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Efficient computation of the structural phase behavior of block copolymers
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A numerical implementation of self-consistent mean-field theory for the structural phase behavior of block
copolymers is proposed. Our scheme does not requirea priori assumptions of the underlying mesoscopic
symmetries. The method potentially enables us to characterize, with high accuracy, the structural phase dia-
gram of block copolymers with significant architectural complexity. We illustrate the method by applying it to
a triblock copolymer system.
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Block copolymers have received considerable attent
both experimentally and theoretically, due to their fascinat
ability to self assemble into a variety of ordered nanosc
morphologies@1#. Recently, self-assembled ordered stru
tures with periodicities on the nanometer scale have bec
an important area of study because of their application
nanotechnology. For instance the self-assembled struct
of block copolymers have been used in various templa
functions: for nanoscale colloidal particles@2#, surface pat-
terning @3#, and the creation of photonic band-gap materi
@4#. The attractiveness of block copolymer systems is furt
enhanced by the existence of a quantitative self-consis
mean-field theory~SCMFT! establishing a relation betwee
molecular architecture, composition, and equilibrium self
sembly. The SCMFT for polymers originates from the wo
of Edwards and was later adapted to describe self asse
by Helfand and others@5#.

Currently, two efficient numerical approaches to solvi
the SCMFT exist;~1! Matsen and Schick@6# put forward an
approach which involves expanding all spatially extend
fields in a finite set of basis functions adapted to an assu
symmetry. Although this method is numerically efficient f
a precise calculation of free energies and phase diagram
demands that the symmetries of the phases be known.
information is typically lacking in exploratory studies o
composite block copolymer materials of different archite
ture. ~2! Drolet and Fredrickson@7# have recently suggeste
an alternative numerical approach which requires no p
knowledge of symmetry relations. This approach has b
applied in a number of studies@8,9#. In this paper we propose
a method that does not requirea priori knowledge of sym-
metry and~i! is numerically table and~ii ! is significantly
faster. Our resolution of these issues truly enables a full
culation of structures so that SCMFT can be used in exp
atory studies for combinatorial screening.

We first briefly describe the SCMFT for a monodispers
melt of n ABC triblock copolymers. Each triblock molecul
is composed ofN segments of whichf AN, f BN, and f CN
5(12 f A2 f B)N form the A,B, andC blocks, respectively.
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The interaction between dissimilar blocks, within the S
MFT, is determined by the threeFlory-Hugginsparameters
xAB , xAC , and xBC . In SCMFT the three static fields
vA(r ), vB(r ), andvC(r ) represent the molecular interactio
acting onA,B, andC, respectively. Denoting bys the con-
tour length~scaled byN) of the copolymer we can, within
the above mean-field assumption, write down the exact
tition function Z5*drq(r ,1) in terms of the statistica
weight q(r ,s) that a segment of a chain with the free e
(s50) of theA block has itssth segment atr

q~r ,s!5E Dr ad †r2ra~s!‡3expF2E
0

s

dtS Udra~t!

dt U2

1v†ra~s!,s‡D G . ~1!

Here lengths are in units of the unperturbed radius of gy
tion Rg of the chain and the subscripta denotes components
The two terms in the statistical weight function represent
entropic penalty for stretching and the energy arising fr
the static fields, respectively. The fieldv for a linear triblock
copolymer is defined by

v~r ,s!5H vA~r !, for 0,s, f A ,

vB~r !, for f A,s, f A1 f B ,

vC~r !, for f A1 f B,s,1 .
~2!

For computationsq(r ,s) is conveniently determined by th
modified diffusion equation

]q~r ,s!

]s
5¹2q2v~r ,s!q, ~3!

with the boundary conditionq(r ,0)51 @5#. Since the two
ends of the copolymer are distinct, a second segment di
bution functionq†(r ,s) is defined similarly toq and satisfies
the modified diffusion equation

2
]q†~r ,s!

]s
5¹2q†2v~r ,s!q†, ~4!
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with the boundary conditionq†(r ,1)51 @5#. In terms of
these distribution functions the monomer densitiesfk(r )
(k5A, B, or C! become

fk~r !5
V

ZEsl

su
ds q~r ,s!q†~r ,s!, ~5!

whereV is the volume~in units of Rg), sl50, f A , f A1 f B ,
andsu5 f A , f A1 f B,1 for k5A,B,C, respectively.

