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Statistical properties of contact vectors
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We study the statistical properties ofcontact vectors, a construct to characterize a protein’s structure. The
contact vector of anN-residue protein is a list ofN integersni , representing the number of residues in contact
with residuei. We study analytically~at mean-field level! and numerically the amount of structural information
contained in a contact vector. Analytical calculations reveal that a large variance in the contact numbers
reduces the degeneracy of the mapping between contact vectors and structures. Exact enumeration for lengths
up toN516 on the three-dimensional cubic lattice indicates that the growth rate of number of contact vectors
as a function ofN is only 3% less than that for contact maps. In particular, for compact structures we present
numerical evidence that, practically, each contact vector corresponds to only a handful of structures. We
discuss how this information can be used for better structure prediction.
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I. INTRODUCTION

The protein-folding problem has been the subject of
tensive research in the last decade and although much
been learned a satisfactory understanding of the phenom
has not been reached yet@1–3#. The physical approach to th
problem is to consider the native state of a protein as
ground state of a Hamiltonian that acts on sequence s
and summarizes the interresidue and residue-solvent inte
tions @1,2,4#. Recently it was shown that there are seve
cases for which there is no possible choice of pairwise c
tact interactions between residues that suffices to pin d
the native state even for a single protein@5,6#. This conclu-
sion is supported by molecular dynamics studies@7# and lat-
tice models@8# on residue-solvent interactions, where man
body forces are shown, or can be deduced to be as rele
as two-body forces. To get around this failure of the tw
body Hamiltonian approach while retaining a coarse-grai
description~as opposed to, say, an all-atom one, includ
water @9#!, we need to introduce new terms at the resid
level to bias the optimization procedure towards the t
minima.

It is widely accepted that hydrophobicity is the force dri
ing the folding process@10#. At the individual residue level
hydrophobicity is correlated with the solvent-exposed s
face area in the native state@11#. In addition, as reported
below, a statistical analysis of the native structures depos
in the protein data bank~PDB! @12#! reveals a good correla
tion ~coefficient of correlation 0.8! between the solvent
hidden surface area per residue and the number of inter
due contacts per residue in the native state. We, there
propose the following two-step procedure for predicting
native state of a protein. First, a reasonably accurate pre
tion of the exposed surface area in the native fold is made
the basis of sequence information@11#. Second, this informa-
tion is translated into a prediction of the number of nat
contacts of each residue, e.g., to a predicted nativecontact
vector. Even if this scheme will turn out to be insufficient t
1063-651X/2002/65~4!/041904~7!/$20.00 65 0419
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perform a successful prediction, it opens the possibility
confine the search for the native fold to a small portion of
conformational space. The question then becomes ‘‘H
many folded configurations are there, consistent with a gi
set of contact numbers?’’ And, for that matter, ‘‘Is such
contact-number representation of the protein structure de
erate at all?’’ The rest of this paper addresses these quest

II. CONTACT MAPS VS CONTACT VECTORS

The contact map~CM! @13# of a protein ofN amino acids
is a symmetric binary matrixC of sizeN3N, such thatCi j
51 when thei th and thej th amino acids of the sequence a
neighbors, with some suitable definition of ‘‘neighborhoo
ness’’~e.g., a common construct is to threshold the pairw
distance matrix for the Ca atoms@5#!. The CM has proven to
be a convenient encoding of the three-dimensional na
fold: ~1! The native backbone conformation can be rep
duced to within;1.5 Å average uncertainty~the same as
most x-ray data! @14#, and ~2!. It allows for an efficient
search of the configuration space, since large conformatio
changes can be obtained by minor modifications of the C
@15#. Within such minimalistic framework one hopes to ga
new insight to the protein-folding problem since it is am
nable to different physical and mathematical tools. For
stance, the following Hamiltonian acting on the contact m
space has been extensively used in the past@16–19#:

H5(
i j

w~ai ,aj !Ci j , ~1!

