result to arbitraryk by deriving that the prob-
ability distribution function of ZN[2N(ln 2)Dmax
converges—for asymptotically large values ofN—to

Prob$ANZN<@BN~n!1x#2%5exp~22e2x!, ~41!

whereN denotes the sequence length,n[k21 denotes the
number of degrees of freedom,AN is defined by

AN[2 ln lnN, ~42!

andBN(n) is defined by

BN~n![2 ln lnN1
n

2
ln ln ln N2 ln GS n

2D . ~43!

By converting Eq.~41! into our notation we obtain

smax
` ~x!5exp~22eBN~n!2AAN~2N ln 2!x!. ~44!

In the following paragraphs we test how accurately
asymptotic approximationsmax

` (x) agrees with the finite-size
histogramŝmax(x) obtained by Monte-Carlo simulations o
sequences of lengthN ranging from 102 to 108. For each
sequence lengthN5102, 104, 106, and 108, we generate an
ensemble of 105 quaternary (k54) i.i.d. sequences o
lengthN, and for each sequence of each ensemble we m
a cursor along the sequence and compute at each pos
15<n<N215 the Jensen-Shannon divergenceD @39#. We
defineDmax as the maximum of all values ofD computed
from one sequence, and by collecting all valuesDmax of each
ensemble of 105 random i.i.d. sequences of lengthN we ob-
tain the histogramsŝmax(x) for eachN.

Figure 3~a! shows the histogramsŝmax(x) for k54 and
N5102, 104, 106, and 108 ~symbols! together with the
asymptotic approximationssmax

` (x) ~solid lines!. We find that
the asymptotic approximationssmax

` (x) are not very accurate
and that even for sequence lengths as large asN5108 there
is still a significant deviation betweenŝmax(x) and smax

` (x).
Figure 3~a! also shows that the deviations betweenŝmax(x)
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` (x) are particularly large in the right tail, where w

desire both distributions agree particularly well.
Figure 3~b! illustrates the deviations betweenŝmax(x) and

smax
` (x) by plotting ŝmax(x)2smax

` (x) versus 2N(ln 2)x. We find
that the deviations betweenŝmax(x) and smax

` (x) tend to be-
come smaller as the sequence lengthN increases, but even
for sequences of lengthN5108 the deviations between
ŝmax(x) andsmax

` (x) are greater than 0.04.
As the asymptotic approximationsmax

` (x) is not very ac-
curate for sequences ranging in length fromN5102 to 108,
we recruit Monte-Carlo simulations to obtain numerical a
proximations ofŝmax(x) as a function of the sequence leng
N and the alphabet sizek. We find that the functional form of
ŝmax(x) seems to be very similar to the functional form stat
in Eq. ~40! if we replace the sequence lengthN by aneffec-
tive length Neff , and if we introduce ascaling factorb,1,
by which we multiply the argument ofFk21 .

Specifically, we find that the probability distribution o
Dmax may be approximated by

FIG. 3. Histogramsŝmax(x) of x52N(ln 2) Dmax and their
asymptotic approximationssmax

` (x) obtained from ensembles of 105

quaternary (k54) i.i.d. sequences of lengthN5102, 104, 106, and
108. ~a! shows that the asymptotic approximationssmax

` (x) are not
very accurate for finite-size sequences ranging in lengthN from 102

to 108, and that the largest deviations betweenŝmax(x) andsmax
` (x)

occur in the right tails of the distributions.~b! shows a plot of the
differences between the histogramsŝmax(x) and their asymptotic ap-
proximationssmax

` (x) versusx52N(ln 2) Dmax. We find that the
accuracy of the approximations increases with increasingN, but that
even for sequences of lengthN5108 the deviations betweenŝmax(x)
andsmax

` (x) are greater than 0.04.
5-9
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smax~x!.@s~bx!#Neff5$Fk21@2N~ ln 2!bx#%Neff. ~45!

Neff can be understood as the effective number of indep
dent cutting points, and the scaling factorb accomplishes
that the variance ofDmax is reduced due to correlations b
tween the values ofD computed at different positions of th
same sequence.

Note that, in principle, both parametersNeff andb depend
on bothN and k. To find an approximation of that depen
dence ofNeff and b on N and k, we perform the following
simulations:

~1! We generate, for a given alphabet sizek and a given
sequence lengthN, an ensemble of 105 random i.i.d. se-
quences.

~2! For each sequence, we move a cursor along the
quence and compute at each position 15<n<N215 the
Jensen-Shannon divergenceD @39#, and we defineDmax as
the maximum of all values ofD computed from one se
quence.

