PHYSICAL REVIEW E, VOLUME 65, 041601
Statistical substantiation of the van der Waals theory of inhomogeneous fluids
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Computer experiments on simulation of thermodynamic properties and structural characteristics of a
Lennard-Jones fluid in one- and two-phase models have been performed for the purpose of checking the base
concepts of the van der Waals theory. Calculations have been performed by the method of molecular dynamics
at cutoff radii of the intermolecular potential ;=2.60 andr.,=6.78 . The phase equilibrium parameters,
surface tension, and density distribution have been determined in a two-phase model with a flat liquid-vapor
interface. The strong dependence of these properties on the vatyesohown. Thep,p, T properties and
correlation functions have been calculated in a homogeneous model for a stable and a metastable fluid. An
equation of state for a Lennard-Jones fluid describing stable, metastable, and labile regions has been built. It is
shown that aff=1.1 the properties of a flat interface within the computer experimental error can be described
by the van der Waals square-gradient theory with an influence paramatdependent of the density. Taking
into account the density dependencexofhrough the second moment of the direct correlation function will
deteriorate the agreement of the theory with data of computer simulation. The contribution of terms of a higher
order than ¥ p)? to the Helmholtz free energy of an inhomogeneous system has been considered. It is shown
that taking into account terms proportional )* leaves no way of obtaining agreement between the theory
and simulation data, while taking into consideration of terms proportionaVte){ makes it possible to
describe with adequate accuracy all the properties of a flat interface in the temperature range from the triple to
the critical point.
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I. INTRODUCTION inhomogeneities would be an energetically profitable process
as it would result in a decrease of the Helmholtz free energy.
In recent years the van der Waals thefityand its modi- The molecular theory of surface tension relates the influence
fications[2,3] have been widely used for describing nuclei of parameter with the two-body direct correlation function
new phase$4,5], wetting transitiong6], interfaces in the c(r;p,T) of a homogeneous fluifi7]. In this case it is as-
vicinity of critical points[2], and some other surface phe- sumed thac(r;p,T), as well as the Helmholtz free energy
nomend 3]. Many authors state in their papers a good quali-density fo(p,T), has been determined in the whole range
tative and quantitative agreement between the results dfetween the densities of coexisting phases, where a homoge-
theory and experiment even in regions of state variableseous system can exist only as a metastable or a labile one.
where seemingly the conditions of the theory applicability ~We shall now highlight the most debatable points of the
are violated. And although the basic equations of the van deran der Waals theory. The van der Waals theory postulates
Waals theory can be obtained as some limiting cases of rigthe introduction of local thermodynamic quantities describ-
orous statistical theories, many of its concepts are yet to b#g a certain hypothetical system, which can exist as a ho-
statistically substantiated. mogeneous one in the whole range of the state variables of a
The starting point of the van der Waals theory is the prefluid phase. The Helmholtz free energy density and the local
sentation of the local Helmholtz free energy density of inho-pressure of such a system at the liquid-vapor interface, as
mogeneous fluid as the sum of two terms — the local freedensity functions at a fixed temperature, should have the
energy density of homogeneous fluid and the term takingorm presented in Fig. 1. The densities of phases coexisting
into account the presence of inhomogeneity. It is assumeth equilibrium are determined by constructing a common
that in the whole range between the densities of liquid andangent to the functiorfy(p; T=const) or using the equal
vapor existing in equilibrium the Helmholtz free energy den-area criterion of Maxwell for pressure. In an actual macro-
sity of homogeneous systefg(p,T) at a fixed temperature scopic system the states between pdinand B are meta-
is an analytic function of the local density The term taking  stable and labile. The region of metastable states is separated
into account the presence of inhomogeneity imposes the coifrom the region of lability by a spinodal, which is determined
dition of existence of a certain characteristic length for aby the following conditiong8]:
fluid medium and in a first approximation is proportional to
the square of the density gradient. The coefficient of propor- (8_p) _ (ﬂ) -0 1)
tionality at the square of the density gradigimfluence pa- ap "\ os o '
rameterx) is a temperature and density function. Thermody-
namic stability requiresc>0. Otherwise the formation of wheresis the entropy.
The conception of homogeneity may be introduced only
with respect to a certain linear size Thus, the molecular
*Electronic address: bai@itp.uran.ru densityp will be homogeneous on the scdlé the volumes
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(b)

FIG. 1. Helmholtz free energy densitg) and
pressure(b) in a homogeneous system at a pre-
critical (T<T.) isotherm. A, B are binodal
points andC, D are spinodal points. Dashed lines
schematically show states realized in small sys-
tems with linear dimensionlg andl, (1;<I,).

I3 always contairpl® molecules. The van der Waals theory account of inhomogeneities usually retains only lower spatial
makes use of a continual approach, therefore, the boundaderivatives of density. It is admissible if inhomogeneities are
from below for the scalé is determined by the inequality  weak. As a critical point is approached the interfacial region
>d, whered is the effective molecular size. broadens and the density gradients at the interface decrease.
In the stable region, the isolated linear scales are the rafherefore, in a critical region neglect of derivatives of a
dius of action of molecular attractive forc& and the cor-  higher order than the first ones is justified.priori, this is
relation radiug. If I> ¢, on such a linear scale the molecular not evident in the vicinity of a triple point, where the density
system is homogeneous, and the system states are equiliradient at the interface is large.
rium and stable. In the metastable region, in additioiR{o In the general case, the influence parameteefficient of
and{, there appears a new linear scale, the radius of a critiproportionality at the square of the density gradieist a
cal bubble, by which we will understand the radius of thefunction of the density and temperature and is determined
tension surfaceR, . If the correlation radius characterizes through the second moment of the direct correlation func-
homophase fluctuations, the radiRg is connected with het- tion. Calculation ofx(p,T) through the direct correlation
erophase fluctuations. A system whose linear dimension function of a homogeneous system is connected with a num-
>¢ andR, can exist as a homogeneous one only for a lim-ber of fundamental difficulties as the latter, strictly speaking,
ited time, whereupon phase separation will take place. Theannot be determined behind the spinodal, in the labile re-
type of functionsfy(p,T), p(p,T) in this case depends on gion.
the value ofl, as is schematically shown in Fig. 1 with  In the simplest versions of the van der Waals theory the
dashed lines. In the limit— o, the thermodynamic proper- influence parametex is a constant determined only by in-
ties of a system become the same as in the absence of rermolecular forces. In more rigorous modifications of the
strictions. In Fig. 1, the liné\B will correspond to the value theory x depends ol and does not depend gn This case
[ . is the most interesting one as at given values of the Helm-
In a system with a linear dimensigi<| <R, nucleation holtz free energy densitf,(p,T) and the planar surface ten-
is suppressed, and on the schtee system retains homoge- sion one makes it possible to determine the value @ind
neity. As the spinodal is approach&d;»~ andR, —0. Here  calculate the interfacial density distribution. As is shown in
it is impossible to stand out the scale of homogeneity. It isRef. [11], such an approach gives for argon values of the
also characteristic of the labile region, where a substanceffective thickness of the interface that are in satisfactory
relaxes into a new phase without activation through the stagagreement with data obtained by ellipsometric study. Be-
of spinodal decay9]. Thus, in the region of a first-order sides, this approach makes it possible to determine the de-
phase transition the condition of homogeneity cannot be forpendence of the surface tension of new-phase nuclei on their
mulated so rigorously as outside it. This means that the funcsize[5,12]. Taking into account this dependence in the clas-
tions fo(p,T), p(p,T) and others cannot be calculated heresical homogeneous nucleation theory improves the agree-
without imposing additional conditions on the statistical in-ment between theory and experiment in superheated simple
tegral. liquids [5,13]. Nevertheless, such a check of the van der
If we assume that within the limits of the radius of action Waals theory is only indirect. Experiments based on measur-
of attractive forces in the vicinity of a molecule there is theing the interface reflectance with scattering of light, x-rays,
same number of neighboring moleculesean-field approxi- and neutrons give information only about the effective thick-
mation), in such a medium all fluctuations on the schle ness of the interface, and not about the interfacial density
=R, will be suppressed. AR,— o the condition of homo- distribution. Experiments on nucleation also give indirect in-
geneity is formulated on a macroscopic scale, which iormation about the surface tension of nuclei as to measure
equivalent to the absence of any characteristic scale at all. lits value for bubblegdroplets of radius 10—100 nm directly
this case, the properties of the system are described rigoby experiment seems to be impossible.
ously by the analytic function&(p,T), p(p,T) presented in In this paper, the van der Waals theory is checked on a
Fig. 1[10]. model system of Lennard-Jones particles. The method of
The next debatable moment of the square-gradient versiomolecular dynamics is used in a two-phase system with a flat
of the van der Waals theory is the fact that the term takindiquid-vapor interface to calculate the parameters of phase
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equilibrium, surface tension, interfacial density distributionwhere ¢(r) is the intermolecular potential, and E@) to-
in the temperature range from the triple point to temperaturgether with Eq.(5) gives the well-known Rayleigh—van der
close to critical one. To determine the Helmholtz free energywaals resul{2]:
density and the direct correlation function for a homoge-
neous fluid use is made of a one-phase molecular-dynamic o= — i r2¢(r)dF (6)
model. The temperature dependence of the influence param- 12, ~q '
eter is found in the framework of the van der Waals theory
from data on the surface tension, the effective thickness ofiere integration is limited by the region of action of attract-
the interface, and the Helmholtz free energy density. Théng forces,d is the effective diameter of molecules. In ap-
dependence of on p and T is also determined by direct proximation (5) the influence parameter proves to be inde-
calculation of correlation functions in computer experiments Pendent of temperature and density. o