wherew(a,b) is one of the 210 energy parameters rep
senting the contact energy between the amino-acid typea
andb. Unfortunately, this formulation has limited predictiv
power. For example, given a large enough set of seque
and decoys~obtained by threading! from the PDB, no set of
w(a,b) exists, for whichH has its ground states at the n
tive folds@6#. This is in accordance with the recent studies
©2002 The American Physical Society04-1
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KABAKÇ IOǦLU, KANTER, VENDRUSCOLO, AND DOMANY PHYSICAL REVIEW E65 041904
the nature of the hydrophobic interaction@7,8#, whose con-
clusion is that many-body interactions are of the same o
of magnitude as two-body interactions.

One possible way to improve the Hamiltonian in Eq.~1!
is to include an energy penalty for deviations from the nat
contacts,

H5~12l!(
i j

w~ai ,aj !Ci j 1l(
i

~ni2ni
nat!2 ~2!

where we define a ‘‘contact vector’’~CV! nW of rankN, which
is the sum of the entries of the CM on each row~or column!
~see Fig. 1!,

ni5(
j

Ci j . ~3!

Contact vectors have already been studied in the con
of protein folding @20–28#. We note, in particular, that the
second term in Eq.~2! resembles a hydrophobic term intro
duced previously@29# and studied in Ref.@30#, with the dif-
ference that the desired number of contacts of residuei is
determined by its species. Here instead we assume
knowledge ofni

nat, the correct number of contacts of resid
i in the native structure. Hence the second term in Eq.~2!
carries the same spirit as the Go model@31#. In this paper we
are interested in studying the statistical properties of con
vectors. For our more general purpose, it would seem inc
sistent to use Eq.~2! to predict the native structure of
protein, as we bias the Hamiltonian towards the minimum
using information that is not accessible to us before we
tually solve the problem. However, unlike in the Go mod
the information required here about the native state~thenum-
ber of contacts for each residue! is modest, and, most cru
cially, can be predicted. Learning algorithms have been
cently developed, which are trained on known structures
predict the surface exposure of the amino acids in the na
fold @11,32#. Since the hydrophobic effect is driving the fold
ing process@10#, it is natural to expect that an accurate pr
diction of the solvent exposed surface of each residue in
folded state may lead to prediction of the correct nat
structure. To bridge the gap between the exposed-surfac
formation and the CV defined above, we performed an an
sis on a representative set of proteins from the PDB datab
We found a linear correlation with a coefficient of correlati

FIG. 1. The contact map is a binary representation of the th
dimensional structure of the folded protein. The contact vecto
constructed by summing up the rows of the contact map.
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of 0.8 between the solventhiddensurface area of a residu
and the number of amino acids it is in contact with~see Fig.
2!. Therefore, in future work we expect to replace theni

nat

term in Eq.~2! by ni
predicted, thereby breaking the causalit

loop that is a characteristic of Go-like models. Another re
son to study the model of Eq.~2! is that a related kind of
Hamiltonian has been recently proved to be useful to de
mine the structure of nearly native protein conformatio
@33#. In that study,ni represents the number ofnative con-
tacts formed by residuei in the contact mapC. Also in that
case, it was found that a large variance inni ~see below!
implies a low degeneracy in mapping between contact v
tors and three-dimensional conformations.

In studying Eq.~2!, first we tried to use a set of contac
energy parametersw(ai ,aj ), found earlier by an optimiza-
tion process, using Eq.~2! with l50. This attempt failed to
assign the minimal energy to the native state for any cho
of l. However, an optimization ofw(a,b) over the known
structures by using the Hamiltonian in Eq.~2! with lÞ0
may, perhaps, successfully identify the native state. We
investigate this possibility in the future.