~3! For each ensemble of 105 random i.i.d. sequences w
obtain the histogramŝmax(x), and we fit the parametersNeff
andb of smax(x) given by expression~45! to ŝmax(x) by mini-
mizing the Kolmogorov-Smirnov distanceuŝmax(x)2smax(x)u.

~4! We repeat the above procedure for different values
k andN.

Figure 4~a! shows the histogramsŝmax(x) for k54 and
N5102, 104, 106, and 108 ~symbols! together with the
finite-size approximationsmax(x) obtained by the above pro
cedure. We find by visual inspection of Fig. 4~a! and by
extensive analysis of the Kolmogorov-Smirnov distances
tweenŝmax(x) andsmax(x) for k varying from 2 to 12 andN
varying from 102 to 108 that smax(x) from Eq. ~45! provides
a good approximation ofŝmax(x).

Figure 4~b! shows the deviations betweenŝmax(x) and
smax(x) by plotting ŝmax(x)2smax(x) versus 2N(ln 2)x, and we
find that the maximum deviation betweenŝmax(x) andsmax(x)
stays below 0.02 for all of the cases we analyze, rang
from k52 to k512 and fromN5102 to N5108. Moreover,
we find that the maximum deviation betweenŝmax(x) and
smax(x) stays below 0.01 if we restrict the comparison
ŝmax(x) and smax(x) to the right tails of the distributions
where we want the approximations to be particularly ac
rate.

Next, we study how the parametersNeff andb obtained by
the fitting procedure described above depend on the alph
sizek and the sequence lengthN. Figure 5 showsNeff andb
versusN for varying values ofk. First, we find thatb is
practically independent ofN. Second, we find that for eachk
the effective number of cutting pointsNeff admits a good
linear fit as a function of lnN, i.e.,

Neff5a ln N1b. ~46!

Both parametersa andb depend on the alphabet sizek, and
we present the least-squares values ofa andb as a function
of k in Table I.
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VI. APPLICATIONS OF D

In this section we illustrate how the results obtained in
previous sections may be used to develop an algorithm
can partition a nonstationary sequence into stationary su
quences. We describe this segmentation algorithm base
the Jensen-Shannon divergenceD in detail, and we presen
three application examples of this recursive segmentation
gorithm.

Many sequence analysis techniques rely on the statio
ity of the analyzed sequence, i.e., they rely on the assu
tion that all portions of the sequence have at least the s
composition. Thisa priori assumption is very often in con
flict with experimental data, such as, for example, in case
DNA sequences@40#. The algorithm described here, which
an improved version of the algorithm presented in Refs.@13#
and @18#, allows us to decompose a nonstationary seque

FIG. 4. Histogramsŝmax(x) of x52N(ln 2) Dmax and their finite-
size approximationssmax(x) obtained from ensembles of 105 quater-
nary (k54) i.i.d. sequences of lengthN5102, 104, 106, and 108.
~a! shows that the approximationssmax(x) are more accurate fo
sequences of lengthN ranging from 102 and 108 than the
asymptotic approximationssmax

` (x) presented in Fig. 3, and that th
largest deviations betweenŝmax(x) and smax

` (x) do not occur in the
right tails of the distributions, which we desire to approximate
accurately as possible.~b! shows a plot of the differences betwee
the histogramsŝmax(x) and their finite-size approximationssmax(x)
versus x52N(ln 2) Dmax. We find that the deviations betwee
ŝmax(x) andsmax

` (x) are smaller than 0.02. Moreover, we find that t
deviations betweenŝmax(x) andsmax

` (x) are smaller than 0.01 if we
restrict the comparison ofŝmax(x) and smax(x) to the tails of the
distributions, which we desire to approximate as accurately as
sible.
5-10
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ANALYSIS OF SYMBOLIC SEQUENCES USING THE . . . PHYSICAL REVIEW E 65 041905
into stationary subsequences of homogeneous compos
as follows:

First, we move along the sequence a cursor that divide
each position the sequence into two subsequences, an
computeD for each position of the cursor. We select th
point at whichD reaches its maximum valueDmax, and we
compute its statistical significancesmax. If this smax exceeds
a given thresholds0 , the sequence is cut at this point, a
the procedure continues recursively for each of the two
sulting subsequences. Otherwise, the sequence remains
vided. The process stops when none of the possible cu
points has a significance threshold exceedings0 , and we say
that the sequence is segmented atsignificance threshold s0 .