The paper consists of five sections. Section Il formulates ThiS paper investigates properties of a flat liquid-vapor
the basic ideas of the van der Waals theory. Section Il delnterface. We shall introduce the Cartesian system of coordi-
scribes the results of calculating the properties of two phasBates whose axis is normal to the interface and directs from
and one-phase molecular systems by the method of molecliquid into vapor. For a grand thermodynamic potential of a
lar dynamics. Section IV is devoted to analysis of the ob-fWo-phase system with allowance for Hg) we have
tained data in the framework of the van der Waals theory. 2
Section V contains conclusions and discussions. Q{p(2)}= F{p(z)}_MN:AJ

— o0

oo

dz
(7)

Here w(p)=fy(p) — up, n is the coexistence chemical po-
The van der Waals theory assumes that in an inhomogéential, N is the number of particles in the systefs the
neous system the Helmholtz free energy densiﬁlcmpends mtgrface area. We shall be interested in distributip(i8),
o . . . . which correspond to the boundary conditions,
on the local densityp(r), and its spatial derivatives of vari-

o(p)+ K

P
dz
Il. VAN DER WAALS THEORY

ous Orderil] p(Z*)—OO):ply p(ZH-‘,-OO):pg’
Hp(N)}="Fo(p) + k1(Vp)?+ koA p+ ka(Vp)*+ ka(Vp) 2Ap dp/dz(z—=)=0, ®)
+ k5(Ap)2+ kg(Vp)(VAp)+ k7 (AAp)+ - - - wherep;, pq are the equilibrium densities of saturated liquid
and vapor phases.
2 By minimizing the functional(7) we obtain the Euler-

) ) Lagrange equation for calculating the planar interfacial den-
Herefo(p) is the Helmholtz free energy density of a homo- sjty profile p(z),

geneous systenk,, k», k3, ... are coefficients depending
in the general case on the temperature and density. d[ (dp\?] de

If the inhomogeneities are weak, in expressipnone can dz| “ldz) |~ dz ©)
retain only lower spatial derivatives of density. Then for the ) )
total free energy of an inhomogeneous system we have . 'Integratmg Eq.(9) with allowance for the boundary con-

ditions (8), we have
> > 1/2
F{P(r)}:f [fo(p)+x(Vp)?1dr. 3 dz=|——| dp, (10)
S

Here integration is performed through the whole volume of avhere ws= w(p;) = w(pg) = —ps, Ps is the saturated-vapor
system, which is assumed to be macroscopic, the influengaressure.
parametenc= x1— dx,/dp. Equation(3) is the basic one of The surface tension may be calculated by any of the fol-

the van der Waals square-gradient theory. lowing formulas:
The influence parametaer is related to the direct correla- o (do)\2
tion function of a homogeneous fluic{r;p,T) by the fol- Uzzf K(_P) dz, (11)
lowing relation[7]: —» \dz
Pl
o= kf_;- r2c(r)dr, (4) o=2 , [k(w—ws)]Y2dp. (12
[¢]

Formula(12) is the most important one as in the casecof
independent op it makes it possible to determine the influ-
ence parameter by data on the surface tension and the Helm-
holtz free energy density of a homogeneous systeacro-
@ (5) scopic characteristitcsand then from Eq(10) to calculate
kgT’ the interfacial density profil@microscopic characteristic

wherekg is the Boltzmann’'s constant. In a mean spherical
approximation

c(r)y~-—
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The van der Waals theory is a local theory. At every point 1.4 T T r r
of an inhomogeneous system the state of the medium is fully
determined by its local properties. The effect of the sur-
roundings is taken into account only through spatial deriva-
tives of density. A rigorous theory based on introduction of
the density functional gives the following expression for the
Helmholtz free energy of an inhomogeneous sysfém

@) -2 (6.7 o
(13

Fiot)= |

wheref'o(p) is the free energy density of homogeneous fluid

in the ideal-gas state(r,r’;{p}) is a two-body direct cor-
relation function of inhomogeneous fluid, it is a functional of

the density distribution in a system. CalculationFeffp(r)} .
by Eg. (13) is unrealizable as it requires a knowledge of o*
c(r,r";{p}) or, which is equivalent, direct correlation func- . -
tions of all orders in a homogeneous fluid. To circumvent this ~ FIG- 2. Binodal(external curvand spinodalinternal curve of
difficulty use is made of approximations that make it pos-2 LJ fluid. 1, data of this paper; 2, Refl6]. Solid lines show
sible to present the second integral of Etp) as the sum of calculation by the equation of staf@3), C is the critical point.
two terms determined by a two-body direct correlation func- 1 5
tion of a homogeneous system . g\ o

r r

0, r>r.,

’ =lco»

o(r)= (16)

) o keT L
F{P(F)}foo{P(f)}df+Tf f[P(r )=p(r)]
wheree =1.65324<10"?! J, =0.3405 nm are the poten-

xc(|r’ —r|;p)dr'dr, (14)  tial parametersy;=6.78x is the cutoff radius of the inter-

molecular potential. Further use is made of nondimensional
quantities obtained by division of dimensional parameters

Folp(P) =11 p(F) +kB_T P zf IF" 1| p)dr’ p, T, f, k, m, p, by, respectivelyo, o3, s/kg, e/o°,

ofp(N}=Tfolp(Ni+—=Lp(N]" | o PR g0°, €, e/lo® and marked with an asterisk.

