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Model for the rotational contribution to quasielastic neutron scattering spectra
from supercooled water

Li Liu,* Antonio Faraoné;? and Sow-Hsin Chéi
!Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
°Department of Physics and INFM, University of Messina, 98166 Messina, Italy
(Received 21 December 2001; published 8 April 2002

A model is proposed for the first-, second-, and third-order rotational correlation functions that are required
for the computation of the rotational intermediate scattering function for the calculation of incoherent quasi-
elastic neutron scatterinQENS spectra from supercooled water. The model is tested against molecular-
dynamics data generated from an extended-simple-point-charge model of water and is found to be satisfactory.
The model can be used as a practical method for extracting rotational relaxation parameters from QENS
spectra measured at lar@efrom supercooled bulk water or interfacial water in porous materials.
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[. INTRODUCTION bars inherent in the data and in view of the fact that any other
choices of the approximation will lead to an intractable com-
Incoherent quasielastic neutron scatterif@ENS is a  plication. In this paper, we therefore use the decoupling ap-
well established and a powerful method for studying translaproximation as a starting point of our analysis.
tional and rotational dynamics of water molecules in bulk or  In a typical QENS experiment, one uses, say, 6 A inci-
in confinement{1-4]. Owing to the very large incoherent dent neutrons in a multidetector time-of-flight spectrometer,
scattering cross section of a hydrogen atom as compared twvering aQ range of 0.25 A1<Q<2.0 A1 In the
that of an oxygen atom, the scattered signal from water isangeQ<1 A !, one essentially measures just the transla-
dominated by the incoherent scattering processes from th#onal part,F(Q,t) alone, because it can be shown that the
two hydrogen atoms in the molecules. As a result, a quasirotational ISF is nearly unity in thi€ range[1]. For the
elastic scattering experiment from water is particularly suitetangeQ>1 A ~1, the rotational ISFFr(Q,t) begins to be-
for studying the single-particle dynamics of water moleculescome appreciably different from unity. Thus, in order to de-
which includes both molecular scale translational diffusiontect the rotational relaxation parameters, one has to take data
and rotational relaxation of the molecules in condensedt largeQ range. In the following section, we shall describe
states. a method of computing the rotational contribution to the
A QENS spectrum is proportional to the self-dynamic spectra measured in a QENS experiment. In the literature on
structure factor of the hydrogen atds (Q,w), which is the  single-particle dynamics of water, it has been a usual practice
time Fourier transform of the intermediate scattering functo calculateF;(Q,t) by a jump diffusion and~(Q,t) by
tion (ISF) Fy(Q,t). Here,Q denotes the magnitude of the rotational diffusion models, following the work by Teixeira,
scattering vector, anl =% w, the energy transfer in the scat- Bellissent-Funel, Chen, and Dianoux in 1984. However,
tering process. Hence it is a usual practice in the literature t& was shown in a recent paper by Chetal. [6] that these
discuss the theoretical model for interpreting a QENS experitwo simple models were poor approximations for low-
ment in terms of the ISF1]. We have previously discussed temperature water. In order to extract realistic relaxational
the validity of the so-called decoupling approximation for parameters for both the translational and rotational motions
the intermediate scattering function of the hydrogen atom inn supercooled water from a QENS experiment, more accu-
water[5-7] rate models for both the ISF's are necessary. We have pro-
posed some time ago a “relaxing cage model” for the trans-
Fr(QH)=F(Q,t)Fr(Q,1), (1) lational ISF[8] F(Q,t), which was shown to be accurate
for low-Q QENS data[9]. The present paper presents a

where Fr(Q,t), alternatively also called=cm(Q.t), and  model for the rotational ISF(Q,t).
Fr(Q,t) are, respectively, the translational ISF of the center

of mass and that of the rotation around the center of mass of
the molecule. In the extended-simple-point charge SPC/E
model of water, the decoupling approximation is shown to be In a QENS experiment of water, the measured double-
good at smalleQ (for Q<1 A ~1). But the deviation in- differential cross section is given by
creases to about 9% at an intermediate time for |ag@@D )
~2 A1 [6]. For QENS data analysis, in practice, this d°Cine 204 Ky

: der - 10de =N i SH(Qu), @
level of accuracy is acceptable, considering the typical error dOdw 41 k;

