PHYSICAL REVIEW E, VOLUME 65, 041503
Idealized glass transitions for a system of dumbbell molecules
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The mode-coupling theory for ideal glass transitions in simple systems is generalized to a theory for the
glassy dynamics of molecular liquids using the density fluctuations of the sites of the molecule’s constituent
atoms as the basic structure variables. The theory is applied to calculate the liquid-glass phase diagram and the
form factors for the arrested structure of a system of symmetric dumbbells of fused hard spheres. The static
structure factors, which enter the equations of motion as input, are calculated as function of the packing
fraction ¢ and the molecule’s elongatiof within the reference-interaction-site-model and Percus-Yevick
theories. The critical packing fractiapy, for the glass transition is obtained as nonmonotone functighvath
a maximum neat = 0.43. A transition line is calculated separating a sngadlass phase with ergodic dipole
motion from a largez-glass phase where also the reorientational motion is arrested. The Debye-Waller factors
at the transition are found to be somewhat larger for sufficiently elongated systems than those for the simple
hard-sphere system, but the wave-number dependence of the glass-form factors is quite similar. The dipole
reorientations fot=0.6 are arrested as strongly as density fluctuations with wave vectors at the position of the
first sharp diffraction peak.
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[. INTRODUCTION There is a problem in the tests of the universal MCT
formulas: the range of validity of these leading-order

The mode-coupling theoryMCT) for idealized liquid- asymptotic results is not universal. For example, the time
glass transitions has been proposed originally as a micranterval for the density-fluctuation decay according to von
scopic approximation theory for the dynamics of simple lig- Schweidler's power law depends nontrivially on the wave
uids [1]. The MCT equations formulate the idea thatvector of the fluctuations. Fitting data by a power law for
correlation functions for density fluctuations have to betimes outside the regime of validity of the asymptotic law
evaluated self-consistently with the correlation functions formay be possible but can yield misleading conclusidt&.
force fluctuations. The derived equations require the statiThe range of validity of the leading-order result can be de-
structure factor as input, which is anticipated to be a smootiermined by calculating the leading corrections or by com-
function of the wave vector and of control parameters, suclparing with the numerical solutions of the full equations of
as the packing fractiog. The equations exhibit a bifurcation motion[3,4]. But, for such discussions one has to analyze the
singularity for certain values of the control parameters, saycomplete equations of motion, i.e., one needs an understand-
for o= ¢, . For o< ¢, the solutions describe ergodic liquid ing of the microscopic details of the system. Thus, there is
dynamics, while forp= ¢, nonergodic dynamics is obtained the necessity to extend the MCT so that models can be ana-
describing an amorphous solid. The arrested glass structuhgzed which describe the experimental situation closely. This
for ¢= ¢, is characterized by glass-form factors, also re-is the motivation for the present paper where MCT shall be
ferred to as nonergodicity parameters. They generalize thextended to molecular liquids and where this extension shall
concept of the Edwards-Anderson parameter from the theorlpe exemplified for a hard-dumbbell system.
of spin glasse$2]; they can be determined in scattering ex- Extensions of MCT to molecular systems have been stud-
periments and molecular-dynamics-simulation studies. Théd already, generalizing the concept of a density-fluctuation
MCT equations can be solved by asymptotic expansion ussorrelator to the one of infinite matrices of correlation func-
ing, e.g.,|¢— ¢, as a small parametdB,4]. The leading tions formed with tensor-density fluctuatioft4—22. The
order results establish universal results for the glassy dynamiesults calculated for the glass-form factors for a model of
ics [5]. Anticipating that these universal formulas are valid water[16,18 and for a liquid of linear moleculd4.7] could
also for mixtures and for molecular glass-forming systemspe used to explain simulation data quantitatively. Promising
extensive tests of the MCT with data from experiments andesults for anomalous oscillation spectra for a dipolar-hard-
simulations have been carried out during the past 10 yearsphere system have been calculdt2@. For the model of a
[6,7]. Due to the invention of improved spectrometers anddilute solute of linear molecules in a solvent of spherical
progress in simulation techniques, the work of testing MCTparticles, the MCT equations could be fully solvigl,22.
is still an active field. Let us mention as particularly impres-The solutions were used to demonstrate the applicability of
sive recent examples the studies with the optical Kerr effecthe universal formulas also for reorientational motion and to
[8,9], the depolarized-light-scattering work for toluelied], explain the characteristic difference between éghpeaks for
the quantitative tests of the form factors for silicel], and  dielectric-loss and depolarized-light-scattering spectra, as
the scaling-law analysis of simulation data for a polymerthey have been observed in some experiments for van der
model[12]. The indicated tests suggest that MCT deals propWaals liquids. The cited work shows that MCT studies may
erly with some essential features of glass-forming systems.contribute to the understanding of glassy dynamics, which is
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beyond the implications of universality. N .

The MCT equations based on the tensor-density descrip- pgzz explig-rl), a=A or B. (D)
tion of molecular systems have a different mathematical =1
structure than the ones studied so far. It is unclear wheth o . a, b .
the bifurcation dynamics of these equations exhibits th((j:he site-site static structure fathg$b_:,<p,d*pd>/ N provide
same universal laws as derived within the MCT for atomicthe simplest information on the e_qunlbrlum structure of the
systems. It is not obvious that codes can be developed for th%'Stem' Heer ) denotes canonical averaging. l%ecause of
numerical solutions of these equations within the regime ofSOtropy,Sq” depends only on thbe wave numbgs|q|. The
glassy dynamics. Therefore, it was suggested to base tifdte-site static structure factc.‘ﬂ‘g'1 consists of the intramo-
MCT for molecular systems on the site representaf28+- lecular and intermolecular parts. The former is denoted as
25). This leads to equations withx n matrices whereris W3 ; for a rigid dumbbell molecule it is given byg = 5*°
the number of atoms producing the force centers in the mol+ (1~ 6*)jo(qL). Here and in the following (x) denotes
ecules. For the simple case of a dilute solution of lineafn® Spherical Bessel function of index The static structure
molecules, it was shown that this approach yields rega#s ~ factors S;° shall be combined to a’22 matrix S, and
in semiquantitative agreement with the much more involvedsimilar matrix notation will be used for other site-site corre-
tensor-density theory22]. In the present paper, this work lation funct|ons.1 The site-site Orrgsteln—Ze_rnlkg equation
shall be continued with the intention to demonstrate a comi27,28, Sy=[wg *—pcy] *, relatesS]” to the site-site direct
plete set of results for the glassy dynamics of a system ogorrelation fUﬂCtiomgb-
linear molecules. The structural dynamics of the system shall be described

The paper is organized as follows. The basic general MCPY the interaction-site-density correlators
equations are obtained in the Appendix by modification and b
generalization of the previous wof23,24. They are spe- ng(t)=<pg(t)*pa(0)>/N. (2)
cialized in Sec. Il to a formulation of the equations of motion
for the coherent and incoherent density correlation functionFhese are real even functions of time obeyiﬁqf‘b(t)
for the symmetric-hard-dumbbell system. The static structure= Fga(t), The short-time expansion can be written as
factors, which determine the mode-coupling coefficients, are
evaluated within the reference-interaction-site-model 1., ., 4
(RISM) theory. To analyze their features in Sec. IlI, they are Fo(t) =Sq=507Jt"+ O(t%). ©)
decomposed in their various angular momentum contribu-
tions which are evaluated within the Percus-Yevick theory
Section IV explains the phase diagram for the system and the ] N = N
glass-form factors. The conclusiofSec. \j summarize the ~dinal current fluctuation is given by = ;v fexp(q-r;) with
results while the discussion of the correlation functions is lefy? denoting the velocity of atona in the ith molecule.

he continuity equation read%‘: iq- fg where the longitu-

for a following paper{26]. Therefore, one getsgb=<(ﬁ-fg)*(ﬁ-fg)>/Nq2, whose ex-
plicit expressions for a rigid dumbbell molecule are given by
[29]

Il. AMODE-COUPLING THEORY FOR A SYSTEM

OF SYMMETRIC DUMBBELLS Jab . , 2 ) b (1
=vIWg tUR| 522 +(1—
A. The model q —VTWq TUR| 37 |[ 6+ ( )
A system ofN rigid dumbbell molecules distributed with x{jo(qL) +ja(qL)}]. 4)

density p is considered. The molecule shall be described
within the interaction-site formalisi27,28, where the con- The dynamics of the tagged molecule shall also be consid-
stituent atoms shall be calledandB. Letr?, a=A, or B, ered. It is described by the self part of the interaction-site-

denote the position vectors of the atoms in ittemolecule, ~ density correlators
so thatL=|r*—r?| denotes the distance between the two F2 ()= (2 (1% p2 (0) )
interaction sites. Vectog,= (r'—rP)/L abbreviates the axis s a.s a.s

of theith molecule. Denoting the mass of at@asm,, the Herep? —ex Q*-r»a) with 2 denoting the position vector of
total mass M=my+mg and the moment of inertid Pa,s Pla-Ts s 9 P

=mamsL¥M determine the thermal velocitiesvr atoma in the tagged molecule. The short-time expansion of

=kgT/M andvg= VkgT/l for the molecule’s translation the correlatof, «(t) is given by Eq.(3) with S, replaced by

. ab . .
and rotation, respectively. Hefe denotes the temperature. Wq - .The sa;rk’)ne fupctlorﬂq deter.mlnes the short-time dy-
Let us introduce also the center-of-mass positioh namics ofFg ((t) since the velocities of different molecules
i

at the same time are statistically independent.