(15 The system is enclosed in a rectangular box with periodic

boundaries. The reduced box sizes ak§ XLyXL}

=13.56x 13.56<58. A two-phase system was given in the

In the formulation of Ebneretal. [14] p=[p(r) ; ; ded liaud slab with e sid
+p(r')]/2, ande(|r’ —r|;p) is interpreted as the direct cor- itorm of a two-sided liquid slab with vapor on either side on

relation function of a hypothetical_homogeneous medium™ The Beeman's algorithm was used to integrate the equa-
constrained to have uniform densigy The theory of inho-  tjons of particle motion[15]. The integration step in time
mogeneous fluid based on EQ4) is essentially nonlocal. a5 closed equal to 16* s. The equilibration took no less
By expanding the integrand in the second term of B4) 43y 2¢10° time steps. The properties of the system were
and restricting ourselves to the first terms of expansion we, nq by averaging over 21C° time steps in the equili-
obtain the equation of the van der Waals the@y Equation |, oaq system.
(14) is more rigorous than Eq3). However, the density  pensity distributionsp(z) were obtained by dividing the
functional theory, contrary to the van d_er Waals theory, giveg),y into 1160 layers 0.G5 thick, paralled to the plan,y.
no way of expressing the quantities involved only throughrpe nymper of particles in the layers was determined at ev-
thermodynamic parameters measurable by experiment. ery time step, whereupon time subaverage was performed.
Data on the coexisting densities obtained in the range of
IIl. MOLECULAR-DYNAMIC SIMULATION r2educed temperaturesT* =0.718—1.227 are shown in Fig.
A. Two-phase system The coexistence parameters depended considerably on the

Molecular-dynamic experiments on two-phase modelsvalue of the cutoff radius of the LJ potentisf and to a
were carried out for determining thermodynamic parameteréesser degree on the number of particles in the box. The
of coexisting phases, surface tension, and interfacial densitigsults of investigating such dependences are presented by us
profiles. The system under investigation contaihed4096  Iin Ref.[17], where it is shown that the uncertainty of ther-
interacting particles. Particles interact through a cutoffmodynamic quantities connected with the choice bfdoes
Lennard-Jone$LJ) potential not exceed the error of their determinatiorr }f=6.78.
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1.2 T T T The temperature dependencedf is well approximated
by the power law

Y = (TE =T, (20)

where T} =1.314, ©=1.314. The value of the critical tem-
perature proves to be somewhat overestimated with respect
to its value determined by data on the coexisting densities.

The values of critical parameters in computer simulation
depend on the kind of the model, the cutoff radius of the LJ
potential, the box size, and some other factors. In the critical
region the effects of the finite size of the box may be taken
into account in the framework of finite-size scaling analysis.
For a LJ fluid such an approach gives asymptotic+x)
values of critical parameter3} =1.326, ps =0.316, p;
=0.111[23,24,.

0.8

0.4

0.0
0.7

T B. One-phase system

FIG. 3. Surface tension as a function of the temperature. The To determine the Helmholtz free energy density of a ho-

figure inset shows the dependence of the surface tension on thmogeneous fluid and the influence parameter by the method

value of the cutoff radius of the LJ potential Bt =0.8268. 1, data 3% m_g'e‘?”'a][ dyn.amlﬁs thf;),p,T pr?pelrtlez f"‘”d the radla:cl
of this paper: 2, Ref[19]; 3, Ref.[20]; 4, Ref.[21]; 5, Ref.[22]. istribution function have been calculated in systemdNo

=2048 and 8788 LJ particles. The box containing the par-

In the whole investigated temperature range the differenclc!€s was cubic. As in the case of a two-phase model, for
between the coexisting densities within the limits of statisti-Nt€grating equations of particles motion use was made of the

, ; ; Nt —10-14
cal error of its determination is described by power law of5€€man’s algorithnj15] with a step in timeAt=10""" s.
the form Calculations were made in a microcanonical ensemble at

temperatures close td*=0.7, 1.0, 1.15. The derivative
pr—pi~(T% —T*)B, (17)  (dp/dT)y was determined along with the pressure, tempera-
ture, and internal energy. It was used for subsequent pressure
where3=0.32,T* =1.285. The critical density obtained by correction in a one-phase system to the fixed temperature

the law of rectilinear diameters js =0.315. values mentioned above. o
The surface tension was calculated according to its stress Calculations were started in a stable liquid or vapor re-
definition gion. Transformation into a new state was realized by com-

pression(liquid) or expansior(vapop of a system by means

1 (= of scaling of the box boundaries and the coordinates of all
y=5| [Pn2)—pr(2)]dz, (18 the particles from the equilibrium configuration of the previ-
o ous state. The equilibration of the system at every new den-
sity took (5—-15)x 10" time steps. Thermodynamic and struc-
Yral characteristics of the system were determined by
averaging over5—30)x 10° time steps. Calculations were
made at two value of the cutoff radius of the LJ potential,
r¥,=2.6 andr’,=6.78(6.58 for isothermr* =0.7). Within

where the factor 1/2 appears due to the presence of two i
terfaces in the system. The difference of the normg(z)
and the transversp(z) components of the pressure tensor
was determined by the Kirkwood-Buff expressidr8]

1 X2 +y2 — 272 the cutoff radius of the potential the pressure was calculated
PN(Z0) —Pr(Z) =5y (| 2 2 by the formula
ZVS 1=1 j#i rij |
1 mo? AT
p=a|2> -2 Mij 9y : (21
X(l),(rij)a(zn_zi) . (19) 3V =1 2 i>] z?l’ij

The contribution to the pressure of particles located at a
Here (- --) denotes ensemble average of all pairs of pargistancer>r. from the isolated one was taken into account
ticles, of which at least one (r j) is in a layer 0.05 thick  py introduction of a correctiot p., which was calculated
with a numbem (n=1, ...,1160), Vs is the layer volume. ynder the assumption that there were no correlations between
In Fig. 3, the results of calculating the dependenceparticles at distances exceeding
v*(T*) are compared with the results of some other authors

[19-22. The values ofy, as well as ofp,p,T properties at 167
the phase equilibrium, essentially depend on the cutoff radius Apt=-— *Bp* 2, (22
of the LJ potential. 3re
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FIG. 5. Pressure as a function of the densityTat=1.0 and
T*=1.15 for the the gas phase, details same as for Fig. 4.
0.2

