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Model for the rotational contribution to quasielastic neutron scattering spectra
from supercooled water
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A model is proposed for the first-, second-, and third-order rotational correlation functions that are required
for the computation of the rotational intermediate scattering function for the calculation of incoherent quasi-
elastic neutron scattering~QENS! spectra from supercooled water. The model is tested against molecular-
dynamics data generated from an extended-simple-point-charge model of water and is found to be satisfactory.
The model can be used as a practical method for extracting rotational relaxation parameters from QENS
spectra measured at largeQ from supercooled bulk water or interfacial water in porous materials.
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I. INTRODUCTION

Incoherent quasielastic neutron scattering~QENS! is a
well established and a powerful method for studying trans
tional and rotational dynamics of water molecules in bulk
in confinement@1–4#. Owing to the very large incoheren
scattering cross section of a hydrogen atom as compare
that of an oxygen atom, the scattered signal from wate
dominated by the incoherent scattering processes from
two hydrogen atoms in the molecules. As a result, a qu
elastic scattering experiment from water is particularly sui
for studying the single-particle dynamics of water molecul
which includes both molecular scale translational diffus
and rotational relaxation of the molecules in conden
states.

A QENS spectrum is proportional to the self-dynam
structure factor of the hydrogen atomSH(Q,v), which is the
time Fourier transform of the intermediate scattering fu
tion ~ISF! FH(Q,t). Here,Q denotes the magnitude of th
scattering vector, andE5\v, the energy transfer in the sca
tering process. Hence it is a usual practice in the literatur
discuss the theoretical model for interpreting a QENS exp
ment in terms of the ISF@1#. We have previously discusse
the validity of the so-called decoupling approximation f
the intermediate scattering function of the hydrogen atom
water @5–7#

FH~Q,t !5FT~Q,t !FR~Q,t !, ~1!

where FT(Q,t), alternatively also calledFc.m.(Q,t), and
FR(Q,t) are, respectively, the translational ISF of the cen
of mass and that of the rotation around the center of mas
the molecule. In the extended-simple-point charge SP
model of water, the decoupling approximation is shown to
good at smallerQ ~for Q,1 Å 21). But the deviation in-
creases to about 9% at an intermediate time for largerQ(Q
;2 Å 21) @6#. For QENS data analysis, in practice, th
level of accuracy is acceptable, considering the typical e
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bars inherent in the data and in view of the fact that any ot
choices of the approximation will lead to an intractable co
plication. In this paper, we therefore use the decoupling
proximation as a starting point of our analysis.

In a typical QENS experiment, one uses, say, 6 Å in
dent neutrons in a multidetector time-of-flight spectrome
covering a Q range of 0.25 Å21,Q,2.0 Å 21. In the
rangeQ,1 Å 21, one essentially measures just the trans
tional part,FT(Q,t) alone, because it can be shown that t
rotational ISF is nearly unity in thisQ range @1#. For the
rangeQ.1 Å 21, the rotational ISFFR(Q,t) begins to be-
come appreciably different from unity. Thus, in order to d
tect the rotational relaxation parameters, one has to take
at largeQ range. In the following section, we shall describ
a method of computing the rotational contribution to t
spectra measured in a QENS experiment. In the literature
single-particle dynamics of water, it has been a usual prac
to calculateFT(Q,t) by a jump diffusion andFR(Q,t) by
rotational diffusion models, following the work by Teixeira
Bellissent-Funel, Chen, and Dianoux in 1985@7#. However,
it was shown in a recent paper by Chenet al. @6# that these
two simple models were poor approximations for low
temperature water. In order to extract realistic relaxatio
parameters for both the translational and rotational moti
in supercooled water from a QENS experiment, more ac
rate models for both the ISF’s are necessary. We have
posed some time ago a ‘‘relaxing cage model’’ for the tra
lational ISF @8# FT(Q,t), which was shown to be accurat
for low-Q QENS data@9#. The present paper presents
model for the rotational ISFFR(Q,t).