=(mar{'+mgr?)/M and the coordinates, of the atoms For later convenience, it shall be shown here how the
along the molecule’s axis: za=L(mg/M), Zg=  correlation functions in the interaction-site representation
—L(ma/M). The basic structural variables are the twocan be expressed in terms of the ones in the tensor-density
interaction-site-density fluctuations for wave vectqrs description. Following the convention in Ref21] and[22],
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coherent tensor-density fluctuatiopg‘(ﬁ) for the angular- ab_ ) . .
momentum index” and the helicity indexn shall be defined Wq Z (2/+1)j 4z (a%). (13

by decomposing theth molecule’s position variable in plane

waves expifl-r) for the center of massc and in spherical In the present paper, a system of symmetric dumbbell
oMy . . - molecules, consisting of two fused hard spheres of diameters
harmonicsY/(e;) for the orientation vectoe; ,

da=dg=d and massem,=mg=M/2, shall be considered.
N The elongation parametér=L/d quantifies the bond length.
pT(ﬁ)=i/ /—4772 exp(iﬁ-ﬂc)Yr/"(éi). (6) AI_I equ!llbnum properties of suc_h a hard-dumbb_ell system
i=1 with a fixed elongation are specified by the packing fraction

The structural dynamics is described by the matrix of corr- T 4 31,
elators ¢=pVo, Vo=gd 1+50-508). (14)
(DT/,(q,t)=<pT(ﬁo,t)*p;",(ﬁ0,0)>/N; o= (0,00). HereV, is the volume of a dumbbell molecule. Throughout

(7) the rest of this paper, the diameter of the constituent atom is
chosen as the unit of length=1.
The general correlator@?(d,t)*pr(ﬁ,O)) can be written For a symmetric system, there are only two independent

as linear combination of the functiomT/,(q,t); they van- density correlators, smdé{; () =Fq . (t). Itis conv_ement to
) N o o perform an orthogonal transformation to fluctuations of total
ish form#m’ if q=qq [21]. In particular, the equilibrium

.. N . z
. ! i . . number density - and “charge” densityp>-,
structure is described by the static correlation functions tqu 9 YPq

X A B
- -~ pi=(pxp2)V2, x=N or Z. (153
S’ () ={pl(do)* p)" (o) )/N. 8 @ rara
) iy . . _The transformation matrif=P~! reads
Since the position vectors of the interaction sites can be writ-

ten asr=rC+z,e;, the Rayleigh expansion of the exponen- 1/1 1
tial in Eq. (1) yields the formula P= E 1 -1/ (15b)
pgozz V27 +1j (9za) p%(qo). (9) It diagonalizes the matrice§;, wg, andJ, as
(P§PY=089sy, Si=S"+S;°, (150

Substitution of this expression into E(R) leads to an ex-
pression for the d_ensity correlators i_n the sit_e r_epresentation (PWP)Y= 5xywé, WE: 1+jo(qd), (150
in terms of those in the tensor-density description

1
XY — sXY[,, 23X . 2 52 Tl B
ng(t):/E/ \/(2/*1)(2/'+l)j/(qza)j/r(qzb) (P‘]qp) 0 UTWq+GUR§ [1 {JO(qg)""Jz(qD}] ,
% (158

0
XP, . (q,1). (100 wherex,y=N or Z. Also the matrix of density correlators is

diagonalized. Introducing the density correlat@hﬁ(t) nor-
In particular, the site-site static structure factSGé’ are re-  malized togX(t=0)=1, one gets
lated to the tensorial ones via d

Ba()=(p(D*pz(0)INS;, [PF()P]Y=5Ygy(1)Sy,
S2P= 2 (2/+1)(2/"+1)j (qz2)},(92,)S),.(a). (16)

70 - _ .
(1) and similar equations hold for the normalized tagged-
molecule correlatorsasgls(t),
Similarly, one obtains formulas relating tagged-molecule
correllators in.th.e site representation and those in the tensor- QS;YS(t):(pgvs(t)*pg’S(O»/Wé,
density description

[PFq,s(t)P]Xy: 5Xy¢gys(t)Wé. 17

There is an additional property due to the symmetry of the
o molecule. Since the intermolecular partsSjf* ands;,® are
X®g,,.(q1), (12 the same, one getS§=w§. A similar reasoning for the
charge-density correlators leads to

Fg,bs(t>=/2 V2/+1)(2/"+1)j (92 (A2
v

WhereCDQ//,(q,t) denotes the self part @9/,(q,t). Since i .
@2,//,(q,0)= 5,,1, one gets $g(t) =g o(1). (18
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For a system of symmetric dumbbell molecules, there is only 0.70 — T T T
one independent coherent density correlator, api{}f(t).

B. MCT equations for the density correlators 0.65

The MCT equations of motion for the density correlators
consist of an exact Zwanzig-Mori equation and the approxi- ¢ 060

mate expression for the relaxation kernel in terms of the
mode-coupling functional, whose derivation is described in

the Appendix. For a system of symmetric dumbbells, these 0.5
equations can be simplified considerahB4]. Multiplying
Egs. (A3)—(A7) from left and right withP given by Eq. 0.50 , , , ,

(15b) and insertindl= PP between every pair of matrices, all 0.0 02 04 0.6 08 L0
equations are transformed to diagonal ones. Thus, there are 4

two sets of equations, one fafiy(t) and another fokp}(t).

As explained in connection with E¢18), the charge density FIG. 1. Phasg diagrar_n of_ the symmetric-hard-dumbbell system
correlator¢q(t) is identical to its self part¢ (1), which where the packing fraction is denoted lgy and the elongation
shall be treated separately below. Thus, the only correlatdiarameter by The solid curve marks the tyrigdiquid-glass tran-
describing the coherent density fluctuations is the total den2io" IN€, ¢c=¢c(£). The dashed curve denotes the typeran-

sition line between phases Il and Iby= ¢A({). The typeA tran-
sity correlator¢q(t), whose Zwanzig-Mori equation reads sition line terminates at the critical elongatig= 0.345 marked by

t an arrow. The horizontal arrow marks the transition point of the
at2¢>§(t)+(Qg‘)2¢g‘(t)+(ﬂg‘)2f dt'my(t—t")dy ¢y (t') hard-sphere systefiSS.
0

=0. (199  functions cgb are evaluated within the RISM integral-

equation theon}27,28,30. Second, the wave numbers are
The characteristic frequen@q , which specmes the |n|t|al discretized to 100 equally spaced valueg

decay of the correlator bys/(t)=1—3(Qqt)?+0(t%), i =0.2,0.6,1.0. ..,39.8. The details of the transformation of
given by the mode-coupling functional to a polynomial in the dis-
cretized variables can be found in RE3].
aNy2= z: 2rq 4+ i The discussion of Eq(21) can follow that considered
()" =07 vil1tio(ad)] previously for simple systen{8]. For a given{, one finds a

1 critical packlng fractionp.= ¢.({) so thath 0 for ¢
+—v,§§2[1—j0(q§)—j2(q§)]} / Sg‘_ (19b) <@ andf >0 for p=¢.. Figure 1 exh|b|ts the control-

6 parameter plane for our system; the full line represents the
¢ versus{ curve. The regime |, i.e., the states with, ¢)
below the full line, are the liquid states. For states on and
above the line, the density-fluctuation dynamics is noner-

1 L godic. It is the purpose of this paper to explain the origin of
]-"g[f]=§f deN(q;k,p)fkfp, (209 this liquid-glass-transition curve and to quantify the arrested
glass structure.