The Hamiltonian Eq.~2!, with l51, fails to identify the
native fold. This statement means that it is possible to fi
conformations that, on the one hand, are very different fr
the native one and, on the other, each amino acid has ex
the correct number of neighbors, that is the same numbe
neighbors as in the native state. This result was first found
Ejtehadiet al. @22# by exact enumeration of all the compa
conformations on a 33333 cubic lattice. For actual pro
teins, an example is given in Fig. 3 in the case of protein C
~PDB code 2ci2!, where the CM’s of the native fold and o
another conformation are superimposed. These two con
mations have identical CV’s. At first glance, it would see
unlikely to find two compact configurations where each re
due has exactly the same number of neighboring residue
contact. On the other hand, the cautious reader will attrib
this degeneracy to the loss of information@from

e-
is

FIG. 2. Hidden surface area per residue~after appropriate scal-
ing! vs number of contacts per residue. The histogram is obtai
by averaging over 177 representative proteins with a threshold
the Ca distance between amino-acid pairs@5#. The number of oc-
currences is gray-scale coded, increasing from 0~white! to 500
~black!. The coefficient of correlation is 0.8.
4-2
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N(N21)/2 binary variables toN integers of size<N# asso-
ciated with going from a given CM to its corresponding C
via Eq. ~3!. Quantifying the resulting degeneracy is a no
trivial problem. The following section is an analytical a
tempt in this direction.

III. AN ANALYTICAL APPROACH

We ask the following question: ‘‘How many contact ma
exist for a given contact vectornW ?.’’ In fact, we should be

FIG. 3. The native contact map~circles! of protein CI2 ~PDB
code 2ci2! and a nonnative map~squares! with the same contac
vector are overlapped. For clarity, the symmetric half of the non
tive contact map is omitted.
04190
-

counting, for a givennW , only the physical CM’s that are
consistent with it. A physical CM@14,29# is one for which a
perfectly matching chain configuration can be found. Th
is, however, no known analytical selection rule for the phy
cal CM’s among all symmetric and tracelessN3N matrices;
therefore, in our analytic study we will consider all bina
symmetric matrices. This is essentially the mean-field tre
ment of the problem, since in the limit of infinite dimension
all the constraints on the CM, except being symmetric w
zero trace, will be relaxed. For any finite dimension we ov
estimate the degeneracy—the number of physical C
scales exponentially, aseN, whereas the number of possib

CM’s scales aseN2
@13#.

Since we deal with contact maps, we will consider sy
metric, traceless binary matrices, characterized byxi j 5xji

and xii 50. The formal expression for the numberd(nW ) of
such matrices consistent with a given contact vectornW is

d~nW !5 (
$xi j %

i . j

)
i 51

N

d~(
j
xi j !,ni

, ~4!

where the sum overj in the Kroneckerd runs over entire
rows of the matrix. The sum overxi j 50, 1 represents a trac
over all binary matrices, and the constrainti . j ensures that
the sum is overN(N21)/2 binary variables. In order to per
form the summation, we rewrite the Kroneckerd as a dis-
crete Fourier sum,

-

attention
d~nW !5 (
$ci j %

i . j

)
i 51

N S 1

N (
k50

N21

expF i2p
k

N S (
j

xi j 2ni D G D 5
1

NN (
k150

N21

(
k250

N21

¯ (
kN50

N21 S (
$xi j %

i . j

expF i
2p

N (
i

ki S (
j

xi j 2ni D G D .

~5!

Scalingki by N, approximate the sums by integrals. Then, evaluate the trace over the matrix elements, paying special
to xi j 5xji andxii 50,

d~nW !5E
0

1

dk1dk2¯dkNS (
$xi j %

i . j

expF i2p(
i

ki S (
j

xi j 2ni D G D 52N~N21!/2E
0

1

dk1dk2¯dkN

3expH 2 i2p(
i

ki@~N21!/22ni #J)
i . j

cos@p~ki1kj !#. ~6!

The integral can now be evaluated around its saddle points,ki51/2 andki50,1, which contribute equally. After we setki
51/21qi and assumeN is divisible by 4, we obtain

.2N~N21!/22E
21/2

1/2

dq1dq2¯dqN expH 2 i2p(
i

qi@~N21!/22ni #2~p2/2!FN(
i

qi
21S (

i
qi D 2G J . ~7!

