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Performance of different synchronization measures in real data: A case study
on electroencephalographic signals
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We study the synchronization between left and right hemisphere rat electroencephalog@&@ichannels
by using various synchronization measures, namely nonlinear interdependences, phase synchronizations, mu-
tual information, cross correlation, and the coherence function. In passing we show a close relation between
two recently proposed phase synchronization measures and we extend the definition of one of them. In three
typical examples we observe that except mutual information, all these measures give a useful quantification
that is hard to be guessed beforehand from the raw data. Despite their differences, results are qualitatively the
same. Therefore, we claim that the applied measures are valuable for the study of synchronization in real data.
Moreover, in the particular case of EEG signals their use as complementary variables could be of clinical
relevance.
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[. INTRODUCTION two measures of interdependence, together with a new mea-
sure(N) to be defined, will be further studied in this paper.

The concept of synchronization goes back to the observa- The previous papers give convincing arguments in favor
tion of interactions between two pendulum clocks by Huy-of using nonlinear interdependences, which in most cases
gens. Synchronization of oscillatory systems has been widelwere illustrated with examples using chaotic toy models.
studied but it was not until recently that synchronization be-However, it still remains an open question whether this also
tween chaotic motions received attention. A first push in thisholds true for real data. In this paper we therefore address the
direction was the observation of identical synchronization ofpoint of whether nonlinear measures give a relevant contri-
chaotic system$l—4]. But more interesting has been the bution to the study of synchronization in electroencephalo-
idea of a “generalized synchronization” relationship as agraphic(EEG) signals[13]. In particular, we will show with
mapping between nonidentical systems, and the further prahree typical EEG exampldsee Fig. 1 how nonlinear inter-
posal by Rulkovet al.[5] of a topological method to quan- dependence measures can disclose information difficult to
tify it. The work of Rulkov and co-workers indeed triggered obtain by visual inspection. Although the data are EEG re-
a number of studies applying the concept of generalized syreordings from rats, their main features are common to human
chronization to real data. One of these applications is to th&EG. Moreover, results should not be restricted to EEG data
study of electroencephalograpHEEEG) signals, where syn- and should also be valuable to the study of synchronization
chronization phenomena have been increasingly recognizeaf other signals. For comparison purposes, we will also study
as a key feature for establishing the communication betweephase synchronization measures as defined from the Hilbert
different regions of the braif6], and pathological synchro- transform[14] and from the wavelet transforfii5], which
nization as a main mechanism responsible for an epileptibad been recently applied to the study of EEG sighbfs-
seizure[7]. Since many features of EEG signals cannot bel8]. Moreover, we will also compare these results with the
generated by linear models, it is generally argued that nonenes obtained with more conventional measures of synchro-
linear measures are likely to give more information than thenization, such as the cross correlation, the coherence func-
one obtained with conventional linear approaches. tion, and the mutual information.

In a study dealing with EEG signals, Schiff and co-  This paper is organized as follows. In Sec. Il we define
workers[8] applied a synchronization measure similar to thethe synchronization measures to be used. In particular, in
one defined in Ref5] to the study of data from motoneu- Sec. Il A we define the linear cross-correlation and the co-
rons within a spinal cord pool. More recently, nonlinear syn-herence function, while in Sec. IIB we describe the three
chronization measures were used for the analysis of EEGneasures of nonlinear interdependence. The mutual informa-
data from epileptic patients with the main goal of localizing tion is defined in Sec. Il C, whereas Sec. 11 D is dedicated to
the epileptogenic zone and of predicting the seizure onsehe description of phase synchronization measures with the
[9-11]. These results, of course, have a clear clinical relphases defined from a Hilbert transform. Very close to these
evance. Arnhold and co-workelr$1] proposed a robust mea- last measures are the ones described in Sec. I E but in this
sure ), a variant of which H), already mentioned by these case the phases are defined from the wavelet transform. Fi-
authors, has been studied in detail in R@f2]. These last nally, in Sec. IIF we show the relation between these two

phase synchronization approaches. Details of the data sets to
be analyzed are disclosed in Sec. Ill. In Sec. IV we describe
*Corresponding author. Email address: rodri@vis.caltech.edu the results obtained by applying the different synchronization
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FIG. 1. Three rat EEG signals from right and

B) : i X : ] : : left cortical intracranial electrodes. For a better
il : : | ; : : 1. visualization, left signals are plotted with an off-
iy ' : ' ) set.
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measures to these data sets. Finally, in Sec. V we present tibronization betweer andy. Its absolute value ranges from
conclusions. zero (no synchronizationto 1 (maximum synchronization
and it is symmetricc, (1) = Cy,(7).
Il. SYNCHRONIZATION MEASURES The sample cross spectrum is defined as the Fourier trans-

. - form of the cross correlation or, via the Fourier convolution
In the following, unless further specified, we shall use th heorem. as

notion of synchronization in a very loose sense. Thus it is

more or less synonymous with interdependencéstmong Coo(@)=(FX)(@)(FY)* (o) )
correlation. Y
_ o where (FX) is the Fourier transform of, o are the discrete
A. Linear measures of synchronization frequencies £ N/2<w<N/2) and* means complex conju-
Let us suppose we have two Simultaneous|y measuregation. For details of the.implementation, see Sec. IVA. The
discrete univariate time series andy,, n=1,... N. The  cross spectrum{C,,(w)) is a complex number whose nor-

most commonly used measure of their synchronization is th&1alized amplitude
cross-correlation function defined as