Comments on some technical details of our calculations
NeNaN(> reN 2 N1j-212 are in order. We solved a set of equations in the RISM theory
167T3SqSkSp{q-[kck+pcp]/q ¥ (200 to obtain S"’l using the nonequally spaced wave-number
grids mtroduced in Ref[31]. The resultlngSab has been
with p q K andc; —2CAA One gets from Eq(A11) for subsequently transformed to the one on the above mentioned

The relaxation kernel readag‘(t)z]-'g[ﬂ\‘(t)], where Egs.
(A5)—(A7) lead to

VN(q;k,p) =

the nonergodicity parametefty‘ ¢q(t—>sc) equispaced grids using a cubic spline interpolaf@®l. Our
results for the HDS are based on IS?‘ so obtained. Occa-
fo =7l N1+ 7RI} (21)  sionally, we will refer to results for the hard-sphere system

(HSS), i.e., the HDS withy =0. For consistency, calculations

Notice that Egs(19a), (20), and(21) are formally identical for the HSS have also been done using a static structure
to the corresponding equations for simple syst¢Blsthe  factor, which is based on the numerical method just men-
difference is in the definition of the correlators and the directioned. However, the numerically obtained structure factor
correlation functions. In particular, one can show that thefor the HSS is, due to the interpolation procedure, slightly
preceding Eqs(19)—(21) reduce to the ones for simple sys- different from that of the analytic Percus-Yevick the?g].
tems in both the—0 and/—c limits. Since the transition is sensitively dependent on the structure-

The MCT model for the hard-dumbbell systefHDS)  factor peak, this leads to slightly different results for the HSS
will be defined by two further technical assumptions. First,from the previous ones reported in RE3], where the ana-
the site-site structure factoqi‘b and the direct correlation lytic Percus-Yevick theory is used. Typically, the differences
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are less than 1%. Therefore, the results for the HSS based on Equations(22)—(24) for the tagged symmetric dumbbell
the two different static inputs can be regarded as essentialiynmersed in a liquid of symmetric dumbbells are also for-
the same. The nonstandard wave-number grids from Refmally identical to those treated in Reff24,25 for the
[31] and the subsequent interpolation procedure have beesymmetric-dumbbell molecule dissolved in a simple liquid.
adopted because of the following reason. The present modehis is because the coherent density fluctuations of the sur-
shall be extended to one where the constituent atoms carmpundings in the former case is characterized only by the
opposite electrical charges. Thereby it will be possible toeorrelator¢o’\|‘(t), i.e., a scalar correlator, and this feature is
study the interplay of steric-hindrance effects and Coulombshared with the latter case. In analogy to the findings in the
interaction effects. The method developed in R&t]iswell  previous studies, one finds a line of transition poigts
suited for treating such a system in which both the short- ané-= ¢ ,(¢), providedZ< {,=0.345. This line, which is shown
long-ranged interactions are simultaneously present. To hawgashed in Fig. 1, separates glass states in regime Il and re-
the results for the HDS as reference model, it seems adequagéme 11I. In regime Il, the reorientational motion is ergodic,
to carry out the calculation of the static input function strictly j.e., the states deal with the amorphous analog of a plastic
within the same frame. crystal. In regime Il also the reorientational motion is non-
ergodic sincef§’3>0. Crossing the dashed line by, e.g., in-

C. MCT equations for the tagged-molecule correlators creasing o, fés change continuouslytypeA transition.

One gets the Zwanzig-Mori equation for the normalizedCrossing the heavy lindy changes discontinuousigype-B
tagged-molecule correlatorgb’,; {((x=N or Z) for a transition. The interest of the present studies concerns the

symmetric-hard-dumbbell system by transforming E48)  transition from the liquid to a glass with all density correla-

as explained above for deriving E(.99), tors arrested, as obtained f¢r . by increasinge. As a
representative situation with strong steric hindrance for re-
Ty (D) + (04 9%y o(1) orientational motion, molecules witi=1.0 shall be ana-

lyzed in detail. For{ approaching;. from above, the steric

w2 (S x . < hindrance for reorientations weakens, and molecules gith
+(Qq) Odt Mg s(t=t")dp ¢ 5(1')=0, x=N or Z. =0.4 shall be used to demonstrate this case.
(223
o » o Ill. STRUCTURE OF THE RELAXED SYSTEM
The characteristic frequendygvs specifies the initial decay
of the correlator byp} (t)=1— %(Q’é HZ+0(tY), and it is The static structure factor for the total density fluctuations
given by ' ' Sg is the basic input of our theory. It quantifies the simplest

information on the averaged particle distribution, anticipat-
o 1o, ing the system to be relaxed in a canonical equilibrium state.
vrt gURET1+o(as) The latter is assumed to be an amorphous one. It may be
metastable, e.g., with respect to crystallization. The variation
. . of SQ with changes of the packing fractian and the mol-
+120a0)1/[1=jo(ad) ]y (22D gcule’s elongation? provides the key for explaining the
phase diagram in Fig. 1. Extending earlier w$83] to the
The relaxation kernel can be written asmé’s(t) high-density regimesy shall be analyzed in this section.
=Fol #5(1),¢"(t)], where Eqs(A9) and (A10) lead to

(Q)c(],s)zz q2

§ . oo A. Static structure factors and angular correlations
p Vﬁf dﬁ( ﬂ) (CN)ZwﬁsN?ﬁ T, Figure 2 exhibits results fcﬂsg calculated from the RISM
167° g q P PSP theory [27,28,3Q for the two representative elongatiogs
(23)  =0.4 and 1.0 at and near the critical packing fractiQiiZ).
.. For smallg, the structure factor is small. Because of the
with p=q—k. From the long time limits of EqSA8) and  dense packing, the compressibilitxqSy for long-
(A9), one gets for the nonergodicity parametef$;  wavelength fluctuations is strongly suppressed. These fluc-

FyLf5 8=

= ¢§’S(t—>oc), tuations are irrelevant for the glassy arrest in our system. The
phase diagram does not change more than 1% if fluctuations
frs=Fad fa fN{1+ 7y L5, 6V (24)  with, say,q<3 are cut off. Fluctuations with, sag= 10 are

relevant, sincéy—l is of order unity. But in this regime,
The mathematical structure of the two sets of E88—(24)  the structure factor is not very sensitive with respect to
for x=N andZ is the same as that studied previously for thechanges of density. Therefore, the liquid-glass transition is
tagged-particle-density correlator in a simple liq@#l. In driven mainly by the changes (S’; for q=~7, i.e., by the
particular, the set of equations fore=N reduce to that for the  fluctuations with wave vectors near the position of the first
tagged-particle-density correlator in both the-0 and/  sharp diffraction peak. This feature is analogous to that
—oo |imits. In the same limits, the correlato;bcz‘,s(t) be-  found in the hard-sphere syste]. However, the results
comes identically zero. shown in Fig. 2 are for molecular systems in which angular
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O L L 1
0 5 10
q

FIG. 2. Static structure factcﬁig‘ for the total density fluctua-

tions as function of wave numberfor the elongationg = 0.4 (up-
per panel and 1.0(lower panel. The results refer to packing frac-

tions o= pc(1+€) with e=0 (solid lines, e=—10"5° (dashed q
lines), and e= +10~°? (dotted line$. Here ¢ denotes the critical
packing fraction; it is given by.=0.675 and 0.565 fof=0.4 and FIG. 3. Spherical-harmonic expansion coefficie®fs (q) of

1.0, respectively. The first sharp diffraction peaksgﬂ for £=0.4 the structure factor for the elongatiofis- 0.4 (upper panegland 1.0
occurs atq=7.0 in the discretized wave-number grids, and its (lower pane) at the critical packing fractiow= ¢ for the angular
heights are 4.54, 5.47, and 6.61 with increasinghe correspond- momentum indiceg’=0, 2, and 4.
ing peak for{=1.0 occurs atj="7.4, and its heights are 3.33, 3.75,
and 4.24 with increasing. Here and in the following figures the results at the critical packing fraction for the diagonal coef-
diameter of the spheres is used as unit of lendthl. ficientsS2 ,(q) are shown in Fig. 3. For the small elongation
{=0.4, the density fluctuations faj~7 are dominated by
correlations should play an important role as well. This secthose of the center-of-mass degrees of freedémp, while
tion is devoted to discuss how angular correlations manifesgontributions from the reorientational correlations are rather
themselves i) . small. On the other hand, for the large elongat{enl.0, the
To proceed, let us decompose tﬁé in terms of the static structure forw? is primarily caused by the reorien-
spherical-harmonic expansmn coefficier83,,(q) defined tational functionS),(q), while the center-of-mass component
in Eq. (8): the coefficientS),(q) describes the static center- S34(q) only shows a weak structure. A strong peakjat0 is
of-mass density fluctuations, and the higher coefficientslso seen in the coefficier3,(q) for {=1.0, which is a
probe the angular correlations. This decomposition can bprecursor of a nematic instability. The increased importance
derived from Eq.(11) by noticing the def|n|t|onSN SAA of the higher coefficients for larger elongations is demon-
+s§ , strated even more clearly by compariﬁ&(q) for the two
elongations. These features of the coefficieﬁis(q) for
N Z 7 : small and large elongations are in accord with those found in
S = 2 2J(2/+1)(2/" +1)j Aa¢2) Ref. [36], albgeit for £?Iuids of hard ellipsoids in which the

7,/ even . L
aspect ratio plays a role similar to {1).

