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Normal stresses at the gelation transition
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A simple Rouse-type model, generalized to incorporate the effects of chemical cross-links, is used to obtain
a theoretical prediction for the critical behavior of the normal-stress coefficigatand W, in polymeric
liquids when approaching the gelation transition from the sol side. While the exact calculation $hows
=0, a typical result for these types of models, an additional scaling ansatz is used to demonstrfite that
diverges with a critical exponent=k+z. Here,k denotes the critical exponent of the shear viscosityzthe
exponent governing the divergence of the time scale in the Kohlrausch decay of the shear-stress relaxation
function. For cross-links distributed according to mean-field percolation, this scaling relation iel@sin
accordance with an exact expression for the first normal-stress coefficient based on a replica calculation.
Alternatively, using three-dimensional percolation for the cross-link ensemble we find the Aatde9.
Results on time-dependent normal-stress response are also presented.
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. INTRODUCTION sol side, scatter considerably and are found in the range
~0.6-1.7, see e.g. Ref$3—8|. The origin of this wide
Chemical gelation is the process of randomly introducingspread is controversially discussed and not yet understood.
cross-links between the constitutents div@acrg molecular  From a theoretical point of view there exists a bunch of
fluid. One way to investigate the effects of the cross-links orcompeting and partially contradicting scaling relations that
the fluid dynamics consists in measuring the stresses that th&pressk in terms of percolation exponents. Each of them
cross-linked fluid builds up when subjected to a simple sheafelies on heuristic arguments whose validity is mostly un-
flow. For an incompressible, isotropic fluid one can experi-clear. We refer the reader [@,10] for a summary and refer-
mentally accesgl] three independent components of theences. Here we only mention the scaling relation2v
stress tensowo the shear stress,, and the first and second — g that was first proposed by de Gen#&$] and rederived
normal-stress differences,,— o, ando,,—o,,. For static by many others. Erroneously, it is generally referred to as the
shear flows these give rise to three independent materiaRouse expression” for the viscosity exponent. Herejs
functions: the shear viscosity and the first and second the exponent governing the divergence of the correlation
normal-stress coefficient¥’; and ¥',. Generally speaking, |ength andg is associated with the gel fraction. For three-
both Newtonian and non-Newtonian fluids possess a nonvatimensional bond percolation one would get the value (2
nishing shear viscosity. But, whereas for a Newtonian fluid— g)|,_;~1.35. Recently, the viscosity wasxactly deter-
both W, and ¥, are always zero, it is precisely the non- mined within the Rouse model for gelation in Reff8,10].
vanishing of¥, that explains a number of characteristic ef- The analysis disproves the above result and shows that
fects known for example polymeric liquidg], see also Sec.
2.3 in Ref.[1]. On the other hand, even for non-Newtonian k=¢—p (1)
fluids W, is typically found to be very small as compared to
V¥,, and the “Weissenberg hypothesis¥,=0, is a good is the true scaling relation valid for Rouse dynamics. Here,
approximation in these casgg. It also seems thaV', is not  denotes the first crossover exponent of a corresponding ran-
as well-investigated experimentally ds;. dom resistor network12,13. When inserting high-precision
In the context of gelation one is particularly interested indata[14,15 for ¢ and B8 obtained from three-dimensional
the dependence of these stresses on the cross-link concentb@nd percolation, the true Rouse value of the viscosity expo-
tion c. Universal critical behavior is expected to occur at thenent turns out to be §—8)|q-3~0.71 and agrees with
gelation transition, that is, at the critical concentrat@my, simulations[16] on a similar model. The discrepancy to de
where the fluid/sol) undergoes a phase change into an amorGennes’ result above can be attributed to the neglect of the
phous solid statégel). As far as shear stress is concerned,multifractal nature of percolation clusters in Refl1].
there exist numerous experimental investigations on thémazingly, the true Rouse valuigy—5~0.71 differs only
static shear viscosity and on the time-dependent shear-streditle from that of another proposat=s, by de Gennefl7],
relaxation function. The experimentally measured values fowhere he alluded to an analogy to the conductivity exponent
the critical exponenk, which governs the algebraic diver- s|4_3~0.73 of an electrical network consisting of a random
gence of the shear viscosity when approactiggfrom the  mixture of superconductors and normal conductors. This
close agreement, however, is coincidental, as can be seen
from corresponding results in two dimensions.
*Deceased. In contrast, we are not aware of any experimental or the-
"Electronic address: mueller@theorie.physik.uni-goettingen.de oretical studies concerning the dependence on the cross-link
*Electronic address: annette@theorie.physik.uni-goettingen.de concentrationc of normal stresses near the gelation transi-
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tion. This seems all the more surprising since there exist '\ y
many experiment$18—-21] on both the shear-rate depen- v
dence of normal stresses in entangledtemporarily cross-
linked polymeric liquids in order to explain shear-thinning or
shear-thickening phenomena and on the time dependence of —_—
the normal-stress response to particular shapes of shear
strain. Theoretical explanations of these experimental find-
ings mainly rely on the analysis of transient network models, B
see e.g. Refd22-25.