II. THE MODEL

In a QENS experiment of water, the measured doub
differential cross section is given by

d2s inc

dVdv
5N

2sH

4p

kf

ki
SH~Q,v!, ~2!

whereN is the number of water molecules in the samplesH
is the incoherent scattering cross section of a hydrogen a
and kf and ki are, respectively, the wave numbers of t
ic
©2002 The American Physical Society06-1
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scattered and incident neutrons. The self-dynamic struc
factor SH(Q,v) of the hydrogen atom is given in terms o
the ISF of the hydrogen by a Fourier transform

SH~Q,v!5
1

2pE2`

`

dteivtFH~Q,t !. ~3!

FH(Q,t) is then the primary quantity of theoretical intere
related to the experiment and can be calculated in a stra
forward way by an molecular-dynamics~MD! simulation of
a model water as well.FH(Q,t), in this paper, is given by the
product ofFT(Q,t) andFR(Q,t). We shall describe first an
accurate method for the calculation ofFT(Q,t), called relax-
ing cage model@8#.

In the relaxing cage model, the translational ISF is giv
by

FT~Q,t !5FV~Q,t !expF2S t

t t
D bG , ~4!

where the vibrational part of the ISF is given by

FV~Q,t !5expH 2Q2v0
2F12C

v1
2 ~12e2v1

2t2/2!

1
C

v2
2 ~12e2v2

2t2/2!G J . ~5!

In this expression,A2v1 and A2v2 are frequencies of the
two characteristic peaks in the translational density of sta
of the center of mass, andC is the relative strength of the tw
peaks. It should be noted that at long-time limit~longer than
1 ps!, this vibrational ISF decays to a plateau given by
Debye-Waller factorA(Q)

A~Q!5expH 2Q2v0
2F12C

v1
2

1
C

v2
2G J 5exp~2 1

3 Q2a2!.

~6!

Both MD and QENS experiments gave the value of
mean-square vibrational amplitude,a50.5 Å , in the super-
cooled region@10,11#. It is clear from the inspection of Eq
~4! that FV(Q,t) factor represents contribution to the IS
coming from the in-cage~hydrogen-bonded first neighbo
shell! vibrational motions of the center of mass of the cent
molecule, and the second stretch exponential factor re
sents the relaxation of the surrounding cage at long time

A. Theory for the rotational ISF , F R„Q,t…

We start from an exact expansion of the rotational ISF d
to Sears@12#. Let bW (t) denotes a vector from the center
mass to the hydrogen atom. This vector will acquire a ti
dependence as the water molecule rotates around the c
of mass
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FR~Q,t ![^e2 iQW •bW (0)eiQW •bW (t)&

5 j 0
2~Qb!1 (

l 51

`

~2l 11! j l
2 ~Qb!Cl ~ t !, ~7!

where j l (x) is the l th-order spherical Bessel function
Cl (t) is the l th order rotational correlation function, an
b50.98 Å , which is approximately the length of the O-
bond in a water molecule. This expansion is very useful fo
typical Q range encountered in QENS experiments,
which generallyQ,2.5 Å21. In this case, the expansio
needs to be carried out to at mostl 53 terms. The advantag
of using this expansion is that theQ dependence of the rota
tional ISF is exactly given and one needs to make a mo
for a few lower-order rotational correlation functions, whic
areQ-independent quantities. In this paper, we shall mak
model explicitly for the functionC1(t) and shall generate th
other higher-order rotational correlation functions appro
mately using the maximum entropy method of Berneet al.
@13#.

The l th order rotational correlation function is defined

Cl ~ t !5^Pl „cosu~ t !…&, ~8!

whereu(t) is the angle between the vectorbW (0) andbW (t).
We shall use a notation,m(t)5cosu(t). To calculate the sta-
tistical average, denoted by the pointed brackets, in Eq.~8!,
we need a probability distribution functionP(m,t). We shall
consider the short-time behavior ofC1(t) first. Imagine that
at a given instance, sayt50, a typical hydrogen atom is
hydrogen bonded to its nearest-neighbor oxygen atom.
short-time dynamics of the rotation of the vectorbW (t) around
the center of mass must be well described by a harmo
motion of the angleu(t), that is to say

ü~ t !1v2u~ t !50. ~9!

Then it follows that the distribution function ofu(t) is
Gaussian and the following Bloch theorem@14# holds:

^eau&5exp@ 1
2 ^~au!2&#. ~10!