The last square term in the exponent can be eliminated by a Hubbard transformation after rescalingqi by AN and defining
h i5ni2(N21)/2
4-3
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d~nW !.2N~N21!/2A2

p E
21/2

1/2

dq1dq2 ...dqNE
2`

`

dy expS 2y2/21 ipy(
i

qi1 i2p(
i

h iqi2Np2/2(
i

qi
2D ,
io
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which finally simplifies to yield

d~nW !.
2N2/2

~N/p!N/2AN
e22sh

2
2h̄2

, ~8!

whereh̄ andsh are the average and the standard deviat
of h i5(ni2N/2). This is a mean-field estimate of how th
degeneracy of a CV scales with respect to the statist
properties of the CV. The leading behavior is clearly far fro
being realistic, since the degeneracy should scale at mo
zN for somez,zCM @ln(zCM) is 0.83 in two dimensions~2D!
@13# and 1.32 in 3D as calculated here#. Equation~8! further
suggests that the maximally degenerate CV with a fixed
erage number of contacts hassh50, i.e., all the amino acids
have an equal number of contacts, whereas an unbi
sample of CV’s will be dominated by those vectors with
typical standard deviation ofsh.AN. The mean-field mes
sage is that the degeneracy is a decreasing function ofsh ,
i.e., variation in contact number is desirable for low dege
eracy. In the following section, we argue that this is tr
away from the saddle point as well.

IV. FINITE CONNECTIVITY: GRAPH COUNTING

In the preceding section, we allowed for the number
contacts to take any value between 0 andN. In reality, and
also in lattice models, the number of contacts is of or
unity. Therefore, it is desirable to have an estimate of
degeneracy of such CV’s. Once again, we consider all tra
less, symmetric, binaryN3N matrices. We first observe tha
every such matrix encodes a unique graph withN vertices, a

FIG. 4. Solution of the mean-field equations for the maxim
and minimal degeneracy of contact vectors with finite average c
tact number. Maximum contact number is chosen to be 4 as for
cubic lattice. The solution for eachpi is drawn within the corre-
sponding horizontal band. They axis of each band is labeled on th
left and right alternatingly. For fixed average contact numberc,
lowest degeneracy is when the standard deviation in the con
numbers is maximal, and vice versa.
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vertex pair being connected if the corresponding matrix e
ment is 1. Symmetry ensures that the graph is undirected
can ensure chain connectivity~but not the graph being physi
cal!! by freezing connections on the first off diagonal; if w
choose to relax these ‘‘backbone connections,’’ the rema
ing graph need not be connected.

The degeneracy of a CV, can then be approximated by
number of graphs withN vertices and given connectivities
We imagine the vertices from 1 toN with a corresponding
number of legs sticking out of each and we ask in how ma
ways these legs can be connected such that none will be
out ~the total number of legs is an even number!. Equation
~9! follows immediately if one imagines connecting pairs
legs sequentially~the numerator! and remembering that leg
coming out of the same vertex are interchangeable~denomi-
nator!.

Let’s assume we allow the entries of the CV to be one
0,1,..,n, n!N, and the composition given by$p0 ,p1 ,..,pn%,
piN[Ni being the number of amino acids withi contacts.
The average number of contacts isS i ip i[c. The corre-
sponding number of graphs reads

d~N,$pi%!5
~cN21!!!

~0! !N0~1! !N1...~n! !Nn
. ~9!

~The only difference with the usual Feynman diagram cou
ing is the missingN! in the denominator: our vertices ar
distinguishable since they correspond to the amino acids
beled by their sequence number.!

Note that this expression is an approximation to the nu
ber of symmetric traceless CM’s, since diagrams with sm
loops involving one vertex, as well as with more than o
line connecting the same two vertices are counted in Eq.~9!,
even though they do not correspond to any CM’s. Howev
corrections due to excluding such diagrams do not cha
the scaling withN. Applying Stirling’s formula to Eq.~9!,

d~ ,$pi%!.expH cN

2
ln N1NF c

2
ln c212( pn ln~n! !G J .