1 "7 (x—x
—
Cyyl 7)=
D= ;1 ( UJ
o is called the coherence function and gives a measure of the
wherex and o, denote mean and variance, ands a time linear synchronization betweenandy as a function of the
lag. The cross correlation gives a measure of the linear syrfrequencyw. This measure is very useful when synchroniza-

I (0)= [{Cy(W))|
Yi +-r_y) ! (1) Xy \/<Cxx(W)> \/<ny(W)> '

Ty

3
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If the point cloud{x,} has an average squared radius
R(X)=(IN)=N_,RN"Y(x), then RI(X|Y)~R¥(X)
<R(X) if the systems are strongly correlated, while
RIW(X]Y)~R(X)>RM(X) if they are independent. Ac-
cordingly, we can define an interdependence measure
s(X]Y) [11] as

N (k)
Ry (X)
SWX|Y)== > —a——. 6
X=5 2 RO ®)
SinceRM(X|Y)=RM(X) by construction, we have
0<S(X|Y)=1. (7)

Low values ofS®(X|Y) indicate independence betwekn
andY, while high values indicate synchronizatifreaching
maximum wherS®(X]Y)—1].

Following Refs.[11,12 we define another nonlinear in-
terdependence measuié¥(X|Y) as

N

H(k)(X|Y):% Zl o Rn(X)

SROXIY) ®

This is zero ifX andY are completely independent, while it
is positive if nearness ify implies also nearness X for

FIG. 2. Basic idea of the nonlinear interdependence measuregqual time partners. It would be negative if close pairyin

The size of the neighborhood in one of the systems,Xdag com-

would correspond mainly to distant pairs ¥ This is very

pared with the size of its mapping in the other system. The examplgn|ike|y but not impossible. ThereforH(k)(X|Y) =0 sug-
shows a Lorenz system driven by a $Rter with zero coupling gests thaiX andY are independent, but does not prove it.

(upper caspand with strong couplinglower cas¢ Below each

attractor, the corresponding time series is shown. T inter-

dependences are calculated in the same way, starting with a neig

borhood inY. For details see Ref$11,12,.

tion is limited to some particular frequency band, as it is

usually the case in EEG signdlsee Ref[19] for a review.

B. Nonlinear interdependences

From time series measured in two systerendy, let us
reconstruct delay vectof20] x,= (X, . . . Xn—(m-1),) and
Yn=ns - -+ Yn—(m-1)-), wheren=1,...N, m is the em-
bedding dimension, and denotes the time lag. Let, ; and

Snj»1=1, ...k, denote the time indices of thie nearest

neighbors ofx, andy,, respectively.

For eachx,, the mean squared Euclidean distance td its

neighbors is defined as

1 k
RYOO=1 2, (=%, )7 (4)

This is one main difference betweet¥(X|Y) and the mu-
ual information, to be defined in Sec. IIC. The latter is
trictly positive wheneveK andY are not completely inde-
pendent. As a consequence, mutual information is quadratic
in the correlatiorP(X,Y) — P(X)P(Y) for weak correlations
(P are here probability distributionswhile H®(X]Y) is
linear. ThusH®(X|Y) is more sensitive to weak depen-
dences which might make it useful in applications. Also, it
should be easier to estimate than mutual informations which
are notoriously hard to estimate reliably as we will see later.
In a previous study with coupled chaotic systgrg], H
was more robust against noise and easier to interpretShan
but with the drawback that it is not normalized. Therefore we
propose a new measulg X|Y) using also a diffeent way of
averaging,

1 & Ry(X)—RO(X]Y)
NOXI=5 2 TR )

(€)

which is normalized(but as in the case ofl, it can be
slightly negative and in principle more robust th&®
The opposite interdependenc&Y|X), H(Y|X), and

and theY-conditioned mean squared Euclidean distance idN(Y|X) are defined in complete analogy and they are in
defined by replacing the nearest neighbors by the equal timgeneral not equal t&(X|Y), H(X|Y), andN(X]|Y), respec-

partners of the closest neighborsygf(see Fig. 2,

k
RAVXIY) =1 2 (=, )% (5)
P ,

x|

tively. The asymmetry o§, H, andN is the main advantage
over other nonlinear measures such as the mutual informa-
tion and the phase synchronizations defined in Secs. Il D and
ITE. This asymmetry can give information about driver-
response relationshipsl1,12,21, but can also reflect the dif-
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ferent dynamical properties of each datd,12. To address MI(X,Y)=1(X)+1(Y)—=1(X,Y), (13

this point we will compare results with synchronization val-

ues obtained from time shifted signals used as surrogates. which indicates the amount of information Xfwe obtain by
Figure 2 illustrates the idea of how the nonlinear interdeknowing Y and vice versa. IfX and Y are independent,

pendence measures work. Let us consider a Lorenz andMI(X,Y)=0 and otherwise, it will take positive values with

Rassler system that are independénpper case, no cou- a maximum of MIX,X)=1(X) for identical signals. Note

pling) and a second case with the $2ter driving the Lorenz  also that MI is symmetric, i.e., MX,Y)=MI(Y,X).

via a strong couplinglower ploY). For a detailed study of Schreiber extended the concept of Ml and defingchasfer

synchronization between these systems, refer to R&.  entropy[23], which has the main advantage of being asym-