Even though Rouse-type models incorporate no other
physical interactions between monomers apart from connec- >
tivity, they serve as a standard theoretical reference in terms FIG. 1. Homogeneous linear shear fl¢8).
of which experimental data are frequently interpreted. There-
fore, it is important to test their predictions as accurately as-q has peen considered previously. The second equality in
possible. In this paper, we use the same generalized Rousgy (3) introduces the randorNX N connectivity matrix,
type model as in Ref$9,10,24 to predict the critical behav- \hich encodes all properties of a given cross-link realization.

ior of the normal-stress coefficientg; and W, when ap-  pqjiowing Refs[27—29 we employ a simple relaxational
proaching the gelation transition from the sol side. W'th'”dynamics

this model it will turn out thatV, vanishes for alt and that
V¥, diverges with a critical exponent oU

/=k+z ) LR () —vedRi(1),0)]=— pree

ext

Y

X

(H+&M 4

when approaching,; from the sol side. Herez denotes the  without inertial term to describe the motion of the monomers

exponent governing the divergence of the time scale in thén the externally applied velocity field

Kohlrausch decay of the shear-stress relaxation function. For

cross-links distributed according to mean-field percolation Ul 1, 1) := 8y ()Y (5)

(also called “classical theory); this scaling relation yields

/=3, in accordance with an exact expressionfoy based  with a time-dependent shear ratét), see also Fig. 1. Here,

on a replica calculation. Alternativelyand more realisti- Greek indices label Cartesian coordinateg, or z. A friction

cally), using three-dimensional percolation for the cross-linkforce with friction constant/ applies if the velocity of a

ensemble we find the valué~4.9. Thus, the model predicts monomer deviates from the externally applied flow field. The

a much more pronounced divergenceldof as compared to cross-links exert a force- 9U/dR; on the monomers, in ad-

7 so that¥'; may serve as a sensitive indicator for the gela-dition to a random, fluctuating thermal-noise force obeying

tion transition. We also derive results on the time-dependenGaussian statistics with zero mean and covariance

normal-stress response. In particular, the Lodge—Meissne{rg{’(t)gf(t’)>=2§5a,35ij5(t—t’)_ Note that we have chosen

rule, see, e.g., Sec. 3.4.e in Rgf], is shown to hold for units in which the inverse temperature is equal to one. Given

normal-stress relaxation after a sudden shearing displacéhe shear flow(5), the equation of motiori4) is linear and

ment. can be solved exactly for each realization of the thermal
We hope that these theoretical investigations motivateoise[10].

corresponding experimental work in order to develop more To complete the description of the dynamic model, we

insight on normal stresses in gelling polymeric liquids. have to specify the statistical ensemble that determines the
realizations of the cross-links. We will distinguish two cases:
Il. MODEL (i) Mean-field percolatioitalso called “classical theory’

each pair of monomers is chosen independently with equal

We follow a semimicroscopic approach to gelation based,ropapility M/N?2, irrespectively of the monomer positions in
on a Rouse-type model fof monomers. The monomers are gpace As a function of the cross-link concentration

treated as point particles with positiog(t), i=1,....N,  ._m/N, the system undergoes a percolation transition at a
in three-dimensional space. The motion of the monomers iSritical concentratiort; = &. For c<c.,; there is no macro-

constrained byM randomly chosen, harmonic cross-links scopic cluster, and almost all clusters are trk&g531].

