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Defect structure of a nematic liquid crystal around a spherical particle:
Adaptive mesh refinement approach
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We investigate numerically the structure of topological defects close to a spherical particle immersed in a
uniformly aligned nematic liquid crystal. To this end we have implemented an adaptive mesh refinement
scheme in an axi-symmetric three-dimensional system, which makes it feasible to take into account properly
the large length scale difference between the particle and the topological defects. The adaptive mesh refinement
scheme proves to be quite efficient and useful in the investigation of not only the macroscopic properties such
as the defect position but also the fine structure of defects. It can be shown that a hyperbolic hedgehog that
accompanies a particle with strong homeotropic anchoring takes the structure of a ring.
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Topological defect§l—3] are associated with broken con- smaller than 0.08,, which requires a numerical lattice
tinuous symmetry and can be found in various condensedihose grid spacing is 18R, or smaller. Moreover, since
matter systems. They have attracted great interests in thfe defect size, is of the order 10 nm and the typical drop-
viewpoint of physics as well as mathematics because thpst radiusR, in the experiments is larger than Am [6-9)],
macroscopic properties are often influenced by the presengg realistic situation we have./R,=<10"2. Such a large

of topological defects. Among such systems showing t0pogcgle difference should be problematic also in molecular dy-
logical defects, liquid crystalst,5] have proven to be one of omics simulation§16,17], because a huge number of mol-

the best examples for the investigation of the properties of. a5 must be necessary to reproduce a systemrwify
topological defepts, because they are easny. acces&blg angd, Therefore, the presence of these two characteristic
controlled experimentally and show a rich variety of quallta-Iengthsrc andR, with large scale difference makes it quite

tively different defects. e . . . .
Recently, a new class of liquid crystal emulsions and CoI_d|ff|cult and challenging to investigate directly the structure

loids, isotropic liquid droplets or solid macroparticles dis- 2"d the properties of topological defects by numerical simu-
persed in a nematic host fluid, has been repofeedd] to  lations. _ _ _
show that depending on the properties of surface anchoring, One of the possible ways to overcome the numerical dif-
a rich and nontrivial variety of topological defects, such as diculty arising from the limit of numerical resources and the
hyperbolic hedgehog6,7], an equatorial Saturn rinfg,9] requirement of a fine resolution is to use an adaptive mesh
and boojumg 7] appear close to the droplets or macropar-refinement(AMR) technique[18], where finer numerical
ticles. In particular, the formation of a hyperbolic hedgehoggrids are dynamically generated only in the regions of inter-
is not trivial as compared with a Saturn ring that was focuse@st with a strong variation of the spatial structures. In our
on in earlier theoretical workl0,11], and several theoretical previous study[19], we adopted this AMR scheme and
[12,13 and numerical14—14 studies have been devoted to showed its usefulness for the investigation of topological de-
the understanding of the properties of a hyperbolic hedgefects in liquid crystals for the first time. Although our treat-
hog. One of the interesting results obtained by numericament was restricted to two-dimensional cases, the minimum
analyses is that the equilibrium configuration of the topologi-grid size could be taken smaller than £®, within an ac-

cal defect accompanying a particle with strong homeotropiceptable numerical cost, which gives a resolution fine
surface anchoring depends on the ratio between the defeetough to simulate the defect core, whose radius is of the
core radiug . and the radius of the particR,. A hyperbolic ~ order 10 2R. In this paper we extend our previous numeri-
hedgehog is stable when the defect size is small enough, i.e&al implementation to an axi-symmetric three-dimensional
r./Ry=0.05, while a Saturn ring is preferred for /R,  case to investigate directly the effect of the defect size on the
=0.05 [15]. However, in the previous numerical studies equilibrium configuration of the topological defect in a nem-
based on a continuum descriptiph4,15, the topological atic liquid crystal around a spherical particle.

defect was treated as a singular point and the defect core To describe the orientational profile of nematic liquid
region was considered indirectly by introducing a core en<rystals we adopt the traceless tensor order parameter of sec-
ergy separately and a cutoff around the singularities. This iond rankQ;; instead of the directon that most of the pre-
because the direct and precise numerical treatment encouvious numerical studies, using a continuum description
ters a serious problem associated with a high resolution rd-14,15, employed. In the tensor description, topological de-
quired for the description of the defect core region. To obtairfects do not appear as singularities and we do not have to
direct evidence of the transition between a hyperbolic hedgedeal with them separately. We consider the case where a
hog and a Saturn ring numerically, we have to treat a defectpherical particle of radiuRy with the strong homeotropic
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anchoring on the surface is immersed in a uniformly alignedadaptive grids. The finest grid size in real space is then ap-
nematic liquid crystal. In the strong anchoring limit, the an-proximately (1.4 10 *Ry) X (1.9X 10" “Ry).