In the following three sections we present three examp
that illustrate this recursive segmentation process.

A. Segmentation of a model sequence with known
compositional domains

In order to test if the segmentation algorithm works, w
generate a binary sequence of length 53104 obtained by
joining patches of different length and composition. W
choose the sizes of the patches randomly from a power
distribution in order to obtain a wide range of different size
and we choose the composition of the patches rando
from a truncated Gaussian distribution centered at 1/2.

To show graphically the variation in composition alon
this sequence, we plot in Fig. 6 the walk of the sequen
Given a binary sequence$yi%, i 51,...,N, whereyi can as-
sume the values11 or 21, the walk of the sequence a
positionn is defined by@41#

FIG. 5. Parameter values ofNeff ~squares! and b ~circles! as a
function of the sequence lengthN, ranging from 200 to 105, for an
alphabet sizek54. We find thatb is almost independent ofN, b
50.80, whileNeff admits a good linear fit to lnN. The least-squares
fit to Neff5a ln N1b yields a52.44 andb526.15.

TABLE I. Values of the parametersa, b, and b obtained by
least-squares fitting ofsmax(x) for three values of the alphabet sizek.

k a b b

2 2.96 27.88 0.80
4 2.44 26.15 0.80

12 2.32 24.32 0.85
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Regions with a positive slope in Fig. 6 correspond to
abundance of11’s, and regions with a negative slope corr
spond to an abundance of21’s.

We apply the segmentation procedure presented abov
this example sequence, and the vertical lines in Fig. 6 co
spond to the cuts obtained by means of the segmenta
procedure. Figure 6 shows clearly that the positions of
cuts coincide accurately with changes in the slope ofw(n).
Moreover, regions without any cut do not seem to show
significant change of the slope ofw(n).

This observation allows us to conjecture that the sub
quences obtained by the segmentation procedure are in
homogeneous at the considered significance threshold.
worth mentioning that the method does not rely on any ini
assumption about the size distribution of the subsequen
and as we can verify by inspecting Fig. 6 the resulting s
sequences have indeed a great variety of sizes.

B. Length distribution of compositionally stationary domains
in prokaryotic and eukaryotic DNA

In this subsection we present one example in which
apply the recursive segmentation procedure to DNA
quences with the goal of studying the length distribution
compositionally stationary domains in prokaryotic and e
karyotic DNA. We segment at a significance threshold
s0595% the complete genome of the bacteriumEscherichia
coli @42# with a length of 4 639 221 base pairs~bp! as well as
the human major histocompatibility complex~MHC! region
of chromosome 6@43# with a similar size of 3 673 777 bp. In
both cases we use the natural four-letter alphabetA

FIG. 6. Segmentation of a computer generated binary sequ
of length 53104 obtained by joining patches of different length an
composition. The solid line represents the walk of the sequence~see
text! and the vertical dotted lines represent the locations of the
obtained by the recursive segmentation procedure at significa
thresholds0595%. We find that the recursive segmentation pro
dure is indeed capable of partitioning the nonstationary input
quence into stationary subsequences at those points~vertical dotted
lines! at which the local composition of the sequence changes,
dicated by changes of the slope of the sequence walk~solid line!.
5-11
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IVO GROSSEet al. PHYSICAL REVIEW E 65 041905
[$A,C,G,T%, whereA stands for the baseadenine, Cstands
for the basecytosine, Gstands for the baseguanine, andT
stands for the basethymine.

We find that the recursive segmentation procedure pa
tions the human MHC region into 6169 segments with
average size of 595 bp, while it partitions the complete
nome of the bacteriumE. coli into 1534 segments with a
average size of 3024 bp. This finding is consistent with
numbers of domains obtained by Li@44#, who computes the
significance thresholds0 based on the Bayesian informatio
criterion, and the finding that the number of domains o
tained for the human MHC region is significantly grea
than the number of domains obtained for the bacteriumE.
coli is consistent with reports on the presence of large co
positional inhomogeneities in human DNA sequenc
@18,40,45#.

Figure 7 shows the histogram of segment sizes for b
theE. coli genome and the human MHC sequence. One n
worthy feature of these histograms is the high density
segments in the range below 30 bp. The high abundanc
those short domains may be related to the presence of
odicities of about 10.5 bp in DNA sequences@46#. We find
by inspection of the resulting segments in this small-s
range that most of those short segments are made up of
types of stacks consisting of either a majority ofA/T or a
majority of AG/CT, respectively.

