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Statistical properties of contact vectors
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We study the statistical properties obntact vectorsa construct to characterize a protein’s structure. The
contact vector of aiN-residue protein is a list dfl integersn;, representing the number of residues in contact
with residuei. We study analyticallyat mean-field leveland numerically the amount of structural information
contained in a contact vector. Analytical calculations reveal that a large variance in the contact numbers
reduces the degeneracy of the mapping between contact vectors and structures. Exact enumeration for lengths
up toN=16 on the three-dimensional cubic lattice indicates that the growth rate of number of contact vectors
as a function oN is only 3% less than that for contact maps. In particular, for compact structures we present
numerical evidence that, practically, each contact vector corresponds to only a handful of structures. We
discuss how this information can be used for better structure prediction.
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[. INTRODUCTION perform a successful prediction, it opens the possibility to
confine the search for the native fold to a small portion of the
The protein-folding problem has been the subject of ex-conformational space. The question then becomes “How
tensive research in the last decade and although much h&sany folded configurations are there, consistent with a given
been learned a satisfactory understanding of the phenomenéft of contact numbers?” And, for that matter, “Is such a
has not been reached ydt-3]. The physical approach to the contact-number representation of the protein structure degen-
problem is to consider the native state of a protein as thérate at all?” The rest of this paper addresses these questions.
ground state of a Hamiltonian that acts on sequence space
and summarizes the interresidue and residue-solvent interac- Il. CONTACT MAPS VS CONTACT VECTORS
tions [1,2,4]. Recently it was shown that there are several . ) _
cases for which there is no possible choice of pairwise con- 1he contact magCM) [13] of a protein ofN amino acids
tact interactions between residues that suffices to pin dow/$ & Symmetric binary matric of sizeNxN, such thatC;,
the native state even for a single protg6]. This conclu- — L When théth and thejth amino acids of the sequence are
sion is supported by molecular dynamics studidsand lat- nelgrlbors, with some suitable dgfmltlon of “nmghborhpod—
tice modelg 8] on residue-solvent interactions, where many-"€ss’(€.g., @ common construct is to threshold the pairwise
body forces are shown, or can be deduced to be as relevafistance matrix for the Catoms[5]). The CM has proven to
as two-body forces. To get around this failure of the two-be a convenlent_ encoding of the three-(_jlmensmnal native
body Hamiltonian approach while retaining a coarse-grained®!d: (1) The native backbone conformation can be repro-
description(as opposed to, say, an all-atom one, includingduced to within~1.5 A average uncertaintithe same as
water [9]), we need to introduce new terms at the residugNost x-ray data[14], and (2). It allows for an efficient
level to bias the optimization procedure towards the trues€@rch of the configuration space, since large conformational
minima. changes can be obtained by minor modifications of the CM
It is widely accepted that hydrophobicity is the force driv- [15]- Within such minimalistic framework one hopes to gain
ing the folding procesgL0]. At the individual residue level, NeW insight to the protein-folding problem since it is ame-
hydrophobicity is correlated with the solvent-exposed gyrhable to dlﬁerent'physma! anq math'ematlcal tools. For in-
face area in the native staf¢l]. In addition, as reported stance, the following He_lmlltonlan a_lctlng on the contact map
below, a statistical analysis of the native structures depositetPace has been extensively used in the pgt19:
in the protein data banPDB) [12]) reveals a good correla-
ti_on (coefficient of correlati_on 0)8between the solyent— _ H=E w(a;,a))Cjj 1)
hidden surface area per residue and the number of interresi- ]
due contacts per residue in the native state. We, therefore,
propose the following two-step procedure for predicting thewherew(a,B) is one of the 210 energy parameters repre-
native state of a protein. First, a reasonably accurate predisenting the contact energy between the amino-acid types
tion of the exposed surface area in the native fold is made oand 3. Unfortunately, this formulation has limited predictive
the basis of sequence informatifdi]. Second, this informa- power. For example, given a large enough set of sequences
tion is translated into a prediction of the number of nativeand decoygobtained by threadingrom the PDB, no set of
contacts of each residue, e.g., to a predicted natovgact w(a,B) exists, for whichH has its ground states at the na-
vector Even if this scheme will turn out to be insufficient to tive folds[6]. This is in accordance with the recent studies on
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FIG. 1. The contact map is a binary representation of the three- ol
dimensional structure of the folded protein. The contact vector is » ‘
constructed by summing up the rows of the contact map. 00 5 10 15 20 25
Hidden Surface Area

the nature of the hydrophobic interactiph,8], whose con-

clusion is that many-body interactions are of the same order FIG. 2. Hidden surface area per residaéter appropriate scal-

of magnitude as two-body interactions. ing) vs number of contacts per residue. The histogram is obtained
One possible way to improve the Hamiltonian in E) by averaging over 177 representative proteins with a threshold on

is to include an energy penalty for deviations from the nativethe C.. distance between amino-acid pajif§. The number of oc-
contacts, currences is gray-scale coded, increasing fromwite) to 500

(black). The coefficient of correlation is 0.8.