Xj,(a¢l2)S),.(a). (25) Figure 4 exhibits the decomposition 8} at the critical
packing fraction based on E(5). The solid lines denotsg'
Here the angular momentum indices and /" take only  calculated from the RISM theory, and the dashed and dotted
even numbers due to the top-down symmetry of the dumblines denote the terms in the decomposition using the coef-
bell molecule. It is clear that the coefficierﬁ%/,(q) contain  ficients S//(q) from the PY theory. Cross terms ¢ /')
more information thaiB) since the latter can be expressed inare omitted to avoid overcrowding of the figures. The func-
terms of the former, but not vice versa. tion SN from the RISM theory and that based on E85)

The expansion coefficien //,(q) have been calculated with the coeff|C|ent§//,(q) from the PY theory are found
within the Percus-Yevick(PY) theory [34,35 up to the to be in good agreement with each other, and therefore it
angular-momentum-index cutoff ;= 6. For the symmetric makes sense to discuss the decompositionsgbijsing the
dumbbell, this results in 30 independent coefficients to beesults from two different integral-equation theories. As men-
dealt with in solving the PY equation. The representativetioned in connection with Fig. 2, the glass transition of our
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FIG. 4. The solid lines denote the static structure faSQSrfor i
the total density fluctuations for the elongation 0.4 (upper pangl
and = 1.0 (lower panel at the critical packing fractiop = ¢.({). 1 F+
The dashed and dotted lines are the results of decomposition based |
on Eq.(25), where the numbers in parenthese§A) indicate the
component in the decompositideee text 0
system is driven by the first peak EB{;' centered ag~7. 0 5 10
Figure 4 shows that, for the small elongation, the first peak is
primarily determined by the center-of-mass density fluctua- q

tions, whilst the contributions from higher-order angular cor-
relations are responsible only for the peaks located in th(talo
higherqg region. On the other hand, when the elongation is
large, the contribution from the center-of-mass degrees of
freedom gets suppressed, but the higher-order angular corre-
lations become much more important for determining the N(Z) _ : 2
first peak: the first peak is primarily accounted for by the Wa /:eveEn (odd)2(2/+1)l/(q§/2) ' (28
(2,2) contribution. Thus, the static density fluctuations deter-
mining the cage for the glass transition are of different ori-Wg‘(Z) starts forq=0 at the value 20) and then it oscillates
gins for small and large elongations, respectively. for q>5 around the value 1. The first oscillation minima of
A comment shall be added concerning the strong peak io\,gl occur atq=11.4 and 27.4 fo=0.4, and ag=4.5 and
S2q) atq~0 shown in Fig. 3 fory="1.0. It is clear from 11 g for /=1.0. Forw, the first minima are located at
Eq. (25) that the functionS),(q) contributes toSy with a =19 4 and 35.0 forz=0.4, and atq=7.8 and 14.2 forZ
prefactorj,(q¢/2)?, which is proportional tay* for smallg. =10,
As a result, this strong peak 8,(q) hardly contributes to Let us consider the change of the structure factor as a
Sy in the small wave-number regime; it only gives rise to afunction of the elongationt for fixed packing fractione.
small peak centered at~3.5 as shown in Fig. 4. Also, itis Figure 5 exhibits the result fop=0.56. It is seen that for
seen that the (0,0) component has a peak at the spmesmall elongationgthe upper panglthe first peak height de-
range. However, it is found that the small pealkgat3.5is  creases with increasing the elongation, whilst the opposite
canceled out by the (0,2) component, which is not shown irtrend is seen for large elongatiofihe lower panegl This
the figure. All this together results in the small and Batfor feature can be explained in terms of the spherical-harmonic
g<5. We conclude that the strong peak3§y(q) atq~0is  expansion coefficients) ,(q) as follows. As discussed in
irrelevant for the glass formation for the elongatios 1.0 ~ connection with Fig. 4, the center-of-mass density fluctua-
within our theory. tions (/'=0) are primarily responsible for determining the
The intramolecular correlation functionsy (x=N,Z)  first peak insg for small elongations, whereas the angular
from Eq. (15d) enter the mode-coupling vertices implicitly correlations of the index’=2 are more relevant for large
via the site-site Ornstein-Zernike equation frand explic- ~ elongations. The strength of the center-of-mass correlation
itly via Eq. (23). Using Eq.(13), they can be decomposed in becomes weaker as the elongation is increased, and this ex-
analogy to Eq(25), plains the decrease of the first peak heighsﬂﬁor small

FIG. 5. Static structure factorsg‘ for the total density fluctua-
ns at the fixed packing fractiop= 0.56 for various elongations
s indicated in the figure.
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FIG. 7. The ¢,,averaged molecular pair correlation function
FIG. 6. Center-of-mass component of the molecular pair corred(12,61,6) as defined in Eq(28) for the *“T-shaped” (6,=0,
lation function,gd(r 1), as function of the center-to-center distance #2=7/2) and the “CP-type” ¢, = 6,=w/2) orientationgsee text
r,, at the fixed packing fractiop=0.56 for various elongations ~ at the packing fractiorp=0.56 for the elongationg=0.4 (upper
pane) and 1.0(lower panel.
elongations. On the other hand, when the elongation is large,
the /=2 component is relevant, and this angular correlatiorthe peak becomes broader and somewhat irregular, with a
becomes stronger with increasing elongation. This explainghoulder developing at separations just beyopg=1. For
the increase of the first peak heightSj with increasing; ~ the elongation/=1.0, the shoulder turns into a broad pre-
for large elongations. Thus, the nonmonotosidependence Peak centered at;;~1.1.
of the first peak height ir8Y for the fixed packing fraction It becomes more difficult to interpret thgl? , (ry,) for
shown in Fig. 5 is due to the different origin of that peak for nonzero values of’; and/’,. Therefore it seems adequate to
small and large elongations. follow Streett and Tildesley33] and consider cuts through
the space of the four variables determining the functan
B. Preferred orientations for nearest neighbors Eq. (27). Typical cuts for discussing the relative orientations

A digression might be adequate for a better understanding(f)rt]w(O alllieoar ;21 ilic;gle;zfﬁy(e;t; E}S)ht?]%egcr%rslig?—

of the equilibrium structure of our molecular systems, eSPe ientation 0.= 0,= b1,= w2). (iil) the “parallel” orienta-
cially, of angular correlations for nearest neighbors. Such, - (6= 6 e & 130) and(iv) the “end-to-end” ori
1— V2~ » Y127 ’ T -

angular correlations can best be investigated through the mo-_, . P _ I h . )
lecular pair correlation functiog(rq,,6;,6,,b15). Herer entation (0.1._02_0’ $1=anyva ue). T ese orientations
denotes the center-to-center se é\zrétilo’n zé\né the thretlazan lead to efficient packing at close approach in the sense that

o Sep ! . . 9 ﬁ%y all lead to the close contact of the constituent atoms,
0., 0,, and 1= 1 — ¢, specify the relative orientations of

the two linear molecules in the so-calledrame. The pair and t_hus cont_nbute to_t_he first peak&}ﬁ'. Most Of. _the or-
correlation function can be expanded|35] e_ntgnons at high densities can be broadly classified as .bemg
similar to one of these four. Because of the computational
reason to be described in the next paragraph, the crossed and
9(r19,01,0;, 1) =47 > 97, /,(r12 Y7 (61,61) parallel orientations shall be combined to define the CP-type
/1./2.m orientation @,= 0,= w/2) by averaging over the angig,,,
XYTZ( 02,¢2)% . 27

1 27

The g} (r12) are the spherical-harmonic expansion coeffi- 9(r12,61,62)= 5= 0
cients, and can be calculated within the PY thd@4,35. In
the present work, the coefficients are calculated up to cutofiotice that the corresponding;-averaged pair correlation
/ cu=6. functions for the T-shaped(=0, 6,= m/2) and end-to-end

The center-to-center radial-distribution functiqy&)(rlz) (6,=0,=0) orientations remain the same as the original
for representative elongations at the large packing fractiomnes since the anglé,, is irrelevant in defining these two
¢=0.56 are shown in Fig. 6, along with the radial distribu- orientations. Figure 7 exhibits representative results.
tion function for hard sphereg €0.0) at the same packing Before embarking on the conclusions to be drawn from
fraction. As the elongation increases, the first peak positioifrigs. 6 and 7, let us make comments on the cutoff problem in
in ggo(rlz) increases, the height of the peak decreases, anitie summation in Eq(27). To check the convergence, we

dep19(r12,61,02,012). (28
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also performed the same calculations with,=4. It is 6 L R S B
found that for distances,;,> 1+, the series converges rap- L g, and g
idly, i.e., the difference between the results with,=4 and 4 \
those with/ ;=6 is small. However, for distanceg,<1
+ ¢, the difference is rather large reflecting the slow conver-
gence of the series, and this effect becomes more pronounced 2r
with increasing density and elongation. An indication of the
lack of convergence is that the functions for 1.0 shown in 0
the lower panel of Fig. 7 can take unphysical negative values 08
in the range 1,<1+ {. The reason for the slow convergence
in that range is that the functiay(r 15, 64,6, $15) has step-
like features because of the hard-core repulsion, which can-
not be accurately represented by a truncated series with a
small value for/ ;. This problem is likely to be a feature of
the spherical-harmonic expansion for any model in which the
molecule has a relatively hard asymmetric core. It is also 2
found that a better convergence is achieved for the
¢1,-averaged correlation function defined in EG8) than
the originalg(ri,, 61,65, ¢1,), and this is why we have cho- 0
sen the averaged ones to display the results. Despite these
unwelcome features, it is anticipated that qualitative features
of the angular correlations are captured even with==6. FIG. 8. Upper panel: the site-site radial-distribution function
Notice that the mentioned cutoff problem does not influencean(r) for the symmetric-hard-dumbbell systefsee text with ¢
the results to be presented for the MCT since those are basedl.0 at the packing fractiogp=0.56 (solid line), and the radial-
solely onSQ calculated from the RISM theory. distribution funqtlong(r)_ for the hgrd-sphere systenf€0.0) at
The increase of the most probable nearest neighbdf'® same packing fractiofdotted ling. Lower panel: the corre-
center-to-center separation with increasing elongation, Whicﬁpondlng static structure factsﬁ‘ for the total density fluctuations