Using this theorem, one can then derive the following
sults:

C1
s~ t !5^cosu~ t !&5 K eiu1e2 iu

2 L 5exp@2 1
2 ^u2~ t !&#.

~11!

Now since the tip of the vectorbW (t) is tracing a surface of a
sphere of radiusb centered around the center of mass, the
that it traces at short timeDbW (t) can be considered as
vector in a tangential plane, therefore, one can appro
mately write, u25(1/b2)(Dbx

21Dby
2)5@*0

t dt8vx(t8)#2

1@*0
t dt8vy(t8)#2, wherevW (t)5(1/b)@dbW (t)/dt#5duW /dt is

the angular velocity of the hydrogen atom around the cen
of mass. Next, using the identity
6-2
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K F E
0

t

dt8vx~ t8!G2L 5K E
0

t

dt8E
0

t

dt9vx~ t8!vx~ t9!L
52E

0

t

~ t2t!^vx~0!vx~t!&dt ~12!

we finally arrive at a result@15#

C1
s~ t !5expF2E

0

t

~ t2t!^vx~0!vx~t!1vy~0!vy~t!&dtG
5expF2

2

3E0

t

~ t2t!^vW ~0!•vW ~t!&dtG . ~13!

Define the normalized angular velocity autocorrelation fu
tion, cR(t)5^vW (0)•vW (t)&/^v2&, and its spectral density
function by

ZR~v!5
1

pE2`

`

eivtcR~ t !dt, ~14!

which is normalized to 1 forv from 0 to`. Then the short-
time approximation of the first-order rotational correlati
function can be written as

C1
s~ t !5expF2

4

3
^v2&E

0

`

dvZR~v!
12cos~vt !

v2 G . ~15!

From the inspection of the MD-generatedZR(v) ~see Fig.
2!, we shall model the spectral density function by a sim
Gaussian-like function

ZR~v!5
2v6

15v3
6A2pv3

2
expF2

v2

2v3
2G , ~16!

where the peak position is located atA6v3. The MD data
show that this so-called hindered rotation peak is loca
approximately at 70 meV, fairly independent of temperatu
In this model the short-time part of the first-order rotation
correlation function can be written as

C1
s~ t !5expH 2

2

3
^v2&E

0

`

dvZR~v!
12cos~vt !

v2 J
5expH 2

4^v2&

45v3
2 @3~12e2v3

2t2/2!

16v3
2t2e2v3

2t2/22v3
4t4e2v3

2t2/2#J . ~17!

TABLE I. Simulated state points.

T ~k! rs (g/cm3) E ~kJ/mol! P ~MPa! D(1025 cm2/s)

284.5 0.984 248.1 273611 (1.360.1)3100

250.0 0.986 250.0 276612 (5.260.5)31021

225.0 0.984 252.6 275615 (4.460.4)31022
04150
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This functionC1
s(t) describes the short-time behavior of th

first-order rotational correlation function. It starts from uni
at t50, exhibits an oscillation at time 0.05 ps and then d
cays to a flat plateau determined by exp„24^v2&/15v3

2
… for

times longer than 0.1 ps.
The relaxation at longer times can be described by aa

relaxation model, which describes the relaxation of the c
surrounding the central water molecule. Thus the expres
for C1(t) in the entire time range is given as

C1~ t !5C1
s~ t !exp@2~ t/tR!bR#. ~18!

The whole picture resembles the relaxing cage mode
the translational dynamics. At short times, the orientation
the central water molecule is fixed by the H bonds with
neighbors. It performs nearly harmonic oscillations arou
the hydrogen-bond direction. This dynamics is described
C1

s(t). At longer times, the bonds break and the cage beg
to relax. So the particle can reorient itself, losing memory

FIG. 1. The intermediate scattering functions~ISF! at threeQ
values (7.54 nm21, 15.1 nm21, and 22.6 nm21) and at T
5225 K, as a function of the time in logarithmic scale. The op
circles representFH(Q,t); the dash-dot line,Fc.m.(Q,t); the solid
line, Fc.m.(Q,t)FR(Q,t); the dash line, the connected part of th
correlation function,Fcon(Q,t) and the thick solid line, the differ-
ence,Fc.m.(Q,t)2FH(Q,t). It is to be noted that at lowQ, the
decoupling approximation is good but at highQ, the approximation
progressively becomes poorer at long times but the deviation n
exceeds 0.09. However, it is also noticeable that at long timet
.1 ps) FH nearly coincides withFc.m. .
6-3
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FIG. 2. Spectral density function of the no
malized angular velocity autocorrelation functio
ZR(v) at T5250 K. The open circles represen
the results of the simulation and the solid line, th
resulting fit by the model Eq.~16!.
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its initial orientation. Thus the first-order rotational correl
tion function eventually decays to zero by a stretched ex
nential relaxation.

