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In this paper we extend a statistical microscopic analysis to the anchoring properties of polymer films
obtained by two concomitant or subsequent polymerization processes along two different directions. We can
thus explain the recently observed compensating effect of two orthogonal polymerization processes. An ex-
pression for the anchoring energy has been evaluated from the extra Helmholtz free energy within an interface
layer where the interactions shift from polymer-nematic interactions to nematic-nematic interactions, as in
bulk. The result includes the angular dependence on the two photoaligning directions. A procedure of getting
controlled anchoring strengih situ is suggested.
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[. INTRODUCTION cient has been evaluated from the extra Helmholtz free en-
ergy within an interface layer of thicknegsthat may be

Liquid-crystal (LC) electro-optical devices need a sub- interpreted as the length over which the density changes
strate with anisotropic surface anchoring properties. Welfrom pure polymer to pure liquid crystal or, generally speak-
known methods to achieve this property have been, for ining, £ is the typical length over which the interaction forces
stance, obliquely evaporated Siayers, buffed polymer between the polymer and the liquid crystal take place in the
films, etc. All these methods have at least two main disadsense of diluted surface potential mentioned al@vel1].
vantages: physical damage and nonuniformities, generation Beyondé the pure liquid-crystal Boltzmann-type distribu-
of dust particles and/or electrostatic charges in the first placdion function and, consequently, the order parameter do not
and the fact that once the cell was assembled the anchorirdgpend on any particular direction, i.e., there is degeneracy
properties can no longer be altered. In the 1990s a new teclof the nematic director in “practically” infinite bulk. Yet, the
nigue emerged, called photoalignment, which allows ondlirection that is imposed by the oriented polymer through the
to align and realign the directdt on the substrate of the polymer-nematic interaction will give the common orienta-
filled cell. It was first demonstrated thaboly(vinyl)4- tion of the director in the bulk in order to minimize the
methoxycinnamatandpoly(vinyl)cinnamatdilms, when ex-  elastic energy. In fact, it is this condition of minimum free
posed to linearly polarized ultraviolet ligitPUV), can be energy that propagates to the bulk the direction decided
effective as alignment layers. The aligning effectpolyim-  within the interface thicknesg. The same statistical ap-
ide or of para-fluorocinnamoyl celluloséilms exposed to proach used here has been followed to find a microscopic
LPUV has also been report¢d—5]. expression of the nematic elastic coefficiefits, in particu-

An important parameter of photoalignment is the expo-lar), which depends directly on the order parameter in the
sure time to UV because both experiment and theoreticabulk. From the microscopic point of view, this approach pro-
arguments lead to a well defined irradiation time that givessides a logical transition from the anchoring energy within
the maximum anisotropy of the polymer lay@;5—7]. Inthe  the interface to the elastic energy in the b[di2].
following we will consider that the photopolymer orienting  In this paper we extend our previous model to the case of
layer generates a microscopic surface field decaying towartivo photopolymerization directions. The subject is of large
the bulk[7]. This model of a surface field responsible for the interest and recently both theoretical and experimental work
liguid-crystal orientationdilutedin space over a thin anchor- on it has been reportgd]. In particular, our statistical ap-
ing layer, had been already used in Rf] and discussed proach can explain on microscopic grounds the compensat-
recently in Refs[9-11]. ing effect of two orthogonal irradiatior{$].

In our previous papef7] a statistical approach for the From a fundamental point of view, the polymer-nematic
nematic order, also taking into account the surface anisotinterface is completely described by all the molecular corre-
ropy, has been made in the frame of mean field theory. Itation functions that, in practice, cannot be determined. How-
gives a Boltzmann type orientational distribution functionever, by using the idea of mean field theory of Maier and
depending on both nematic-nematic and nematic-polymer inSaupe[13] one can write the macroscopic free energy as a
teraction energies. The azimuthal anchoring energy coeffifunctional of the orientational distributiof({}) taking into
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account all the molecular interactions. By molecular interac- ty
tions we shall consider both nematic molecule—nematic mol-
ecule anisotropic interaction and nematic molecule—polymer e
fragment anisotropic interaction. The functié(()) is ob-
tained by means of a self-consistent calculation, in order to
minimize the free energy in the equilibrium stdtet—-16.
Starting with a trueN-body distribution function, one can
eventually use only a one-particle distribution function that
separates the radial distribution from the orientational one
[6,7,17. It is convenient to express it as a density distribu-
tion function