is demonstrated in Fig. 6, suggests that the majority of neal]‘_or the symmetric-hard-dumbbell system, and the static structure
- - L - : factor S, for the hard-sphere system.
est neighbor pairs adopt orientations for which the center-to- a

center distance of closest approach increases with increaSir(]:%nter-to-center distance.< 1 by adopting a “crossed” ori-
elongation. Therefore, it seems likely that “CP-type” orien- % y pling

tations do not contribute heavily to this peak ggo(rlz), entation. This explains why tlﬂggo(rlz) in Fig. 6 are positive

because their closest approach remains in the regipnl even forr,<<1. The probability of the “crossed” orientation

irrespective of the elongation. It is also clear that “end-to-ncreases with increasing density because it relieves the

end” orientations are unimportant, because their minimumStraln of the closely packed system. This effect is more pro-

: _ . . nounced at high elongations as shown in Fig. 7, and is a
approgch d'StanCH(Z .1+§) lies wel! k())eyond the distance major factor contributing to the growth of the shoulder in
at which the first maximum occurs iggo(r12). Hence, the

. N : ; . r1») for the regionr,<<1 with increasing the elongation.
major contributions to the first peak gﬁo(rlz) are likely to gooI(_eltZ)us add onegfinallzcomment Itis fourgljd from thge exten-
come from orientations of the T-shaped type and ones clos . ' :
to it. The first maximum in theg(ry,,6;,6,) for the Sions of the lower panel of Fig. 7 to the larggs region that

T-shaped orientation faf=0.2, 0.4, 0.6, 0.8, and 1.0 occur both the T-shaped and CP-type correlations are rather long

at r,=1.13, 1.24, 1.33, 1.41, and 1.46, respectively, aganged. This is a manifestation of the strong peaksliia)

S - o atg~0 shown in Fig. 3 for=1.0, as was discussed also in
shown in Fig. 7for§—Q.4 and 1.0'..Thes.e0p03|t|ons are Very pefs. [19] and [20]. The oscillatory feature of the above-
close to the first maximum positions igy(ri) for each

X L ) . : ) .. mentioned angular correlations are found to continue up to
elongation shown in Fig. 6. This evidence is consistent W|tr}12~27T/Aq whereAq denotes the half-width of that peak

a strong predominance of T-shaped nearest neighbor orienta="co . o . .
tions. We therefore conclude that at the most probable neaﬁj S24q). This intermediate-range order is absent in the case

est neighbor distance, there is a strong preference fo(?f small elongations, say=0.4.
T-shaped orientations over all others. )
We next consider how the CP-type correlations manifest C. Bonding effects
themselves in th@dy(r,). As can be inferred from Fig. 7, The dumbbell liquid forz=1.0 can be viewed as a system
such correlations would lead to a peak centered; gt 1 of hard spheres of diameter=1 whose density is 2 and
irrespective of the elongation. This contribution leads to avhere some additional covalent interaction has forced pairs
small shoulder as shown in Fig. 6 f6.=0.6. For the larger to be formed. Let us consider the difference between the
elongation{=0.8, the shoulder gets more pronounced, anchard-sphere system and the bonded system in detail. Figure 8
subsequently it leads to a broad peak gt=1.1 for{=1.0.  compares the the radial-distribution functions and the static
Unlike hard spheres for which two centers cannot ap-structure factors for the two systems at the fixed packing
proach closer tham,=1, two hard dumbbells can reach fraction ¢=0.56. Notice that the site-site radial-distribution
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functiong,,(r) for the symmetric-dumbbell system becomes 1.0 — T T
independent of the site indicesandb, and this is the ad- 08 b e M —&=10
equate quantity to be compared with the radial-distribution ) R It ---t=04

functiong(r) for the hard-sphere system. On the other hand,
the total-density static structure factﬁg' for the dumbbell
system is the relevant one to be compared with the static
structure factorS; for the hard-sphere system. This is be-
cause, when the packing fraction is fixed, the number density
for the hard dumbbells with= 1.0 is half of that for the hard
spheres, and the functi«ﬁ{;‘ properly accounts for this dif-
ference. The functionsg' andsS; are also the relevant inputs
for the MCT equations for the hard-dumbbell and hard-
sphere systems, respectively.

It is seen from the upper panel of Fig. 8 that the agree- 02 |+ N
ment of the radial-distribution functions for the two systems
is very good except for the first-coordination-shell region. To
demonstrate that this difference is primarily caused by the q
bonding, we shall consider the coordination numKei.e., N o N )
the number of nearest neighboring spheres surrounding a F'GN' 9. Critical nonergodicity p.arametég'c. and critical ampli--
central sphere, which can be calculated from the radiaIEUdehq for the coherent total densﬂ_y fluctuations for the elongation
distribution function. It is found for the hard-sphere system?é=1-0 (full lines), £=0.4 (dashed lines and for the hard-sphere
thatkK=12.1 ate=0.56, which is a typical value for simple system ¢=0.0, dotted lines
systems at high density. SK,would tend to a value 12 also
for the molecular system if the second sphere in one molsured, in principle, as cross section for coherent neutron scat-
ecule was not attached to the first sphere. However, we foungring. For largeS), the compressibilitquocsg is large.

K=11.4for{=1.0 at¢=0.56. Thus, as should be expected, Therefore, spontaneous arrest is easier for la®fjerandf

the second sphgre in one molepule exclude; one sphere hibits a maximum near the first peak positiorﬁ@f. With
another from being a nearest neighbor to the first sphere, a ryingq, fgc oscillates in phase Witﬁg (cf. Fig. 2. If the

this results in the reduction of the radial-distribution function packing fraction increases, the arrested glass structure stiff-

in the first-shell region as shown in the upper panel. ens, i.e., the increases. Expanding this increase for small
The observed feature for the radial-distribution functions™. > =" q - EXP 9
distance parameteks= (¢ — ¢.), one findg[3,4]

also explains the reduction of the first peak height in the
static structure factor fo=1.0 compared to that fo¢ N_ ¢Nc RN _
=0.0, as exhibited in the lower panel of Fig. 8. Let us con- fa=fa TDV(e=ec)hq +Ole—¢o). 29
sider what would happen to the static structure factor for the
hard-sphere system when a short-ranged attractive force
added. This problem has been discussed for a square-w
system[37]. As demonstrated there, the attraction cause
bonding, in the sense that the most probable separation : . ;
two particles is smaller than expected for a pure hard-spher@d Of the constarD>0 NW'" beNconﬁlcd(_ared in the subse-
system. This leads to the shift of the first peak position in thel!ent papef26]. Sincef,<1, f;—f, s bounded by 1
static structure factor to highey, the decrease of the peak —fq. - Therefore, the critical amplitude for the increase
height, and the increase of the peak wifigg]. Although the  of f; is much smaller fog~7 than forq off the structure-
first feature is not so prominent, the static structure factor fofactor-peak position, as shown in the lower panel of Fig. 9.
the 7=1.0 dumbbell molecules reflects these features wherffhese features are analogous to those found in the hard-
compared to that for the hard-sphere system. sphere systerfil, 3].

We conclude that the structure of the cage for the hard- Figure 10 exhibits the tagged-molecule’s critical noner-
dumbbell system witlf= 1.0 is very close to the one for the godicity parameterd %, (x=N, Z) for the elongations/
hard-sphere system, and that the difference can be explained1.0 and 0.4 calculated from E@24). These are Lamb-

0.0 n 1 n 1 1 1 n 1

élﬁwe critical amplitudehg' is positive. It characterizes the sus-
Ceptibility of the arrested structure with respect to changes of
(sgtFe control parameters. The formulas for the evaluatiqu'\‘of

as being due to the bonding effect. Mossbauer factors describing the arrested probability distri-
bution of the tagged molecule. As expected for a localized-
IV. STRUCTURAL ARREST distribution Fourier transform, théy versus q curves

decrease with increasing. The critical Lamb-Mssbauer
factor fg"; for the total number density fluctuations ap-

The upper panel of Fig. 9 exhibits the results for the nonproaches unity forg tending to zero due to the particle-
ergodicity parameten%(’;'C at the critical pointp= ¢ for the  number conservation law. On the other hand, there is no
elongations¢=0.4 and 1.0 calculated from ER1). These analogous conservation law far=Z, and therefore one gets
are Debye-Waller factors of the system. They can be mea@éi05<1.