not taken into account. Calculation by E®@1) gives some
L L effective (averagedl pressure, which is shown in Figs. 4 and
0.45 e 0.75 5 with dotted lines. A decrease in densiipcrease in vol-
ume in a micro-two-phase system forming during the decay
FIG. 4. Pressure as a function of the densityTat=1.0 and  Of @ homogeneous liquid results in a growth of the effective
T* =1.15 for the liquid phase: 1, 4—our datd,=2.6,N=2048; 2,  radius of a stable vapor bubble and an increase in the effec-
5—our datar¥ =6.78,N=2048; 3, our datar* =6.78,N=8788;  tive pressure in the whole system. And vice versa, conden-
6, Ref.[25]; 7, Ref.[26]; 8, Ref.[27]. Solid lines show the equation Sation of the gas phase into a droplet decreases the effective
of state(23). pressure in a model.
The probability of formation of a new phase critical
nucleus in the same time interval is higher in a system of a
thus, the total pressure is the result of summation of Eqdarger size than in a small one. Therefore, phase separation in
(21) and (22). a system withN=_8788 particles takes place at lower super-
Figures 4 and 5 give the results of calculating the pressurgaturations than in a system with= 2048 particles. Besides,
at isothermsT* =1.0 and 1.15 for the liquidFig. 4 and the  in a system wittN=_8788 particles before the appearance of
gas(Fig. 5 phases in a stable and a metastable states. In thecritical nucleus there are more developed heterophase fluc-
region of stable states and at small supersaturations data @mations, which increase the effective pressure in a liquid at
the pressure obtained in models with different numbers otlensities close to the point of beginning of phase separation
particles and at different values of the cutoff radius of the(Fig. 4).
potential agree with each other within the limits of statistical Somewhat surprising is the appearance of points of
error of calculation. Here one can also observe good agregninima (maxima on isothermesT*=1.0 and 1.15 in a
ment of our results with data of computer experiments ofmodel with a cutoff radius of the LJ potentig] =2.6. The
Hansen and Verld25], Adams[26], Johnsoret al.[27]. Ina  van der Waals form of isotherms in this case points to the
region of high metastability the value of the pressure in thgetention of phase homogeneity in the model at least to the
model essentially depends on the number of particles and thensity values to which calculation has been mégigs. 4
cutoff radius of the potentialFigs. 4 and B At r; =2.6  and 5. Here, however, one should bear in mind the follow-
isotherms of the total pressure have points of mininflig@  ing circumstance: isotherms with points of minirtiauid)
uid) and maximum(gas typical for the van der Waals iso- and maxima(gag appear when a correction for long-range
therms. Such a character of dependencg ofi p points to  interaction(22) is applied to a pressure calculated in a model
the retention of the system homogeneity in the density rang@ith a short-rangécutoff) potential(21). In a model with a
under investigation. An increase of from 2.6 to 6.78 cutoff LJ potentiallwithout correctionsisothermal elasticity
causes the appearance of nonanalyticity in the dependencetains a positive value in the whole density range in which
p(p), which is connected with phase separation in the sysealculation has been mad€ig. 6). A different situation is
tem containing a finite number of particles. After the forma-observed aff* =0.7. Here for the liquid phase at density
tion of a critical nucleus a stable aggregate of a new phase jg* =0.71 the pressure in a model with a short-range poten-
generated here in the form of a bubble in liquid or a dropletial proves to be close to its spinodal value, and a subsequent
in vapor. In such an inhomogeneous system containing decrease in density results in the loss of stability of a homo-
curved interface the pressures inside and outside the nuclegeneous liquid(Fig. 6). As in a model with a large cutoff
are different. In the calculations presented here this fact isadius of the potential, the gas phase is isolated in the form
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FIG. 7. IsothermT* =0.7 by the equations of state from the
papers: 1, Refl27]; 2, Ref.[28]; 3, Ref.[29]; 4, Ref.[32]; 5, this
paper[Eq. (23)]. Data of molecular-dynamic calculations: 6, Ref.
[27]; 7, our data.

1.0

0.8

has a bend in the temperature rafge=1.05—-1.28, in con-
FIG. 6. IsothermsT™ =0.7 andT* =1.0 with allowance for the  nection with which it cannot be approximated by an equation
contribution to the pressure of particles at a distarfce 2.6 [Eqs.  of the type(17). Feasibility of an equation of the typd?)

(21), (22)—dark dotg and without its allowancgEq. (21), marked oy the density values at the spinodal is shown in the Refs.
light dotg|: 1, 4—r% =2.6,N=2048; 2, 5—+ =6.78,N=2048; 3, (33,34

g - . ;
6—¢ =2.6,N=2048. Solid lines show the equation of st&2d). All this required a new equation of state for the LJ fluid,

which in a mutually coordinated way would describe the data

of a closed cavity, which leads to increasing effective pres®f our molecular-dynamic calculations in one-phase and two-

sure. Thus, pressures obtained with allowance in(Et).for ~ Phase models and adequately reproduce the position of the
the correction for long-range interaction by formi®) and  binodal, spinodal, and critical point.

absence of phase separation may be considered only as anIn setting up the equation of state apart from our data we

estimation from below for a homogeneous liquid and an esused the results of computer experiments of Johnson and

timation from above for a homogeneous gas phase. coauthorg 27] pertaining to pressurgs* <0.6 and tempera-
tures T*=0.7-6. To ensure the correctness of high-
C. Equation of state for the homogeneous fluid temperaturel* =7-35 extensions of isochores and isobars

A number of empirical equations of state with free param-We included in the array of the processed data the results of

eters determined by data of the methods of Monte-Carlo anH1e papers by Hans¢85] and Red29]. To avoid nonphysi-

molecular dynamics have been suggested for describing h&al oscillations on isotherms at low temperatures into the

mogeneous phases of the LJ fly27—32. The authors of data} array to be forme'd.we introducgd the Qensity values on
the paper§27—37 used different analytical forms of presen- the |sothe_rm 0.7 pertaining to the labile region of a homoge-
tation of the equation of state. In a region of liquid-vapor n€ous fluid and calculated by the equation of state of Mecke
phase transition all equations give a form of the dependencet a- [32].
p(p) similar to that of van der Waals. However, numerical ~ The results of calculation of coexisting densities in a two-
data obtained by these equations in a region of high metast&hase model were included in the initial array with an en-
bility and a labile region are in essential disagreement witHarged weight with respect to the data enumerated above. At
each othefFig. 7). given values ofp" , pg , T* it was necessary to fulfill the
When thep,p,T data of our molecular-dynamic experi- conditions of mechanicalp* (pj* ,T*)=p*(p; ,T*) and
ments are adequately described by the equation of state ehemicalu* (pf ,7*)=pu* (pg ,T*) equlibria. The equilib-
Meckeet al.[32], the values of the critical parameters of this rium pressure in this case was not fixed. Data on the density
equation [z =1.328, pX =0.3107) differ essentially from and pressure on a spinodal approximated from the results of
those predicted by our data on phase equilibrium and surfaceur computer experiment were imparted a weight of 8.
tension. Besides, thg, T projection of the spinodal liquid The equation of state is written in the form of pressure
branch calculated by the equation of state from the B  expansion in density and temperature
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P
+ bij ——
i 312‘0 V()i

Here the first three terms are a virial equation of state ang
are included in Eq(23) for correct description of the gas

phase of a LJ fluid. The secor8l and the thirdC virial

coefficients have been calculated by the following formulas.g

3 -
B:_EJ ho(ri2)dry, (24)
3 I
:_m o(r12)Np(r23)Np(r3p))dri0rss
C ho(r12)ho(r23)hg(rz)drid
=—12fo rho(r)drfor’ho(r’)dr’
X[®(r+r")—d(r—r")], (25)
where
<1>(r)=foh0(r’)r’dr’,
ho(r)=exd — ¢(r)/kgT]—1, (26)

ho(r) is the limit of the pair correlation function @t—0.
The results of calculating and C in the temperature

PHYSICAL REVIEW EG65 041601

TABLE I. Exponents and coefficients of E(R3).

jo bjj joi bj joi bj;
1 4 -—12089.7851 1 5 —22852.7092 1 6 29133.4122
1 7 70064.6030 2 4 78878.1269 2 5 95924.3997
2 6 —229079.316 2 7 —238148.643 3 4 —202813.743
5 —108130.890 3 6 535705.401 3 7 306007.586
3  1192.26528 4 4 247912.834 4 6-550260.913
7 —179145.690 5 3 —2637.74735 5 4 —141289.814
5 522115056 5 6 267568.432 5 7 40788.4012
3 1450.53860 6 4 29551.8082 6 5 -17802.4658
6 6 —52138.4220

of the equation of state is limited in pressure by the value of
p*=0.5, in temperature by the range Bf =0.7-35.