FIG. 1. An in-plane view of the relevant directions and anges.
Vi R(r)f(0), 1) anda’ stand for the LC molecule long axis directions @qdanda,
for the polymer directions. The angl®és 6’, 6., and 6, are mea-
wherer is the distance between the centers of mass of theured off theOx axis wheready, 6o;, and 6y, give the angular
two moleculegor a molecule and a polymer fragmgand 6 distance betweea and the other three versors. In this picture the
is the angle between the long axes of the molec(degoly- ~ azimuthal angleg’s have not been presented.
mer fragments and a certain fixed directiorR(r) would
only be different from a constant if the distance were veryone can obtain the Boltzmann-type distribution function
small, i.e., of the order of molecular dimensions. Also, onef (), which in the interface layer depends on both nematic-
has to use the normalizing conditions nematic and nematic-polymer energies. The easy axis is
given by the anglep=0 for which the polymer distribution
N function has a maximurfi7].
f R(r)vrzdr=N, In this paper we shall consider two processes of LPUV,
v either concomitantly or subsequently, each one being charac-
terized by two distribution functiong,(6,— a4) andg,(6,
— a»), which would define, if considered alone, an easy axis
f f(0)dQ=1. (2 alonga; or a,, respectively. Following the general ideas of
Ref. [7], we shall estimate the anchoring energy coefficient
In Ref. [6], we have analyzed the orientational effect of and shall consider the interesting case- a,= /2. A com-
cross-linked polymerized photopolymers on the nematic ligfarison with the experimental data and the theoretical con-
uid crystals. This effect was discussed in terms of the distrisiderations reported in Ref5] will show the agreement
bution function of polymer fragments that will depend on thebetween our microscopic approach and the tensor phenom-
time of photopolymerization. Considering the fact that bothenological description used in pagéi, giving thus the later
an increase of polymer cross links on one direction and théetter grounds.
decrease of polymer fragments on an orthogonal direction
contribute to the anisotropic anchoring of LC, the distribu-
tion function of polymers or, better say, the distribution func- Il. THEORETICAL MODEL

tion of fragments responsible for anisotropy is Let us consider a representative LC molecule described

by its long axis directior, which interacts with other LC
molecules &') and polymer fragment&; and&,) oriented
about two directionsy; and a,, respectively. In Fig. 1 we
present a simplified situation where all the four versors lie in
where the positive functiod\(t), starting from 0 fort=0, the same basal plang£0). The versor’ is characterized
tends to a certain limit for very large preventing the poly- by a polar angled with respect to the in-plan®@x axis and an
mer distribution to become isotropic agaifi.being the on- azimuthal anglep measured on th®yzplane. The distribu-
surface projected angle between one pair of unpolarizetion of this molecule in a certain small solid angl€) will
monomers and the direction of UV light polarization, the be f(6)d(). In the same way the other three versors will be
term in sirf ¢ in Eq. (3) gives the increase of polymer frag- characterized by the coordinate® (¢'), (01,¢1), (62,¢5).
ments alongp=0, whereas the term in cbé gives the de- The distribution ofa’ will be, of course, the same function
crease of polymer fragments alog= 7/2, both contribut- f(6"), and the distributions di; andé, areg,(6,— «4) and

ing thus to the total anisotropy. This polymer distribution g,(6,— ). g; andg, could be different functions, depend-
function can be characterized rather well by an order paramng on the time and intensity of photopolymerizati@i. As
eterS,, smaller than the order parameg&of LC in the bulk,  a matter of fact, each distribution function should depend on