~10!

The leading order is nowzF
N ln N with zF5ec/2. Better estima-

tions require taking into consideration the spatial correlatio
in the contact numbers due to the underlying on
dimensional chain. Our next task is to find the compositio
with the minimum and maximum degeneracy. The lead
order in Eq.~10! depends only on the total number of co
tacts, so it is sensible to confine the search into the subs
of CV’s with a fixed average connectivity. We then extremi
the next order term with respect to$pi%, subject to the con-
straintsSpm51 andSmpm5c to find which distribution of
contacts allows for the better ‘‘designability’’~i.e., less de-
generacy!. Figure 4 shows the choice of$pi% with maximum/

l
n-
e

ct
4-4



o

t-
ar
al
e

ra
r.
de
a
b
o
a

ac
ie
r
a
e

e

it
er
e,
rs
re
in
rs

en

g
at

n

xact
en-
the

ith

f
ber
y
t

of a
ap-
e
re,

n-
esi-
ant
to

acy
he

o to
en-
re
ns

y
ns
-

aph
to

STATISTICAL PROPERTIES OF CONTACT VECTORS PHYSICAL REVIEW E65 041904
minimum degeneracy obtained numerically, as a function
the average contact numberc ~maximum number of non-
backbone contactsn is chosen to be 4 as for the cubic la
tice!. As read from the graphs, the highly degenerate scen
is when the number of contacts for each residue is minim
away from the average, and vice versa for the low deg
eracy. Even though here we deal with low connectivityni
!N, whereas in the preceding section we hadni;N, the
result obtained here is the same as there—low degene
goes in parallel with maximal variation in contact numbe

One application of this principle is an order of magnitu
estimation for the ‘‘optimal’’ length for a protein. Consider
necklace model of the protein, each residue represented
sphere of fixed radius, and the necklace itself folded int
large compact sphere, where compactness is imposed
necessary condition for stability. Then, maximal cont
number fluctuation is attained when the number of bur
residues equals the number of residues on the surface. F
this purely geometric construction, one can estimate
‘‘ideal’’ chain size: Let the radii of the individual residues b
unity, and the radius of the protein beR. Assuminghcp-like
packing, each residue occupies a volume ofv54&(unit)3,
and those on the surface cover, roughly,a54(unit)2 of sur-
face area. Then, ifN is the number of residues, we hav
vN54pR3/3 andaN/254pR2, which yieldsN;450.

V. NUMERICAL RESULTS

To compare the analytical findings presented above w
numerical simulations, we performed several exact enum
tion studies on the square and the cubic lattices. Therefor
this section, we deal with physical CM’s and contact vecto
i.e., those generated by self-avoiding walks in two and th
dimensions. In each analysis, we kept a record of the dist
CM’s we encountered and the corresponding CV’s. Our fi
observation is that, the number of distinct CV’s for a giv
sizeN scales exponentially withN

Ncv;eacvN.

FIG. 5. Scaling of number of contact maps (Ncm) and the num-
ber of contact vectors (Ncv) with the chain length, obtained b
exact enumeration on the three-dimensional cubic lattice. The i
~also a linear-natural log plot! shows the scaling of the ratio be
tweenNcm andNcv .
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For givenN, the number of CV’s, CM’s, and self-avoidin
walks increase in the given order. Yet, it is interesting th
the growth rateacv51.2860.01 is only about 3% less tha
the corresponding rateacm51.3260.01 for the CM’s in
three dimensions~see Fig. 5, and also@13#!. The discrepancy
between the mean-field analytical calculations and the e
enumeration results points to the fact that the finite dim
sionality and the correlations between contacts due to
underlying one-dimensional chain~i.e., working with physi-
cal CM’s and CV’s! are crucial.