We find a weak signal indicating a second characteri
segment size in the range of 200–400 bp, which is agai
agreement with previous studies@46,47#. The slower decay
of the distribution of segment sizes found for the bacteri
E. coli ~inset of Fig. 7! indicates a larger abundance of lon
segments and seems to be a generic feature of the seg
size distribution of most prokaryotes.

FIG. 7. Normalized distributions of segment sizes for the co
plete genome of the bacteriumE. coli of length 4 639 221 bp and a
contiguous human DNA sequence—the 3 673 777 bp long hu
MHC region of chromosome 6—of similar size. In both cases
use the natural four-letter alphabet and a significance threshos0

595%. We find that the human MHC region is more heterogene
than theE. coli genome, which is reflected by the longer tail~and
the greater mean value! of the segment length distribution of theE.
coli genome as compared to the human MHC region. The in
shows a double-logarithmic representation of the same distr
tions.
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In order to check the robustness of the results again
change of the significance thresholds0 , we repeat the seg
mentation of these two sequences at different values ofs0 .
Figure 8 shows that the distributions are not identical,
that the main features of them, described above, remain
changed.

C. Searching for borders between coding and noncoding DNA

In this section we describe a recently presented appl
tion of the recursive segmentation procedure to detect b
ders between coding and noncoding DNA@20#.

One well-known statistical feature of coding regions is t
nonuniform codon usage@48#, which means that inside cod
ing regions not all triplets of nucleotides~called codons! oc-
cur with the same probability. In particular, the probabilitypi
of finding nucleotideaiP$A,C,G,T% varies from position to
position @5,49,50#. This variation may originate from the re
strictions imposed by the genetic code and also from so
preferences in the synonymous codon usage, but irrespe
of its origin, this variation is not present in noncoding DNA
Hence, this property can be used to distinguish coding fr
noncoding DNA, and in fact the first gene prediction pr
grams @50# were based on the presence or absence of
positional variation of the nucleotide probabilitiespi .

In order to take into account this statistical property
coding DNA, we introduce the following 12-letter alphabe
define the phase of positionn by l[n modulo 3. Hence, each
of the nucleotides of the DNA sequences can be substitu
by one of the following symbols from the alphabetA12
[$A0 ,A1 ,A2 ,C0 ,C1 ,C2 ,G0 ,G1 ,G2T0 ,T1 ,T2 ,%, where,
for example,T2 denotes the nucleotideT with phasel 52.
Using this alphabet we define the 12-letter frequency vec

-

n
e

s

et
u-

FIG. 8. Normalized distributions of segment sizes for seve
values of the significance thresholds0 , for the complete genome o
the bacteriumE. coli of length 4 639 221 bp and a contiguous h
man DNA sequence—the 3 673 777 bp long human MHC region
chromosome 6—of similar size. In all cases we use the nat
four-letter alphabet, and we find that the length distributions
quite robust against changes of the significance thresholds0 .
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f12[( f i ,l), where i P$A,C,G,T%, lP$0,1,2%, and f i ,l de-
notes the relative number of counts of nucleotidei in phasel.

Although coding and noncoding DNA may have the sa
or a similar composition when being described using
standard four-letter alphabet, the compositions given byf12
can be quite different. In noncoding DNA the probability
finding a given nucleotide is almost the same in all th
phases, whereas in coding DNA this probability clearly v
ies from phase to phase. Even when comparing two cod
regions whose starting positions are in different phases,
composition given byf12 is usually different. Hence, we pro
pose the following modification of the segmentation pro
dure described above with the goal of detecting borders
tween coding and noncoding DNA.

Instead of computingD in terms off4 , we now compute
D in terms of f12, and we hope that the resulting borde
between stationary subsequences will be highly correlate
the borders between coding and noncoding DNA. The res
obtained by segmenting complete prokaryotic genomes
fairly promising, taking into account that the segmentat
procedure may be supplemented by additional biological
formation ~see Ref.@20# for more details on the results!.

A technical question related to the computation of t
significance threshold for the 12-letter modification of t
Jensen-Shannon segmentation procedure is worth men
ing: following Sec. V one could naively think that we shou
obtainsmax(x) from Eq. ~45! with k512, using Eq.~46! and
the fitting parameters given in Table I. However, when us
the frequency vectorf12 we have to satisfy three constrain
and not only one:S i f i ,l51/3 for l 50,1,2, because the num
ber of nucleotides in each phase is 1/3 of the total. Hence
number of degrees of freedom isn5k2359, and for this
case Eq.~45! reads

smax~x!5@s~bx!#Neff5$F9@b~2N ln 2!x#%Neff. ~48!