Il. THE MODEL

whereN is the number of water molecules in the samgple
* Author to whom correspondence should be addressed. Electronis the incoherent scattering cross section of a hydrogen atom,
address: sowhsin@mit.edu and k; and k; are, respectively, the wave numbers of the
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scattered and incident neutrons. The self-dynamic structure Fr(Q t)E<e—id.B(0)eidB(t)>
factor Sy(Q,w) of the hydrogen atom is given in terms of '

the ISF of the hydrogen by a Fourier transform > * "
=i§Qb+ 2 (2/+DiZQDCAD, (D

1 (~ .
SH(Q.w)=ﬂﬁmdte""tFH(Q.t)- )

where j (x) is the /th-order spherical Bessel function,
C/(t) is the /th order rotational correlation function, and

F4(Q,t) is then the primary quantity of theoretical interest P=0.98 A, which is approximately the length of the O-H
related to the experiment and can be calculated in a straighond in a water molecule. This expansion is very useful for a
forward way by an molecular-dynami¢sID) simulation of ~ typical Q range encountered in QENS experiments, for
a model water as welF,(Q, 1), in this paper, is given by the Which generallyQ<2.5 A™%. In this case, the expansion
product ofF(Q,t) andFx(Q,t). We shall describe first an N€eds to be carried out to at mest-3 terms. The advantage
accurate method for the calculation®f(Q,t), called relax- of using this expansion is that tli¢ dependence of the rota-

ing cage mode|8]. tional ISF is exactly given and one needs to make a model
In the relaxing cage model, the translational ISF is giverfor @ few lower-order rotational correlation functions, which
by are Q-independent quantities. In this paper, we shall make a

model explicitly for the functiorC,(t) and shall generate the
other higher-order rotational correlation functions approxi-
, (4)  mately using the maximum entropy method of Begteal.
[13].
The /th order rotational correlation function is defined as

t\A
Fr(Q,t)= Fv(Qyt)eXF{ - <_)

Tt

where the vibrational part of the ISF is given by

C()=(P(cosa(1))), )
2 2 17C —02t?12 : - -
Fu(Q.t)=exp — Qg ——(1-e “1") where 6(t) is the angle between the vecto(0) andb(t).
w1 We shall use a notation(t) = cosé(t). To calculate the sta-
tistical average, denoted by the pointed brackets, in(8qg.
+ _(1_e—w§t2/2) (5) we need a probability distribution functid®( «,t). We shall
w% consider the short-time behavior Gf(t) first. Imagine that

at a given instance, say=0, a typical hydrogen atom is

In this expressiony2w, and \2w, are frequencies of the hydrogen bonded to its nearest-neighbor oxygen atom. The
two characteristic peaks in the translational density of stateshort-time dynamics of the rotation of the veckrt) around

of the center of mass, ar@lis the relative strength of the two the center of mass must be well described by a harmonic
peaks. It should be noted that at long-time lifhinger than ~ motion of the angled(t), that is to say

1 p9, this vibrational ISF decays to a plateau given by a

Debye-Waller factoA(Q) A(t) + w?6(t)=0. 9)
1-Cc C Then it follows that the distribution function of(t) is
A(Q)zexp[ —szg —+— ] =exp(— $Q%a?). Gaussian and the following Bloch theorgd¥] holds:
g Wy
© (e =exd 5((a0)2)]. (10

Both MD and QENS experiments gave the value of theysing this theorem, one can then derive the following re-
mean-square vibrational amplituces=0.5 A, in the super-  gyjts:

cooled region(10,11]. It is clear from the inspection of Eq.
(4) that F\/(Q,t) factor represents contribution to the ISF, io i0

coming from the in-cage€hydrogen-bonded first neighbor Ci(t)=(cos€(t)>=<T> =exd — 3(0%(1))].
shel)) vibrational motions of the center of mass of the central

molecule, and the second stretch exponential factor repre-

sents the relaxation of the surrounding cage at long time.

11)

Now since the tip of the vectcﬁ(t) is tracing a surface of a
sphere of radiub centered around the center of mass, the arc
A. Theory for the rotational ISF, Fgr(Q,t) that it traces at short timdb(t) can be considered as a

We start from an exact expansion of the rotational ISF dug/ector in a tangential plane, therefore, one can approxi-
to Seard12]. Let b(t) denotes a vector from the center of Mately  write, 02=(1/l32)(Ab)2(+Ab§2=[f5dt’w§(t’)]2
mass to the hydrogen atom. This vector will acquire a time+[fgdt’wy(t’)]2, wherew(t)=(1/b)[db(t)/dt]=d6/dt is
dependence as the water molecule rotates around the centBe angular velocity of the hydrogen atom around the center
of mass of mass. Next, using the identity
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TABLE |. Simulated state points.