that c_onngct the pairsie(,ié), e=1,... M, of monomers (i) Three-dimensional bond percolatipts,37.

and give rise to the potential energy For either case we assume the random coupling constants

v \e to be distributed independently of the cross-link configu-

3 ration, as well as independently of each other with the same
[ — .— s 2::— ‘e P B ’ o . . . -
T 0g2 ezl )\e(R'e Rle) 252 IEJ FiRi-Rj. () (smooth probability distribution p(\). Moreover, suffi-
ciently high inverse moments

Here, the fixed lengtla>0 models the overall inverse cou-

pling strength, whereas the individual coupling constants p :=f dA\""p()) (6)

are chosen at random. Quite often, only the special agse "o

N
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of N shall exist. clusters. The associated eigenvectors are constant within

The combined average over cross-link configurations aneéach cluster and zero outsid&0,33. Within the simple
random coupling constants will be denoted by an overbarRouse model the zero eigenvalues do not contribute to shear
Using this notation, we implicitly assume that the macro-relaxation because there is no force acting between different
scopic limitN—«, M—ow, M/N—c is carried out, too. clusters. The only contribution to stress relaxation is due to

Before turning to the analysis of the model, we would like deformations of the clusters.
to comment on the fact that it describes the random cross- For a time-independent shear ratft) = « it is customary
linking of single monomers rather than of preformed poly-to define a first and second normal-stress coefficient by
mers. However, this does not mean that the applicability of
the model is limited to the description of random network Tyx— Oyy Tyy= 0z
built up by polycondensation from small structural units. In- Vy=——, Woi=———
deed, we expect from universality that details at small length Pok Pok
scales are irrelevant for the true critical behavior at the gelapne deduces immediately from E@) that
tion transition so that these results will also hold for random
network built from arbitrary macromolecules, as is the case v,=0, (11
in vulcanization, for example. This general universality argu-
ment was confirmed10] by explicit computations of the a characteristic result for Rouse-type models. In contrast, the
critical behavior of the shear viscosity with the mean-fieldfirst normal-stress coefficient ; is nonzero
distribution of cross-links.

1- E0>

FZ

(10

21

N

1

IIl. STRESS TENSOR AND NORMAL-STRESS \Pl_z
COEFFICIENTS

¢t

3

(12

nd independent of the shear rate
For a macroscopic systeff; is expected to be a self-
eraging quantity. Therefore, we will calculate the disorder

Due to the externally applied shear flow the cross-links®
exert shear stress on the polymer system, whose tensor com-
ponents are given in terms of a force-position correlatiorfV

[27,28 average of Eq(12) over all cross-link realizations and all
o cross-link strengths. To do so it is convenient to introduce the
N averaged density
. Po U
Tap(t)= lim = > ~(ORA(Y) ). 7
tg—— i=1 z?R, l
D(y): =T (1-Eo)s(y—1)] (13)

Here,po denotes the density of monomers. In Ef.one has

to insert the explicitly known[10] solutionsRi(t) of the ¢ nonzero eigenvalues dF. Physically,D describes the dis-
Rouse equatioit) at timet with initial dataR;(to) at ime  yip ion of relaxation rates in the network in units of
to. In order to ensure that the thermal-noise average aIIowgl(gaz)’ as is evident from the representation

for the description of a possible stationary state of the system

at finite timest, the time evolution is chosen to start in the . - 6ty

infinite pastto— —, thereby losing all transient effects that X(t)Zpof dyexp{ - —] D(y) (14
stem from the initial data. This yieldgl0] for the stress 0 {a?

tensor . .
of the disorder average of the stress-relaxation funat®n

Various properties of the eigenvalue dendityare discussed

in detail in Ref.[26]. The averagel; now appears as the
second inverse moment @f,

o(t)=x(0)1+ J;Cdt')((t—t’)fc(t’)

t
Zf dsk(s) 1 O 1
t/

\I}__
X 1 0 ol (8) 175

0 0 0

(a®\? (= D(y)
- d : (15
3 f [

0

while the disorder-averaged static shear viscosﬁl
where 1 denotes the %3 unit matrix and the stress- :=oy,/(po«) is determined9,10] by the first inverse mo-