9(h) = %(1+e—A(t)sin2 ¢_e—A(t)co§ 4;), 3)

and which goes to zero within the distange the appropriate angle. Yet, this fact can be disregarded for
In the frame of mean field theory, including also the sur-two reasons(a) because of the general planar orientation of
face anisotropy expressed by the distribution functi¢e), both LC molecules and polymer fragments the anghss
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have values either very close to zero or very closeritgb) where F(cos#b) is even in co9 (or sind). Because of the
the distribution of angleg is symmetric with respect to the degree of freedom given by the normalizing condition we
Oxzplane. Because of the fact that for L(@nd for polymer  shall still use the standard integration limits®for # and 0;
fragments, topa is equivalent to—& any possible orienta- 24 for ¢.

tion can be characterized Ity [ 0,7/2] and¢ €[ 0,27]. For The pair interaction potential is considered to depend only

this reason, the limits to integrals should be 0 ar@ in- on the ang|e between the |0ng axes of molecules, 0@'
stead ofr. Only that all the functions we will consider are — , (3 a"), 9y,= 2 (8,8,), 6o= 2 (28,). (The interaction

even in cog or siné and betweerd, and4, is not at all relevant to our system, it only

- 2 contributes a constant to the internal enérgy.
f F(cos&)dQ=2] F(cos#)dQ, The internal energy is given by all the interactions
0 0

1 N N
5=—fd3r’dQ’—R(r’)f(9’)fd3rdQ—R(r)f(¢9)V(r,00)
2 v \% v V
N N,
+f d3r dQ—R(r)f(G)J d3rdQ— Ry (r1)g1( 01— ag) Vi(r, 601
v Vv v V

+Jd3rdQER(r)f(6)fd3r dQ &R(r )92( 02— ) V(T , 6p)) (4
v vV v 2 2V 2\ 2792 V2 2) V2\t,Vo2) -

The factors in the first term in Eq(4) comes from the fact N,

that we must not count the pairs LC-LC twideis the angle N2U2(602) = vj d3r Vy(r, g2 Ry(1),

and distance dependent pair potential. v
The polymer distribution being considered as fixed, the

entropic contribution to the Helmholtz free energy will arise Wheren=N/V andn;=N;/V, i=1, 2 are the densities of
only from the orientation of LC molecules and, using a well M0lecules and of polymer fragments of one or the other kind

known formula[18], one has with respect to theotal volume of the sample.Vlhen
N N _ / ’
s:—kf d3rdQvR(r)f(0)ln vR(r)f(e)} M(G)—nJ dQ'f(6")U(6),
\%
:_ka dQ f()In[f(0)] Ml(eval):nlf dQ19:(61—a1)U1(0p0), 8
+constant with respect td(6). (5)

M, (0,a5)= dQ 0,— a2)Us(6p).
The condition of minimum free energy at equilibrium im- 2(6,2) an 202(02~ a2)Uz( 002

plies that
Because the free energ¥ does not contain explicitly the
derivative of the functiorf(6), the Euler-Lagrange equation

g associated to the conditigl) is simply

f+xf f(6)dQ |=0, (6)

whereF=E—TS stands for Helmholtz free energy ahds a J
Legendre multiplier that takes into account the normalizing E(}'H\J' f(ﬁ)d9> =0. 9
condition of Eq.(2). As in Refs.[6] and[7] we shall use the

following notations: Eventually[7], one gets

f(ﬁ,al,a2)=zex KT

(10

N
nU(ao)vad?’r V(r,60)R(r), 1 F{_ M(6)+M1(6,a1) +Mo(6,a3)

N
n1U1(6p1) = Vl fvd3r Vi(r, 00D Ry(1), (7) where
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M(6)+Mq(60,a1)+M,(86, m _
Z=J exr{— (6) al kcfl_l) 20, az) dQ. Sl(a1)=2wf 01(60,— a1)Py(cosb,)sinh,d b,
0
(11)
The radial dependence of the pair potentidlsis not sz(az)zzwf g,(0,— a,)Py(cosh,)sing,d6,. (16)
0

known, except for the fact that they have the general behav-

ior of a Lennard-Jones potential. Nor is the dependenceé on )

of the average potentials known exactly. In fact, Lennard- Si(@1) andS;(a;) can be considered the order parameters
Jones and Morse potentials parametrize successfully van def the distribution of polymer fragments along the directions
Waals forces for pointlike or spherically shaped bodies. 19iven by a; anda,, respectively[6]. Let us define the adi-
was not until late 1970s and early 1980s, when Berne anf'énsional new quantities