Tk) ps (g/en?) E(kJ/mo) P (MPa)  D(10°° cn¥/s)

284.5 0.984 —48.1 —73+11  (1.3+0.1)x10°
250.0 0.986 —50.0 —76+12 (5.2£0.5)x10 !
225.0 0.984 —52.6 —75+15 (4.4:0.4)x 10 2

<[ J;dt'wx<t'>r>=< [lav f;dt"wx(t'>wx<t")>

t
=2J’ (t— ) {w(0)wy(7))dT (12
0

ISF

ISF

we finally arrive at a resultl5]

t
Ci(t)= ex;{ — fo(t— T{wx(0) wy(7)+ wy(0) wy(7))d7

ISF

. (13

2 (t - -
—ex;{ - §J0(t— 7){w(0) w(7))dT

Define the normalized angular velocity autocorrelation func-

tion, Yr(t)=(w(0)- w(t))/{w?), and its spectral density 10°  1x10® 1x10" 1x10° 1x10"  1x10° 1x10°
function by t (ps)

1 (= FIG. 1. The intermediate scattering functioiSF) at threeQ
ZR(U’):_J e “ly(t)dt, (14)  values (7.54 nm', 15.1 nm!, and 22.6 nm!) and at T
TJ—e =225 K, as a function of the time in logarithmic scale. The open

o ) circles represenfy(Q,t); the dash-dot lineF. , (Q,t); the solid
Wh|Ch IS normallzed tol foﬁ) from O to oo, Then the Short' |ine' ch(Qlt)FR(Q,t)’ the dash |ine’ the connected part of the

time approximation of the first-order rotational correlation correlation functionF,(Q,t) and the thick solid line, the differ-
function can be written as ence,Fm(Q,t)—Fu(Q,t). It is to be noted that at lov®, the
decoupling approximation is good but at highthe approximation
R 4 N 1—-coq wt) progressively becomes poorer at long times but the deviation never
1(t)=exg — §<w >f deR(w)—z . (19 exceeds 0.09. However, it is also noticeable that at long tirhes (
0 w >1 ps) Fy nearly coincides with ,, .

From the inspection of the MD-generatéd(w) (see Fig.
2), we shall model the spectral density function by a simpleThis functionC3(t) describes the short-time behavior of the
Gaussian-like function first-order rotational correlation function. It starts from unity

att=0, exhibits an oscillation at time 0.05 ps and then de-
2o(0) 2wb exp{ w? cays to a flat plateau determined by éxp{ w?)/15w3) for
RIW=""% 52 52 times longer than 0.1 ps.
15wsv2mws 205 The relaxation at longer times can be described byran

where the peak position is located @ w3. The MD data relaxation model, which describes the relaxation of the cage
show that this so-called hindered rotation peak is locategUrrounding the central water molecule. Thus the expression
approximately at 70 meV, fairly independent of temperature!©r C1(t) in the entire time range is given as

In this model the short-time part of the first-order rotational
correlation function can be written as

: (16)

C1(t)=Ci(Oexd — (t/7r)°R]. (18

ci(t)=exp{ - E(&)J dsz(w)quwt)] _ ,
3 0 w? The whole picture resembles the relaxing cage model of
the translational dynamics. At short times, the orientation of
4 w?) A2 the central water molecule is fixed by the H bonds with its

=&Xp — > [3(1—e ") neighbors. It performs nearly harmonic oscillations around
3 the hydrogen-bond direction. This dynamics is described by

Ci(t). At longer times, the bonds break and the cage begins

.22 _ 20 ; > U .
+6wit?e” st 2— pitte st ’2]} . (17 to relax. So the particle can reorient itself, losing memory of
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2or ®,=29.9 THz T

T=250 K

FIG. 2. Spectral density function of the nor-
malized angular velocity autocorrelation function
Zgp(w) at T=250 K. The open circles represent
the results of the simulation and the solid line, the
resulting fit by the model Eq16).