_ 1t
H_(l_k)izj w(a;,a))C; H\Z (Ni—=n™? (2 of 0.8 between the solvemiddensurface area of a residue
and the number of amino acids it is in contact witlee Fig.

where we define a “contact vectofCV) fi of rankN, which ~ 2). Therefore, in future work we expect to replace &'
is the sum of the entries of the CM on each raw column  term in Eq.(2) by nP®d°®d thereby breaking the causality
(see Fig. 1, loop that is a characteristic of Go-like models. Another rea-
son to study the model of Eq2) is that a related kind of
H:E C.. 3) Hgmiltonian has been recently prpved to be useful to deter-
L mine the structure of nearly native protein conformations
[33]. In that study,n; represents the number ohtive con-
Contact vectors have already been studied in the contexacts formed by residuein the contact maj. Also in that
of protein folding[20—2§. We note, in particular, that the case, it was found that a large variancenin(see below
second term in Eq(2) resembles a hydrophobic term intro- implies a low degeneracy in mapping between contact vec-
duced previously29] and studied in Ref.30], with the dif-  tors and three-dimensional conformations.
ference that the desired number of contacts of residise In studying Eq.(2), first we tried to use a set of contact
determined by its species. Here instead we assume thenergy parametens/(a;,a;), found earlier by an optimiza-
knowledge ofn™, the correct number of contacts of residue tion process, using Eq2) with A=0. This attempt failed to
i in the native structure. Hence the second term in ®y. assign the minimal energy to the native state for any choice
carries the same spirit as the Go mo®d]. In this paper we of A. However, an optimization oiv(«,8) over the known
are interested in studying the statistical properties of contacstructures by using the Hamiltonian in E) with A#0
vectors. For our more general purpose, it would seem inconmay, perhaps, successfully identify the native state. We will
sistent to use Eq(2) to predict the native structure of a investigate this possibility in the future.
protein, as we bias the Hamiltonian towards the minimum by The Hamiltonian Eq(2), with A=1, fails to identify the
using information that is not accessible to us before we acnative fold. This statement means that it is possible to find
tually solve the problem. However, unlike in the Go model,conformations that, on the one hand, are very different from
the information required here about the native stdtenum-  the native one and, on the other, each amino acid has exactly
ber of contacts for each residués modest, and, most cru- the correct number of neighbors, that is the same number of
cially, can be predicted. Learning algorithms have been reneighbors as in the native state. This result was first found by
cently developed, which are trained on known structures tdjtehadiet al. [22] by exact enumeration of all the compact
predict the surface exposure of the amino acids in the nativeonformations on a 83X 3 cubic lattice. For actual pro-
fold [11,32. Since the hydrophobic effect is driving the fold- teins, an example is given in Fig. 3 in the case of protein CI2
ing proces410], it is natural to expect that an accurate pre-(PDB code 2ci2, where the CM’s of the native fold and of
diction of the solvent exposed surface of each residue in thenother conformation are superimposed. These two confor-
folded state may lead to prediction of the correct nativemations have identical CV’s. At first glance, it would seem
structure. To bridge the gap between the exposed-surface innlikely to find two compact configurations where each resi-
formation and the CV defined above, we performed an analydue has exactly the same number of neighboring residues in
sis on a representative set of proteins from the PDB databaseontact. On the other hand, the cautious reader will attribute
We found a linear correlation with a coefficient of correlationthis degeneracy to the loss of informatioffrom
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counting, for a givem, only the physical CM’s that are
consistent with it. A physical CNi14,29 is one for which a
perfectly matching chain configuration can be found. There
is, however, no known analytical selection rule for the physi-
cal CM’s among all symmetric and tracelddx N matrices;
therefore, in our analytic study we will consider all binary
symmetric matrices. This is essentially the mean-field treat-
ment of the problem, since in the limit of infinite dimensions,
all the constraints on the CM, except being symmetric with
zero trace, will be relaxed. For any finite dimension we over-
estimate the degeneracy—the number of physical CM's
scales exponentially, &, whereas the number of possible
CM's scales ag"’ [13].