To calculateC2(t) and C3(t) from C1(t), we need to
know the functional form of the distribution functio
P(m,t). We shall guess the distribution function based
maximization of the informational entropy subjected to
condition that we knowC1(t) @13#. According to the scheme
the distribution function is given by

P~m,t !5ea1bm. ~19!

Because*dVP(m,t)51,

ea5
1

2p

b

eb2e2b
, ~20!

C1~ t !5E dVea1bmm52@1/b~ t !#1cothb~ t !. ~21!

The higher-order correlation functions are determin
from C1(t) using Eqs.~19!–~21!. The connection ofC1(t) to
the higher order rotational correlation functions is given
terms ofb(t). The results are

C2~ t !512@3/b~ t !#C1~ t !, ~22!

C3~ t !52
5

b~ t !
1F11

15

b2~ t !GC1~ t !. ~23!

B. SPCÕE simulation

We use MD simulation data of water to test out our mo
for the rotational correlation functions. This is a more su
able method for testing the analytical theory than using r
neutron scattering data, since MD data do not have the c
plication of the resolution effect present in real experimen
data. We carried out an extensive simulation, in an N
04150
-

n

d

l
-
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-
l

ensemble with 216 water molecules contained in a cubic
of an edge 18.65 Å . The effective potential used is
SPC/E. This potential treats a single water molecule a
rigid set of point masses with an OH distance of 0.1 nm a
an HOH angle equal to the tetrahedral angle 109.47°.
point charges are placed on the atoms and their magnitu
areqH50.4238e andqO522qH520.8476e. Only the oxy-
gen atoms in different molecules interact among themse
via a Lennard-Jones potential, with the parameterss
50.31656 nm ande50.64857 kJ/Mol. The interaction be
tween pairs of molecules is calculated explicitly when th
separation is less than a cutoff distancer c of 2.5s. The con-
tribution due to Coulomb interactions beyondr c is calculated
using the reaction-field method, as described by Steinha
@16#. Also, the contribution of Lennard-Jones interactions b
tween pairs separated by more thanr c is included in the
evaluation of thermodynamic properties by assuming a u
form density beyondr c . A heat bath@17# has been used to
allow for heat exchange while changing temperature of
system. After the system has been equilibrated, the heat
is then removed. In our simulation, periodic boundary co
ditions are used. The time step for the integration of
molecular trajectories is 1 fs. Simulations at lowT were
started from equilibrated configurations at higherT. Equili-
bration was monitored via the time dependence of the po
tial energy. In all cases the equilibration timeteq was longer
than the time needed to enter the diffusive regime. We st
ied three temperatures, 284.5 K, 250.0 K, and 225.0 K.
note that for the ESPC model of water, the density maxim
occurs at about 250 K, which corresponds to 277 K in
real water. For the lowest temperature, 225 K, we recor
water trajectories for more than 1 ns. And for the other t
temperatures we recorded for 0.1 ns. Further detailed t
modynamic parameters of the simulations are given
@11,10#.

The SPC/E potential has been explicitly parametrized
reproduce the experimental value of the self-diffusion co
stant at ambient temperature and at a density of 1 g/c3
6-4
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@17#. Densities in our simulation have been chosen on
basis of trial and error in preliminary runs. The correspon
ing pressures for the chosen final densities are reporte
Table I, and it has been well described in@11#.