relaxation function is given by ment
2
00 6t — 1 fwd— {a f D(y)
=— - - =— txy(t)y=—«—| dy——. 16
x(t) (@ Eo)exp( gazl“) . 9) 7= 50 ) x()=—¢ .97 (16)
The symbol Tr in Eq.(9) stands for the trace oved XN At this point one can already see thgt1 serves as a

matrices, ande, denotes the projector on the space of zerosensitive indicator for the gelation transition. Indeed, the
eigenvalues of', which correspond to translations of whole Jensen inequalitj34] implies
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= 2’ - Y14y
1= =2(n)% 17
f dyD(y)
0 31
and hence
2 L
=2k (19
with / denoting the critical exponent OFp(ccm— c)” 171

andk denoting that ofp~ (Ceii—c) X

In the two following sections we will determine the pre-
cise Rouse value of” for the two different types of cross- 0
link ensembles described above. 0 0.125 025 0375 05

c

IV. MEAN-FIELD PERCOLATION FIG. 2. First normal-stress coefficie(it9) in units of ((a%/3)?

For mean-field random graplg the second inverse mo- &S @ function ot for P,=P,=1.
ment of the eigenvalue densify was calculated in Eq.38)

of Ref.[26] with the help of a replica approach. This gives V. THREE-DIMENSIONAL BOND PERCOLATION

rise to the exact result For this ensemble of cross-links the second inverse mo-
ment (15) of the eigenvalue densitl) ,—note that in this
— 1((a?\? 8c®—6c2—5¢c+1 5 4c?—3c—1 section we emphasize the dependence: erc;;—C in the
1551 =) ¢ — 1~ P2 notation of various quantities—is not known analytically. In
2\ 3 —92¢)3 —2¢)2 A
30c(1~2c) 24c(1-2c) order to proceed we assume tiiat follows a scaling law
5P,—4P3 _
—2 lni-20)|, (19) D.(y)~y* M v*(e)]y] (23
240c?

close to the critical point and for small enoughlt is deter-

which is valid for all 0<c<cy;=%. The inverse moments Mined by a typical relaxation ratg*(z)~&*, which van-
P, were defined in Eq(6). From Eq.(19) we read off the ishes when approaching the critical point, and a scaling func-

critical divergence tion f(x) that tends to a nonzero constant for-0 and
decays faster than any inverse polynomialXes . In par-
ca?\2 p? ticular, this gives the power-law behaviér, _o(y)~y* "1
1~ = —18—3, £:=Cgit—C| 0 (20) asy_mptotically fory—0 at criticality, in agreement with ex-
3 ) 240 perimentg 36,37. The measured exponent values, however,

scatter considerably\~0.4—0.8, and seem to depend on the
at the gelation transition, and hence the critical exponent mass of the cross-linked molecul[&8]. Note that on general
grounds the exponert has to be positive, because other-

/=3. (21)  wiseD,_q(y) would not be integrable at=0, in contradic-
tion to the definition(13). The scaling lawm23) yields, via
For c—0 one expands the Laplace transfornil4), the scaling law
— (ca?|2P, Xe(D~&* gt/ (e)] (24)
=37 got O(c?). (22)

for the long-time behavior of the stress-relaxation function.

- Here, the scaling function obeyg(x)~x"* for x—0 and

Figure 2 displays¥; in units of ((a2/3)? as a function ot the typical relaxation timer* (&) :={a?/[6y* (g)]~& 2 di-

for the special cas@,=P,=1. verges when approaching the critical point. Precisely at the
It is the merit of the mean-field percolation ensemble thagritical point one finds an algebraic long-time decay

it allows for a variety of exact analytical calculations. How- ;gzo(t)~t_A. Dynamical scaling related to z and to the

ever, since the probability for a cross-link to occur does nofexponent of the shear viscosity

depend on the monomers’ positions in space, this ensemble is

believed to provide a fairly unrealistic description for three- A=(z—k)/z, (25

dimensional gels. For this reason we consider an alternative

cross-link ensemble in the following section, which has beersee e.g. Refd.26,3§. For x—« the scaling functiorg(x)

successfully usef35] to explain static properties of polymer has to decay like a stretched exponential in order to accom-

systems. modate the experimentally fouri@9] Kohlrausch decay
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Y (D) ~exo —[t/7* ()¢ 26 notes the Heaviside unit step function. For each realization
Xe=olt) A=t ()] (26) of the cross-links Eq(8) leads to
of the stress-relaxation function in the sol phase away from .
criticality, wherea is a noncritical and possibly nonuniversal N1(1) = 0(t) = 0y (1) = 2K§f dt't’ y(t') (29
exponent. We will return to Eq26) in the following section. 0

—/
From Egs.(19), (23), and(25) we deduce¥;~&"" for iy accordance with the principle of frame invariari@].