Z (@) (10° meV™)
3
]

its initial orientation. Thus the first-order rotational correla- ensemble with 216 water molecules contained in a cubic box
tion function eventually decays to zero by a stretched expoef an edge 18.65 A. The effective potential used is the
nential relaxation. SPCI/E. This potential treats a single water molecule as a
To calculateC,(t) and Cg(t) from Cy(t), we need to rigid set of point masses with an OH distance of 0.1 nm and
know the functional form of the distribution function an HOH angle equa| to the tetrahedral angle 109.47°. The
P(u,t). We shall guess the distribution function based onpoint charges are placed on the atoms and their magnitudes
maximization of the informational entropy subjected to aareq,,=0.423& andgy= —2q,,= — 0.847@&. Only the oxy-
condition that we knovC4(t) [13]. According to the scheme, gen atoms in different molecules interact among themselves
the distribution function is given by via a Lennard-Jones potential, with the parameters
_ et B =0.31656 nm and=0.64857 kJ/Mol. The interaction be-
P(ut)=e ' (19 tween pairs of molecules is calculated explicitly when their
separation is less than a cutoff distamgeof 2.50. The con-
tribution due to Coulomb interactions beyondis calculated
1 e using the reaction-field method, as described by Steinhauser
et=— — (20)  [16]. Also, the contribution of Lennard-Jones interactions be-
27 gf—e F tween pairs separated by more thgnis included in the
evaluation of thermodynamic properties by assuming a uni-
_ wt B _ form density beyond . A heat bath17] has been used to
Ci)= | dQe” P u=—[UBM1)]+coth3(t). (21)  gow for heat exchange while changing temperature of the
system. After the system has been equilibrated, the heat bath
The higher-order correlation functions are determineds then removed. In our simulation, periodic boundary con-
from C4(t) using Egs(19)—(21). The connection o€4(t) to  ditions are used. The time step for the integration of the
the higher order rotational correlation functions is given inmolecular trajectories is 1 fs. Simulations at [civwere

BecausefdQP(u,t)=1,

terms of B(t). The results are started from equilibrated configurations at higierEquili-
bration was monitored via the time dependence of the poten-
Co(t)=1—[3/B(1)]C4(1), (22 tial energy. In all cases the equilibration tirhg was longer

than the time needed to enter the diffusive regime. We stud-

ied three temperatures, 284.5 K, 250.0 K, and 225.0 K. We

1+ W Ca(t). (23 note that for the ESPC model of water, the density maximum
occurs at about 250 K, which corresponds to 277 K in the
, , real water. For the lowest temperature, 225 K, we recorded
B. SPQE simulation water trajectories for more than 1 ns. And for the other two

We use MD simulation data of water to test out our modeltemperatures we recorded for 0.1 ns. Further detailed ther-
for the rotational correlation functions. This is a more suit-modynamic parameters of the simulations are given in

able method for testing the analytical theory than using red11,10.

neutron scattering data, since MD data do not have the com- The SPC/E potential has been explicitly parametrized to
plication of the resolution effect present in real experimentakeproduce the experimental value of the self-diffusion con-
data. We carried out an extensive simulation, in an NVEstant at ambient temperature and at a density of 1 $/cm

Calt)=— —+
()= B0
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FIG. 3. Spectral density function of the normalized velocity au-  FIG. 4. The first three lowest-order rotational correlation func-
tocorrelation function of the hydrogen atois(w), and its decom-  tions, C4(t), C,(t), andCs(t), as a function of the time for three
position into the weighted sum @x(w) andZ. , (w), where the  temperature$225 K, 250 K, 284.5 K The open circles represent
latter quantity represents the spectral density function of the norsimulatedC,(t); the solid line, the fittedC,(t) by Eq. (18); the
malized center-of-mass velocity autocorrelation function. It is to betriangles, simulatedC,(t); the dash line, the computed,(t) by
noted that the prominent peak at 65 meV, the so-called hinderegq. (22); the diamonds, simulate@s(t); the dash-dot line, the
rotation peak, hardly shifts as a function of the temperature. computedC,(t) by Eq.(23).

[17]. Densities in our simulation have been chosen on the Fu(Q,t)—Fon(Q,t) =(e Q- R(OQ-RM)
basis of trial and error in preliminary runs. The correspond-
ing pressures for the chosen final densities are reported in
Table I, and it has been well described[iri].