Given a cloud of points characterizing a neighborhood of anetric and can in principle distinguish driver-response rela-

point in one of the attractors, say, we see how this maps tionships. Another asymmetric measure based on the Ml has

into the other systemY(). For synchronized systentwer  been proposed by Pal{(ig4].

plot), the point cloud inY will still be in a small neighbor- Mutual information can also be regarded as a Kullback-

hood. On the other hand, for independent systéopper Leibler entropy[25,26, which is an entropy measure of the

plot), the points inY will most likely be spread over the similarity between two probability distributions. To illustrate

attractor(upper ploj. In fact, the three measures descril®d this, we rewrite Eq(13) in the form

H, andN are just different ways of normalizing these ratio of

distances.
MI(X,Y)=2> pi" In— P
p-

(14
C. Mutual information : '

The previous measures of synchronization were based ohhen, considering a probability distributiog;;Y=p;*- p
similarities in the time and frequency domai®ec. 11 A) or  (which is the correct probability distribution if the systems
on similarities in a phase spat®ec. I B). In this section we are independehtEq. (14) is a Kullback-Leibler entropy and
describe an approach to measure synchronization by meam;easures the difference between the probability distributions
of information-theoretic concepts. Let us suppose we have a Y and q,JY [27]. In other words, MIK,Y) measures how
discrete random variableX with M possible outcomes d|fferent is the true joint probability d|str|but|op|XY from
X1, ... Xy, oObtained, e.g., by a partltlon of into M bins.  another in which independence betweeandY is assumed
Each outcome has a probability, ,i = .M, with p; We previously mentioned that eaphcan be obtained by
=0Vi and=p;=1. A first estimate is to considqﬂi=ni IN,  a partition of X. In our caseX is the space of time-delay
wheren; is the number of occurrences Xf afterN samples.  vectorsx,, as in Sec. I B. In principle, we can calculgigby
From this set of probabilities the Shannon entropy is definedhox counting. But it was shown in Ref§28,29 that the
as Shannon entropig€q. (10)] can be calculated from the first
order correlation integraC(X, 8), which gives more accu-

1(X)= 2 Inp, (10) rate result$29,27,3Q. Thus, instead of calculating probabili-
- : ties within boxes of a fixed grid with sidelength we com-

pute probabilities within neighborhoods of a certain radius

The Shannon entropy is positive and measures the informas/2 around each poirf29]. Therefore, we have

tion content ofX, in bits, if the logarithm is taken with base

2. When finite samplell are considered, the naive definition 1

pi=n;/N may not be appropriate. Grassberg@g] intro- I(X:9)=—F 241 Inp; (15

duced a series of correction terms which are asymptotic in

I/N. The first and most important term essentially gives  jth p,~(n,; IN),n;=3;0(8/2— |x;—x;|) andN the number
of embedding vectors. In this case, we can also introduce

<

I(X)~2 %[In N—T(n)], (11) finite sample corrections which gije2]
I
1 N
with ¥ (x)=d InT'(x)/dx~Inx—1/2x for largex. I(X;r5)=—NZl [W(ni+1)=InN] (16)
=

Let us now suppose we have a second discrete random
variableY, whose degree of synchronization withwe want
to measure. The joint entropy is defined as D. Phase synchronization from the Hilbert transform
Given a univariate measuremex(tt) (with continuoust)
1(X,Y)= 2 piInpY, (12)  we first define the analytic signaZ,(t)=x(t)+ix(t)
. H ~
=A"(t)e' %M, wherex(t) is the Hilbert transform ok(t)
wherep]*" is the joint probability ofX=X; andY v, of  [14],
the systems are independent we hayfé=p/-p; and then A
[(X,Y)=1(X)+1(Y). Thus the mutual information between X(t)=(Hx)(t)= _PJ th’ 17)
X andY is defined as ™
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(P means the Cauchy principal valu&nalogously, we de- Lachauxet al. [15,33. It is very similar to y,, the only

fine A;' and qS'; from y(t).! We say that thecandy aren:m  difference being that the phases are calculated by convolving
synchronized, if ther{,m) phase difference of their analytic each signal with a complex wavelet functidn(t) [32],
signals,¢)\(t) =ng(t) —mey'(t), with n,m some integers,

remains bounded for atl Thus we define a phase synchro- , 2 5 I

nization index a$31,17 W (t)=(e'wot—e “072). e 172", (20

wherewy is the center frequency of the wavelet amdle-
it . termines its rate of decajgand by the uncertainty principle,
y= (€ 0) | = (eos0) +(singT0) (18 i< frequency spard apand by o princip

. The convolution ofx(t) andy(t) with W(t) gives two
(brackets denote average over tim8y construction,y complex time series of wavelet coefficients,

will be zero if the phases are not synchronized at all and will
be one when the phase difference is constastfect syn-
chronization. The key feature ofy, is that it is only sensi- W
tive to phases, irrespective of the amplitude of each signal. Wx(t)z(\lfox)(t)zf P(tHx(t' —t)dt' =A)(t)-e' 4O,
This feature has been illustrated in REE4] and following 21)
papers(see Ref[31]) with bidirectionally coupled Rssler
systems. Another important feature gf is that it is param- [W,(t) is defined in the same way froy(t) ], from which
eter free. However, if the signals to be analyzed have @e can again calculate the phase diﬁerenoﬁ%(t)
broadband or a multimodal spectrum, then the definition oz ¢XW(t)—¢¥V(t) and define a phase synchronization factor

the phase can be troublesome and prefiltering of the signatsyW) as in Eq.(18), or from the Shannon entropy of the
might be necessary. Of course, it should be checked that thgiripution of V(1) (yursy) as in Eq.(19)
Xy . .(19).