The almost identical growth rates are in accordance w
our next analysis on the compact configurations on a 636
square lattice~see @34#!. Considering all the Hamiltonian
walks within a 636 square, we identified the number o
walks that correspond to each CV and found that the num
of CV’s with degeneracyd drops more or less exponentiall
with d ~see Fig. 6!. In fact, more than 96% of all the contac
vectors have degeneracyd<6, although it is possible to find
a vector with 69 Hamiltonian walks mapped on it~not shown
in Fig. 6!. The degeneracy gets even smaller in the case
compact but less than perfect packing. In our case this h
pens when the 636 square is mostly filled with a 32-residu
chain. Introduced vacancies, especially when in the co
‘‘label’’ some of the residues with an otherwise identical co
tact number. Rearrangement of the core, where all the r
dues have identical number of contacts, is the domin
mechanism of degeneracy. Hence, it gets more difficult
find conformations with the same CV, once this degener
is lifted by the vacancies. In this case, for practically all t
CV’s we haved<5. It will be interesting, in a future re-
search, to extend this analysis to the cubic lattice and als
test numerically our mean field prediction that the deg
eracy decreases withs. About the latter issue, on the squa
lattice our preliminary results indicate that our predictio

et

FIG. 6. Contact vector degeneracy for SAW’s within a 636
square. The upper graph is a linear-log plot of the numberNcv of
distinct contact vectors with a given degeneracy. The lower gr
shows the fraction of SAW’s of lengths 32 and 36 corresponding
contact vectors up to a given degeneracy.
4-5
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KABAKÇ IOǦLU, KANTER, VENDRUSCOLO, AND DOMANY PHYSICAL REVIEW E65 041904
are consistent with the numerical results for a small num
of contacts, but the agreement deteriorates for higher con
numbers. An unambiguous answer to this problem is diffic
owing to the small system sizes amenable to complete e
meration. On the cubic lattice the problem is made ev
more difficult by the fact that, for accessible lengths, pra
cally all the residues are on the surface.

VI. CONCLUSION

Existing and future prediction methods for the access
surface area of individual residues can be adopted to pre
the number of native contacts of each amino acid of a gi
protein. This prediction can then be used for an effici
search of the native contact map~and the corresponding con
formation! in a dramatically reduced configuration spac
The prerequisite of such a program is to be able to iden
different folds consistent with a given set of contact numb
for each residue. We investigated at the mean-field level
partition of the configuration space~or rather the contact ma
space! into degeneracy classes labeled by the CV’s. The
erage degeneracy predicted by the analytical calculations
agrees with the numerical findings, indicating that the fin
dimensionality and the correlations induced by the unde
ing one-dimensional chain are crucial even for a qualitativ
satisfactory result. We did find, already at the mean-fi
level, that increasing the fluctuations in the native cont
numbers reduces the degeneracy of contact vectors.
finding is also supported by another analytical calculati
valid in a different regime, where the average contact nu
ber isO(1).

We further investigated by exact enumeration the deg
y

in

-

-

d J
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eracy spectrum of CV’s for self-avoiding walks on the squa
and the cubic lattice. We found that for compact se
avoiding walks the CM and the CV representations ca
nearly the same amount of information. This is an encour
ing result, for an accurate enough prediction of solvent
posed surface areas in the native state may then be us
reduce the search space sufficiently, so that within the lim
set of remaining candidate CM’s a simple pairwise inter
tion potential may suffice to single out the native fold of t
protein. In addition, we performed exact enumeration o
all self-avoiding walk~SAW’s! of N<16 steps in three di-
mension, and found that the number of CV’s grows expon
tially with the protein length, with a prefactor only a few
percent smaller than that for the CM’s. The slow exponen
growth of the average degeneracy of the CV’s is larg
overestimated by our mean-field calculations. Further a
lytical and numerical research is certainly called for. We a
observed that forcompactconfigurations, CV→CM map-
ping is practically one to few. The Hamiltonian in Eq.~1!,
therefore, may still be promising if the pairwise interactio
are optimized within the context of a~even roughly! pre-
dicted CV.
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