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Efficient computation of the structural phase behavior of block copolymers
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A numerical implementation of self-consistent mean-field theory for the structural phase behavior of block
copolymers is proposed. Our scheme does not requipeiori assumptions of the underlying mesoscopic
symmetries. The method potentially enables us to characterize, with high accuracy, the structural phase dia-
gram of block copolymers with significant architectural complexity. We illustrate the method by applying it to
a triblock copolymer system.
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Block copolymers have received considerable attentionThe interaction between dissimilar blocks, within the SC-
both experimentally and theoretically, due to their fascinatingFT, is determined by the threfelory-Huggins parameters
ability to self assemble into a variety of ordered nanoscalexag, xac, and xgc. In SCMFT the three static fields
morphologies[1]. Recently, self-assembled ordered struc-wa(r), wg(r), andwc(r) represent the molecular interaction
tures with periodicities on the nanometer scale have becongcting onA,B, andC, respectively. Denoting bg the con-
an important area of study because of their application irtour length(scaled byN) of the copolymer we can, within
nanotechnology. For instance the self-assembled structuréise above mean-field assumption, write down the exact par-
of block copolymers have been used in various templatingition function Z=[drq(r,1) in terms of the statistical
functions: for nanoscale colloidal particl€8], surface pat- weight q(r,s) that a segment of a chain with the free end
terning[3], and the creation of photonic band-gap materials(s=0) of the A block has itssth segment at
[4]. The attractiveness of block copolymer systems is further
enhanced by the existence of a quantitative self-consistent s
mean-field theorfSCMFT) establishing a relation between q(r,s)=f Dfa5[r—ra(s)]><eXF{ —f dT(
molecular architecture, composition, and equilibrium self as- 0
sembly. The SCMFT for polymers originates from the work
of Edwards and was later adapted to describe self assembly +w[ra(s),s])
by Helfand and otherfs].

Currently, two efficient numerical approaches to solving
the SCMFT exist{1) Matsen and Schick6] put forward an  Here lengths are in units of the unperturbed radius of gyra-
approach which involves expanding all spatially extendedion Ry of the chain and the subscriptdenotes components.
fields in a finite set of basis functions adapted to an assumebihe two terms in the statistical weight function represent the
symmetry. Although this method is numerically efficient for €ntropic penalty for stretching and the energy arising from
a precise calculation of free energies and phase diagrams,the static fields, respectively. The fialdfor a linear triblock
demands that the symmetries of the phases be known. Thg®polymer is defined by
information is typically lacking in exploratory studies of
composite block copolymer materials of different architec- wa(r), for 0<s<f,,
ture. (2) Drolet and Fredricksoh7] have recently suggested
an alternative numerical approach which requires no prior w(r,s)={ @8 for fass<fatfs, 2
knowledge of symmetry relations. This approach has been wc(r), for fo+fg<s<l.
applied in a number of studi¢8,9]. In this paper we propose
a method that does not requieepriori knowledge of sym- ) ) ) )
metry and (i) is numerically table andii) is significantly ~For computationg(r,s) is conveniently determined by the
faster. Our resolution of these issues truly enables a full calmodified diffusion equation
culation of structures so that SCMFT can be used in explor-
atory studies for combinatorial screening. aq(r,s) 5

We first briefly describe the SCMFT for a monodispersed o5~V 4-o(rs)q, ©)
melt of n ABC triblock copolymers. Each triblock molecule
is composed oN segments of whiclf 5N, fgN, and fcN
=(1—-f,—fg)N form the A,B, and C blocks, respectively.

dra(7)|?

dr

: (€

with the boundary conditiom(r,0)=1 [5]. Since the two
ends of the copolymer are distinct, a second segment distri-
bution functionq(r,s) is defined similarly tay and satisfies

he modifi iffusion ion
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with the boundary conditiorg™(r,1)=1 [5]. In terms of
these distribution functions the monomer densitigqr)
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approached12]. Inspired by related workl1] we therefore
use the following set of equations to obtain the fiedggr)

(k=A, B, or C) become for the next iteration:

¢K<r>=%fsuds ar.9)a'(r,s), (5) (1) = 0 (1) + 786l (1) — €5¢!(r), ®
S|

wherei is an iteration index ang, e are small positive num-

whereV is the volume(in units ofRy), $=0, fa,fa+fs, bers[13]. The remaining quantities are defined as

ands,=f,,fa+fg,1 for k=A,B,C, respectively.
The free-energy¥ per chain(in units ofkgT) in terms of
the defined quantities is

Sl (N=N 2 xewd (N+EM—ol(r), (9

N k' #K
F=—In-|+ 5o E XKK'fdr¢K¢K/:|
V| 2V okt and
A :
_v ~ er¢K' ( )

3P (N=2 ¢ M= 2 Bi(n). (10
Minimization of this free energy with respect th, and w,

yields The crucial difference compared to the work of Héfl. is

the last term in Eq(8) which we found stabilizes the itera-
tions in all cases. Note that this term does not alter the equi-
librium state since it vanishes as the fixed point of the itera-
tions is approached. The final step is to update the
where{(r) is the Lagrange multiplier enforcing the incom- Lagrangian multiplieré(r) combining Eq.(7) with the in-
pressibility constrain® ¢ ,(r)=1. compressibility constrairtl4]. This procedure is embedded
Equations(3), (4), and(7) and the corresponding slightly in a minimization procedure wherein the free energy of the
simpler equations for diblock copolymers have been successtructures is minimized with respect to the size of simulation
fully solved by Matsen and Schic6], Matsen[10], and  box [15]. As is well known, the true minimum of the free
Laradji et al.[11] using a restricted Fourier basis that appro-energy is realized only when the box size is commensurate
priately represents assumed morphological symmetriesvith the periodicity of the equilibrium morphologies. Al-
These studies have theoretically determined the phase dighough this effect clearly diminishes as the simulation box
gram for diblock copolymer$6] and explored parts of the becomes larger, it is advantageous to constrain the size of the
larger and more complex phase diagram for symmetric trisimulation box to not exceed two periods as both computa-
block copolymers. Particularly, for the more exploratory re-tion time and the time required to achieve appropriate an-
search on triblock and copolymer systems of similar ornealing increase dramatically with the size of the systém
higher degree of architectural complexity, this approach has Clearly, the main computational effort in the described
the flaw that the relevant morphologies need to be knawn algorithm resides in solving the modified diffusion E¢3)
priori. To circumvent this problem Drolet and Fredrickson and (4). The authors of Ref[7] used a Crank-Nicholson
[7] recently suggested an implementation where low freescheme where the severe constraint on spatial and temporal
energy morphologies are found by relaxation from randonresolutions, imposed by stability requirements, are well
potential fields. known [16]. Rather than using this method or similar finite
We now describe our approach to this problem. First, anjifference methods we apply a pseudo spectral method and
initial guess for the static field®,(r) is obtained using a gain about an order of magnitude in computing time for
standard random number generator. Thereafter(Baqom-  comparable numerical accuracy. Specifically, we useli-
bined with the incompressibility relation yields the density step Fourieralgorithm[17] achieving its attractiveness for
fields ¢,(r) and the Lagrange multiplieé(r). Now the the present problems via the following two virtugd) It
modified diffusion Eqs(3) and(4), are solved to determine applies the well-developed fast-fourier transfofffrT), and
q(r,s) andq'(r,s) for 0<s<1 and the results are used in (2) the two separate steps can be solved exactly allowing
Eq. (5) to obtain expressions for the densitigs(r). In prin-  coarse resolution along tredirection. Attempting to apply
ciple, the fieldsw,(r) for the next iterations should be the split-step Fourier algorithm, to solve E¢3) and(4) we
straightforwardly obtained from Ed7). However, this ap- observe that a formally exact solution to Ed8) (for s
proach leads to various convergence problems. Therefores f,) is
the authors of Ref[7] used a linear mix of newpresent
iteration and old(previous iterationdensity fieldse,(r) in
Eq. (7) rather than the straightforward approach. In our
implementation this leads in almost all cases to a cata-
strophic instability as the equilibrium solution is iteratively Accepting an error of ordeds®, Eq. (11) becomeg18]

0, =N X b () +E(T), 7

k' #x

q(r,s+ds)=exg ds(VZ—wa(r))]q(r,s). (11)
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exd dsV?]

ds
q(r,s+ds)=exr{— 7wA(r)

ds
Xexr{—iwA(r) q(r,s). (12

Equation (12) can be numerically implemented exactly
for a given spatial discretization. The operator
exd —dg2wa(r)] is trivially implemented while the operator
exp@dsv?) is implemented exactly in the spatial Fourier do-
main. This last step requires one forward and one backward
(inversg FFT representing the main time cost of the ap-
proach. The fact that we can implement E@2) exactly
allows us to usels~0.01 which is at least an order of mag-
nitude larger than what is possible with a Crank-Nicholson
or similar type schemes. This scheme enables simulations of
spatial size~(15R,)® to (20R,)* on desktop computers.