fiIteTr to be (ijsed dois r;é igtr?duge phahse dirs]tortions. N The main difference with the measures defined by using
_lassan CO'WC:J er h] Sehme another p afsehsyg_c r.g' the Hilbert transform is that a central frequeney and a
hization measure from the Shannon entropy of the distibug;y, - for the wavelet function should be chosen, and

tion of ¢,><Hy(t)' The range o’ = ‘/’?_ymOd 2m 1S first divided 0 eforey,, and yy.q, Will be sensitive only to phase syn-
into M bins. Letp, be the probability thag" is in the bink  chronizations in a certain frequency band. In particular, De-
at any random time. Then, Shazeret al.[34] recently analyzed phase synchronization in
coupled laser systems defining the phases both from a Gabor
M [similar to Eg.(20)] and a Hilbert transform. In the first case
_ Shax—S _ they distinguished a phase synchronization at 140 Hz, some-
YH-sh= . S=—2 pelnpg (19 : : : -
Smax k=1 thing not seen when using the Hilbert transform. The differ-
ence between both approaches, of course, does not imply that
and Sy,.,=In M. It ranges from zero for a uniform distribu- One measure is superior to the other. There are cases in which
tion of ¢}, to one if the distribution is a delta function. The one would like to restrict the analysis to a certain frequency
advantage ovety is that yy can underestimate phase syn- band and ot_her cases in which one Woulq prefer to have a
chronizations when the distribution d:t’;'y has more than one Method that is parameter free, #g. In fact, in Sec. Il F we
peak. This corresponds to the case where the phase diffeill show that there is a close relation between both meth-
ence remains fairly stable but occasionally “jumps” betweenCdS-:
different valueq39]. Although the signals are synchronized
(except at the times of the jumpshe phasesﬁ)'jy(t) can
cancel in the time average of E(L8), thus giving a low F. Relation between the phase synchronization measures
yu.> We also calculated another quantification proposed in  |n Secs. Il E we already mentioned that in some cases it
Ref. [16] defined from conditional prObabi”tieS between m|ght be necessary to pre_f“ter the Signa|s before app|y|ng
By (1) and ¢'(t), but results were very similar to those ob- the Hilbert transform, while for the wavelet transform a cen-
tained withyy and will be not further reported. ter frequency(and frequency widthshould be chosen be-
forehand. In fact, the phases defined by the complex wavelet

E. Phase synchronization from the wavelet transform

Another phase synchronization measure defined from the;

. Instead of Eq.(20), th th f Refd.15,3 d a Morlet
wavelet transform 4,,) has been recently introduced by nstead of Eq(20), the authors of Refd.15,33 used a Morle

wavelet, i.e.W(t)=e'wt. e t/20° which satisfies the zero mean
admissibility condition of a wavelet only for large. Since in our
1 . . case we will use a Iow (i.e., aW¥ with few §iglnificant oscillatiops,

In the actual implementation, wherg(t) and y(t) are only  gee sec. |1 E an additional negative term is introduced. Wheis
known at discrete times, we calculatg from the Fourier trans-  small, disregarding this term can introduce spurious effects, espe-
form, as described in Ref14]. cially if the signal to be analyzed has nonzero mean or low fre-

2A multimodal distribution of the phases can also appear if wequency components. We do not need a normalization term in Eq.
look, e.g., for a 1:1 synchronization but the real relationship: &. (20) because we will be interested only in phases.
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transform¢)’ and by the Hilbert transforng!! are closely —assessed visually by looking for the simultaneous appearance
related. Indeed, the real part Wi (t) can be considered as a of spike dischargésand then it was further quantified by
band-pass filtered signal. From it, we can form the Hilbertcalculating both a linear cross correlation and the nonlinear

transform interdependence measutedefined in the previous section.
For the quantitative analysis, for each rat and condition, ten
W, (1) = (H R wy])(1), (22 data segments pre- and ten segments post-lesion were ana-
lyzed, five of these segments corresponding to normal EEG’s
and a phase by and the other five containing spike discharges. The length of