By means of numerical simulations we obtain thatb334 and
Neff are well fitted by b33450.84 and Neff5a334 ln N
1b334, with a33452.34 andb334523.69.

VII. CONCLUSIONS

One important task in analyses of experimental data i
partition a nonstationary sequence into stationary sub
quences. This task is important because many statis
analysis techniques rely on the stationarity of the analy
sequence, and the results of those analyses may be sev
affected by nonstationarities of the analyzed data. Detec
nonstationarities in experimental data is nontrivial, a
hence there is no standard solution to this problem. M
measures that can detect deviations from stationarity in
way or another have been proposed in the past, and on
the goals of this paper is to motivate the use of the Jen
Shannon divergence as a measure of stationarity for s
bolic sequences.

We propose to declare a sequenceS stationary if we can-
not find any pointn at which S could be divided into two
subsequencesS(1) andS(2) with significantly differentcom-
position. In order to decide if the compositions of the tw
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subsequencesS(1) andS(2) aredifferentwe propose to com-
pute the Jensen-Shannon divergenceD between the two fre-
quency vectorsf(1) and f(2) associated withS(1) and S(2),
and in order to decide if the maximum Jensen-Shannon
vergenceDmax is significant we propose to compute th
probability that this~or a greater! value ofDmax could have
been obtained by chance.

One reason why we suggest the Jensen-Shannon d
gence as a measure of stationarity is its easy interpretab
in three different subfields of science. As we show in th
paper, the Jensen-Shannon divergence can be interpret
~i! the intensive mixture entropy in the framework of stat
tical physics,~ii ! the mutual information in the framework o
information theory, and~iii ! the log-likelihood ratio in the
framework of mathematical statistics.

In general, the weightsp ( j ) enter the definition of the
Jensen-Shannon divergenceD as free parameters, which ma
be chosen in a problem-specific manner. It is interesting
note that all three interpretations ofD suggestone, i.e., the
same, natural choice of weights proportional to the sizesn( j )

of the subsystemsS( j ). Moreover, we find that this natura
choice of weights makes the mean, the variance, and
probability distribution function of 2N(ln 2) D independent
of the subsystem sizesn( j ), which is important for practical
applications, where subsequences of different sizes mus
compared.

We devote Sec. IV to the derivation of the mean, t
variance, and the probability distribution function o
2N(ln 2) D, and we find that—for the natural choice o
weightsp ( j )5n( j )/N—expressions~22! and ~30! reduce to
the classical results of the mean and the variance of the m
ing entropy, mutual information, or log-likelihood ratio. W
also show that for the naive choice of weightsp ( j )51/M the
mean and the variance become singular as the lengthn( j ) of
at least one of the subsequences becomes very small.
singularity makes the naive choice of weights inappropri
for many practical applications, where subsequences wi
wide range of different lengthsn( j ) are to be analyzed.

The natural choice of weights does not only make
mean, the variance, and the asymptotic probability distri
tion function of 2N(ln 2) D independent of the subsequen
lengthsn( j ), but also independent of the composition of t
studied sequence. Moreover, we find that~i! the natural
choice of weights minimizes the variance ofD in a first-order
approximation, and that~ii ! with the natural choice of
weights the variance ofD decays as 1/N2 with the total se-
quence lengthN, whereas in general the variance ofD de-
cays as 1/N. The combination of all of the above features a
the reason why we prefer the natural choice of weights in
applications of the Jensen-Shannon divergence to analys
symbolic sequences.

In order to declare a sequence stationary we require th
be no pointn at which the studied sequence could be pa
tioned into two subsequences of significantly different co
positions. This requirement is the motivation for our goal
finding an approximation of the probability distribution fun
tion smax(x)[Prob$Dmax<x% for an ensemble of i.i.d. se
quences of lengthN. If all of the D values computed along
the same sequence were statistically independent,smax(x)
5-13
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could be derived easily, but the nontrivial statistical dep
dences between theD values computed along the same s
quence makes the derivation ofsmax(x) hard.

Even in the limit of asymptotically large sequence leng
N, finding an approximation ofsmax(x) is such a challenging
problem that it could be attacked by mathematicians only
the last two decades. Pettitt, one of the pioneers in the fi
of change-point analysis, wrote in 1980 that ‘‘the null distri-
bution of the likelihood-ratio statistic is completely intra
table’’ @51#, and it was only in 1989 when Horvath succeed
in deriving an asymptotic approximationsmax

` (x) of the prob-
ability distribution function ofDmax for the special case of a
ensemble of binary (k52) i.i.d. sequences@37#.