To demonstrate the efficiency of our algorithm we con-
sider a triblock system that has been studied by Matsen using
a spectral approadi0]. We take amrABC system with sym-
metric end blocks where=f,=fc andy=xag= xgc. This
particular class ofABC triblocks is characterized by just
three quantities, YN, and yac/x. We examine three points
in this phase diagram: The three density fields describing the
lowest free energy configuration atf,§¢N,xac/x)
=(0.12,50,1) are shown in Fig. 1. We depict the actual size
of the simulated system which is discretized into ax4
X 64 grid. The figure shows the projection of the density
fields on the surfaces depicted with red color indicating high
density (~1) and with blue color indicating low density
(~0) regions. As shown by Matsdri0], we find that the
lowest-energy configuration at this point of the phase dia-
gram is a body-centered-cubibco structure in the sense
that both ¢, and ¢ fields form cubic structures but dis-
placed in space such that the combined fig|ct- ¢ forms
the bcc structure. The free energy of this structure-is
=9.275 and the lattice parameter of the cubic structure is
D=3.4R,, consistent with Ref.10].

Figure 2 shows the minimum free-energy configuration at
(f,xN,xac/x)=1(0.14,50,1), which in this case consists of
hexagonally packed cylinders. Again, the hexagonal packing
occurs in the combined fielghp+ ¢ while the individual
fields show cubic packing. As this method starts from a ran-
dom initial condition we have, contrary to the spectral
method, no control over the orientation of the resulting mor-
phology. This is clearly seen in this example, the cylinders
misalign with the box axes. The free-energy of this structure 0
is F=9.58 and the lattice parameter of the hexagonal pattern Y 0 X
is D=4.1R,, again consistent with Reff10]. Finally, Fig. 3
displays the minimum free energy configuration at
(f,xN,xac/x)=(0.25,50,1) consisting of a lamellar mor-
phology. In this particular configuration the free energy of
the stru.ctur.e IsF=9.726 a.nd _the Pe”Od of the lamellar FIG. 1. (Color) Three-dimensional density plot of the minimum
modulation isD=7.4Ry, which is quite large for a method energy phasebce structur at (f,xN,xac/x)=(0.12,50.1). The

like this to handle sucgessfully. Moreover, we havg alscihree densities are separately shown as projections on the depicted
found a gyroid structure in the regions of the phase diagrand,rfaces with the color red indicating high density and the color

where Ref[10] indicates its presence. blue indicating low density. Distances are in unitsRy.
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FIG. 2. (Color) Three-dimensional density plot of the minimum
energy phasdghexagonally packed cylindersat (f,xN,xac/x) FIG. 3. (Color) Three-dimensional density plot of the minimum
=(0.14,50,1). The three densities are separately shown as projeenergy phasélamellar structure at (f,xN,xac/x)=(0.25,50,1).
tions on the depicted surfaces with the color red indicating highThe three densities are separately shown as projections on the de-
density and the color blue indicating low density. Distances are irpicted surfaces with the color red indicating high density and the
units of Ry . color blue indicating low density. Distances are in unitsRgf
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In summary, we have presented a numerical algorithm tscreening technique in future exploratory materials science
solve the SCMFT for block copolymer systems which is nu-of block copolymers and nanoscale composite systems.

merically superior in stability and performance to existing  \ye acknowledge fruitful discussions and interactions with
approaches. We applied it to study the morphologies of grofessor Rashmi Desai. Work at Los Alamos National
triblock copolymer. This method represents an important adt aboratory is performed under the auspices of the US De-
vance for the applicability of the SCMFT as a combinatorialpartment of Energy.
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