The free-energyF per chain~in units of kBT) in terms of
the defined quantities is

F52 lnFZVG1
N

2V (
k, k8, kÞk8

Fxkk8E dr fk fk8G
2

1

V (
k

F E dr vk fkG . ~6!

Minimization of this free energy with respect tofk andvk
yields

vk5N (
k8Þk

xk,k8fk8~r !1j~r !, ~7!

wherej(r ) is the Lagrange multiplier enforcing the incom
pressibility constraint(kfk(r )[1.

Equations~3!, ~4!, and~7! and the corresponding slightl
simpler equations for diblock copolymers have been succ
fully solved by Matsen and Schick@6#, Matsen @10#, and
Laradji et al. @11# using a restricted Fourier basis that app
priately represents assumed morphological symmetr
These studies have theoretically determined the phase
gram for diblock copolymers@6# and explored parts of the
larger and more complex phase diagram for symmetric
block copolymers. Particularly, for the more exploratory
search on triblock and copolymer systems of similar
higher degree of architectural complexity, this approach
the flaw that the relevant morphologies need to be knowa
priori . To circumvent this problem Drolet and Fredrickso
@7# recently suggested an implementation where low fr
energy morphologies are found by relaxation from rand
potential fields.

We now describe our approach to this problem. First,
initial guess for the static fieldsvk(r ) is obtained using a
standard random number generator. Thereafter, Eq.~7! com-
bined with the incompressibility relation yields the dens
fields fk(r ) and the Lagrange multiplierj(r ). Now the
modified diffusion Eqs.~3! and ~4!, are solved to determine
q(r ,s) and q†(r ,s) for 0<s<1 and the results are used
Eq. ~5! to obtain expressions for the densitiesfk(r ). In prin-
ciple, the fieldsvk(r ) for the next iterations should b
straightforwardly obtained from Eq.~7!. However, this ap-
proach leads to various convergence problems. There
the authors of Ref.@7# used a linear mix of new~present
iteration! and old~previous iteration! density fieldsfk(r ) in
Eq. ~7! rather than the straightforward approach. In o
implementation this leads in almost all cases to a ca
strophic instability as the equilibrium solution is iterative
04180
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approached@12#. Inspired by related work@11# we therefore
use the following set of equations to obtain the fieldsvk(r )
for the next iteration:

vk
i 11~r !5vk

i ~r !1gdvk
i ~r !2edf i~r !, ~8!

wherei is an iteration index andg,e are small positive num-
bers@13#. The remaining quantities are defined as

dvk
i ~r !5N (

k8Þk

xk,k8fk8
i

~r !1j i~r !2vk
i ~r !, ~9!

and

df i~r !5(
k

fk
i 21~r !2(

k
fk

i ~r !. ~10!

The crucial difference compared to the work of Ref.@7# is
the last term in Eq.~8! which we found stabilizes the itera
tions in all cases. Note that this term does not alter the e
librium state since it vanishes as the fixed point of the ite
tions is approached. The final step is to update
Lagrangian multiplierj(r ) combining Eq.~7! with the in-
compressibility constraint@14#. This procedure is embedde
in a minimization procedure wherein the free energy of
structures is minimized with respect to the size of simulat
box @15#. As is well known, the true minimum of the fre
energy is realized only when the box size is commensu
with the periodicity of the equilibrium morphologies. Al
though this effect clearly diminishes as the simulation b
becomes larger, it is advantageous to constrain the size o
simulation box to not exceed two periods as both compu
tion time and the time required to achieve appropriate
nealing increase dramatically with the size of the system@7#.

Clearly, the main computational effort in the describ
algorithm resides in solving the modified diffusion Eqs.~3!
and ~4!. The authors of Ref.@7# used a Crank-Nicholson
scheme where the severe constraint on spatial and temp
resolutions, imposed by stability requirements, are w
known @16#. Rather than using this method or similar fini
difference methods we apply a pseudo spectral method
gain about an order of magnitude in computing time
comparable numerical accuracy. Specifically, we use asplit-
step Fourieralgorithm @17# achieving its attractiveness fo
the present problems via the following two virtues:~1! It
applies the well-developed fast-fourier transform~FFT!, and
~2! the two separate steps can be solved exactly allow
coarse resolution along thes direction. Attempting to apply
the split-step Fourier algorithm, to solve Eqs.~3! and~4! we
observe that a formally exact solution to Eqs.~3! ~for s
, f A) is

q~r ,s1ds!5exp@ds„¹22vA~r !…#q~r ,s!. ~11!