Since we deal with contact maps, we will consider sym-
metric, traceless binary matrices, characterizedxpy: X;;

20 40 60 and x;;=0. The formal expression for the numbe{ri) of

FIG. 3. The native contact mafsircles of protein CI2(PDB ~ Such matrices consistent with a given contact ventés

code Zi2) and a nonnative mafsquarey with the same contact

vector are overlapped. For clarity, the symmetric half of the nonna-
tive contact map is omitted.

N(N—1)/2 binary variables tdN integers of size<N] asso- diiy=> [1 S(sx;))n;: (4)
ciated with going from a given CM to its corresponding CV :
via Eq. (3). Quantifying the resulting degeneracy is a non-
trivial problem. The following section is an analytical at-

tempt in this direction where the sum ovey in the Kroneckers runs over entire

rows of the matrix. The sum ovet; =0, 1 represents a trace
over all binary matrices, and the constraiintj ensures that
the sum is oveN(N—1)/2 binary variables. In order to per-

We ask the following question: “How many contact maps form the summation, we rewrite the Kroneck&as a dis-
exist for a given contact vectai?.” In fact, we should be crete Fourier sum,

Scalingk; by N, approximate the sums by integrals. Then, evaluate the trace over the matrix elements, paying special attention
to Xij :in andX” =0,

I1l. AN ANALYTICAL APPROACH

LAEEE (S s

k2 0 kN:0 {Xij}

d(ﬁ)=i>“j_]_[<$N_l p[|2w (E X — i)

®

i>]

d(ﬁ)zfoldkldkzde( 2 ex[{IZﬂ'zl k|<$ Xij_ni

Xij}

1
) = 2N(N71)/2JA dkld kz' ° d kN
0

xexp{—izwz ki[(N—l)/Z—ni]]H cog m(k;+kj)]. (6)
i i>]

The integral can now be evaluated around its saddle pdintsl/2 andk;=0,1, which contribute equally. After we skt
=1/2+(q; and assum# is divisible by 4, we obtain

1/2
22N<N—1>’22f do,day,: - -day exp[ —i27>, qi[(N=1)/2—n;]—(7?/2)
2 [

NEi qi2+

2o

The last square term in the exponent can be eliminated by a Hubbard transformation after regdafind\ and defining
7i=ni—(N—1)/2
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2 i %
d(ﬁ):ZN(N1)’2\/;J1/2dq1dq2...quj dyexp(—y2/2+i7-ry§i: qi+i27r§i: niqi—NWZ/ZZ a?|,

which finally simplifies to yield vertex pair being connected if the corresponding matrix ele-
ment is 1. Symmetry ensures that the graph is undirected. We
g2 72 can ensure chain connectivifigut not the graph being physi-
=—————@e Iy 7, (8) | ; ; : ; L
(N/W)N/Z\/N cal!) by freezing connections on the first off diagonal; if we
choose to relax these “backbone connections,” the remain-

where7 and o, are the average and the standard deviatioi"d graph need not be connected. ,

of 7,=(n;—N/2). This is a mean-field estimate of how the '€ degeneracy of a CV, can then be approximated by the

degeneracy of a CV scales with respect to the statisticd!UMPer of graphs withN vertices and given connectivities.

properties of the CV. The leading behavior is clearly far from'We imagine the vertices from 1 &4 with a corresponding

being realistic, since the degeneracy should scale at most 8¢mber of legs sticking out of each and we ask in how many

2N for somez<zcy, [In(zey) is 0.83 in two dimension@D) ~ Ways these legs can be connepted such that none WI!| be left

[13] and 1.32 in 3D as calculated hgr&quation(8) further ~ 0ut (the total number of legs is an even numbdiquation

suggests that the maximally degenerate CV with a fixed avt9) follows immediately if one imagines connecting pairs of

erage number of contacts has=0, i.e., all the amino acids Iegs_sequentlallﬁhe numeratgrand _remembenng that Iggs

have an equal number of contacts, whereas an unbias&®Ming out of the same vertex are interchangeadémomi-

sample of CV’s will be dominated by those vectors with anatod- ,

typical standard deviation af ~ N. The mean-field mes- Let’s assume we allow the entries of the CV to be one of
, . ; 2 TES

sage is that the degeneracy is a decreasing functian, of 0’1’;n’ n<l_\|, and the composmon given Hpo'.pl""p“}’

i.e., variation in contact number is desirable for low degenPiN=Ni being the number of amino acids withcontacts.

eracy. In the following section, we argue that this is true N average number of contacts 3sip;=c. The corre-
away from the saddle point as well. sponding number of graphs reads

2N2/2

d(fA)

cN—1)!!
IV. FINITE CONNECTIVITY: GRAPH COUNTING d(N.{pi})= (OI)NE(ll)Nl) (NN 9)