One interesting feature of the asymptotic probability d
tribution functionsmax

` (x) and its generalization@38# to the
multinomial case is its scaling with ln lnN, which states that
the expected value of 2N(ln 2) Dmax diverges to infinity as
N→`, but that this divergence is extremely slow.

For practical applications the asymptotic scaling
smax

` (x) is not as important as the accuracy ofsmax
` (x) for

finite N ranging from 102 to 108. The longest of the currently
identified DNA sequences have a length of the order of9

nucleotides, and the shortest identifiable DNA subsequen
of homogeneous nucleotide composition have a length of
order of 10 nucleotides. Hence, we are interested in find
an approximation ofsmax(x) that is accurate for lengthsN
ranging roughly from 102 to 108 nucleotides.

We find that the asymptotic approximationsmax
` (x) to the

finite-size distributionŝmax(x) is not very accurate in tha
range ofN, and so we recruit Monte-Carlo simulations
obtain a finite-size approximationsmax(x) that is more accu-
rate thansmax

` (x) for N ranging from 102 to 108 and for k
ranging from 2 to 12. In particular, we are interested in
approximationsmax(x) that is accurate in the right tail of th
distribution, because this is the region where an accu
computation of the probabilitysmax(x) is needed in practica
applications.

We find thatsmax(x) may be well approximated by Eq
~45!, which states that the probability distribution function
the maximum of allN21 statisticallydependentvalues ofD
computed along a sequence of lengthN is similar to the
probability distribution function of the maximum ofNeff sta-
tistically independentrandom variablesbD, whereNeff de-
notes theeffectivesequence length, and whereb is a scaling
factor that we introduce to account for the decrease of
variance ofDmax due to correlations between the values ofD
computed at different positions of the same sequence.
finding thatsmax(x) given by Eq.~45! yields an accurate ap
proximation forN ranging from 102 to 108 and fork ranging
from 2 to 12 is the central result of this paper.

When studying the dependence ofb and Neff on the se-
quence lengthN and the alphabet sizek, we find that the
scaling factorb is almost independent of bothN andk, and
that the effective sequence lengthNeff admits a surprisingly
accurate fit toa ln N1b, wherea and b are constants tha
depend only on the alphabet sizek.

In the last section of this paper we introduce a recurs
segmentation algorithm, which is an improved version of
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algorithm proposed by Bernaolaet al. @13#, and which dif-
fers from the original algorithm by computing the probabili
of performing a segmentation step from the probability d
tribution function smax(x) rather than from the probability
distribution functions(x). While the original algorithm tends
to partition even a stationary sequence into domains of a
age size 1/(12s0), the recursive segmentation algorith
based onsmax(x) does not suffer from this artifact.

One question that has been raised in previous years is
question for the length distribution of compositionally hom
geneous domains in DNA sequences of different organis
Here we apply the recursive segmentation algorithm ba
on smax(x) to the complete genome of the bacteriumE. coli
and the human MHC region on chromosome 6. Both DN
sequences have a similar length of approximately 43106

nucleotides, and we find in Figs. 7 and 8 that the recurs
segmentation algorithm based onsmax(x) yields in both cases
compositionally homogeneous domains with a wide range
domain sizes. When comparing the two resulting segm
size distributions to each other, we find that the human M
region consists of more and shorter compositionally hom
geneous domains than theE. coli genome, which is in agree
ment with previous findings on the complex organization
eukaryotic genomes.

In a second application example we study if the recurs
segmentation algorithm could possibly be used to detect
ders between coding and noncoding DNA sequences, and
find that—by choosing an appropriate representation of D
sequences by 12 rather than four letters, encoding not o
the identity of each nucleotide but also its position in t
reading frame—the recursive segmentation algorithm ba
on smax(x) can detect borders between coding and noncod
DNA sequences more accurately than conventional slidi
window techniques@20#.

There is a whole plethora of problems in DNA sequen
analysis that could be attacked by the recursive segmenta
process, such as the identification of CpG islands or iso
ores, the determination of origins and termini of replicatio
or the detection of complex repeats or regulatory eleme
@52#. As the results presented in this paper are not restric
to quaternary sequences, they might possibly be useful
wide variety of applications involving the problem of part
tioning a nonstationary symbolic sequence into its station
subsequences.
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APPENDIX: APPROXIMATION OF THE ENTROPY
COVARIANCE

In this appendix we derive a first-order approximation
the covariance between the entropyH@ f# sampled from the
5-14
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entire sequenceS of length N and the entropyH@ f( j )#
sampled from subsequenceS( j ) of lengthn( j ) under the null
hypothesis thatS is an i.i.d. sequence.