~ o each data segment was 5 dge., 1000 data poin}s this
REW,J(1) +iW,(1)=ARqy, (e %raw . (23)  being the largest length in which the signals containing
spikes could be visually judged as stationary. In all seven rats
Let us now recall the definition of analytic signals. A com- studied, it was found that synchronization significantly de-
plex function g(t) is an analytic signal if it satisfies Creased after the lesions in the reticular thalamic nucleus
(F9)(0)=0Vw<0 [35]. If g is analytic, then Ifg(t)] [37]. Moreover, changes shown with the nonlinear synchro-
~3(t)=(HRdg])(1). If a wavelet function¥ is analytic, nizationH were more pronounced than those found with the
, ) , ~ cross correlation. In the following section we will analyze in
then Wy (t) =(Wox), is also awalytlé‘. In this caseWx(t)  getail three of these EEG segments.
=Im[W,(t)] and ¢wax](t)5¢x (1), as defined in Eq(21).
Since the corrected Morlet wavelet of E@O0) is approxi-
mately analytic we have¢ge[wx](t)s¢}(’v(t) to very good
approximation. Since as we mention&d,(t) acts as a band In Fig. 1 we show the right and left channels of three of
pass filter ofx(t), theng (t)= ¢¥(t) as long as for the first the (pre-lesion EEG signals described in the previous sec-
one the signal is pre-filtered with the same wavelet functiortion. The first casgexample A corresponds to a normal
used for calculating the latter. EEG, and in the remaining two cases the signals have spike
It is important to remark that the previous result is notdischargegexamples B and C Spikes usually appear due to
limited to complex Morlet wavelets and can be extended ta local synchronization of neurons in the neighborhood of
other wavelet functions. In particular, from a real waveletthe electrode at which they are recorded. Since epilepsy is
function W (t) we can construct an analytic signal by usingrelated to an abnormal synchronization in the brain, spikes
the Hilbert transform, i.e. W' (t)=W(t)+i(HW¥)(t), which  are usually considered as a landmark of epileptic activity. A
satisfies thatW,(t)=(¥'-x)(t) is analytic. Then, from localized appearance of spikes can delimit a zone with ab-
W,(t) we can define a phase and, e.g., study the phase synoermal dischargesbut this will not necessarily be the epi-
chronization with another signg(t). The important advan- leptic focusg. On the contrary, if spikes are observed over the
tage is that we have the freedom of defining the phase frorwhole set of electrodes, abnormal synchronization is said to
a particular wavelet function, chosen from a dictionary ofbe global. This concept seems to be obvious, but it has some
available wavelets according to the signal to be studied. Thisubtleties as we will see in the following. Let us analyze
can be interesting in cases in which defining a phase from thexamples B and C. In both cases we see spikes at the left and
Hilbert transform is troublesome or if conventional filters areright electrodes. As we said, this will point towards a global
not well suited. synchronization behavior. However, a more detailed analysis
shows that the spikes of example B are well synchronized
and in example C they are not. Indeed, in example C the
spikes have slightly different time lags between the right and
We will analyze the synchronization between two EEGIeft channels. This is of course not easily seen in a first sight.
channels in three different data s¢is3]. The EEG signals For making clear this point, we picked up the spikes of ex-
were obtained from electrodes placed on the left and righamples B and C and we noted the times of their maximum
frontal cortex of male adult WAG/RIj rat& genetic model for the right and left channels. We then calculated the lag
for human absence epileps)B6]. Both signals were refer- between the spikes in the two channels and its standard de-
enced to an electrode placed at the cerebellum; they wergation with time. For the case B, the lag was very small and
filtered between 1 and 100 Hz and digitized at 200 Hz. stable, mainly between 5 and 5 mdi.e., of the order of the
In a previous study37], the main objective of this setup sampling ratgand the standard deviation was of 4.7 ms. For
was to study changes in synchronization after unilateral leease C, the lag was much more unstable and covered a larger
sions with ibothenic acid in the rostral pole of the reticularrange(between—20 and 50 mp In this last case the stan-
thalamic nucleus. To achieve this, synchronization was firstlard deviation was of 14.9 ms. This shows that in example B
the simultaneous appearance of spikes is correlated with a
global synchronization, while in example C bilateral spikes
“Taking the Fourier transform we get FV,)(w) are not synchronize@.e., we have local synchronization for
=[F(Vox)(n(w)=(F¥)(w) - (FX)(0)=0Vw<0, where we
used the Fourier convolution theorem and tt¥ais analytic.
SThe Morlet wavelet tends to an analytic signal for laiggand %More properly, “spike-wave discharges,” but for simplicity we
low o [35]. will call them spikes in the remainder of the paper.

IV. SYNCHRONIZATION IN THE EEG DATA

IIl. DETAILS OF THE DATA
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TABLE I. Synchronization values for the three examples of Fig:,}: cross-correlationf’,, : coherence
(at 9 H2; S(RIL), H(RIL), N(R|L), andS(L|R), H(L|R), N(L|R): nonlinear interdependences of the right
electrode on the left and vice versg; and y,.gn: phase synchronization indices defined from the Hilbert
transform[Eqgs.(18) and(19), respectively; y and yw.sh: phase synchronization indices defined from the
wavelet transform.

Example ¢, Iy, S(RIL) S(LIR) H(RIL) H(LIR) N(RIL) N(LIR) ¥4 ¥u-sh Yw Yw-sh

A 0.70 0.88 0.34 0.34 0.67 0.60 0.46 042 059 012 0.71 0.19
B 0.79 0.86 0.35 0.28 111 1.30 0.63 069 071 0.18 0.80 0.28
C 0.42 0.40 0.17 0.23 0.33 0.45 0.24 032 048 0.09 0.48 0.09

