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Elastic critical behavior in a three-dimensional model for polymer gels
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The elastic response in polymeric gels is studied by means of a percolation dynamic model. By numerical
simulations the fluctuations in the gyration radius and in the center-of-mass motion of the percolating cluster
are determined. Their scaling behavior at the gelation threshold gives a critical exponent for the elastic
modulusf~2.5+0.1 in agreement with the predictidr=dv.
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[. INTRODUCTION the connectedness lenggh predicted in Ref[11] which in
the three-dimensional3D) model givesf~2.64 (in mean

The elastic response in polymer gels is due to the predield bothdv and the random resistor net\_/vork exponent are
ence of the polymeric network formed in the gelation pro-equal to threg Following the argument in Ref.11] this

cess: this random structure makes the system able to respofgPOnent would then correspond to the case of a dominating

to external stresses. Due to the large possibility of conformaEnTOPIC term, evaluated by means of scaling arguments for
tional changes that characterizes this macromolecular phasi'® Percolating network: the elastic energy of the system is
due to the entropic elasticity of the macrolink whose length

there is an entropic term contributing to the elastic propertia} of the order of the connectedness correlation length. Fi-
of the system. This picture is typical of gelling systems an ally the valuef~4 can be linked to the prediction of the

may fit a wide range of very different materials. Then be'bond—bending modef =dv+1 [12,13 or, alternatively,f
cause of the different role played by the entropic term and- 5, (14,15, which in 3D givef ~3.7. This would imply
the particular features of the polymeric networks, a rich phenat within the elastic energy describing the system there is a
nomenology is produced. bending term playing a relevant role in the elastic response

The viscoelastic behavior of gelling materials and theof the network. This critical behavior is typical of some col-
mechanisms at its origin certainly represent a central issue iiidal gels[16]. The clustering of the experimental values for
soft matter physics and have a high relevance to a wide rangte elasticity critical exponent in gels around discrete values
of applications from food processing to materials science. Osuggests the possibility of correspondently individuating dif-
the other hand these materials show many typical features dérent universality classes, which should be characterized by
complex systems and their study is connected to some fursome intrinsic features of the networks formed in the mate-
damental problems in soft matter physics, from the entropicials.
elastic behavior, which we are interested in here, to glassy Recent numerical studies via molecular dynanfigsand
dynamics. As a consequence these systems are intensivéjonte Carlo simulation§6] of percolating networks of teth-
investigated both experimentally and by means of statisticakred particles with no hard core interactions have shown that
mechanics models, bringing up a lively debate. the shear modulus critical exponent +s1.3 in d=2 and

In particular, here we study the critical behavior of the ~2.0 in d=3. Monte Carlo simulations of two- and three-
elastic response of the system as the gelation process takgisnensional percolating networks of tethered particles with
place producing the polymeric network: in a gelling systemhard core repulsiofi6] find consistent results for the shear
the elastic modulus starts growing at the gelation thresholeéhodulus critical exponent. These results agree with the de
with a power law behavior, usually expressed in terms of theGennes prediction and with some experimental results.
polymerization degree. In the experiments performed on dif- Within the numerical studies we have approached the
ferent gelling materials the value of the critical exponént study of this problem introducing a percolation dynamic
describing the critical behavior of the elastic modulus ap-model, and directly investigating the dynamic viscoelastic
pears to be close to eithér~2, or f~3, or elsef~4. The  properties as the percolation transition takes place. Our
value f~2 is actually observed in experiments on agarosemodel introduces in the percolation model the bond-
gel [1], gelatin gels[2], some silica gel$tetraethoxysilane fluctuation dynamics, which takes into account the confor-
(TEOS] [3]. Within statistical mechanics models it corre- mational changes of the polymer molecules and the excluded
sponds to the prediction based on the de Gennes analogylume interactions. This model has been translated in a lat-
between the elasticity of a percolating random network oftice algorithm and studied via numerical simulations on hy-
Hookean springs and the conductivity in a random percolatpercubic lattices. Actually it presents many fundamental fea-
ing network of resistor$4,17]. The critical exponent~3.  tures of the gelation phenomenology and has already allowed
has been observed in diisocyanatel/triol [g8] in epoxy res- the study of the critical behavior of the viscoelastic proper-
ins [8], tetramethoxysilan€TMOS) silica gels[9], polyester ties and the relaxation process in gelling systems in the sol
gels[10]. It is very close to the valué=dv, whered is the  phasd19]. Numerical simulations of the model ih=2 [20]
dimensionality of the system andis the critical exponent of have shown that the elasticity critical exponent~2.7, a
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value that agrees with the predictidr=dv in [11]. The
study of the model ird=3 can serve to check the elasticity L | S
critical behavior and to eventually compare the findings with N A R
the experimental results. We present here the results of larg | ; ’
scale 3D simulations: the data show tliat2.5+0.1, again i 7
in agreement with the predictioi=dv, coherently with the
findings ind=2. a b