D. Direct correlation function of a homogeneous fluid

The determining relationship for the direct correlation
function of a homogeneous system is the Ornstein-Zernike
equation2], which establishes relation between the function
c(r) and the radial distribution functiog(r)

c(r>=h<r>—pfh(r')c(lF—F'DdF',

h(r)y=g(r)—1.

In physics of liquid state for calculating the radial distri-
bution function use is made of the thermodynamic perturba-
tion theory[36], and also of approximate integral equations,
such as the equations of Percus-YeJEl) and hypernetted

(29

range 0.&=T*=<35 have been approximated by the expres-chain approximatiofHNC) [37]. The latter follow from the

sions
6

B=> by(T*) "2

1=0

(27)

4

C=ZOci<T*>—”2+c5[c6—(T*>—1’2]-9. (28)

where by=0.27165, b;=2.8813, b,=-9.9257, b,
=11.9895,b,=—12.8825, b;=7.0894, b= —1.9618, ¢,
=0.11035, ¢;=0.9249, c,=1.0342, c3=—5.6725, c,

=7.2901, c5= —137.2732,c¢=2.5155. The absolute ap-
proximation error of the second virial coefficient does not

exceed 0.0002 and third one does not exceed 0.004.

The coefficients;; of Eq. (23) have been determined by tio
the least-squares fit. By the method of regressive analysis the
number of coefficientd;; in the equation has been reduced
to 25 without any essential decrease in the accuracy of de-

scription of the initial array ofp,p, T data. The coefficients
of the equation of state are given in Table I.

Ornstein-Zernike equatiofi29) if it is supplemented with
approximation relations, which relate the direct correlation
function and the radial distribution function:

c(r)={1-exd ¢(r)/keTI}g(r),

c(r)=1-9g(r)—In[g(r)]— ¢ (r)/keT,

In the region of liquid-gas phase transition the PY and
HNC equations have a region of absence of physical solu-
tions. In the general case the boundary of this region does
not coincide with the spinodal ling&8]. Thus, the method of
integral equations does not make it possible to determine the
influence parameter in the whole density range restricted by
the coexisting densities.

In the computer experiments the radial distribution func-
n was calculated according to its definition by the formula

PY, (30

HNC. (31

M N

DY

[

An{(r)
Ar

Vv
47r°N°M

g(r)= (32)

The mean-square deviation pi of values obtained in WhereAni(j)(r) is the number of particles in a spherical layer

computer experiments from those calculated by &8) is

Ar thick at a distance from the jth particle whenith cal-

0.0123. The values of the critical parameters are as followsculatingg(r), M is the number of calculations gf(r) in the

T =1.3084,p; =0.2961,ps =0.1262. The area of validity

process of integrating the equations of motion.
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FIG. 8. Radial distribution functions in the gas phaseTat=1.0 in models with a cutoff radius of LJ potentief =2.6 (a) and
r¥=6.78(b).

In the density rang@* =0.001-0.18 the radial distribu- o sin(qr)
tion function was determined at distances that did not exceed ¢(Q)=47Tf r2e(r) dr, (34)
10.092% . At densitiesp* =0.44-0.9 calculations ofj(r) 0 q
were made at distances up £d2, which corresponded to and the Fourier preimage
(% —8.3425-6.9725. preimag
The results of calculating(r) for the gas phase in mod- 1 (= sin(gr)
els with cutoff radii of the potential};=2.6 andr’,=6.78 o(r)= Ef q2e(q) ar dq. (35)
0

are given in Fig. 8. In the region of stable and homogeneous
metastable states these data are in good agreement with each
other. An increase in the density of the gas phase results in In calculations ofh(q) and c(q) by formulas(34) and
increasing height of the first peak gfr) and formation of a  (35) integration with respect to* was carried out from 0.1
second peak. During the decay of a homogeneous metastal$e10.0925 or to half the box rib and integration with respect
state in a model with* =6.78 the radial distribution func- to q* was carried out from 0 to 80. The integration step by
tion of the resulting microheterogeneous structure takes #e space coordinatdr*=0.005, by the wave number
form qualitatively different from a homogeneous systemAq*=0.001.

[Fig. 8b), dotted line% the height of the peaks af(r) in-

creases considerably, and their number grows, which points |y coMPARISON OF THE THEORY WITH DATA OF

to the appearance in the model of domains with an increased COMPUTER SIMULATION

particle density. The presence in the system of molecular

aggregates with a distinctly different density is also indicated ~A- Temperature dependence of the influence parameter

by the fact that oscillation in the radial distribution function  |n the simplest version of the van der Waals theory it is

takes place not at the levg(r) =1, but at higher levers.  assumed that the influence parameter does not depend on
By making Fourier transforms of both parts of H§9)  thermodynamic state variables, or is only a function of the
and using the theorem of the convolution we have temperature. Let us consider how in this case the theory
agree with the results of computer simulation of a flat liquid-
h(q) vapor interface. If the influence parametedoes not depend
c(q)= 1T on(a)’ (33  on the density, its value may be calculated from B®) by
ph(a) molecular-dynamic data on the surface tension or from Eq.

(10) by data on the effective thickness of the interface. Let us

where the Fourier image(q) of a spherically symmetric define the effective thickness of the interfdcf as the dis-
function ¢(r) is tance over which the density changes from the valug,gf
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FIG. 10. Influence parameter as a density function at isotherms:
T™ T*=0.7 for 1, 1.0 for 2, 1.15 for 3.

FIG. 9. Influence parameter as a temperature function: 1, in &5hrtional to the second moment of the direct correlation
square-gradient approximation, E); 2, with allowance for the function. Thus, the density dependencexofs a direct con-
higher terms, Eq(64); dark dots show calculation by data on the sequenée of the dependenc@; p). Expression(4) can be

surface tension; light dots, calculation by data on the effective in- . . . . -
terfacial thickness. rewritten through the pair-correlation function. By integrat-

ing EqQ.(29) with respect tad r, and also the result of multi-

= pg+0.1Ap 10 pgo= py+0.94p, whereAp=p,— pg . In the plication of Eq.(29) by r?, and combining the obtained ex-
van der Waals square-gradient theory pressions we have

P90
90__
LlO_ f
P10

The results of calculating the influence parameter by Egs.
(36) and (12) are shown in Fig. 9 with solid lines. At low
temperatures the data of these two approaches differ by 40%. The integrals in Eqs4) and(37) prove to be very sensi-
As the critical point is approached, the differences descreastiye to long-range parts of correlation functions. As the pair
and atT* =1.1 the values ok agree within the error of their correlation functionh(r) has a longer range of action than
determination. the direct correlation functio(r), and its asymptotic be-

If the influence parameter has been calculated through thieavior far from the critical point is less determined, Relation
effective thickness of an interface, the van der Waals squaré4) has some advantages over E87) in calculatingx, at
gradient theory underestimates the surface tension in the réeast at high fluid densities.
gion of low temperatures, and in calculations rofthrough We have calculated(r) by data onh(r) using Fourier
the surface tension the effective thickness of the interfacéransforms(33)—(35) of Eq. (29). Since the integrals of Egs.
proves to be overestimated. At a temperatlite=0.7 the  (34) and(35) were determined on the finite intervalsgand
discrepancies of the data drig and y are approximately r, the obtained values @f(r) had a considerable error within
20%. Thus, the initial equation of the square-gradient theoryhe limits r—0 and r—o. At distancesr>r,,, where
(7), which does not take into account the density dependendg,—=10.092% for gas and_/2 for liquid, we approximated
of the influence parameter, makes it impossible within thethe functionc(r) by expressior(5). In this case the correc-
error of the data of computer experiment to describe thdion A« to the influence parameter was calculated by the
whole complex of properties of a liquid-vapor interface in following formula:
the whole temperature range from the triple to the critical
point. Let us examine how considerable the effect of the 47 1
density dependence @& may prove to be. AKZ?