Pechukas, and Gay and Berne suggested the first orientation
dependent van der Waals potential to desctilreaxial) elip- bl
soids of revolution. Much later Berardi, Fava, and Zannoni kT’
suggested a biaxial Gay-Berne potential used also by Gin-

zburg, Glaser, and Clarisee Refs[19-21], and references Which represent the interaction energy of one LC molecule
therein. Yet, these potentials lead to complicated calcula-with all the other molecules in the covolunir &) or with
tions and, as far as our paper is concerned, may be avoidetdhe polymer fragments along; or a,, in KT units.

So, we can take into account only the fact that interactions One can easily rewrite now Eq&L0) and (11)

must be even irg, or 6y and have a minimum when these
angles are zero. This comes from the fact that the van der _

Waals dispersion energy is minimum when the molecules are Z_f expl[eSte15y(a1) T &2, az) |P2(COSO) A
parallel (that is, ~cog #) and the repulsive steric energy (18
must be maximum when the two molecules are at right angle

(that is, ~sir? 6). But, sirf =1—co< ¢ and, apart from a and

constant, both interactions lead to a minimum proportional to

un usn, U,
€1= T 0 L2770 (17)

, : 1
cog 6. We can develof)’s up to the second order in cég £(0, a1, a0) = = expl[£S+e,S,(ay)
or cosbg;, namely, z
U(eo): —_ Upz(COSlgo). +8252(a2)]P2(C056)}- (19)
U4(61) = — Uy P5(C0Sbyy), 12 It is worth mentioning thaf(6,a4,a5) is not atrue Boltz-

mann function because the paramet@rS,(«;) andS,(a»)
have been defined in Eq$l4) and (17) with the use of
f(0,a1,a5) itself. We encounter here a typical self-
consistent problem that can be solved numerically to get the
best value ofS for given S;(«;) andS,(a,) (see also Ref.
[7]). An immediate consequence of the fact théd, a4, «5)

from Eq. (7). They should represent approximately the depthis onl_y a 5oltzmann—like distributip_n functio.n is that the
quantity Z itself is not a true partition function, and we

of the potential well times the covolume, i.e., a region in- hould h h I K ‘ |
cluding the first molecule inside which the second's centesnould not expect that the well known formuls
=—NKkTInZ holds true. Indeed, coming back to Edd)

can never be found because of the molecular impenetrability. q h
M(#6) can be evaluated as in R§T], and(5), one can see tha?]

U2(6gp) = —U2P5(cosbpy),

where P,(cosé) is the Legendre polynomial of the second
order. We have to emphasize thatand u;’s do not have
dimensions of energy, but energyolume, as it turns out

M(6)=—unSPR(cos), (13) F=NkT(368°~InZ). (20
where Introducing the free energy density kT units, one has
S=21-rf77f(0’)P2(cos¢9’)sin0’d0’ (14 inz—nln Z+ nes’ (21)
0 VKT 2
is the scalar order parameter of the nematic. Following a procedure presented in Rgf], up to a constant

In the same manner
ninZ=neS?, (22

M1(6, 1) = —Uun;Si(a;)P,(cosh), _
so, eventually, we have the free energy density
M2(6,a2) = —Uzn,S;(az) Po(cosh), (19 0

n
- _ - _ _ 2
where we have introduced F=-3InZ=—3eS" (23
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A first glance at Eq(23) would tell us that the free energy Sz(a]
density does not depend on the interaction of LC molecules A
with the anchoring polymers. Yet, this interaction exists be- 03l
cause, as has been mentioned before, the self-consistent de-
termination ofS depends on the valu& () andSy(«,). 0.2
Of course, this only happens in the interface region of thick- o1y
nessé&. Another consequence of EQR3) is that F has a o ~
minimum for a nonzero value & a well known result in the -o1l r
liquid-crystal field.
-0.2
I1l. PHOTOALIGNMENT ON TWO ORTHOGONAL -03f