In the following section we present the model and the
details of the numerical simulations, in Sec. Il the elastic

b\‘\
\ PR

response of the percolating cluster is discussed and a scalin T -« I — ol |
behavior is obtained; in Sec. IV the results of the numerical —yk{-- s kAN
simulations are presented and discussed; Sec. V contain \ Vi } ¢ N
concluding remarks. 14 14

Il. MODEL AND NUMERICAL SIMULATIONS c d

We consider a solution of tetrafunctional monomers of FIG. 1. An example of time evolution of a cluster formed by
concentratiorp. The monomers interact via excluded volume four monomers according to the bond-fluctuation dynamicsa,in
interactions, i.e., @ monomer occupies a lattice elementarstarting from the upper central bond and clockwise, the bond
cell and two occupied cells cannot have common sites. Neatengths arel =/5,3,3,2; inb the upper left monomer has moved
est neighbors or next-nearest neighbors are instantaneousbrward andl = 2,3,3,/5; having moved right the other left mono-
linked by a permanent bond with probabilipy . In terms of — mer in b one hasc with 1=2,3,/6,y6; moving right the front
these two parameters the percolation line can be determingdonomer in ¢ the d configuration is obtained withl
via the critical behavior of the percolation properties, indi- =2,1/10,\6,6.
viduating the sol and the gel phase in the system. Actually in
the simulation we fixo,=1 and study the system varyimg ~ deformation in the system, within the linear response ap-
[19-21. The percolation quantities critical exponents agreeproximation the elastic free energy~K 5. In terms of the
with the random percolation predictioi8] (e.g., y=1.8  Young elastic modulug& the free energy per unit volume is
+0.05 andy=0.89+0.01 in 3D[19]). The monomers free F/V~E&%/12. ThenK~EV/I2 and for a cube of siz&, K
or linked in clusters diffuse via random and local movements~E L%~ 2, expressing the fact that the elastic modulus has the
on the lattice according to the bond-fluctuation dynamicsdimensions of an energy per unit volume and is an intensive
[22], which is ruled by the possibility of varying the bond quantity, wherea& depends on the system sikze
lengths within a set of values determined by the excluded |n the gel, sinceE vanishes atp. as ~¢f (Where?
volume interactions and the self-avoiding walk condition. = /) one has
This produces a high number of different bond vectors and
we consider the case of permanent bonds, which corresponds KNLd—Zg—?_ (1
to the strong gelation process. In 3D the allowed bond
lengths on the cubic lattice ate-2,\/5,1/6,3,J/10 and in Fig.  Following Eq. (1) the macroscopic elastic constant presents
1 an example of different allowed configurations for a poly-the corresponding scaling behaviors as function of the sys-
mer molecule is shown. tem sizel and of the distance from the percolation threshold

We present here the results of extended numerical simyp—p,.),
lations of the model in the gel phase to study the elastic
response in the system. It is worth noticing that there is no P> pe K~L4972
elastic potential energy for the bond vectors and then the p=p K2
elastic behavior is purely entropic implying that our study is ¢ ’
performed at finite temperature. fixed L K~(p— pc)f, (2)

The data presented here refer to lattice sizesanging
from 12 to 32, and have been averaged over 30 differenvherez=T—(d—2).
realizations. The simulations have been performed on the An alternative way to obtain these scaling relations is to
CRAY-T3E system at CINECA taking more than 30000 consider the percolating cluster as a network of nodes con-

h/node ofcpu time. nected by macrolinks of linear size[23]. Each macrolink
can be considered as a spring with an effective elastic con-
Il ELASTIC RESPONSE IN THE GEL PHASE stant. At the percolation threshold there is only one mac-

rolink spanning the system and its effective elastic constant
We study the elastic response in the gel phase in terms aoincides with the system macroscopic elastic condtant
the macroscopic elastic constant of the systenwhich is In order to evaluat& we notice that for a spring of elastic
experimentally defined as the ratio between an applied exteconstantK in a thermal bath at temperatuiie the mean
nal force and the deformation. In a simple elongation experifluctuation in the energy is (AU)=3K(x?), wherex is the
ment if |, is the undeformed length and=(l1—1,) is the  spring elongation. From the energy equipartitibf(x?)
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=kgT, so that at the equilibrium the elastic const#ntis  tion radius(ARS) of the percolating cluster has been com-
related to the the fluctuations in the spring lenf@ld—27. puted at the percolation threshold in system of different size
This result can be more generally obtained by means of thk with periodic boundary conditions. In Fig(AR?) atp is
Fokker-Plank equation for the probability distribution of the shown in a log-log plot as function of the lattice sikzeln
spring elongatiorj24]. the considered range the data are well fitted by a power law

Therefore, the macroscopic elastic constant of the gebehavior according to Ed2), giving a critical exponeng
phase is related to the fluctuations of the linear size of the-1,.9+0.1, i.e., z~1.7+0.1. As E=~f—(d—2), f=z
infinite cluster, i.e., the squared fluctuations in the gyration+ (d—2)» and this result give$~2.6+0.1.
radius of the percolating clusténR3)=((Ry—(Rg))?), K In the second approach we have calculatadR?(t)) at
~1KA RS). different steps of the gelation process, i.e.pagows above