III. DATA ANALYSIS

We start by discussing the validity of the decoupling a
proximation stated in Eq.~1!. When dealing with a correla
tion function that is a product of four terms, each one with
(Q,t) dependence, it is always possible to rewrite it as
sum of all the possible binary factorizations of its terms p
another irreducible term, which we shall call the connec
intermediate scattering functionFcon(Q,t). Fcon(Q,t) con-
tains the contribution coming from the four factors coupl
together in the correlation function and generally speakin
is different from zero. This procedure is applicable also
our correlation function. In fact,FH(Q,t) is the product of
four factors

FH~Q,t !5^e2 iQW •RW (0)e2 iQW •bW (0)eiQW •RW (t)eiQW •bW (t)&. ~24!

Equation~24! can be written as

FIG. 3. Spectral density function of the normalized velocity a
tocorrelation function of the hydrogen atomsZH(v), and its decom-
position into the weighted sum ofZR(v) andZc.m.(v), where the
latter quantity represents the spectral density function of the
malized center-of-mass velocity autocorrelation function. It is to
noted that the prominent peak at 65 meV, the so-called hinde
rotation peak, hardly shifts as a function of the temperature.
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FH~Q,t !2Fcon~Q,t !5^e2 iQW •RW (0)eiQW •RW (t)&

3^e2 iQW •bW (0)eiQW •bW (t)&

1^e2 iQW •RW (0)eiQW •bW (t)&

3^eiQW •RW (t)e2 iQW •bW (0)&. ~25!

The contributions, arising from all the terms composed
products ofRW andbW variables at arbitrary times, are zero o
average, due to the statistical independence between the
@18#. Therefore, the following relation holds@6#:

FH~Q,t !5FT~Q,t !FR~Q,t !1Fcon~Q,t !, ~26!

whereFcon(Q,t) describes the strength of the coupling b
tween translational and rotational motions as a function oQ
and t, as observed by QENS.

In the graphs of Fig. 1 we show in a semilogarithmic sc
the following five quantities:Fc.m.(Q,t) @also denote as
FT(Q,t)#, FH(Q,t), Fc.m.(Q,t)FR(Q,t), Fcon(Q,t) and
Fc.m.(Q,t)2FH(Q,t) . These functions are shown for a tem
perature 225 K at threeQ values. TheseQ values are also
quite close to the maximum and the minimumQ value
that can be probed by a typical QENS experiment.
see that FH(Q,t) has the same short-time features

-

r-
e
d

FIG. 4. The first three lowest-order rotational correlation fun
tions, C1(t), C2(t), andC3(t), as a function of the time for three
temperatures~225 K, 250 K, 284.5 K!. The open circles represen
simulatedC1(t); the solid line, the fittedC1(t) by Eq. ~18!; the
triangles, simulatedC2(t); the dash line, the computedC2(t) by
Eq. ~22!; the diamonds, simulatedC3(t); the dash-dot line, the
computedC3(t) by Eq. ~23!.
6-5
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FIG. 5. Rotational intermediate scatterin
functionFR(Q,t) vs time at threeQ values and at
T5250 K. From top to bottom,Q57.54 nm21,
15.1 nm21, and 22.6 nm21. The open circles
represent simulatedFR(Q,t) at eachQ value; the
solid lines, the results computed by the Sears
pansion Eq.~7! up to fourth-order term using
simulatedC1(t), C2(t), andC3(t).
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Fc.m.(Q,t)FR(Q,t) but the same long-time feature a
Fc.m.(Q,t). So thatFcon(Q,t) is very small at times smalle
than 1 ps but becomes non-negligible for long times. On
contraryFc.m.(Q,t)2FH(Q,t) is negligible at times longe
than 1 ps but large at short times. BothFcon(Q,t) and
Fc.m.(Q,t)2FH(Q,t) increase substantially with the in
creasing ofQ value, but never reach 0.09 in magnitude.

We next discuss the validity ofC1(t) as given by Eqs.
~15! and ~18!. Since the short-time behaviorC1

s(t) is essen-
tially determined by the spectral density function of the n
malized angular velocity autocorrelation functionZR(v)
@Eq. ~15!#, we show in Fig. 2 the MD data ofZR(v) and its
representation by an analytical function.

As shown in the preceding section, the simulatedZR(v)
can be fitted by the Gaussian form@2v6/
(15v3

6A2pv3
2)#exp@2v2/(2v3

2)#. It is obvious that a broad
band is peaked at;65 meV for the MD data. In the Gauss
ian representation by Eq.~16!, the peak position is atA6v3.
We note that this analytical function is a fair representat
of the spectral density function.