choring can be taken into account as the boundary condition In this study we concentrate our attention to the hedgehog
atr=R,, Qij=Qs(ere,;—1/35;), where the center of the confi_guration and_the corresponding equilibrium prof!le is
spherical particle is located at the origin agdis the unit ~ obtained by relaxing the system through the dynamics of
vector in the radial direction. The degree of orientationalmodel A[21]: 9Q;; /dt=—6F/5Q;;, where the timet has
order at the surfac®, will be taken to be equal to that of the Peen rescaled so that the kinetic coefficient is equal to unity.

bulk Q,. The free energy of the system can be written as We first pejgorm a simulation withé?=(8/3)x10"* (¢
=1.633x 10 “) under the initial configuration prepared by

spinning around the symmetry axis the exact orientation pro-
1 1 1 file in two dimensiongd4,12,19 with two —1/2 defects lo-
F:f dr (‘ S AT Q%+ 3BT Q%+ 2 Cr QZ)Z) cated at (,0)=(1.2,=2°). Toreduce the numerical time to
r>Rg . I . .
achieve the equilibrium state, simulations for all the otfier
1 are carried out using the equilibrium profile ¢&=1.633
+ ELlainj ainj —\Tr Q}, (1) X 1072 as the initial condition.
In Fig. 1 we show the equilibrium orientation profile of a
hedgehog configuration and the corresponding numerical
rids for £&=2x10"3. Although it is not apparent in Fig.
(a), the magnified plot of TO? in Fig. 1(b) obviously re-
veals that the accompanying topological defect is a ring, not
a point as believed in previous experimeri[7] and theo-

where the first three terms are the bulk energy in terms of th
Landau—de Gennes expansion with Qfr= Q;;Q;i and
Tr Q3=Qiijkai (hereafter summations over repeated indi-

ces are impliell The coefficientC must be positive and the retical[12—15 studies. We have checked that even when we
Isotropic stateQ;; =0 become.s.unsta_ble to fqrm an Ordeeruse an orientation profile with one point defect as the initial
phase whemA>0. The coefficients in the simulations are ¢,ngition, the point defect relaxes to form a ring. Therefore,
chosen asC=—B=3A so that the uniaxial configuration the formation of a ring is not an artifact arising from the
Qij=Qp(nin;—1/35;;) with Q,=1 minimizes the bulk en- ¢hoice of the initial condition. To check quantitatively the
ergy. Although this is not a unique choice for the coefficientseffect of the variation of [22] on the ring defect configu-
of the bulk energy, we believe that the difference of the coration, we plot in Fig. 2 the radius of the disclination ring as
efficients affects only the fine, possibly biaxial, structure ofa function of¢. We note that fog=1.8x 10 2, the hedgehog
the defect cor¢20]. We adopt the simple one-constant form configuration becomes unstable to form an equatorial Saturn
with the elastic constarnit; as the elastic energy. The last ring. When¢ is small enough, the ring radilg;,, satisfies
term with the Lagrange multiplien is added to ensure R q/Ro=5.5. This implies that the ring is not seriously
TrQ=Q;;0. So long as the equilibrium configuration is con- disturbed by the particle wheR,;,4 is small. In other words,
cerned, the unique relevant dimensionless parameter is ttvehen the particle radiuR, is large enough compared to the
ratio of the two characteristic lengths, the nematic coherenceize of the defect, the nematic coherence lengtRy(in a
length L, /A and the particle radiuR,. We will denote it ~ dimensional formis the unique length scale that determines
by é=\L,/A/R,. t_he spatlal structure of the topologlca_l defect and th_e defect

We restrict ourselves to an axi-symmetric case and th%ng radius Rying is, thus, proportional t0éRo, i.e.,

ring

- IRy €. For largeé, R,ihq /R deviates to a larger value
complex defect structure as reported by Gu and Abl®jtis 0 Y ring " "0 o :
beyond the scope of our study. We take thaxis as the from 5.5, which indicates that the radial director configura-

symmetry axis, which is parallel to the orientation of the}{?r?hgowed ntgtee ?ﬁ;?ifetﬁﬂgﬁk? hoepdegnert'lgz %zg'git'gnmrgt‘g_
liquid crystal far away from the spherical particle. The ori- stable.state in particular for large The comparison of the
en_tational order atr(8,¢) in the polar coordinate is then free energy’ between the hedgehog and the Saturn ring is
written asQ;; (1, 0,¢) = Rik(¢)R;i () Qu(r, 0, ¢=0), Where  nacassary to determine whether the hedgehog configuration
R(¢) is the operator of rotation around tizeaxis by the g yeqlly stable and will be given in a future paper.