An alternative way to calculate the macroscopic elastiche percolation threshold,~0.718+0.005[19], and atp,
constant in the gel phase by means of the fluctuations in thior different lattice sizes. In these simulations hard-wall
unperturbed system is to consider the center of mass of theoundary conditions have been ud@d]. In the gel at the
percolating cluster as a brownian particle, subject to a restogelation transition the percolating cluster is a quite loose
ing force responsible for the elastic behavior of the systemnetwork, the center of mass is rather free and the elastic
The restoring force introduces a limitation on the diffusiveresponse is weak. As the gelation process goes on, the net-
process of a brownian particle. Using the same argumenwork tightens becoming more rigid, the elastic constant of
based on the energy equipartition, the asymptotic equilibriunthe system increases and the center-of-mass motion is pro-
value A of its displacement fluctuationéAR?(t)) is in-  gressively constrained. This would then be the physical
versely proportional to the elastic constant, %~ 1/K. mechanism producing the critical behavior of the elastic re-
sponse for a critical gel. In agreement with our picture
(AR?(t)) grows with time up to a limiting plateau valu®
as it is shown in Fig. 3. This quantity is inversely propor-

In order to numerically study the elastic response we havéional to the elastic constant of the systém-1/K and in-
used both the approaches mentioned before, namely, we hageeases as the percolation threshold is approached from
calculated the average fluctuation of the gyration radius ofbove. In Figs. 4, 5, and 6 the scaling behavior obtained for
the percolating cIuste(rAR2> and the asymptotic valu& of A is presented.

IV. RESULTS

g

the mean square displacement of its center of HARE(t)) In Fig. 4 A(L,p) for p>p. (p=0.85) is shown in a
[28].
In the first approach the average fluctuation in the gyra- < ar? (1) >
< AR, *(L,p=p.) >
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L FIG. 3. The mean square displacement of the center of mass of

the percolating clustefAR?(t)) as function of time for different
FIG. 2. Log-log plot of the fluctuation of the percolating cluster value of the monomer concentratiom: from below p
gyration radiug AR?) as a function of the lattice sideatp.: from  =0.8,0.77,0.76,0.75. The dashed lines correspond to the asymptotic
the fit of the data the critical exponent- 1.9+ 0.1 is obtained. Here plateau valueg\, which grows approaching, . The data refer to a
and in the following figures the lengths are expressed in units ofattice sizeL =32. The unit time here is the Monte Carlo step per
lattice spacing. particle.
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the percolation threshold gives the critical exponent2.5+0.1.

(p—p.)

FIG. 4. Log-log plot ofA(L,p) for p>p, (the data refer tp
=0.85 as function of L: the data show a scaling behavior
~1/L0.99'_"0.1.

o . . A~LZ with z~2.0-0.1. This result again gives~2.6
double logarithimic plot: being far from the percolation +0.1. Finally in Fig. 6A(p—py) is plotted for the lattice

threshold the system is reasonably homogeneous and in fact . ) .
the scaling beh);vior aﬁwL,o_ggiOX is obsgrved in agree- Size L=32: we fit the data with a power law behavidzq.

. . Td-2 (2)] and obtain a critical exponeffit-2.5+0.1.
mﬁgtgéthStZ?Lb;h_a;'gfs slaowﬁ in a double logaritmic plot It is straightforward to notice that all these numerical re-
. y - C.

as a function of the lattice side the data exhibit a behavior SUItS. can be _coherently interpreted in terms of the scaling
relations obtained fokK.

AL,p=p.) The value of the critical exponefit-2.6 is in good agree-
ment with the predictiorf =dv of Ref.[11], therefore, sup-
porting the picture proposed there, and consistent with the
value obtained in the 2D study of the mod2D].

Due to the limited extension of the critical parametpr (
—p.) and ofL here investigated the eventual occurrence of a
crossover to a different exponent cannot be excluded.

20 ¢

o NOo

V. CONCLUSIONS

L The numerical results of Figs. 2, 5, and 6 show that
= 2.0, coherently agreeing with the predictiba dv. On the
whole they support the scaling picture we propose and the
3 L argument of Ref[11]. They also agree with some experi-
mental result$7-10]. This result has been obtained via two
independent calculations giving consistent numerical values
and is also consistent with the value previously obtained in
the 2D study.
On the other hand the recent numerical works on entropic
elastic models of Ref$5,6] find a good agreement with the
10 20 30 40 de Gennes prediction. These results, together with the experi-
L mental data, seem to suggest the possibility that there are two
distinct universality classes characterized one by an exponent
FIG. 5. Log-log plot of the plateau values(L,p=p.,=0.718)  f=d» and another by the electrical analogy exponkent,
as function ofL: the data are fitted by a power law giving the which in 3D are, respectively;-2.64 and~2.0. However,
critical exponenz~2.0+0.1. since the models in the different numerical studies are rather
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