We can show in the following thatZR(v) is part of the
spectral density function of the hydrogen atom. Since
know

vW H~ t !5vW c.m.~ t !1vW R~ t ! ~27!

and

vW R~ t !5bvW ~ t !, ~28!

we get the relation

^vW H~0!•vW H~ t !&5^vW c.m.~0!•vW c.m.~ t !&1b2^vW ~0!•vW ~ t !&
~29!

in which we neglect the cross terms because they are
small compared to others at short times. Thus one can w

ZH~v!.aZc.m.~v!1bZR~v!, ~30!
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where

ZH~v!5
1

pE2`

`

eivt ^vW H~0!•vW H~ t !&

^vH
2&

dt, ~31!

Zc.m.~v!5
1

pE2`

`

eivt ^vW c.m.~0!•vW c.m.~ t !&

^vc.m.
2&

dt, ~32!

and

a1b51.

In Fig. 3 we plot MD data forZH(v) and its decomposition
into sum of Zc.m.(v) and ZR(v) for two temperatures,T
5225 K andT5250 K. It is obvious from the inspection o
the figure that the two low-frequency peaks of the hydrog
density of states are translational in character and the pro
nent high-frequency peak is rotational in character. In
literature, it is often called the hindered rotation peak, wh
is clearly associated with the oscillation of the hydrog
atom perpendicular to its hydrogen bond.

In Fig. 4 we show the MD data for the first three rot
tional correlation functionsC1(t), C2(t), andC3(t), for the
three simulated temperatures. In comparison, we also s
the results of our models forC1(t), C2(t), andC3(t) cal-
culated by Eqs.~18!, ~22!, and ~23!. We see that while the
model forC1(t) agrees well with the MD data, the model fo
C2(t) andC3(t) do not show equally good agreements w
the MD data, especially at long times. But, since at moder
Q values, contributions ofC2(t) andC3(t) to the rotational
ISF are not substantial, the calculatedFR(Q,t)’s still do not
deviate substantially from the MD data as we shall show
later figures. Our model for the rotational correlation fun
tion, therefore, is satisfactory for the practical purpose
fitting the QENS data.

With the information of the complete time dependence
C1(t), C2(t), andC3(t), we are now ready to compute th
rotational ISF using Sears expansion@Eq. ~7!#. Figure 5
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FIG. 6. Rotational intermediate scatterin
function FR(Q,t) vs time at threeQ values
(7.54 nm21, 15.1 nm21, and 22.6 nm21) and at
T5225 K. From top to bottom,Q57.54 nm21,
15.1 nm21, and 22.6 nm21. The open circles rep-
resent simulatedFR(Q,t) at eachQ value; the
solid lines, the results computed by the Sears
pansion using the theoretically generatedC1(t)
@Eq. ~18!#, C2(t) @Eq. ~22!#, andC3(t) @Eq. ~23!#.
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shows the rotational ISF calculated by MD at threeQ values
and their computation by Sears expansion using the M
generatedC1(t), C2(t), and C3(t). One sees good agree
ments between the two, for all the threeQ values, indicating
that up toQ52.26 Å21, the Sears expansion can be safe
truncated at the fourth term.

Finally in Fig. 6 we show the comparison of the MD da
for the rotational ISF atT5225 K with Sears expansio
using our models forC1(t), C2(t), andC3(t). One sees tha
the agreements of the two are quite satisfactory for the p
tical purpose of QENS data analysis.

IV. CONCLUSION

In this paper we have shown that the decoupling appro
mation for the ISFFH(Q,t) is an acceptable approximatio
for analyses of QENS data from water in bulk or in a co
fined geometry. More precisely, the decoupling approxim
tion is excellent up tot50.5 ps and progressively becom
poorer for times longer than 1 ps. However, the maxim
deviation does not exceed 0.09 even for largeQ. If we accept
this approximation, then we only need to compu
Fc.m.(Q,t) andFR(Q,t) separately. We already have a go
analytical model for the former quantity, called the relaxi
cage model@8#. In the relaxing cage model, an essential
put quantity to the theory is the translational density of sta
of the hydrogen atom, which consists of two peaks, one
meV and the other at 40 meV~see Fig. 3!. We propose in this
paper an analytical theory for the rotational ISF, in terms
d

y

04150
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c-
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-
-