both channels, but no global synchronizajidn the case of of the right and left channels and the lower plot to the cor-
example A, due to its randomlike appearance it is difficult toresponding coherence functiof3). Each spectrum G,,,
estimate the level of synchronization by visual inspection.cyy, and C,) was estimated using the Welch technidue,
However, we can already observe some patterns appearing. the data are divided int¥ segments and theg,,
simultaneously in both the left and right channels, thus:EiM:lCXxi . We used half overlapped segments of 128 data
showing some degree of mterﬂependen(ie. o oints tapered with a Hamming window. Example A has both
“ iumglarmgg, we rr?ay'sa)ét Zt examﬁ)he B ?ﬁem?t € MO the right and left channels a power spectrum resembling a
ordered” and syncnronized. Among the other two ex- power law distribution, with its main activity concentrated
amples, AIooI_<s definitely more disordered th_an_ C, but a petween 1 and 10 Hz. The coherence function shows a sig-
closer look raises doubts and a formal analysis is asked fo{"lificant interaction for this range of frequencies. Examples B
and C show a more localized distribution in the power spec-
trum. In both examples and for both channels there is a peak
The second column of Table | shows the zero lag crosspetween 7 and 10 Hz and a harmonic at about 15 Hz. In
(1), the calculation of the cross correlation requires a norma'borrespond to the spikes observed in Fig. 1. We can already
ization of the data. We note that the tendency is in agreementoe from the power spectra that the matching between right
with what we expect from the arguments of the previousynq |eft channels in example B is much clearer than in ex-
section (i.e., B>A>C). However, the difference between ;mpie . This is correlated with the larger coherence values
cases A and B is relatively small. To get more insight, in Fig.qf example B, showing a significant synchronization for al-
3 we plot the cross correlation as a function of time shifts, st the whole frequency range. On the other hand, the co-
between the two channels. For the shifted versions, we us§¢s ence is much lower for example C and it seem,s to be
periodic t_)ou_ndary_ c_ondlt_lon_s. For large enough shifts, thesignificant only for low frequencie@up to 6 H2. As in the
synchronization will in principle be lost and the values ob- 446 of the cross correlation, the coherence functionwfor
tained will give an estimation of the zero synchronization< 11 H; does not distinguish well between examples A and
level, which we will call background level, and its fluctua- g there is only a difference for frequencies larger than 11
tion (i.e., we use the shifted versions as surrogaté® ob- 1, ¢ his just reflects the lack of activity in this frequency
serve that the synchronization drops to a background leveh,qe for example A, whereas in example B it corresponds to
for shifts larger than 50 data pointise., 250 m$. The aver- 6 sy nchronization between the high frequency harmonics
age of this background level is zero, but the fluctuations are 1,4 spikes. In the third column of Table | we summarize
quite large. Taking these fluctuations as an estimation of thg,e resits obtained with the coherence function. The values
error, we see that cross correlation does not distinguish beg,5\wn correspond to a frequency of 9 Hz, the main fre-

tween cases A and B. _ _quency of the spikes in examples B and C.
We also note that the cross correlation shows oscillations

when shifting, most clearly in case B. These oscillations
have the same period of the spikes and might put into doubt
the idea of considering the shifted signals as surrogates. We For calculating the nonlinear interdependence measires
therefore re-calculated the cross correlation but taking thél, and N between left and right electrodes we first recon-
left channel signals from other data segments of the same ratruct the state spaces of each signal using a timer+ag
(for each rat we had five segments with spikes and five oind an embedding dimensiom=10. We chose this time lag
normal EEG before the lesions in the thalamasd corre- in order to focus on frequencies lower than 50 (He., half
sponding to the same conditigpre-lesion, normal EEG for the Nyquist frequengyand the choice of the embedding di-
example A and EEG with spikes for examples B andI@  mension was in order to have the length of the embedding
all cases, the background level and its fluctuations were ofectors about the length of the spikes. We further chiose
the order of those shown in Fig. 3. This indicates that shifted
signals can be used as surrogates in spite of the oscillations.—

Figure 4 shows the spectral estimates for the three ex-without this segmentation technique, the coherence funfign
amples. The two upper plots correspond to the power specti@)] would be always equal to 1.

A. Linear measures

B. Nonlinear interdependences

041903-7



QUIAN QUIROGA, KRASKOV, KREUZ, AND GRASSBERGER PHYSICAL REVIEW B5 041903

C

oy y . T . T T T T T
08
06
0.4
02
0
-0.2
25 —é -1 I5 —1I -0I5 (I) OI5 1I 1 I5 é 25
Cry
o8- B E
0.6 B
04f . FIG. 3. Cross correlations between the right
02l i channel and shifted versions of the left one. Note
that the difference between the three signals are
0 V\MAJ\MN\NWM/\N\N\/\) of the order of fluctuations when shifting.
-02f .
25 —é -1 I5 —1I -0I5 6 0I5 1I 1 I5 é 25
Sy 1 . . . . . . . . .
08 ¢ 1

At (sec)

=10 nearest neighbors and a Theiler correction for temporaground level for shifts larger than 50 data poifite., 250
correlations[38] of T=50. These parameters were chosenms) and the background level is about zero. But in the case
heuristically in order to maximize the sensitivity to the un- of H andN we observe that the fluctuations are much smaller
derlying synchronizations, but results were robust againsthan those for the cross correlation. In fact, witrandN the
changes of them. Table | summarizes the results for the thregynchronization levels of the three cases are clearly sepa-
examples. We will first discuss results with the nonlinearrated, while the cross correlation does not distinguish be-
measuredd and N. For both measures, example B has thetween cases A and B. However, even though we expect ex-
highest synchronization due to the presence of phase-lockeaimple B to be the most ordered and synchronized dfsek
spike discharges and example C has a much smaller valu8ec. IV), we do not have objective means for claiming that
The synchronization of example A is between these valueghe difference between examples A and B is significant. So
Again, it is interesting to remark that the nonlinear interde-the fact that nonlinear measures are able to separate the three
pendence measures show the random looking signal of exexamples might imply a higher sensitivity of these measures
ample A to be more synchronized than the one with spikes oih comparison with the linear ones, but it does not prove it.
example C but less than the one in B, something surprising &Ve also observe some asymmetriesHrand N, most pro-
a first sight, and not clearly following from the cross corre-nounced in case C. This might suggest that one of the signals
lation or the coherence as shown in Sec. IVA. drives the othefi.e., the focus is on one sigeHowever, in