We start with a Taylor expansion ofH@ f# about the vector
p, and by using the definitions

Ĥ[H@ f#,

H[H@p#,

DH[Ĥ2H,

D f i[ f i2pi ,

we obtain

DH.2(
i 51

k

D f i log2pi2(
i 51

k
~D f i !

2

2pi ln 2
, ~A1!

where the symbol. indicates that we neglect terms of th
order ofO„(D f i)

3
….

Analogously, we Taylor-expandH@ f( j )# about the vector
p( j ), and by using the definitions

Ĥ ~ j ![H@ f~ j !#,

H ~ j ![H@p~ j !#,

DH ~ j ![Ĥ ~ j !2H ~ j !,

D f i
~ j ![ f i

~ j !2pi
~ j ! ,

we obtain

DH ~ j !.2(
i 51

k

D f i
~ j ! log2 pi

~ j !2(
i 51

k
~D f i

~ j !!2

2pi
~ j ! ln 2

, ~A2!

where the symbol. indicates that we neglect terms of th
order ofO„(D f i

( j ))3
….

We next express the covariance cov(H@ f#,H@ f( j )#) in
terms ofDH andDH ( j ), and by using the above definition
we obtain

cov~Ĥ,Ĥ ~ j !![^~Ĥ2H !~Ĥ ~ j !2H ~ j !!&

5^DHDH ~ j !&2^DH&^DH ~ j !&. ~A3!

Since the product̂DH&^DH ( j )& is of the order ofO(1/N2),
we can neglect it in a first-order approximation
cov(Ĥ,Ĥ ( j )), and by plugging the Taylor expansions of Eq
~A1! and ~A2! into Eq. ~A3! we obtain
04190
.

cov~Ĥ,Ĥ ~ j !!. (
g,i 51

k

^D f gD f i
~ j !& log2pg log2pi

~ j ! , ~A4!

where the symbol. indicates that we neglect terms of th
order ofO(1/N2).

The derivation of̂ D f gD f i
( j )& is straightforward, becaus

we can use the equalities

f g5 (
h51

m
n~h!

N
f g

~h! and pg5 (
h51

m
n~h!

N
pg

~h! ~A5!

to obtain

^D f gD f i
~ j !&5 (

h51

m
n~k!

N
^D f g

~h!D f i
~ j !&, ~A6!

and we can work out the terms^D f g
(h)D f i

( j )& by completely
elementary methods.

The product-multinomial sampling of the frequency ve
tors f( j ) implies that the drawing of symbolagPA from sub-
sequenceS(h) and the drawing of symbolaiPA from sub-
sequenceS( j ) are statistically independent, which in tur
implies

^D f g
~h!D f i

~ j !&5^D f g
~h!&^D f i

~ j !&50, ~A7!

for all g, i 51,2,...,k andh, j 51,2,...,m with hÞ j . In case of
h5 j we find

^D f g
~ j !D f i

~ j !&5
pg

~ j !~dgi2pi
~ j !!

n~ j ! , ~A8!

wheredgi denotes Kronecker’s delta, which is equal to 1
g5 i and equal to 0 otherwise.

By plugging Eqs.~A7! and~A8! into Eq. ~A6! we obtain

^D f gD f i
~ j !&5

pg
~ j !~dgi2pi

~ j !!

N
. ~A9!

Under the null hypothesis thatp(h)5p( j ) for all h, j
51,2,...,m, Eq. ~A9! simplifies to

^D f gD f i
~ j !&5

pg~dgi2pi !

N
, ~A10!

and by plugging Eq.~A10! into Eq. ~A4! we obtain

cov~Ĥ,Ĥ ~ j !!.
1

N
s2~ log2p!, ~A11!

where the symbol. indicates that we neglect terms of th
order ofO(1/N2), and wheres2(log2 p) denotes the variance
of the numbers log2 pi with respect to the probability distri
bution $pi%.
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@15# V. Barranco-López, P. Luque-Escamilla, J. Martı´nez-Aroza,
and R. Roma´n-Roldán, Electron. Lett.31, 867 ~1995!.