In the preceding section, we allowed for the number of
contacts to take any value between 0 ahdn reality, and ~ (The only difference with the usual Feynman diagram count-
also in lattice models, the number of contacts is of ordeing is the missingN! in the denominator: our vertices are
unity. Therefore, it is desirable to have an estimate of thelistinguishable since they correspond to the amino acids la-
degeneracy of such CV’s. Once again, we consider all tracddeled by their sequence number.
less, symmetric, binarld X N matrices. We first observe that ~ Note that this expression is an approximation to the num-
every such matrix encodes a unique graph Wthertices, a  ber of symmetric traceless CM's, since diagrams with small
loops involving one vertex, as well as with more than one

Maximum degeneracy Minimum degeneracy line connecting the same two vertices are counted in(8g.

: d : : even though they do not correspond to any CM’s. However,
corrections due to excluding such diagrams do not change
the scaling withN. Applying Stirling’s formula to Eq(9),

|

(10

cN c
d(,{pi})zexp{7ln N+N Eln c—1-2, pyIn(nt)

The leading order is now} "N with z-=e%2. Better estima-
tions require taking into consideration the spatial correlations
in the contact numbers due to the underlying one-
n n dimensional chain. Our next task is to find the compositions
FIG. 4. Solution of the mean-field equations for the maximalWlth the minimum and maximum degeneracy. The leading
and minimal degeneracy of contact vectors with finite average con(-)rder n I_Eq_.(lO) d_epends Onl_y on the total number of con-
tact number. Maximum contact number is chosen to be 4 as for thECtS, SO it is sensible to confine the search into the subspace
cubic lattice. The solution for eadh is drawn within the corre-  Of CV's with a fixed average connectivity. We then extremize
sponding horizontal band. Theaxis of each band is labeled on the the next order term with respect {p;}, subject to the con-
left and right alternatingly. For fixed average contact number, Straints%p,=1 andXmpy,=c to find which distribution of
lowest degeneracy is when the standard deviation in the contagiontacts allows for the better “designabilityi.e., less de-
numbers is maximal, and vice versa. generacy. Figure 4 shows the choice §p;} with maximum/
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FIG. 5. Scaling of number of contact map$.(,) and the num- = up to a given degeneracy.
ber of contact vectorsN¢,) with the chain length, obtained by 0.2 .
exact enumeration on the three-dimensional cubic lattice. The inse . . ) ) . . . . )
(also a linear-natural log plptshows the scaling of the ratio be- 0‘00 2 4 6 8§ 10 12 14 16 18 20
tweenN,,, andN, . Degeneracy

minimum degeneracy obtained numerically, as a function of FIG. 6. Contact vector degeneracy for SAW's within &6
the average contact number(maximum number of non- Sduare. The upper graph is a linear-log plot of the nunierof
backbone contacts is chosen to be 4 as for the cubic lat- distinct contact vectors with a given degeneracy. The lower graph
tice). As read from the graphs, the highly degenerate scenarif)hows the fraction of SAW’s of lengths 32 and 36 corresponding to
is when the number of contacts for each residue is minimall)?ontact vectors up to a given degeneracy.
away from the average, and vice versa for the low degen- _ , , .
eracy. Even though here we deal with low connectivity ~FOf givenN, the number of CV's, CM's, and self-avoiding
<N, whereas in the preceding section we had-N, the walks increase in the given order. Yet, it is interesting that
result obtained here is the same as there—low degeneraf:g}e growth ratea,, =1.28+0.01 is only about 3% less than
goes in parallel with maximal variation in contact number, (€ corresponding ratec,=1.32-0.01 for the CM's in
One application of this principle is an order of magnitudetré€ dimensionésee Fig. 5, and algd3]). The discrepancy
estimation for the “optimal” length for a protein. Consider a between the mean-field analytical calculations and the exact
necklace model of the protein, each residue represented by um_eratlon results pomt_s to the fact that the finite dimen-
sphere of fixed radius, and the necklace itself folded into &'°nality and the correlations between contacts due to the
large compact sphere, where compactness is imposed as/gderlying one-dimensional chaine., working with physi-
necessary condition for stability. Then, maximal contactc® CM's and CV'g are crucial. , _
number fluctuation is attained when the number of buried 1h€ almost identical growth rates are in accordance with
residues equals the number of residues on the surface. Frop Next analysis on the compact configurations on>e6
this purely geometric construction, one can estimate agduare lattice(see[34]). Considering all the Hamiltonian
“ideal” chain size: Let the radii of the individual residues be Walks within a 6<6 square, we identified the number of
unity, and the radius of the protein e Assuminghcplike walks that correspond to each CV and found that the number
packing, each residue occupies a volume ef4v2(unit)®, of CV's with degeneracyl drops more or less exponentially
and those on the surface cover, rouglaly; 4(unit)? of sur- with d (see Fig. 6. In fact, more than 96% of all 'the con'tact
face area. Then, iN is the number of residues, we have VECIOrs have degenerady=6, although it is possible to find
vN=47R%/3 andaN/2=47R?, which yieldsN~ 450. a vector with 69 Hamiltonian walks mapped ortribt shown
’ in Fig. 6). The degeneracy gets even smaller in the case of a
compact but less than perfect packing. In our case this hap-
V. NUMERICAL RESULTS pens when the 86 square is mostly filled with a 32-residue