As done for the cross correlation, in Fig. 5 we also plotall cases this is of the order of the asymmetries seen with the
the two nonlinear synchronizatiortd(R|L), N(R|L) and shifted signals, thus not significant.
H(L|R), N(L|R) as a function of time shifts between the  The case for the synchronization meas8rs quite dif-
two channels. Again, the synchronization drops to a backferent. As seen in Fig. 5, for examples B and C there is a
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clear asymmetry between right and left channels. In contrary C. Hilbert phase synchronization

t%.;‘ akl)nctl N, th'tsh a?ymmﬁtry relmz'a\l/lns even {ﬁr Isrgi time  prior to the estimation of the phase synchronization mea-
Ise\;els fore tvrzlgetﬂreeee;v:mc Iggri]g Eétw?afr?\é)e;’ an% oag sr:gur?gtures, each set of data was de-meaned. No further filtering
P ' ) as applied. Figure 6 shows the time evolution of the phases

zero as withH. Thus the asymmetries observed in example e .
B and C reflect more the individual properties of each Chan%_upper ploj and their distributior(middle plots for the three

nel rather than a synchronization phenomehdteverthe- examples. From the time evolution of the phases We can
less,H andN were clearly more robust in this respect. already see that the phase of example B is clearly more

Again, in order to check for the validity of the shifted Stable than the one of the other two exampikeecept in the
signals as surrogates, we recalculatedN, andSbut taking ~ 1ast half second, as we will detail lajeExamples A and C
the left channel signals from other data segments. As in th@"® Not so easily differentiated, but in the middle plots we see
case of the cross-correlation, the background level and itéat the phase distribution of Ais more localized than the one

fluctuations were of the order of those shown in Fig. 5. of C. The values ofy,, indicated in Table |, are in agree-
ment with these observations and with the general tendency

observed with the other synchronization measurigs A
8As pointed out in Ref[11], precisely such an asymmetry is ex- — C). The phase synchronization index defined from the Sh-
pected if otherwise equal systems are coupled asymmetrically. Thu8NNon entropy y,,.sn, defined in Eq.(19)] shows qualita-
if we expect both subsysteraspriori to have the same complexity, tively similar results(see Table )l
the asymmetry oS is a hint to an asymmetric coupling. Since by applying the Hilbert transform we can calculate
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an ‘“instantaneous phase” of the signals, we expect taoscillate around the average values noted in Table I. After the
achieve a very good time resolution with the phase synchrothird second the situation changes. Example C becomes more
nization measures derived from them. In the lowest plot ofsynchronized than the other two examples and example B
Fig. 6 we show the time evolution ofy (the plot foryy.gn, ~ gets more desynchronized in the last half second. This is in
was qualitatively similgr Each point is calculated for a win- agreement with what we see in the original signals in Fig. 1,
dow of 100 data points. In the first 3 sec we observe relawhere it would have been hard to discern at first sight by
tively stable synchronization values for cases A and B. Fowisual inspection. The possibility to follow phase synchroni-
example C we observe a larger variability due to a progreszation in time is in fact one advantage over the nonlinear
sive phase desynchronization with a phase reentrainment atterdependences, where a large number of data points is
about 2.5 sec. For all the examples, synchronization leveleequired for reasonably stable results.

041903-10



PERFORMANCE OF DIFFERENT SYNCHRONIZATION . . . PHYSICAL REVIEW &5 041903

¢xy
60 T T T T
— example A
404 example B e
- - example C
Ll i ‘
o \}"“’J‘"@f Jd o ln\l |
-\
_20\%\»]'r \'/V“\\—r%“uv‘*\"'“\‘ 7
_40 I I L I | I ! I | .‘\,
05 1 15 2 25 3 35 4 45 5
& 5 c Time (sec)
150 150 150
FIG. 6. Time evolution of thé1:1) phase dif-
ferences, as defined from the Hilbert transform,
for the three examples of Fig. (Upper ploj, the
corresponding distributions of the folded phase
differences(middle plots and the time evolution
of the phase synchronization indey; (lower
plot).
YH 1 T T T T T T
0.8
0.6
0.4+
0.2 1
00 0{5 1I 1 I5 é 2i5 :]3 315 tlt 415 5
Time (sec)
D. Wavelet phase synchronization chronization values are a bit larger than the oneypfand

&H-sh- As already shown in Sec. Il F, the difference is due to
the frequency band selectivity of,, and yy.s,. We there-
fore expect that a pre-filtering of the signals will increase the
synchronization values calculated by using the Hilbert trans-
orm

In this case, for calculating the phase of each signal w
used a corrected Morlet wavelgg. (20)] with w, between
1 and 30 Hz andr=n/6wq, wheren is the number of sig-
nificant oscillations of the wavelet function at the 1% level.
We tes_ted dlffer_ent v_alues of but in the following, results With n=1 the three cases are well differentiated both by
withn=1 aqdn—S will .be shown. Larger values (nflgd to yw.sn and yy. With n=3 the difference between the syn-
a very bad time resolution as we detail later. We vatigdt  cpronjzation levels of examples A and B is less clearyfgr
1-Hz intervals and used zero padding border conditions.  gnq 4, . This is due to the decrease in time resolution