172
dp. (36)

K

A h(r)radr
w(p)— ws f(r)r r

-
1+pf h(r)drﬂ

f c(r)rédr= (37

(39

*

r max

B. Density dependence of the influence parameter Figure 10 shows the result of calculating the influence
According to statistical determinatiofd), the influence parameter in a model with a cutoff radius of the LJ potential

parameterx in the van der Waals gradient expansi@ is r¥=2.6 at three isotherms. Althrough the value sofmay
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55 T T T T different density dependence of the influence parameter. If in
an approximation of Eq(30) «(p) is a decreasing density
function, which agrees with the results of direct molecular-
dynamic calculatior{Fig. 10 and the numerical solution of
Eqg. (29) [38], in an approximation of Eq(31) it is an in-
creasing density function. The latter also agrees qualitatively
with the results of the Ref38], but there the tendency for
the increase of with increasing density is less pronounced.
In a rigorous solution of Eq.29) in an approximation of Eq.
(31) the parametek increases abruptly at the approach to
the boundary of the region of absence of solutions for the
] HNC equation, which is not observed in our calculations.
The latter may be connected with the small value gf, to
which the functiong(r) was calculated. The authof88]
point out that the tendency for the divergencexofor the
1 liquid phase in a HNC approximation manifests itself if the
cutoff radiusr ., of the pair correlation function is equal to
51.175 and disappears with a descreasejn to 6.375.
Approximations of Egs(30) and (31) for the liquid phase
0.0 . . . . give a much weaker temperature dependence tfian for
p” the gas phase, and for E@L) it is practically absent.
In the range of low densities the influence parameter and

_ FIG. 11. Influence parameter calculated with the use of PYihe pair correlation function may be presented in the form of
(light dotg and HNC(dark dot$ approximations at isotherms: 1 for power series of density

T*=0.7, 2 for 1.0, 3 for 1.15. The figure inset shows the depen-

5.0

45

4.0

35

dencex* (p*) at low densities. Marked light dots, calculation by k(p)=kO+kBp+Pp24 ... (39
data of molecular dynamics ar(r); solid line, calculation by Eq.
(39) when «? is determined with allowance for all the cluster h(r;p)=hOr)+hO(r)p+h@(r)p2+---. (40

integrals; dotted line, the same whef? is determined in HNC
approximation, dash-dotted line, the same wkéf is determined  For the expansion coefficients @f(p) from Egs. (4) and

in PY approximation. (37) we have
O(p)=(kgT/12)H 41
have a considerable err@ip to 12%, we are sure that they «p) = (ke T2 Hoo, “D
reproduce the temperature and the density dependence of the kW= (kgT/12)(H1,— 2HogH o), (42)
influence parameter given by formu(d) qualitatively cor-
rectly. kD= (kgT/12)(H— 2H1H oo+ 3HooH 50— 2HooH 10)
The density dependence af was earlier determined in (ke (Ha 12 0200 o 10(43)

the framework of a modified van der Waals model by McCoy

et al. [39] and Cornelisseet al. [38] by data on the direct where

correlation function obtained by numerical integration of the

Ornstein-Zernike equation in PY and HNC approximations. _ > _ 247
We calculatedk(p,T) by the radial distribution function of Hoo_f ho(r)dr, Hoz_f ho(r)redr,
computer experiment using relatio(80), (31) (Fig. 11). The

results of such calculation differ from the results of directs H :f hy(r)di, H :f ha(r)r2df
simulation first of all by an abrupt increase of the parameter 10 1 : 12 1 :
x on the side of the gas phase with deeper penetration into

the metastable region. It is most pronounced for HNC ap- _ - _ _—
proximation(31). This result is in good qualitative and quan- Hao= | ho(r)dr, Hg= | hy(r)redr. (44)
titative agreement with the paper by Cornelisteal. [38].

The tendency for the divergence efp) in the Ref.[38] The expansion coefficients of the pair correlation function

manifested itself as the boundary of the region of absence df(r) are expressed in terms of cluster integ{d@]. The first
solutions to integral equations was approached. Correlatioterm of a serieg40) is given by formula(26) and determines
functions were determined up to distanecgs,=51.175, and the value and the temperature dependence of the influence
as the authorf38] noted, an increase in this distance did notparameter ap—0.
influence the character of the depender(g) on the side of The integrals of Eq.(44) were calculated with a step
the gas phase. Ar*=0.01 tor}=40. The contribution of the range*

On the side of the liquid phase approximations of Eqs.>rp, was determined analytically with expansion into a se-
(30) and (31) with the use in them of the results of ries of the exp—¢(r)/kgT] and allowance for the first non-
molecular-dynamics calculations gfi(r) give qualitatively ~ zero term. The coefficierk(?) is a weakly decreasing tem-
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perature function. In the investigated temperature rafige through a certain characteristic lendthwhich in a first ap-
=0.7-1.15 it changes by less than 15%. The coefficiéht  proximation has to be a function only of the temperature
also decreases with increasing temperature, but much more

abruptly thank(®. At T>1.2 it takes negative values. A di- |2

rect calculation of the cluster integrals determining the coef- E=—(pkgTK;—1). (46)
ficienth, is a complicated problem. The poor convergence of 10

some of the cluster integrals at-c gives rise to a great

error in calculations ok(®). Three of the four cluster inte- Substitution of Eq(46) into Eq. (45) gives

grals included in the coefficiertt, make up the HNC ap-

proximation. The fourth cluster integral, which is not deter- 12 (kT 1
mined by PY and HNC approximations, converges quite k(p,T)=— B . (47)
rapidly and can be calculated with a good accuracy. This ’ 10\ p p%Kq

makes it possible to determine the deviation of the value of

the coefficient«® from the coefficient«?). obtained in The temperature dependent€T) may be determined
H(T)C. approxmatl_on. The coefficient ;@S well as<"™ and from data on the interfacial effective thickness or the surface
«'*) is a decreasing temperature function. The change of thf\ension as it was done in Sec. IV A. The paramatén this
sign of 2 f“??“ positive to negative takes place in the re- case is a decreasing density function. At temperatiifes
g|o_|r_1hof 'the Cr'?g’.‘l telTperature. he d q , =<1.15 it becomes negative in the range of densities corre-
h € 'rlsft 0 Ig(.j prgseﬂtst € eper|1 aﬂge) at iso- sponding to liquid-vapor equilibrium existence. Thus, rela-
thermsT* =0.7 and 1.15 in the region of low densities. An yinn (47) cannot be used in the van der Waals theory at low
increase in the density is accompanied by an increase in theheratyres, as is assumed in R88]. Its action is limited
influence parameter, a rise of the temperature decreasing tt&(—;‘“y by the nearest vicinity of the critical point.
rate of the increase of. The results of Eq(39) are in good The results obtained on the description of properties of a
agreement both with the data of computer simulation antigiqyapor interface by the van der Waals square-gradient
with the data of PY and HNC approximations, which becomey,q . \ith allowance for the density dependence of the in-
accurate in the limip—0. _ fluence parameter cannot be corrected by choosing any other
To use the obtained data faf(p) in the van der Waals 555 6ximation dependence for the functistp), different
theory it is necessary to extrapolate them through the density, .\ that presented in Fig. 10. At high temperature E2).