T th Wtical findi ted ab _thchain. Introduced vacancies, especially when in the core,
0 compare thé analytical indings presented above With,q» some of the residues with an otherwise identical con-

numerical simulations, we performed several exact enumeraz .+ number Rearrangement of the core, where all the resi-
tion studies on the square and the cubic lattices. Therefore, i&‘ues have .identical number of contact’s is the dominant

this section, we deal with physical CM’s and contact VeCtors o \hanism of degeneracy. Hence, it gets more difficult to

i.e., those generated by self-avoiding walks in two and three - 1" .00 o —iio e with the same CV, once this degeneracy

dimensions. In each analysis, we kept a record of the distingg g 1y the vacancies. In this case, for practically all the
CM's we encountered and the corresponding CV's. Our firs V's we haved<5. It will be interesting, in a future re-

observation is that, the number of distinct CV's for a given search, to extend this analysis to the cubic lattice and also to

sizeN scales exponentially with! test numerically our mean field prediction that the degen-
eracy decreases with. About the latter issue, on the square
N, ~ €3N, lattice our preliminary results indicate that our predictions
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are consistent with the numerical results for a small numbeeracy spectrum of CV'’s for self-avoiding walks on the square
of contacts, but the agreement deteriorates for higher contaeind the cubic lattice. We found that for compact self-
numbers. An unambiguous answer to this problem is difficultavoiding walks the CM and the CV representations carry
owing to the small system sizes amenable to complete enurearly the same amount of information. This is an encourag-
meration. On the cubic lattice the problem is made evenng result, for an accurate enough prediction of solvent ex-
more difficult by the fact that, for accessible lengths, practi-posed surface areas in the native state may then be used to

cally all the residues are on the surface. reduce the search space sufficiently, so that within the limited
set of remaining candidate CM’s a simple pairwise interac-
VI. CONCLUSION tion potential may suffice to single out the native fold of the

o o _protein. In addition, we performed exact enumeration over
Existing and future prediction methods for the accessibley, self-avoiding walk(SAW's) of N<16 steps in three di-
surface area of individual residues can be adopted to predi%ension, and found that the number of CV's grows exponen-

the number of native contacts of each amino acid of & giveRa|ly with the protein length, with a prefactor only a few
protein. This prediction can then be used for an efficieniyercent smaller than that for the CM's. The slow exponential
search of the native contact mégnd the corrgspon_dmg CON- growth of the average degeneracy of the CV's is largely
formation in a dramatically reduced configuration space.qyerestimated by our mean-field calculations. Further ana-
The prerequisite of such a program is to be able to identifyiytica| and numerical research is certainly called for. We also
different folds consistent with a given set of contact numbergpserved that focompactconfigurations, CV>CM map-

for each residue. We investigated at the mean-field level thSing is practically one to few. The Hamiltonian in Eq.
partition of the configuration spacer rather the contact map  herefore, may still be promising if the pairwise interactions

spacg into degeneracy classes labeled by the CV's. The avg,q optimized within the context of éven roughly pre-
erage degeneracy predicted by the analytical calculations digjicted CV.

agrees with the numerical findings, indicating that the finite
dimensionality and the correlations induced by the underly-
ing one-dimensional chain are crucial even for a qualitatively
satisfactory result. We did find, already at the mean-field A.K. acknowledges many useful discussions with G. Getz
level, that increasing the fluctuations in the native contacand A. Punnose and is also grateful to the Bilkent University
numbers reduces the degeneracy of contact vectors. Thihysics Department for their hospitality during his visit. This
finding is also supported by another analytical calculationwork was partially supported by grants from the U.S.-Israel
valid in a different regime, where the average contact numBinational Science FoundatigBSPH and the Minerva Foun-

ber isO(1). dation. I.K. thanks the Einstein Center for Theoretical Phys-

We further investigated by exact enumeration the degenics for partial support.
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