The phase difference plotsit 10 H2 were indeed very \hen increasing the number of significant oscillations of the
similar to those shown in Fig. 6 and will not be discussedmother function. Clearly, for the examples studieg; 1 had
further. Figure 7 shows the phase synchronization vajyes the best performancdor n>3 results get worse than faor
(left plots) and y.sh, (right plots calculated with a wavelet =3). Notice the similarity between the lower plots for
function containing one significant oscillation€1; upper =3, i.e., the ones with less resolution, with the coherence
plots) and three significant oscillationsi€ 3; lower plot3.  plots shown in Fig. 4. This supports the usefulness of the
The values reported in Table | correspond to those obtaineghase synchronization measures defined from the wavelet
with n=1 at a frequency of 10 H#the frequency of the transform in comparison with traditional approaches. Finally,
spikes in examples B and C, but results are qualitatively theve should also remark that, as shown in Sec. Il F, we are not
same between 5 and 15 HZ hese results are very similar to limited to use Morlet wavelets, but we can rather choose
those obtained with the Hilbert transform and show the sameetween several wavelet functions depending on the applica-
tendency(i.e., B>A>C). However, we also note that syn- tion.
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Y b chronization in the three examples analyzed. As seen in Fig.
w n=1 W=Sh n=1 . . . .
i i i 8, the answer to the question of which signal is more and
vl | - — example A which is less synchronized dramatically depends on the
. 91 —— example B . .
- — example C choice ofmands. We observe the same tendency as with the

o previous measureB(A>C) only for m=1 and§>0.15.

All previous analyses done in this paper show clear evi-
08T dence that example B has the highest synchronization. For
o5} m=1 this is the case fo6>0.05, form=2 it occurs fors
>0.2, form=3 at 6>0.45, and fom=4 it does not occur

for the range of5 shown. In fact, there is a crossing between
the synchronization values of examples A and B, that takes
place at large# for largerm. This simply reflects the impos-
sibility of finding neighbors in the &-dimensional state

% 10 20 30 % 10 20 30 space for smalls and/or largem. As mentioned before, we
expect this effect to be less restrictive for the homogeneous

0.7f

0.3

0.2

0.1

© ) * b distribution of example A. This explains why example A al-
L _— W-sh - ways shows the highest synchronization for snaall
1 1 T ™
ool V. CONCLUSIONS
08r We applied several linear and nonlinear measures of syn-
o7} chronization to three typical EEG signals. Besides mutual
o6 information, which was not robust due to the low number of

data points, all these measures gave a similar tendency in the
synchronization levels. A similar analysis would have been
impossible by visual inspection. Moreover, in one case with
bilateral spikes, synchronization was much lower than ex-
pected at a first sight. Therefore we claim that the quantifi-
cation of synchronization between different EEG signals can
complement the conventional visual analysis and can even
0 10 2 8 0 10 2 0 be of clinical value. In particular, this is very important for
o (Hz) ® (H) the study of epilepsy9-11,17 and for the study of brain
processes involving a synchronous activation of different ar-
FIG. 7. Phase synchronization indiceg, and yu.s, defined  eas or structures in the brain.
from the wavelet transform for two different wavelet functioms ( In the last years, mainly two types of nonlinear synchro-
=1andn=3). nization measures were proposed, namely, the ones based on
phase relationshipgphase synchronizatipnand the ones
based on nonlinear interdependen@@neralized synchroni-
Let us finally analyze the results obtained with mutualzation. It is interesting to remark that in our study with real
information for the three EEG signals. For its calculation wedata these measures gave similar results, despite their differ-
used Eq.(13) with each Shannon entropy calculated by ent definitions and their sensitivity to different characteristics
means of the correlation sufasing maximum normand the  of the signals. We also show a close similarity between phase
finite samples correction of EQL6). After each data set was synchronization measures based on the Hilbert and on the
normalized, for embedding the data we used a timedag wavelet transform. In the particular case of the last one, we
=2 and embedding dimensions ranging fram=1 (no em-  generalize its definition to different wavelet functions that
bedding to m=50. We further used a Theiler correctit88]  will be more or less suitable according to the problem under
of ten data points and for calculating the correlation sum wenvestigation.
varied the radius) from 0.01 to 0.5 in steps of 0.01. In Fig. We validated the results obtained with the new nonlinear
8 we show the results fan=1,2,3,4, the results for largen  measures by comparing them with those obtained with tradi-
had a similar tendencfsee below. The difficult point when  tional methods. All measures ranked the synchronization lev-
calculating Ml is to have a good estimation of the joint prob-els of the three examples in the same way. However, the
abilities pf}Y [see Eq(12)]. These joint probabilities involve separation between them was more pronounced with nonlin-
a search of neighbors in ai2dimensional embedding space ear measures. Although we do not have objective means for
and therefore it is difficult to find enough neighbors and geftclaiming that the difference between the synchronization of
a good statistic for largen. We expect this restriction to be the signals is significant, this might suggest a higher sensi-
more relevant in the signals with spikes, due to their inho4ivity of nonlinear measures. Although these results should
mogeneous distribution in state space. not be automatically extended to other signals and problems,
In line with the previous argument, due to the small num-they also support the value of nonlinear synchronization
ber of data points we could not get robust estimates of synmeasures in real data analysis.

01

E. Mutual information
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