DIRECTIONS
FIG. 2. Computed values &, for 11 values ofa (dots. The

So far, we have not considered the polymer distributiorfull line represents the functio, cos 2.
functions, apart from mentioning a result obtained by us in
Ref.[6], i.e., EQ.(3). More generally we may consider that ~Whena# m/2 Eq.(25) no longer holds true, nevertheless
the distribution function of polymer fragments is, apart from the closer isx to /2 the closer will beS, to —S; . In Fig. 2

a normation factor, given by we have represented by dots the numerical calculations of
_ S,(«) for several values ot («=n=/20,n=0,1,...,10
g(¢)=1+h(sin* ¢)—h(cos ¢), (24 using the functiong(¢)=(1/m)(1+e ST¢—e %) The

line represents the functid, X cos 2x. One can see the very
. . . . . . ood agreement between this function and the calculated val-
tioned before, a very interesting case is that in which on%es 0fS,(). In Appendix A we have proved that the func-

B e o) o S, 2032  very good approimation (), ol
nogo ' ) " only for the distributiong(¢) written above, but also for a
tion time and all other experimental conditions are the sam

X . (ﬁ'arger class of distributions. In our case, that is, wiAdi)
In thl_s case_the functioh would be the same. In fact, let us —1, S, is 0.3337. If, for different values df A(t) is differ-
considera,= a4+ /2, then

ent from 1, the actual values & will change. Playing with
9(6— a;)=1+h[siB(0— a;)]—h[coZ(6—ay)], the irradiation time, we can cancel the effect of the first
polymer orientation even if the second polymerization is not
and along o= /2, but in the regionr/4< a< /2.

In Fig. 3 we have plotted the LC distribution function
f(#) for different values ofS S;, and S,. When ¢S
+&,S;+¢&,S, becomes zero, the distribution function is the
straight linef(6)= 1/, i.e., the surface does not force any
=2-9(0—ay). anisotropy. When the previous sum becomes negative, an
anisotropic distribution starts to grow alolag= /2.

In generaleq, €5, S;, andS, cannot be computed, nor
can their contribution be separated, that is, we can rather

s ™ a .
a+ E) = 27-,[0 g( 0y — g — E) P,(c0s6,)sin 6,d 6, introduce two parameters; andm,

whereh is an even function in s?ms (or co¥ ¢). As men-

™

g( —ay— 5| =1+ h[cog(0— a;)]—h[Sirf(6— a;)]

If we come back to definition&16)

S
=2mX 2] P,(cos6,)sin 6,d 6,
0

_Zﬂf g(ﬁz—al) P2(C0562)Sin 02d02
0

=0—S;(ay). (25

Of course, this result is submitted to the condition that
Si(a;)<3, because an order parameter cannot be smaller
than —3. Normally, the order parameter of a polymer distri-
bution is much smaller thah (see Ref[6]). _Z | 0 I F] 3z T 6
The direction offr in a bulk liquid crystal is degenerate; 2 4 4 2 4

when there is a slightest anisotropy the liquid crystal aligns  rig, 3. L distribution functiorf () for various values ofn.
along it. As a consequence we can always consitier 0,  The greater isn, the narrower and higher is the distribution func-
that is, theOx direction is along one of the photopolymer- tion. To m=0 there correspond the constant distributibf®)
ization directions, the other direction thus making an amgle =1/r, i.e., isotropy. Form<0 the distribution peaks about/2

to it (in particular,a= 7/2). instead of 0.
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along an orthogonal direction, the parametey tends to-
ward —m,; and the cell becomes isotropic again. Shiy-
anovskiiet al. have done this type of experiment, the results
of which (see Figs. 2, 3, and 4 of Rdh]) are in excellent
agreement with the discussion above. It is worth mentioning
that the compensating effect of the two orthogonal irradia-
tions works well even close to saturation. In fact, there is no
limitation of that kind in our procedure except, of course, the
case when the saturation is already reached, that is, there are
no “free” monomers to undergo the photopolymerization
even along an orthogonal direction. Considering that the in-
teraction of LC molecules to polymer fragments should not
gepend on their orientation with respect to the laboratory