@16# P. Carpena and P. Bernaola-Galva´n, Phys. Rev. B60, 201
~1999!.

@17# W. Li, Complexity 3, 33 ~1997!.
@18# R. Roman Rolda´n, P. Bernaola-Galva´n, and J. L. Oliver, Phys.

Rev. Lett.80, 1344~1998!.
@19# P. Bernaola-Galva´n, J. L. Oliver, and R. R. Roma´n-Roldán,

Phys. Rev. Lett.83, 3336~1999!.
@20# P. Bernaola-Galva´n, I. Grosse, P. Carpena, J. L. Oliver, R

Román-Roldán, and H. E. Stanley, Phys. Rev. Lett.85, 1342
~2000!.

@21# J. Burbea and C. R. Rao, IEEE Trans. Inf. Theory28, 489
~1982!.

@22# I. Csiszár, Stud. Sci. Math. Hung.2, 299 ~1967!.
@23# T. Cover and J. Thomas,Elements of Information Theor

~Wiley, New York, 1991!.
@24# By a symbolic i.i.d. sequence we mean a sequence of inde

dent and identically distributed~i.i.d.! symbols.
@25# M. Mansuripur,Introduction to Information Theory~Prentice-

Hall, Englewood Cliffs, NJ, 1987!.
@26# G. A. Miller, Information Theory in Psychology, edited by H.

Quaster~Free Press, Glencoe, 1955!.
@27# G. P. Basharin, Theor. Probab. Appl.4, 333 ~1959!.
04190
-

.

n-

@28# B. Harris, Topics Inf. Theory~Keszhtely! 16, 323 ~1975!.
@29# H. Herzel, A. O. Schmitt, and W. Ebeling, Chaos, Solito

Fractals4, 97 ~1994!.
@30# M. S. Roulston, Physica D125, 285 ~1999!.
@31# W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Fla

nery, Numerical Recipes in C~Cambridge University Press
Cambridge, England, 1994!.

@32# M. Abramowitz and I. A. Stegun,Handbook of Mathematica
Functions~Dover, New York, 1970!.

@33# B. James and K. Ling, Biometrika74, 71 ~1987!.
@34# M. Pollak and D. Siegmund, Annu. Stat. Suppl. Soc. Se

Bull. 19, 394 ~1991!.
@35# B. Witcher, P. Guttorp, and D. B. Percival, J. Stat. Comp

Simul. 68, 65 ~2000!.
@36# W. Feller,An Introduction to Probability Theory and its Appli

cations~Wiley, New York, 1971!.
@37# L. Horvath, J. Multivariate Anal.31, 148 ~1989!.
@38# M. Csorgo and L. Horvath,Limit Theorems in Change Poin

Analysis~Wiley, New York, 1997!.
@39# We choose an ‘‘excluded volume’’ of size 15 around the e

points of the sequence, because the frequency vectorf cannot
be reliably computed if the length of the subsequence dr
below approximately 15.

@40# C.-K. Penget al., Phys. Rev. E49, 1685~1994!.
@41# C.-K. Peng, S. Buldyrev, A. Goldberger, S. Havlin, F. Scio

tino, M. Simons, and H. E. Stanley, Nature~London! 356, 168
~1992!.

@42# F. R. Blattneret al., Science277, 1453~1997!.
@43# Sequence retrieved from http://www.sanger.ac.uk/HGP/Ch

MHC.shtml.
@44# W. Li, in Proceedings of the Fifth Annual International Con

ference on Computational Biology~ACM, New York, 2001!, p.
204.

@45# G. Bernardiet al., Science228, 953 ~1985!.
@46# E. N. Trifonov, Physica A249, 511 ~1998!.
@47# G. M. Viswanathan, S. V. Buldyrev, S. Havlin, and H. E. Sta

ley, Biophys. J.72, 866 ~1997!.
@48# R. Grantham, C. Gautier, M. Gouy, M. Jacobzone, and R. M

cier, Nucleic Acids Res.9, R43 ~1981!.
@49# J. C. W. Shepherd, Proc. Natl. Acad. Sci. U.S.A.78, 1596

~1981!.
@50# R. Staden and A. D. McLachlan, Nucleic Acids Res.10, 141

~1982!; J. W. Fickett,ibid. 10, 5303~1982!.
@51# A. N. Pettitt, Biometrika67, 79 ~1980!.
@52# W. Li, P. Bernaola-Galvan, F. Haghighi, and I. Grosse, Co

put. Chem.~Oxford! ~to be published!.
5-16