range where the influence parameter has not been detfies good results even without allowance for the density
mined. We have no physical models that could give substarggpendence of. Therefore, the question arises as to the
tiation for such extrapolation. Therefore, we have apProXiyajidity of its use at low temperatures.

mated the dependencgp) by polynomials with minimal

exponents. The results of such approximation are shown in

Fig. 10 with solid lines. From a comparison of Figs. 9 and 10 C. Allowance for terms of a higher order than (Vp)? in the

it follows that one cannot expect improvement in the descrip- Helmholtz free energy

tion of a flat interface by the van der Waals square-gradient a¢ T*<1.0, the effective thickness of an interface is

theory using in it expressiofd) for the influence parameter gmajler than 4—5 molecular diameters, and the question of
as the value of in this case proves to be 30-40% higher ygtention in the expansiof®) only of lower spatial deriva-
than it is required to reproduce data for the surface tensiofyes pecomes debatable. According to E2).the contribu-
and the effective interfacial thickness. When the data fokjgn, to the Helmholtz free energy of an inhomogeneous sys-

x(p) presented in Fig. 10 are substituted into expressiongm of terms following ¥ p)? may be written as follows:
(12), (36), the value of the surface tension proves to be over-

estimated by ~16%, and the effective thickness by - 4 ) )

~25% (T*=1.0). With decreasing temperature the discrep- ~ AF2{p(1)}= f [ka(Vp)*+ka(Vp)“Ap+ks(Ap)

ancies increase and they decrease as the critical point is ap- R

proached. +kg(Vp)(VAp)+k,(AAp)]dr. (48
An expression for the Helmholtz free energy of the kind

(3) is postulated in the classical theory of critical phenomena Applying the divergence theorefd3] and neglecting the

[41]. This theory is formulated in a mean-field approxima- o .
. . . surface contributions of the system boundaries we have
tion, the square-gradient term takes into account the presence

of long-wave fluctuations. The coefficient at the square of the

density gradientc, an absolute analog of the influence pa- - du(p) -
rameter in the van der Waals theory, is connected with the f “(p)(AAp)dr:_f ( dp )WP)(VAP)dr’
correlation radiusté and the isothermal compressibilitg; (49)
=(dplap)+/p by the following relation:

. 1 d N
f u<p><Vp>2<Ap>dr=—§f( l;I(pp))<v/a>4olr,

Thomas and Schmid#2] expressed the correlation radius (50

£2=kp’Ks. (45)
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_— du(p) , . The derivative gu/dp),-,, ~has alarge value on the side
f u(p)(Ap)=dr= _J ( dp )(Vp) (Ap)dr of the gas phase, therefore, the upper boundary of the coef-
ficient B,
+f u(p)(Vp)(VAp)dr.  (51) k() .
max_? % - . (5 )

Relations(49)—(51) make it possible to eliminate from
Eq. (48) three of its five terms. By retaining in E8) the
terms proportiona| tOYp)A' and (Vp)2 for an excess grand In an approximatioo\=0 the surface tension is deter-
potential of a two-phase system with a flat interfa@g ~ Mined by the expression
=0—-0,— Q4 with allowance for Eq(7) we obtain

g

Ds_ [ aw+dl 2 2+3 &’p)” dz.  (60)
- dpz dp4 ‘yZX:f w KE E Z.
Qs{P(Z)}—ALoc Aw(p)+«k E) Mg,
) If we determinex through the interfacial effective thick-
d%p ness(36) and assume8= Bnax, the contribution to the sur-
+B E dz, (52 face tension of the last compone(@0) does not exceed

0.15% in the vicinity of the triple point and 1.5% at the
highest temperature calculated here.

where o o . .

The situation changes qualitatively with allowance in Eq.
1ok Pk Pk (52) for the A(dp/dz)* term. In this case there are no limi-
=kg— _(_4 776 _7) ' (53) tations on the value ok connected with the correctness of

3l dp  9p%  9p° the behavior ofp(z) within the limits of z— +o. At =0

minimization of the functional in Eq(52) gives the Euler
ok, equation
2p dzp ( dp) 2
Let us evaluate the effects of th&(dp/dz)* and 21 dZ i d2\dz) ~ KMo (61)

B(d%p/dz?)? terms to the properties of a flat interface as-

Suming that the influence parametﬁrand,[)’ do not depend Mu|t|p|y|ng by dp/dz and integrating gives
on the density. If we assume that=0 minimization of the

functional in Eq.(52) will lead to the Euler equation dp\2 dp\4
k|l —] +3\|—| =Aw. (62
d dz
2 8Py 00 (55)
“ dz? dz dp —HT o Now, turning again to the data of computer simulation, we
have two unknowns¢, N and two equation for these un-
Within the limits of Eq.(8) we may write knowns, Eqs(12) and(36), which seemingly makes it pos-
sible to determinec and\ in a coordinated manner. How-
d2y d*y o ever, as is shown by a numerical analysis of E§g), (62),
2k———2B——=x _) , (56) (12), (36), in such a formulation the problem has no solution.
dz dz! ap P=n g If « has been determined through the interfacial effective

thickness on condition that=0, the values of the surface
where y=p—p 4. For functions of the kind x(z) tension obtained in this case prove to be lower than in

= xo€Xp(—az) we obtain molecular-dynamic calculation. ALJ3=const the surface
tension will increase with decreasing(i.e., A<0) and in-
P 28 du 12 creasingx. However at a sufficiently high, to the modulus,
2_ a2 02 i i
a= 1-|1 (57)  value of\ there appears a region of absence of solutions to
Plg g.(62), i.e., there appear discontinuities on the density pro-

files. The latter means that for a correct description of the
The absence of oscillations on the density profile mean#terfacial properties in the region of low temperatures it is
the reality ofa. The conditions of reality ofr imposes limi-  also necessary to maintain in the expansiori2pfthe terms
tation on the maximum admissible value of the coefficignt of the third order of infinitesimality.

namely, Applying the divergence theorem and the neglect of the
surface contribution of the system boundaries make it pos-
P sible to exclude in the expressié{p(r)} seven terms of the
0= B$?(7) (58)  third order of infinitesimality out of eleven and write for the
P=Plg excess grand potential of a two-phase system
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oo dp)2 dp|* d2p 2 =0.7234 the following values were obtainedt: =2.857 and
Qs{p(z)}zAJ Aw(p)+« e +X E) +8| — A* =—1.24%*. Then, taking the ratiod*/«* and ¢g/x*
’°° dz* as being independent of temperature, we determined at other

6 2/ 42 \2 2 \3 temperatures the values ot by data ony and the valueg,
dp dp\¢[ d%p dp 20 . )
2 + ¢y a2 _22 + ¢y by data onL7j,. The increase of parametéf, results in re-
z z) \d

dz? duction of a mean-square deviation of values from | .