X<e—ic§.6(0)ei<§-ﬁ(t)>
+ (e 1Q"RO)IQ-b(V)
lll. DATA ANALYSIS X(elQR(Dg=IQB(0)y (25

We start by discussing the validity of the decoupling ap- I -
proximation stated in Eq(1). When dealing with a correla- The contnbynonsL arising from all the terms composed of
tion function that is a product of four terms, each one with aProducts ofR andb variables at arbitrary times, are zero on
(Q,t) dependence, it is always possible to rewrite it as thedverage, due to the statistical independence between the two
sum of all the possible binary factorizations of its terms plus 18]- Therefore, the following relation hold$]:
another irreducible term, which we shall call the connected
intermediate scattering functiofiz,,(Q,t). Feon(Q.t) con- Fu(Q.1)=F(Q,Fr(Q.1)+Fcon(Q.1), (26)
tains the contribution coming from the four factors COUpledwherchon(Q,t) describes the strength of the coupling be-
together in the correlation function and generally speaking ityeen translational and rotational motions as a functio of
is different from zero. This procedure is applicable also t0andt, as observed by QENS.
our correlation function. In fact-y(Q,t) is the product of In the graphs of Fig. 1 we show in a semilogarithmic scale
four factors the following five quantities:F. ., (Q,t) [also denote as

FT(Q!U]! FH(Q!t)! FC.m.(Qrt)FR(Qlt)1 Fcon(Qvt) and
L [, Fem(Q,t)—F4(Q,t) . These functions are shown for a tem-
Fu(Q,t)=(e QRO 1Q-b0)giQ-RMGQ-PM) = (24)  perature 225 K at thre® values. Thes&) values are also
quite close to the maximum and the minimu@ value
that can be probed by a typical QENS experiment. We
Equation(24) can be written as see thatFy(Q,t) has the same short-time features as
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bR | LA | AL AL | AL L |
1.0 Q=075 A"
B
08 |- Qo226 A" Q=151 A" 4
FIG. 5. Rotational intermediate scattering
06 L i functionFz(Q,t) vs time at thre€ values and at
= T=250 K. From top to bottomQ=7.54 nm !,
N 15.1 nm!, and 22.6 nm'. The open circles
represent simulateBz(Q,t) at eachQ value; the
04 ] solid lines, the results computed by the Sears ex-
pansion Eq.(7) up to fourth-order term using
simulatedC,(t), Cy(t), andCjx(t).
02| .
T=250 K
0.0 21 a1 aaasl 22 1 s el a1l i3 a1l AT
10° 1x10% 1x10" 1x10° 1x10' 1x10°
t(ps)

Fem(Q)FRr(Q,t) but the same long-time feature as where
Fem(Q,1). So thatF.,(Q,t) is very small at times smaller R R
than 1 ps but becomes non-negligible for long times. On the B ot (OH(0) vy(1)

contraryF , (Q,t) —Fn(Q,t) is negligible at times longer Zy(w)= ;ﬁm Tdt- (31
than 1 ps but large at short times. Bokh,,(Q,t) and H
Fem(Q,t)—F4(Q,t) increase substantially with the in-

* <Uc.m.(o)'vc.m.(t)>d

creasing ofQ value, but never reach 0.09 in magnitude. Zem(0)= if glot t, (32
We next discuss the validity of,(t) as given by Egs. TJ = (vem?)

(15) and (18). Since the short-time behavi@;(t) is essen-

tially determined by the spectral density function of the nor-and

malized angular velocity autocorrelation functidtk(w) a+pB=1.

[Eq. (15)], we show in Fig. 2 the MD data dfg(w) and its

representation by an analytical function. In Fig. 3 we plot MD data foZ(w) and its decomposition
As shown in the preceding section, the simulafeqw) into sum of Z; ,, (w) and Zg(w) for two temperaturesT

can be fited by the Gaussian form[2w®/ =225 KandT=250 K. Itis obvious from the inspection of

(15w§\/2mo32)]exp[—wZ/(Zw%)]. It is obvious that a broad- the figure that the two low-frequency peaks of the hydrogen
band is peaked at 65 meV for the MD data. In the Gauss- density of states are translational in character and the promi-
ian representation by E¢16), the peak position is ap’éw?)_ nent high-frequency peak is rotational in character. In the
We note that this analytical function is a fair representatiorliterature, it is often called the hindered rotation peak, which
of the spectral density function. is clearly associated with the oscillation of the hydrogen
We can show in the following thafg(w) is part of the —atom perpendicular to its hydrogen bond.
spectral density function of the hydrogen atom. Since we In Fig. 4 we show the MD data for the first three rota-
know tional correlation function€4(t), C,(t), andCs(t), for the
three simulated temperatures. In comparison, we also show
Uh(0)=vem (D) +oR(t) (27)  the results of our models fd4(t), C(t), andCs(t) cal-
culated by Eqgs(18), (22), and(23). We see that while the
and model forC,(t) agrees well with the MD data, the model for
- - C,(t) andC5(t) do not show equally good agreements with
vr(t)=bw(t), (28)  the MD data, especially at long times. But, since at moderate
Q values, contributions of,(t) andC5(t) to the rotational
ISF are not substantial, the calculategd(Q,t)’s still do not
deviate substantially from the MD data as we shall show in
later figures. Our model for the rotational correlation func-
tion, therefore, is satisfactory for the practical purpose of
in which we neglect the cross terms because they are vefitting the QENS data.