A. Critical nonergodicity parameters
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FIG. 10. Critical Lamb-Mssbauer factors for the tagged mol- FIG. 11. The full lines exhibit the critical nonergodicity param-
ecule’s total density fluctuationsys (upper pangl and for the  eters for the atomic density fluctuatioR§”® (upper pangland its
charge-density fluctuation (Iower panel for the elongationy  Self partFg’s® (lower panel for the elongatiory =1.0. The dashed
=1.0(full lines) and¢=0.4 (dashed lines The arrows indicate the and dashed dotted lines denote contributions from the total-density

wave numbers for the minimum positionsﬁv{;‘ and Wé’ respec- Nand charge-density components, respectively. The dotted line in
tively, calculated from Eq(26). the lower panel denotes the result based on the Gaussian approxi-

mation forF4%°, Eq. (32).
A remarkable feature of Fig. 10 is the gentle oscillations
exhibited byfj$ and f7<. In analogy to the discussion for FAA
fNC it is expected thaf 5 oscillates in phase WltlwX As
discussed in connectlon Wlth E@Q6), the functloan ex-
hibits minima because of various(q¢/2)? contributions,
and these minimum positions are marked as arrows in Fig.
10. One finds that the positions of the oscillations are well
reproduced by the arrows, indicating that they are due to thelotice that the self-parfy can be measured as cross sec-
presence of various angular-momentum-indéxcontribu-  tion for incoherent neutron scattering. The results at the criti-
tions to intramolecular interference effects. A more definitiveca| packing fraction are exhibited as solid lines in F|g 11 for
analysis concerning the origin of the oscillations should behe elongations=1.0. The dashed and dashed-dotted lines
based on the decomposition f; in terms of the nonergod- are contributions from the total-densityand charge density
|C|ty parameters of the tensorial density correlatorsfluctuationsz, respectively. A small peak centered g4
(I)S//,(q t) introduced in connection with Ec{lZ) [24].  develops |an;AC due to the charge-density fluctuations. The
Under the diagonal  approximation CDS//,(q t)  dotted line in the lower panel for the self—peﬁﬁéc denotes
~5,,®2,,(q.,t), one gets from the long-time limit of Eq. the result based on the Gaussian approximation
(12),

(stN+fZ W), (31a

Fas= —(fN wy + o Wg). (31b

FAAC~ "R’ (32)

fos= (Z/WX)E (2/+1)j (12*f(a,7,0). (30 Here,r§ is the critical localization length for ator, defined
via limg_o(1—F4#9/g?=(r{)?. Itis seen that the constitu-
ent atom’s critical Lamb-Mssbauer factoF;4° is well de-
scribed by a Gaussian, in particular, it does not exhibit oscil-
lations. It is surprising that the sum of two non-Gaussian
functions is almost Gaussian. The analogous results/ for
=0.4 are quite similar, except the peakRff*® for q~4 is
suppressed.

Here, f3(q,/,0)=lim, .. ®¢ ., (q,t) for o=g., and /
should be everfodd) for x=N(Z). As discussed in Ref24],
the gentle oscillations exhibited Hy’ can be explained as
being due to the interference effects fd{q,/,0) with the
intramolecular form factor$,(q¢/2)?. Unfortunately, we do
not have information on th&(q,/,0).

It might be interesting to consider how the results for the
total-density and charge-density fluctuations can be trans-
lated to those for the atomic density fluctuations. The latter The phase diagram in Fig. 1 can be understood as a result
can be obtained from the former via the inverse relation of the control-parameter dependence of the structure factors
Eqgs.(16) and(17), which were explained in Sec. Ill. A prominent feature is the

B. Phase diagram
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maximum of thee. versus{ curve near{=0.43. This is T T T

because of the two different mechanisms for the structural 10 | fas .
arrest, one dominating for small and the other one for large b
elongations. As discussed in connection with Fig. 2, the glass [ — T ]
transition is driven by the first-peak region in the static struc- 05 \//’_\ ¢
ture factorS}, irrespective of the elongation. For small elon- i \/——/‘d |
gations, the peak is primarily determined by the center-of- \/‘/\e
mass density fluctuations, and its strength becomes weaker 00 T

with increasing elongation as explained in connection with

Fig. 4 and the upper panel of Fig. 5. Therefore, a relatively A ]

higher packing fraction is required to get into the glassy //\_,_,c

phase if the elongation is increased, and this explains the 0.5 F /\_\

increase of thep.(¢) curve for small elongations. On the

other hand, for large elongations, the first peakﬁﬁ is - — ]

mainly determined by the"=2 angular correlation, and its 00 L ?

magnitude gets larger with increasing the elongation as also ’ P T R T

explained in connection with Fig. 4 and the lower panel of 00 02 04 06 08 1.0

Fig. 5. Thus, a relatively lower packing fraction is required ¢

for the glass formation as the elongation is increased, and

this explains the decrease of the({) curve for large elon- FIG. 12. Critical nonergodicity parametefgfS and the critical

gations. As a result of these two competing mechanisms fosamplitudeshg{S for the tagged molecule’s total density fluctuations

the glass formation, the transition ligg () exhibits a maxi-  along the typeB transition line in Fig. 1 parametrized by the elon-

mum. gation{ for the wave numberg= 3.4 (a), 7.0(b), 10.6(c), 14.2(d),
Another remarkable feature results from the structure@nd 17.4(¢). The critical amplitudesiy ; for g=14.2 and 17.4 have

factor-peak reduction due to bonding, which was explainedPeen omitted to avoid the overlapping of the curves.

above in connection with Fig. 8. This reduction stabilizes the

liquid phase. As a result, the critical packing fraction for ea(£) would monotonically decrease with increasirg
elongation{=1, ¢,({=1)~0.56 is larger than that for the However, this is not the case. What monotonically decreases
transition of the hard-sphere system({=0)~0.53. Com-  \ith increasing( is the differencepA(¢)— @.(¢), and the
bined with the results discussed in the preceding paragrapl}griation of .(¢) dominates that of,(¢) for small . ¢.

this implies that for all 6<{<1 the critical packing fraction 114 curve oA(¢) terminates at the critical elongatiafy -

of the hard-dumbbell system is larger than that of the hard- (£0)=¢o(Zo). For our model, one findé, = 0.345, and its
sphere system; the liquid phase gets expanded due to the,ciiion is marked by an arrow in Fig. 1. The asymptotic

formation of molecules. The mcrgased—fr'ee—volu.me phenomI'aws for the transition from phase Il to phase Ill have earlier
enon due to the bond formation is consistent with the resulbeen described as the typetransition, as can be inferred

discussed for a square-well syst¢aY]. from Ref.[38] and the papers quoted there. The square-root

There are two alternatives for the glassy states, phases éﬁngularity of the Debye-Waller facto‘rﬁ‘, Eq. (29), implies

and Il in Fig. 1, with respect to the charge-density dynamics . i a4
of the tagged molecule. Phase Il deals with states for suffiy' 2 Eq.(24) that the two phase-transition lines do not merge

ciently smallZ. There is such small steric hindrance for a flip transversally: €/dZ) ea(se)=(d/dd)oc(Zc). All together,

of the tagged molecule’s axis between the two energeticallthIS explains the minimum of thea(£) versus¢ curve near

. > > . =0.23.
equivalent positionss and —e; that Eq.(24) for x=Z yields There are some characteristic features of the #pean-

fg.s=0. The dynamics of the charge fluctuations is ergodicsition that are relevant in the analysis of the typransition

In particular, the dipole correlator relaxes to ze@;s(t  dynamics: these are connected with thevariation of the
—) =0 whereC 4(t) =(eq(t) - €5(0)) = da_o(t) [24]. For  critical Lamb-Massbauer factor§; . and the critical ampli-
sufficiently largeZ, on the other hand, the steric hindrancetudeshaS [26]. Figure 12 exhibits"q“; and h(’?,s for the total-

for dipole reorientations becomes so effective, that also thglensity fluctuations along the ty-transition line ¢.(¢)
Charge fluctuations behave nOﬂergOdica”y. In this case, E(barameterized bg Figure 13 shows the Corresponding re-
(24) for x=Z yields a positive long time limit, €5,  sults for the charge-density correlatég$ and hy ;. They