T>Tc\ [T<Tc
P
0.

oaliff

L L L L n
-20 -10 10 20 -20

FIG. 4. The functiong(m) (full curve) and S=m/e (broken
lines) whenm,; + m,=0, casga) and wherm;+m,#0, casgb). In
case(b) one expects a nematic order at any temperature but only i

a very narrow layer of thickness frame, the values, ande, should be equal. In this case the
conditionm;+m,=0 impliesS,= —S,, which, remember-
m=eS(a), i=12. (26) ing also Eqs.(3), (24), (25)_, or (/-.\13),. is. ach_ieved, for or-
thogonal directions, only if the irradiation times are equal.
In the same way we introduce Figure 4 in papef5] shows quite clearly this symmetry with
respect to time.
m=eS, (27) Of course, all these facts can be expressed in terms of a

macroscopic anchoring energy. In our papéf we have
linked the anchoring energy coefficient to the order param-
eter of the polymer fragments distribution. For only one di-

which may be written as

m
—=S=J’ dQ f(6,a1,a,)P,(cosh) rection of photopolymerization the result whEqg. (50) in
& Ref.[7]]
JoPa(cosd)exd (m+my+m,)Py(cosh)]singd do
= - : W £ Q(m+my) (29
J§exd(m+m;+m,)P,(cosh)]sindda 12" m+m, 1)
=g(m). 28 \where
Representing graphically the functigr{fm) and intercepting 3 6
it with the line m/e, one can get the order parameter for a 2 ex;{—’u \ /_’“
certain value ofg, which corresponds to a certain tempera- T

—2-3u. (30
m;=m,=0, orm;+m,=0. The first case corresponds to an
infinite volume filled with LC’s, the broken line giving the
isotropic-nematic transition temperaturg. The second case
corresponds to the interesting situation when there were twprhe function erf(x)=i (—ix)= fgelz dt is strictly real al-
similar UV polymerization processes along orthogonal directhoygh it contains the imaginary number y—1.]

tions. Figure 4b) represents the case where there is a shift of \jytatis mutandisin the case of two photopolymeriza-

easy axis. In this casen,+m,#0, there is an intercept at (B14) of Appendix B

finite S for any slope ofm/e line, that is, for any tempera-

ture. This result might seem strange but we must not forget né  &1S,+¢e,S,

that eitherm; or m, are proportional to the polymer frag- Wazl_szmQ(m+ml+m2)' (3D
ment densities; or n,, which decrease to zero within the

distanceé. As a matter of fact the result is only valid in the If the two directions are orthogonal, by adjusting also the
layer of thicknesst where one should expect a certain orderirradiation times, one can reach even the situation when
of the liquid crystal even beyond the clearing temperature. 1£,S;+¢,S,=0, leading tow,=0, that is, the cell will be
has been mentioned th&f or S, can be varied by changing macroscopically isotropic, concording to experimental re-
the irradiation timet. Acting in this way we can first start sults and phenomenological arguments of Shiyanoetkail.
with a state of no easy axis, seen in crossed-polarized m[5].

croscopy as a mosaic of planar domains randomly oriented.

ture T=nu/ke. Figure 4a) represents the case when either Q(u)= 3
s
erfi( \/—

Then we initiate the polymerization process along one direc- IV. CONCLUSIONS
tion only. The immediate results will consist in increasing the
size of favored domainévhere the directofi is almost par- We have analyzed from a microscopic point of view the

allel to the easy axjsand the decreasing of the other. The anchoring properties induced by two concomitant or subse-
cell behaves macroscopically anisotropic. If then we stop thigjuent photopolymerization processes along orthogonal direc-
process and start a similar process of UV polymerizatiortions. We have seen that, all the other conditions being pre-
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served, the polymer distribution order paramet& 2r 27
associated to the second process of photopolymerization may,_ h(sir? ¢)cog2n¢)dp=— JO h(cos ¢)cog2n¢)de
be expressed as a simple function of the first one, namely,

holds true ifn is odd integer.