small compared to others at short times. Thus one can write With the information of the complete time dependence of
C4(t), Cy(t), andC4(t), we are now ready to compute the

Zy(w)=aZ.n(0)+ BZg(w), (30 rotational ISF using Sears expansipiq. (7)]. Figure 5

we get the relation

(Wh(0)-vp())=(0em(0) - vem (1)) +bXw(0)- w(t))
29
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1.0

0.9
0.8
0.7 i FIG. 6. Rotational intermediate scattering
1 function Fg(Q,t) vs time at threeQ values
0.6 (7.54 nm!, 15.1 nm'%, and 22.6 nm?) and at

= : T=225 K. From top to bottomQ=7.54 nm %,

= 0.5
TN

15.1 nm'!, and 22.6 nm*. The open circles rep-
resent simulatedg(Q,t) at eachQ value; the
solid lines, the results computed by the Sears ex-
pansion using the theoretically genera@g(t)
[Ed.(18)], C,(t) [Eq.(22)], andCs(t) [Eq. (23)].

0.4
0.3

0.2

0.1

0.0- s s sl a2 aaanl a2 s sl a2l MR | PETRETTY
10° 1x107 1x10™ 1x10° 1x10' 1x10° 1x10°

t(ps)

shows the rotational ISF calculated by MD at thf@ealues the three lowest-order rotational correlation functions. We
and their computation by Sears expansion using the MDshow that, in general, our theory f&€,(t), C,(t), and
generatedC4(t), C,(t), andC;(t). One sees good agree- C;(t) shows good representations of the corresponding MD-
ments between the two, for all the thr@evalues, indicating generated correlation functions. When they are used in con-
that up toQ=2.26 A1, the Sears expansion can be safelyjunction with the Sears expansion to comp&g(Q,t), it
truncated at the fourth term. shows good agreements with MD-generated ISF's. One es-
Finally in Fig. 6 we show the comparison of the MD data sential ingredient in the theory f&;(t) is the spectral den-

for the rotational ISF aff=225 K with Sears expansion sity function of the angular velocity autocorrelation function.
using our models fo€4(t), C,(t), andC;(t). One sees that We show that this spectral density function is nothing but the
the agreements of the two are quite satisfactory for the pradiindered rotation peak in the density of states of the hydro-

tical purpose of QENS data analysis. gen atom. The long-time behavior 6f(t) is modeled by a
stretch exponential decay, which represents the relaxation of
IV. CONCLUSION the hydrogen-bonded nearest-neighbor cage. Thus our mod-

els, both translational and rotational ISF's, make use of the

In this paper we have shown that the decoupling approXihasic property of water through the hydrogen atom density of

mation for the ISFF(Q,t) is an acceptable approximation states. Since the decoupling approximation is excellent at
for analyses of QENS data from water in bulk or in a Con-short times, our theory can, in principle, compute the dy-
fined geometry. More precisely, the decoupling approximanamic structure factor up to an energy transfer of 120 meV or
tion is excellent up td=0.5 ps and progressively becomes so, well into the inelastic scattering region of the spectrum.
poorer for times longer than 1 ps. However, the maximumwe shall, in the future, publish results of the analysis of

deviation does not exceed 0.09 even for la@éf we accept  QENS spectra as well as inelastic spectra from water using
this approximation, then we only need to computethis theory.

Fem (Q,t) andFR(Q,t) separately. We already have a good
analytical model for the former quantity, called the relaxing
cage model[8]. In the relaxing cage model, an essential in-
put quantity to the theory is the translational density of states We are grateful to Francsco Sciortino for providing us
of the hydrogen atom, which consists of two peaks, one at With an SPC/E water simulation package and for instructions
meV and the other at 40 me¢ee Fig. 3. We propose in this on how to use the package. We thank Ciya Liao for generous
paper an analytical theory for the rotational ISF, in terms ofadvice during the course of the simulation work.
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