&0 with an exponent given by the scaling relation Equations(9) and(12) then imply that for all cross-link con-

oA centrations belowc,,; the first normal-stress difference in-
/=k+z=K— (27 creases towards its steady-state value like a stretched expo-

1-A nential

Since A>0, we havez>k and the scaling relatiof27) is _ _ o _

compatible with the inequality18). Equation(27) was ob- Nl(t)=PoKS‘I’1_2KSf dt’t’ x(t") (30)

tained previously in Ref.40] from a model density of relax- !

ation times with a sharp upper cutoff. with the same exponent as the shear-relaxation function

According to Eq.(1) the viscosity exponenk for the  (26). In contrast, forc=c; we deduce from Eq(29) the
Rouse-type model under conS|d§rat|on is g.lvemﬁb.yﬂ and algebraic growthN,(t)~t2~2 for long times, a result al-
takes the valu&~0.71, when using three-dimensional bond ready known on a more phenomenological b&38j.
percolation to generate the cross-link ensemble. Concemning gecond. we consider a sudden shearing displacement

A, we are only aware of Ref26], where this exponent is , y_E (1), where 5 denotes the Dirac-delta function.
determined for the Rouse model at hand without any furtheg,, Eq.(8) we infer

assumptions. It was done by numerical computations of the

eigenvalue density13) and yieldsA~0.83. But, as com- o d t

pared to the values fop and 8, we suspect the numerical Nl(t):f dt’ X(t’)—,[f (dsk(s)
accuracy of the result foA to be rather poor due to finite- 0 dt’| it

size effects. Yet, using this value, E@7) predicts

/~4.9 (28

2
=E%x(1),

(31)

which, after averaging over disorder, amounts to the Kohl-
rausch decay26) in the long-time limit for systems below

, = the critical point, respectively, to the algebraic detay for

for the expon_ent of the flrst_ normal-stress coefficiént If, c=c.;. Upon comparing31) to the corresponding result
instead, one ignored thaultifractal structure of percolation oy () =Ex(t) for shear stress, the Lodge-Meissner rule
clusters |£1 employlng. the wrong scaling relatioks-2v _ Ny(t)/oy(t)=E, see e.g., Sec. 3.4.e in RéL], holds for

— B andt=dw, wheret is the critical exponent of the elastic ¢5ch cross-link realization in this Rouse-type model.
modulus in the gel phase, one would arrjéd] at the value Third, we consider the double-step strain flom(t)
A~0.66. This would yield the considerably lower restlt  _ g 5¢)—Es(t—t,) with t>t,>0. In this case one can

~2.8. Thus, it is of importance to improve the accuracy Ofyerify in an analogous manner the corresponding relation
the exact numerical computation & within the Rouse N3 (t)/ oey(t) = — E, which is known[21] to be valid for

model. _ _ _ class | simple fluids.
Finally, we would like to point out that for mean-field
percolation the scaling relatiof27) is consistent with the VIl. OUTLOOK
exact result presented in the preceding section. For, in this ) ] ) . o
case the model yields=0 [9,10], z=3, andA =1 [26], and We hope to stimulate detailed experimental investigations
thus (27) gives/ =3 in accordance with Eq21). on the cross-link dependence of normal stresses in polymeric
liquids close to the gelation transition. If such experimental
V1. TIME-DEPENDENT NORMAL-STRESS RESPONSE results were at hand, one could judge the effects of the sim-

plifications that underlie the above Rouse-type model, such
First, let us focus on the normal-stress response to thas the neglect of the excluded-volume interaction and of the
inception of a steady shear flom(t) = x0®(t). Here® de-  hydrodynamic interaction.
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