S2=S, cos 2. (32 Let us expandy(¢) in a Fourier series
Introducing this result in Eq.31) we get

_ao S .
né _ e1Si(1+cos) 9(#)= 75+ 2 [a,cosng)+b,sinng)].  (Ad)
Q(SS+81$1

Wa= 15K S+ ¢,5,(1+ cos ) . . .
It is not very difficult to see that the properties of the func-
X (14 cos 2a)). (33  tion h imply that the only nonzero coefficients of the expan-
sion are
So, the angler enters the expression of the anchoring energy
coefficient. If the experimental conditions are not identical in ap andag1y, k=0,12....

the two processes, we have to write )
We have thus the series

1+2C052a ag
€1 g(¢)=E+a2cos(Zqﬁ)+aecos{6¢)+amcos(10¢)+-~,

instead of 1 cos 2v. Bute, /e, should not differ much from (AS5)
1, yet being time dependent. In any case, &¥F 7/4, one
may find a certain value of time and/or irradiation intensity
to drive the value ofv, to zero. Because all this can be done 1 (2= 2
with the cell already assembled, this might be a good proce- ag=— g(p)dep=—, (AB6)
dure to have controlled anchoring strengthsitu. TJo ™

where

1 (2w
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Strigazzi, R. Barberi, and Yu. Reznikov. This work has beerThus, the order paramet&; can be approximated by a se-
partly done in the frame of INCO Copernicus concerted acries
tion 1IC15 CT98-0806. A.L.A.-l. also acknowledges the

CNCSIS Grant A/581/2001. S;=S,+Sg+ S0t ", (A8)
APPENDIX A 52(2k+1):a2(2k+1)f0 P2(C056)C0q2(2k+ 1) 0]S|n0d0,
g(¢)=c[1+h(sir’ ¢)—h(cos ¢)], andS, (a) will be given by the series
wherec is a normation constant in order to haj\ég S,(a)=Ss, coq 2a) + Sg COS 6) + S10C0K 10a) +- -+,
w (A10)
fo 9(¢)de=1. (A1) which can be seen quite easily analyzing the integisde
Ref.[22))

We have to get a certain relation between
a2(2k+1)f P,(cosh)cog2(2k+1)(6+ a)]sin6ddo

S, = 277f g(0)P,(cosh)sinddo (A2) 0
0 =c0g2(2k+1)a]Syok 1 1) (A11)
and In fact, we can drop out the terms proportional to ce3(6
- cos(1@),..., as thecoefficientssg and sy are very small
Sz(a)ZZWf g(6+a)Py(cosh)sinddd,  (A3)  compared tos,. For instance, ifh(sirf¢)=e S™* and c
0 =1/,
taking into account the special properties of the function S,=0.3337-4.889< 10 4— 4.429¢ 10" 7+ -- .
h(sir? ¢), namely, it is an even functioph(¢)=h(—¢)] (A12)
and symmetric with respect tom(2)[h(¢+ 7w/2)=h(—¢
+/2)]. Also, the following property: So, within the experimental errors, we can use the rule
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S,(a)=S; cog2a). (A13) interaction that gives an increase in the free energy, due to
the fact thatf (#+ «) no longer minimizes the free energy
Even more S,(7/2)=—S; andS,(w/4)=0 are true in any density. Of course,
approximation.