Accepting an error of orderds3, Eq. ~11! becomes@18#
6-2
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q~r ,s1ds!5expF2
ds

2
vA~r !Gexp@ds¹2#

3expF2
ds

2
vA~r !G q~r ,s!. ~12!

Equation ~12! can be numerically implemented exact
for a given spatial discretization. The operat
exp@2ds/2vA(r )# is trivially implemented while the operato
exp(ds¹2) is implemented exactly in the spatial Fourier d
main. This last step requires one forward and one backw
~inverse! FFT representing the main time cost of the a
proach. The fact that we can implement Eq.~12! exactly
allows us to useds;0.01 which is at least an order of mag
nitude larger than what is possible with a Crank-Nichols
or similar type schemes. This scheme enables simulation
spatial size;(15Rg)3 to (20Rg)3 on desktop computers.

To demonstrate the efficiency of our algorithm we co
sider a triblock system that has been studied by Matsen u
a spectral approach@10#. We take anABC system with sym-
metric end blocks wheref [ f A5 f C andx[xAB5xBC . This
particular class ofABC triblocks is characterized by jus
three quantitiesf, xN, andxAC /x. We examine three point
in this phase diagram: The three density fields describing
lowest free energy configuration at (f ,xN,xAC /x)
5(0.12,50,1) are shown in Fig. 1. We depict the actual s
of the simulated system which is discretized into a 64364
364 grid. The figure shows the projection of the dens
fields on the surfaces depicted with red color indicating h
density (;1) and with blue color indicating low densit
(;0) regions. As shown by Matsen@10#, we find that the
lowest-energy configuration at this point of the phase d
gram is a body-centered-cubic~bcc! structure in the sens
that bothfA and fC fields form cubic structures but dis
placed in space such that the combined fieldfA1fC forms
the bcc structure. The free energy of this structure isF
59.275 and the lattice parameter of the cubic structure
D53.4Rg , consistent with Ref.@10#.

Figure 2 shows the minimum free-energy configuration
( f ,xN,xAC /x)5(0.14,50,1), which in this case consists
hexagonally packed cylinders. Again, the hexagonal pack
occurs in the combined fieldfA1fC while the individual
fields show cubic packing. As this method starts from a r
dom initial condition we have, contrary to the spect
method, no control over the orientation of the resulting m
phology. This is clearly seen in this example, the cylind
misalign with the box axes. The free-energy of this struct
is F59.58 and the lattice parameter of the hexagonal pat
is D54.1Rg , again consistent with Ref.@10#. Finally, Fig. 3
displays the minimum free energy configuration
( f ,xN,xAC /x)5(0.25,50,1) consisting of a lamellar mo
phology. In this particular configuration the free energy
the structure isF59.726 and the period of the lamella
modulation isD57.4Rg , which is quite large for a method
like this to handle successfully. Moreover, we have a
found a gyroid structure in the regions of the phase diag
where Ref.@10# indicates its presence.
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FIG. 1. ~Color! Three-dimensional density plot of the minimum
energy phase~bcc structure! at (f ,xN,xAC /x)5(0.12,50,1). The
three densities are separately shown as projections on the dep
surfaces with the color red indicating high density and the co
blue indicating low density. Distances are in units ofRg .
6-3
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FIG. 2. ~Color! Three-dimensional density plot of the minimu
energy phase~hexagonally packed cylinders! at (f ,xN,xAC /x)
5(0.14,50,1). The three densities are separately shown as pr
tions on the depicted surfaces with the color red indicating h
density and the color blue indicating low density. Distances are
units of Rg .
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FIG. 3. ~Color! Three-dimensional density plot of the minimum
energy phase~lamellar structure! at (f ,xN,xAC /x)5(0.25,50,1).
The three densities are separately shown as projections on th
picted surfaces with the color red indicating high density and
color blue indicating low density. Distances are in units ofRg .
6-4



u
ng
f
ad
ia

nce

ith
al

De-

EFFICIENT COMPUTATION OF THE STRUCTURAL PHASE . . . PHYSICAL REVIEW E 65 041806
In summary, we have presented a numerical algorithm
solve the SCMFT for block copolymer systems which is n
merically superior in stability and performance to existi
approaches. We applied it to study the morphologies o
triblock copolymer. This method represents an important
vance for the applicability of the SCMFT as a combinator
. B
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ev
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screening technique in future exploratory materials scie
of block copolymers and nanoscale composite systems.
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