+ oo

43\ 2 The value of¢pg=1.1¢ i, is optimum(Fig. 9). In this case
+ s bl I P (63  the temperature dependencef in range 0.%T*<1.25
dz may be presented by the following expression:
As has been shown above, t8éd?p/dz%)? term gives a
small contribution to the value d¢ and in a first approxi- K* =4.282—3.6/T* +1.9/T*?, (68

mation may be omitted. Theg,(dp/d2)?(d?p/dZ?)?, o .
B,(d?pldZ%)3, and p5(d3p/dZ3)? terms in the general case With N*=—1.499¢*. _ .
are not small as compared with other items of expression With such a choice of parameters for E64) it describes
(63). Nevertheless, for further analysis we choose an apdata on the surface tension and the interfacial effective thick-
proximation that postulates the following kind of the excessness within the statistical error of computer experiment in the
grand potential whole investigated temperature range.

Figure 12 presents deviations of the calculated density

profiles from hyperbolic tangent

Q —AFOCA de)”, (92|
slp(2)}= _|Ae(p)+r| 7] TM G X
- z
dp® p(z):%—%tanr(%m(g)) 69)

+ ¢°(E) dz. (64) L1o
S Equation (64) makes it possible to achieve satisfactory

The Euler equation in this case can be expressed, agreement with the results of computer experiment both at

high and at low temperatures. Equatigih with an influence
) 4 6 parameter that is only a function of temperature agrees with
p % +3) % +5¢0(%) “Aw. (65) the results of computer simulation only &t >1.0.

. . V. DISCUSSIONS AND CONCLUSIONS
A system will be stable with respect to the appearance of

density inhomogeneity if the sum of the last three items in The basic equation of the van der Waals square-gradient
the integrand of Eq(64) is a monotonically increasing func- theory, which describes a flat interfat®, contains two de-
tion of (dp/d2z)2. For weak inhomogeneities this condition termining parameters, the Helmholtz free energy density
leads to the requirement af>0. At high density gradients it fo[ p(z),T] of a hypothetical homogeneous medium and the
will suffice to requirer>0, ¢o>0. However, the condition influence parameter at the square of the density gradient.

of stability will also be fulfilled at negative value of if We have determineth(p,T) by approximating the results
5 of molecular-dynamic calculations of tipgp, T properties of
& >>\_ 66) a LJ fluid by an equation of state whose form is in agreement
07 3k" with the mean-field theory. Equations of such a type are also

used for describing metastable states in actual sysfédis

More rigorous requirements for the value of the parameter The influence parameter is determined by the second mo-
¢o at A\<0 are imposed by Eq65). For thep(z) to be a ment of the direct correlation function, which for homoge-
continuous function the dependencefab on (dp/dz)? has  neous states of a LJ fluid has been obtained by molecular-
to be monotonic. The latter is reduced to the requirement dynamic data on the radial distribution function. Although
the second momert(r) in computer experiment is deter-
mined with a considerable error, we are sure that the tem-
perature and the density dependences afbtained in this
case are correct. The latter is supported by good agreement
In fulfilling the condition(67) Eq. (65 has a unique solution petween the results of rigorous analytic calculations at a
with respect to dp/d2z). low density and the results of computer experiment, and also

Integration of Eq.(65 gives a density profilp(z), by  between the results of computer experiment and numerical
which the surface tension is calculated and the effectivgolutions of PY and HNC integral equations at high densi-
thickness of the interfacke] is determined. When such cal- ties. Both forfo(p,T) and forx(p,T) there is a density range
culations were performed, at the first stage the coeffigignt where these functions cannot be determined by computer
was taken to be equal to its minimum val(@7). By the  experiments. For lack of a model that would make it possible
results of computer experiments op and L33 for T* to interpolate the values of the functia{p,T) through the

)\2

bo> quin:a- (67)
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0.005

P*(2) - P 1n(2)

-0.005

-0.010

FIG. 12. Deviations of the density profiles calculated by different models from the hyperbolic taégemark and light dots shows the
results of calculation for two interface of a molecular-dynamic model; dotted line, calculation i ®avhen the influence parameter is
determined from data on the surface tension; dashed line, the samexnwibatetermined from data on the effective interfacial thickness;
solid line, calculation by Eq(65) with the parameters, B, ¢, presented in the text; &* =0.8268; b,T* =0.9975.

uncertainty range we used a simple polynomial approximader Waals theory has no longer an unambiguous solution. We
tion. The surface tension and the interfacial effective thick-have found such a solution in the framework of a model
ness calculated in this case by the van der Waals squareepresentation of the Helmholtz free energy of an inhomoge-
gradient theory proved to be considerably overestimated aseous fluid(64), which contains only different powers of
compared with the results of computer experiment. In thgVp). It has been assumed that the influence paramessr
region of the triple point deviations were equal to 30% for(Vp)? is a temperature function, whereas the ratios of influ-
the surface tension and35% for the effective thickness. As ence parameters aVp)* and (Vp)® to « do not depend on
we approach the critical point, the discrepancies decreaseéhermodynamic state variables.
but even at the highest calculated temperature they exceed In this case agreement has been achieved between the van
the error of the computer simulation data. We connect such der Waals theory and the results of computer experiment for
discrepancy not with some fundamental drawbacks of thell the properties of a flat interface and in the whole tempera-
van der Waals theory, i.e., E(), but with formula(4) for  ture range from the triple to the critical point.
the influence parameter. We have see(Sec. ) that the van der Waals theory can be
In the original van der Waals theof{] the influence pa- substantiated only on condition that certain limitations are
rameterx is density independent. In this case it is quite easyimposed on fluctuations. A simple, but natural means of dis-
to obtain its value from Eqs12) or (36) by the results of cussing fluctuations at an interface consists in the assumption
molecular-dynamic calculations af and le’g [on condition  [45] that there is a spectrum of capillary waves superposed
that the type of the functioriy(p,T) is determinedl This on the internal (without fluctuationy density profile.
approach gives compatible results erat T*>1.0. Such a Capillary-wave fluctuations lead to a transverse radius of
goodness of fit is not observed in the region of the triplecorrelation and an interfacial thickness diverging in the limit
point. The significant point of the van der Waals theory withof a vanishing gravity field45]. As among the fluctuations
a parametek depending only on temperature is the fact thatthat are fully suppressed in a mean-field approximation there
at high temperatures it reproduces qualitatively and quantitgerove to be capillary waves too, the question arises about the
tively correctly the subtle structure of the density profile re-allowance for the fluctuation component in the van der Waals
vealed in computer experiment. theory. Here there are different viewpoih#6—48. Accord-
Taking into account the terms of the second order of ining to Evang48], capillary-wave fluctuations are contained
finitesimality in the expansion of the Helmholtz free energyin the van der Waals theory, thus, the density profiles and the
density (2) with density-independent influence parameterssurface tension obtained in the framework of this theory do
does not make it possible to improve the description of propfnot require introduction of capillary-wave corrections for
erties of a flat interface. With allowance for the terms of thefluctuations of an interface. Attempts to distinguish the
third order of infinitesimality there appear a large number ofcapillary-wave contribution for39 and y in molecular-
unrestricted variables, and the problem of describing propemdynamic experimentf49] have not given an unambiguous
ties of a flat interface in the framework of an extended varresult as yet.
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