= ¢5 (t—). In particular, dipole disturbances do not relax deal with the transition from phase Il f@< ¢, to phase Il

to zero: Clys(t—>oo)=f1,s=fgzoys>0. This phase Il is a for {>{.. We note in passing that the curves shown in these
glass with all structural disturbances exhibiting nonergodidigures exhibit nonmonotoni¢ dependence, such as wiggles,
motion. In particular, the nonergodicity parameféys for, or even minima and maxima. These anomalies are analogs of
say,{=0.6 is as large as the maximum tﬂ'c, Fig. 9. The the gentle oscillations, discussed above in connection with
two phases Il and Il are separated by a cupug (), where Fig. 10, and they can, in principle, be explained as was done
oa(0)=@c(£). This curve is shown as the dashed line in Fig.in Ref. [24] for dumbbell molecules immersed in a hard-
1. Since the steric hindrance for the molecule’s flip motionsphere system. For strong steric hindrance,ga@.&fg"; is

increases with increasingy one might expect that the curve rather close tofé"’s, and this holds also for critical ampli-
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L amplitudehgyS remains large forf near . also for asym-
- metrical molecules. Therefore, the results fer0.4 are also
representative for such cases, where the #peansition
singularity is avoided due to breaking of the top-down sym-
metry of the constituent molecules, provided the breaking is
sufficiently weak.
The described typé-transition has been studied also for
a single dumbbell immersed in a system of hard spheres. The
diagrams corresponding to the upper panels in Figs. 12 and
13 are qualitatively similaf39], but there are two remark-
able differences. First, the form factof%‘vcS are somewhat
larger and the variation witli for {=¢{. is more pronounced
for the hard-dumbbell system than for the corresponding
quantities for the simple system. Similarly, f¢e>0.5 the
00 N féfs are larger in Fig. 13 than for the single-dumbbell system.
e SEEEE— Second, the{— ¢{.) interval for the decay ofgycs from large
00 02 04 06 08 10 weakly /-dependent values to zero at the transition is nar-
g rower for the motion in the dumbbell liquid than for the
o _motion in the hard-sphere system. These differences reflect
FIG. 13. Results as in Fig. 12, but for the tagged molecule'Sy,q fact that steric hindrance for translation as well as for
charge-density fluc.tuatlonsf,q,?.and hgs- Th? _daShed lines are o4 rentation is more efficient if the cage-forming neighbor
added here, den.o.t'ng the .Cm'cal nonergodicity parameipper molecules are sufficiently elongated rather than being spheri-
pane) and the critical amplitudélower panel for the zero-wave- - . - . "
number limit. The arrow marks the transition point from phase I tocal' This Conclus!on explains aiso that the obtaln_ed critical
value {.=0.345 is smaller than the corresponding value
0.380 obtained for a single dumbbell in a hard-sphere system

10 f fas

05 |

phase Il at{,=0.345 taken from Fig. 1.

) ) _ [24].
tudes, hg s and hy . For { approaching{., the Lamb-
Mossbauer factofg$ falls below fy$, and the critical am- V. CONCLUSIONS

plitude hévs grows above h(’;"s. These are characteristic
features of the typé transition, whose transition point can
be characterized by the vanishing of the critical nonergodic
ity parameterl‘éfS and by the divergence of the critical am-

A mode-coupling theory(MCT) for the evolution of
glassy dynamics is derived and used to discuss the idealized
liquid-glass transition in a hard-dumbbell systéADS). The

. . theory predicts a singular change of the dynamics caused b
plitude hg ; [38]. The former feature is Zolemonstrated, for 5 regquI:)ar change o?‘ the cangnically de}q‘ined equilibriumy
example, by the strong decreasefGt="1;" o5 for {=0.4 g cture factors with variations of control parameters like
shown in the lower panel of Fig. 10 compared to thatfor he packing fractiong. The structure factors define the
=1.0 in the same panel. Since the critical amplittfe,  mode-coupling constants in the equations of motion for the
gauges the dynamics in threlaxation regime, the dynam- correlation functions, and they have been evaluated within
ics of the charge-density correlators as well as the dipolghe RISM and Percus-Yevick theories. The good agreement
correlator near. is strongly influenced by precursor phe- of the results from the two approximate approaches support
nomena of the typé transition from phase Il to phase lll. the opinion that the used input information of the MCT is
Their dynamics in thex-relaxation regime is also perturbed semiquantitatively correct. The results have been used to
since the leading correction to thescaling law is propor- demonstrate that T-shaped configurations are the preferred
tional to the critical amplitudd3]. These features will be arrangements of the cage-forming neighbors of a molecule.
discussed in the following papg26]. Thus, the dynamics for The observed arrangements are similar to those discussed
elongations close tg, is qualitatively different from that for  earlier for more dilute systen{83]; but the ordering in our
large elongations, and this is why we have chosen as theigh-density regime is more pronounced. In addition, there is
representative elongatiaf= 0.4 for the demonstration of the intermediate-ranged order leading to a central peak for
state with weak steric hindrance for reorientations. Generiquadrupole-density fluctuations, but this is irrelevant for the
cally, there is no typé transition line for arbitrary diatomic explanation of the glassy dynamics within the present theory
molecules. In our problem, this singularity is due to an ad<(Sec. Ill). There is no information available on the correct-
ditional symmetry that produces vanishing coupling con-ness of the cited structure-factor theories within the lasge-
stants. The top-down symmetry of the molecule renders thgegime studied in this paper. This implies obvious reserva-
MCT equations to decouple completely into one set for totaltion concerning quantitative details of the results presented.
density fluctuations and another one for charge-density fluc- The MCT for molecular systems proposed in this paper is
tuations. For nearly top-down symmetrical molecules, thebased on describing the dynamics m)n)-matrix correla-
type-A transition is smeared to a rapid crossover from thetors formed with then interaction-site densities of the mol-
very small nonergodicity parameteféS for {<{. to those ecule’s constituent atoms. Such basis is inferior to that using
of order unity for{>¢.[21,38,39. By continuity, the critical a description by infinite-matrix correlators formed with
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tensor-density fluctuationsl4—22, provided the equations highest density of points fof near{..
of motion of the latter theory could be solved for parameters Letzet al. have discussed a liquid-glass phase diagram for
and time regimes of interest. For example, our theory doeg system of hard ellipsoidgl9]. Considering their aspect
not directly lead to results for the angular-momentdm 2  ratio of the prolate ellipsoids as an analog ¢f1) for the
reorientational correlator, which is relevant for the descrip-dumbbells, their phase diagram looks similar to Fig. 1. They
tion of depolarized light-scattering data. However, it was@lso show the analogue of the glass-to-glass transition curve,
shown already in some other contd@d], how the /=2  albeit without a minimum and with a transversal termination
reorientational correlator can be obtained as an addendum 8§ the liquid-glass-transition line. It is argued in Ref9] that
the site-representation theory. A more subtle extension of thi'€ Strong decrease of thg versus{ curve for aspect ratios
theory would be necessary, if there exists second-order pha8§2f 2 is an implication of the central peak of the angular-
transition. A treatment of the interference of the slow g|asgnomentum//=2 correlations, rgflectlng a nematic-transition
dynamics with the critical dynamics of the phase transitionP' €CUrsor. Hence, the expla_natlpn of the phase .d'agfam given
would require the inclusion of the critical fluctuations in the in Ref. [19] for th_e hard-e_lllpsmd system is quite different

. . . - oo from the explanation of Fig. 1 for the dumbbell system.
relaxation kernel in the spirit of the original derivation of

o c .
mode-coupling theories by KawasaldQ]. It is unclear at The critical form factors for the _glaség‘ quannfy. .the

. arrested amorphous-density fluctuations at the transition. The
present whether such an extension can be formulated.

: wave-vector dependence, Fig. 9, is quite similar to that for a
C(r)]mpare?] o a hard—sphzre ITySftehTSS)’ t_he fu5|o<n of HSS. This reflects the fact that the cage around an interaction
two hard spheres to a dumbbell of elongatiin0<{<1, g jg quite similar to that found for the HSS. The critical

increases the free volume if the packing fraction is keptnonergodicity parametelf%c for the arrest of the dipole re-
fixed. Therefore, the liquid gets stabilized and the line for theorientation Fig. 13, are Iei?ger than the same quantities cal-

Ii(lusig—to—glass transitiorp({) is above the transition value ¢jated for a single molecule in the H$4]. In particular,

¢ of the HSS. Like for the HSS, the transition is driven the decrease dféio,s for ¢ decreasing to the critical valug
by the density fluctuations with wave vectors near the posiis 5o abrupt, that the transition looks similar to a discontinu-

tion of the first sharp diffraction peak. For smdllthe peak  oys one. This shows that steric hindrance for reorientation is
is formed by the center-to-center correlations, which demgre effective in a molecular system than in a system of
crease with increasing, leading to an increase of the.  spherical particles.

versus{ transition curve. For largé, the peak is formed by In a planned papd26], it will be shown that the results

the quadrupole correlations; and these increase yitead-  for the arrested structure provide the key for an explanation
ing to a decrease of the transition line. This explains theyf the structural relaxation.

pronounced maximum of the transition curve in Fig. 1. The

model studied exhibits a symmetry with respect to the top- ACKNOWLEDGMENTS

down flip of the molecule’s axis. As explained in the earlier

MCT literature, this implies a line of spin-glass-type transi- We cordially thank W. Kob, R. Schilling, M. Sperl, and

tions shown as dashed curve in Fig. 1. Th. Voigtmann for constructive critique of our manuscript.