-
s
7

f

the three lowest-order rotational correlation functions. W
show that, in general, our theory forC1(t), C2(t), and
C3(t) shows good representations of the corresponding M
generated correlation functions. When they are used in c
junction with the Sears expansion to computeFR(Q,t), it
shows good agreements with MD-generated ISF’s. One
sential ingredient in the theory forC1(t) is the spectral den-
sity function of the angular velocity autocorrelation functio
We show that this spectral density function is nothing but
hindered rotation peak in the density of states of the hyd
gen atom. The long-time behavior ofC1(t) is modeled by a
stretch exponential decay, which represents the relaxatio
the hydrogen-bonded nearest-neighbor cage. Thus our m
els, both translational and rotational ISF’s, make use of
basic property of water through the hydrogen atom density
states. Since the decoupling approximation is excellen
short times, our theory can, in principle, compute the d
namic structure factor up to an energy transfer of 120 meV
so, well into the inelastic scattering region of the spectru
We shall, in the future, publish results of the analysis
QENS spectra as well as inelastic spectra from water us
this theory.

ACKNOWLEDGMENTS

We are grateful to Francsco Sciortino for providing
with an SPC/E water simulation package and for instructio
on how to use the package. We thank Ciya Liao for gener
advice during the course of the simulation work.
ys.

.

@1# S.-H. Chen, inHydrogen-Bonded Liquids, Vol. 329 of NATO
Advanced Studies Institute Series, edited by John C. Dore an
Jose Teixeira~Kluwer Academic, Dordrecht, 1991!, pp. 289–
332.

@2# S.-H. Chen, P. Gallo, and M.-C. Bellissent Funel, Can. J. Ph
 s.

73, 703 ~1995!.
@3# M.-C. Bellissent-Funel, S.-H. Chen, and J.-M. Zanotti, Ph

Rev. E51, 4558~1995!.
@4# S. Takahara, M. Nakano, S. Kittaka, Y. Kuroda, T. Mori, H

Hamano, and T. Yamaguchi, J. Phys. Chem.103, 5814~1999!.
6-7



e

i

lia

ys

e

e

.

n

f
the

LI LIU, ANTONIO FARAONE, AND SOW-HSIN CHEN PHYSICAL REVIEW E65 041506
@5# P. A. Egelstaff,Thermal Neutron Scattering~Academic Press,
New York, 1971!.

@6# S.-H. Chen, P. Gallo, F. Sciortino, and P. Tartaglia, Phys. R
E 56, 4231~1997!.

@7# J. Teixeira, M.-C. Bellissent-Funel, S.-H. Chen, and A. J. D
anoux, Phys. Rev. A31, 1913~1985!.

@8# S.-H. Chen, C. Liao, F. Sciortino, P. Gallo, and P. Tartag
Phys. Rev. E59, 6708~1999!.

@9# J.-M. Zanotti, M.-C. Bellissent-Funel, and S.-H. Chen, Ph
Rev. E59, 3084~1999!.

@10# P. Gallo, F. Sciortino, P. Tartaglia, and S.-H. Chen, Phys. R
Lett. 76, 2730~1996!.

@11# F. Sciortino, P. Gallo, S.-H. Chen, and P. Targaglia, Phys. R
04150
v.

-

,

.

v.

v.

E 54, 6331~1996!.
@12# V. F. Sears, Can. J. Phys.45, 237 ~1967!.
@13# B. J. Berne, P. Pechukas, and G. D. Harp, J. Chem. Phys49,

3125 ~1968!.
@14# G. L. Squires,Introduction to the Theory of Thermal Neutro

Scattering~Cambridge University Press, Cambridge, 1978!.
@15# Allen S. Weinrub, Ph.D. thesis, Harvard University, 1971.
@16# O. Steinhauser, Mol. Phys.45, 335 ~1982!.
@17# H. J. C. Berendsenet al., J. Chem. Phys.81, 3684~1984!.
@18# The time dependence ofbW (t) is independent of the choice o

the reference system. In the reference system defines by

molecular center of massRW (t), all mixed correlation functions
vanish.
6-8