angleg, and summations ovérand| are implied. Therefore,  The distance of the center of the ringfrom the center of
the treatment of the order parameterat 0 is sufficientand  the particle is also plotted in Fig. 3. Fg102, ry/R, is
the problem is reduced to a two-dimensional one. almost independent of and lies in the range 1.2405

In our numerical system we first make a transformation<rd/RO< 1.2425, close to the values obtained in previous
{=Ry'~r~" and prepare in thef(6) space &, XL,=32  studies[12,14,15. The ring defect lies closer to the particle
X 64 rectangular lattice with equal grid spacings. The advanwhen ¢=10"2 and ¢ (and correspondingly, the radius of the
tage of introducing is that the infinite space with=R, is  ring) becomes larger. This is in agreement with an intuitive
mapped to the finite regiog=[0,R;']. Moreover, even argument that the repulsion between the defect and the par-
without the mesh refinement, the grid size in the real space iicle induced by the elastic deformation of the director field
smaller when the grids are closer to the surface of the pashould be weaker when the ring becomes larger and the di-
ticle, where strong variation of the orientational order is ex-rector field can relax to produce weaker elastic deformation.
pected. Our adaptive mesh scheme here is similar to those We note here that it was concluded in REE2] that a
originally introduced in Refl 18] and utilized in our previous hyperbolic disclination ring is unstable to shrink to a point,
study[19]. We allow mesh refinement up to eight levels andin contrast to our numerical study. Their argument is based
our numerical system, thus, corresponds 24 non-  on a rough estimate of the ring radius, which gives

041709-2
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FIG. 2. The radius of the defect ring as a function&fThe
dashed line represeni;,q /Ry="5.5¢.

respectively{23]. They drew a conclusion th&,i,,<r. by
settingK,,=0. However, it follows from the Cauchy rela-
tionship[24] and recent experimenf&5] thatK,, can be of

the order oK. In our simulation the one-constant form of the
elastic energy in terms of a tensor order parameter corre-
sponds to taking< ,,= K/2. With this choice oK,,, the ring
configuration becomes stable becal&g,/r.~7>1. We
also note that the effect of the saddle-splay elasticity to sta-
bilize the hedgehog ring disclination has already been ad-
dressed in a qualitative manner by Lavrentovettal. [26]

and that the more quantitative analysis based on the treat-
ment of Mori and NakanisHi27] also yields the same quali-
tative resulf28].

In conclusion, we have investigated numerically the struc-
ture of a topological defect in a nematic liquid crystal around
a spherical particle with strong homeotropic anchoring on
the surface. We have used the technique of adaptive mesh
refinement, so that the resolution can be made fine enough to
study the situation where the nematic coherence length is of
the order 10°R,, with R, being the radius of the spherical
particle. We have paid attention to the less trivial hedgehog
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FIG. 1. (a) The orientation profile foE=2x 10 3. The darkness
is proportional toQiZ. The symmetry axis, or theaxis is along the
vertical direction.(b) The grayscale plot of the degree of orienta-
tional order TrQ?. The whiter region indicates smaller QF. We
show only the region of the size ®3X 0.09R,. The symmetry axis
is shown by a white line(c) The numerical grids in the same region
as(b).

ra/Ro

Rring /T c=exd (16/m)(1/12+ K,,/K)—1], wherer, is the
defect core size of the order of the nematic coherence length
and K and K,, are the Frank elastic constant in the one-
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FIG. 3. The distance of the center of the defect nigdrom the

constant approximation and the saddle-splay elastic constarenter of the spherical particle as a functionéof
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configuration and have shown that the hedgehog defect isematic-isotropic transition as pointed out in REEQ]. In
made up of a small ring rather than a point as argued in theuch a situation the observation of the fine defect structure
previous experimental and theoretical studies. The ring raby an optical method might be possible and we encourage
dius in the hedgehog configuration can be as large af9,13 experiments to observe fine structures of the topological de-
at least in a metastable state. Finally we note that althougfects close to particles immersed in a nematic liquid crystal.
the maximum radius of the stable defect ring corresponding

to the hedgehog configuration is of the order 50 nm when the

nematic coherence length is the typical value 10 nm, the We thank Dr. Keiko M. Aoki for helpful and constructive
nematic coherence length can take a larger value near treomments.
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