A comment concerning the accuracy of the reported cal-
culations might be adequate. After the specified discretiza- APPENDIX: MODE-COUPLING THEORY
tion of the wave numbers, ER1) for the 100 numberf;'&' is FOR MOLECULAR SYSTEMS
solved by the |te'rat|orig“ Ll(;:]:gl[fN(])]/{lJrj:g[fN(J)]}' The MCT focuses on the dynamics of density fluctuations.
j=0,1,... starting fromfy®=1. The sequence decreases\yithin the site representation, the basic variables are the
monotonically towards the nonergodicity paramefef”’  density fluctuations for the interaction sites of thél mol-

N nearized iterati (1) — §NG) _ ¢N - -
—fq. The linearized iteration forsfy’=f, fq reads ecules:p3=2i’\':1exp6q~r?), a=1.2,...n. Herer? denotes

3t V=3pAq,6f (), where the Frobenius matri is given ;¢ position vector of the sita in moleculei. The most

by Age=(1—f3)20F[fN]/9f]. The matrix has a maxi- important correlation functions for a statistical description of
mum eigenvaluee<1. Off the critical points, one get&  the dynamics are

<1, and the convergence of the iteration is exponentially b

fast. The critical point is characterized I®f=1, and here ng(t)=<pg(t)*pd(0)>/N, a,b=1,...n. (Al

the convergence is only algebraically. The proofs of the cited

mathematical properties can be found in Héfl]. Near the Thesen? functions shall be considered as the elements of an
critical point, one derives from Eq29) E°—Ex\¢— ¢.. nXn matrix Fy(t). This matrix is real and symmetric. The
Analogous statements hold for the calculationsf from  short-time expansion of this matrix is given by

Eqg. (24). In our numerical work, the value fdt is controlled 1

and ¢— ¢, is determined routinely so th&®—E~10*, Fo(t)=Sq— 5 q2Jgt2+O(t%). (A2)
Hence, the critical points are calculated with an accuracy of g 27

the order 108. Thus, the accuracy of the lines in Fig. 1 is . _ ab
determined by the number* of values for{ used to calcu- Herea theb structure-factor njazglx 15 gven bySq

late p.(£) and @a(£). We used a grid with* =70; it was ~ =(pg(t)* p2(0))/N, and 33°=((g-5)*(q-]))/Ng? is de-
chosen nonuniformly over the interval<q<1 with the fined in terms of the currents referring to the interaction sites
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fgzgiN:lJia exp(q-r® with o2 denoting the velocity of the With p=q— k. Here, the direct correlation function is defined
siteain moleculei. The Zwanzig-Mori formalisni28] leads ~ Via the Omstein-Zernike equation for a mixtuis], pc”
to an exact equation of motion fd(t), = 62"~ (S;1)?". Now, let us turn on the intramolecular con-
straints between constituent atoms. This amounts to replac-
5 5 > [t , , ing the direct correlation functiom:gb for a mixture of
J; Fq(t)+Qqu(t)+quodt Mg(t=1")dr Fq(t") =0, spherical particles with that for molecular systems defined
(A3) Via the site-site Ornstein-Zernike equati$a7,28, pC:b
=(wg 1) —(S;1)?". Here enter the intramolecular correla-
where tion functionswgb describing the constraints. The so ob-
tained equations for a mixture contain a frequency matrix
Q=938 (A4)  ©Z, which reflects the 8 independent degrees of freedom of
. _ _ o _the molecule. In par'[icularﬂ.f4 gets ann-fold degenerate
The right-hand side of this equation is a product of two posieigenvalue zero fom=0 due to then particle-number-
tive definite matrices. Hence it is equivalent to the square ofonservation laws for the species. The used classical theory
a positive definite matrix. Therefore, one can write it as thecannot account for the fact that vibrational degrees of free-
square 7, of some matrix,. Splitting off this matrix in  dom are frozen out at sufficiently low temperature because of
front of the convolution integral is done for later conve- quantum effects. To repair this shortcoming, we make the
nience. assumption that in the regime of interest the rigidity of the
The difficult problem is the derivation of an approxima- molecule can be accounted for by replacing the classical
tion for the matrixmy(t) of fluctuating-force correlations flexible-molecule value fof2?2 in front of the convolution
such that the cage effect is treated reasonably. This has begflegral in Eq.(A3) by the formula in Eq(A4). The matrix
done originally in Ref[23] by extending the procedure used 2 for a rigid molecule exhibits only one eigenvalue zero for
for atomic system$42]. But the reported formula23] are =0 since there is only one independent conservation law
not acceptable. First, they do not properly reduce to those fo, the number of molecules.
simple systems in _the united atom limit. Seco_ndly, the mo-  The MCT equations for the tagged-molecule density cor-
mentum conservation law for coherent dynamics is not satrg|ator Fqs(t) defined in Eq.(5) can be obtained similarly,

isfied. For these reasons, an alternative derivation has be%rhd only the resulting equations shall be quoted. The exact
developed in Ref[24] starting from the projection-operator Zwanzig-Mori equation reads

theory of Mori and Fujisakd43], albeit for molecules im-

mersed in a simple system. It is possible to generalize this t

derivation for the coherent density correlatégt) for mo- 3t2Fq,s(t)+Q§,qu,s(t)+Q§,sf dt'mg¢(t—t")
lecular systems, but the procedure becomes more involved; it 0

shall be described in a separate pap&f]. Here, a more X dyFqs(t')=0, (A8)

simplified derivation shall be presented.

The simplified procedure starts by assuming that a mowhere the characteristic frequency matrix is given as in Eq.
lecular system is a mixture of constituent atoms; intramo+{A4) by Qé = q2JqW(;1_ The expression for the relaxation
lecular constraints between constituent atoms are account&@rnel can be formulated as the mode-coupling functional
for by the pair correlations only. In this way, a systemNof Fasr
molecules is treated as a mixture mEpecies, each consist- '
ing of N particles. Using the equations in MCT for mixtures

[k45], (ljne gets the following expression for the relaxation mgg(t):fgg[Fs(t),F(t)]_ (A9)
ernel:
b/+y— ab The explicit expression for the functiondf, ¢ reads, with
mG°(t)=FG LR, (A5)  L"C SXPCh &P as
p=d-Kk,
where the mode-coupling functiond, is given by the equi- ac
librium quantities ~ ~ p w .
a FodTe = > L fdk
1 (2m)° ¢ Q% hm
brF — iy /cb SLCAVEANNFun ..
7 [f]_zg SﬁCA A,E ' dkvi”'““'(q'k'p)fﬁA " g-p ’ CN JbuFehFau
AT AV R
(A6) X q Cp Cp' Frsfp™- (A10)
ab .. p - _ _ Let us note some mathematical results valid for the MCT
Vinr e (AK,P) = {q-[ ke + 6™ pept 1} formulated above. First of all, there is a soluti(t) of the

3
(2m) nonlinear equations of motion for all timésThis solution is

uniquely fixed by the initial conditiong,(t=0)=S, and
diF4(t=0)=0. For every finite time interval, the solution
(A7) depends smoothly on the numbersﬂgab and

X{q-[ 8% ke + 8™ 'peB /g,
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Vi‘;’,w,(ﬁ;lz,ﬁ). The solutions are correlation functions in lim;_..F{)=F,. If the Jacobian of Eq(A11) does not have
the sense that they can be Laplace transformed to functiores vanishing eigenvalue, the long-time limi, depends
having a spectral representation with a spectrbffw),  smoothly on the coupling coefficientﬂ!if,w,(ﬁ;lz,ﬁ). A
which is a positive definite matrix. The matrix of long time gingylarity can occur only if an eigenvalue vanishes. The
limits, Fq=lim;_...F4(t), obeys the set of implicit equations gpest property is that such a vanishing eigenvalue is non-
defined by the mode-coupling functiond, degenerate. Hence, using the terminology of Arridié], all
possible singularities are bifurcations of the cuspoid type
FolSq— Fq]—lzj:q[lz]_ (A11) A, , /=23, .... Thegeneric singularity for changes of a
single control parameter is, as for the MCT of simple sys-
6?ms, a fold bifurcatiom\,. It is then obvious that all univer-
Sal results for simple systems are valid also for the MCT for
molecular systems formulated above. For example,(£9).

Let us remember that there is a semiordering in the space
real symmetricn X n matrices A>B, defined byA—B to be

ositive definite. With this notation, the maximum theorem ) " . .
b holds withf{® andhy replaced by positive definite matrices.

holds._l|f Fq IS a soluyon of Eq.(Al;), "_e" if Fe[ Sy The proofs of the cited results of this paragraph shall not be
_(Sq] T=F([F], then Fy<Fq. If an, f‘f)ra“o” EQuence  described here for brevity, since essentially the same issues
Fg'» 1=01,..., is defined by Fq “[S—Fy ] for matrices of density correlators have been independently
= F[FO] starting fromF{”=5,, then F{*Y<FJ) and  discussed and proved by Franosch and Voigtn{ai
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