APPENDIX B zlzf exp{e SP,(cosh) + (£,S;+ £,S,)

The lifting of director degeneracy is due to the liquid-
crystal—polymer interaction. If an external agéatmagnetic
field, for instancg tends to rotate the director in the surface g5 well as
plane, the distribution functions in the sublayers of thickness
dz will have maxima not for the valué=_0, but for certain
anglesa # 0, wherea will vary with z. Of course, the liquid- [ Eln 7 (B4)
crystal—-polymer interaction shall exist only in a small layer ! 2 !
of thickness¢, much smaller than the cell thickness. The
value of the torsion angle, i.ex(&)= ¢, will depend on the

X P,[cod 6+ a)]}dQ (B3)

will be functions ofz The extra free density as a function of

interaction with the polymer and also on the order parametef Will Pe

of the latter. In the case of polymers photopolymerized along

two orthogonal directions, the angle will depend on the n 7Z;

balance betweer; ande,, but in the general case, when AF(z)=—5In— (BS)

both the directions and the time intervals of photopolymer-
ization are different, the angle will depend on the sum and then, the extra energy per unit surface, due to a torsion of
£,S;+¢,S,. Note that when the angle between the two di-the director will be
rections is largdapproachingm/2) one of the order param-
eters, for instanc&,, becomes negative. ¢

In a recent papel7] we considered that, f>¢, ande AF= ka AF(z)dz (B6)
>g,, the value ofS does not vary too much within the 0
surface layer of thickness, and for each “sublayer” the

distribution function can be written as We have to consider the fact that beyond the valuiee., in

the bulk, the liquid crystal is undistorted, so the extra free
energy density is zero.

1 The result of the integration depends on the torsion angle
f(0+a)= Z—lexp{sSPz(cosa)+ (151 +€,Sy) . By definition,
XPZ[COE(H-l-a)]}, (Bl) 1&2A.7:
o : Wo=5""7 (B7)
where « varies linearly withz, 2 do ©=0

is the coefficient of the azimuthal anchoring. The definition
tells us that the azimuthal distortion needs to be very small,
SO we can use a series developmenPgfcos@+ «)] with
respect toa, up toO(a?),

Note that in the equation above we have considered sepa-

rately e SP,(cos6) and (g1, + £,S,) P,[ cos(@+a)] because P,[cog 6+ a)]=P,(cosf) + AP, (B8)

the nematic-nematic interaction must be invariant to a rota-

tion of an anglew, whereas the nematic-polymer interaction whereAP is very small.

would certainly depend ow. It is only the nematic-polymer The partition function will be

_Z B2
a(Z)—gog. (B2

Zl:f eXp[SSPZ(COSB)-l—(8181+8282)P2[COE{ 0+ a)]}dQ
zf exple SP,(cosh) + (1S, +&,S,)Py(cosh) texd (£1S; +£,S,)AP]dQ

~f exd eSP,(cosh) + (£1S;+&2,S,)Py(€0sO) [ 1+ (£1S;+£,S,)AP]dQ
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=Z

1+%f exfl(eS+e1S,+£,S;)P,(cosh) [ (e1S;+&,S;) AP]d(

ZZ[l+f f(O)[(e.S,+e,S,)AP]dQ ¢, (B9)

where, ifx is small, we used the approximatie®=1+ x. With the same approximation written in the form Ir{)=x, one
gets

AF= - M &
=37

- gm[ 1+ f f(O)[(£1S1+£,S,) AP]dQ

:—gf f(O)[ (1S 1t€,S,)AP]dQ, (B10)

whereAP is
AP=3acosfsinf+3a?(1—2 cog 0)+0(a®), (B11)
and hence results the extra free energy density
na?(e1S+£,S,)

AF(z)= 4(eS+2.5,+2,5)

6
2 eX[:[%(aS-I-slSl-l- £,5)] \/—(SS+ £1S;+€5S,)
T
X —2—-3(eS+&,S,+&,S) ¢, (B12)

\/3(ss+slsl+8233)
2
where erf (x) has been already defined.

The extra free energy per unit surface will be

erfi

zp
¢

the functionQ being defined by Eq(30). Eventually, we get

_NE g E1SiteS St8,S,+ B14
12 SS+8181+8252Q(8 21511 825). ( )

ng 2T £151 €2,

¢ mQ(SSJFﬂSlJFSzSz), (B13)

AF= kTFAF( )dz= kT% f¢AF(a)da=
0 0

_1#Af
Wa= 2 (9(,02
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