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Dangling bond deflection model: Growth of gel network with loop structure

Hang-Shing Ma,1,* Rémi Jullien,2 and George W. Scherer3

1Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544
2Laboratoire des Verres, UMR 5587, CNRS, Universite´ Montpellier II, Place Eugene Bataillon, 34095 Montpellier ce´dex 5, France

3Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544
~Received 10 July 2001; published 3 April 2002!

It has been shown that the closed-loop structure in the model gel networks is responsible for their stiffness.
However, the creation of loops has been underestimated in most of the existing kinetic aggregation models
@e.g., DLCA~diffusion-limited cluster-cluster aggregation! and derivatives#. A dangling bond deflection~DEF!
mechanism is proposed to model the fluctuation of dangling branches or dead ends under thermal excitation.
The random deflections of the dangling branches can create loops in the network by forming intracluster bonds,
and proceed during both the gelling and aging processes. The resulting DLCADEF networks have extensive
loop structure with a negligible number of dangling branches. Its growth kinetics and fractal behavior resemble
those of real gels, including volume-invariant gel time and fractal dimension of about 2. The DLCADEF model
is the first attempt to model the gel growth with loop formation by the physically realistic fluctuation mecha-
nism. The mechanical properties of the resulting networks will be studied and verified by comparison with real
gels.
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I. INTRODUCTION

The aggregation of polymeric or colloidal particles
form sparse clusters or gel networks is a common nat
phenomenon, and is important in materials processing@1#.
The properties and applicabilities of such aggregati
derived materials depend on their structural characteris
However, the structure of these aggregates is highly di
dered@2#; therefore, it is difficult to describe the structu
quantitatively. In addition, the sparse networks are usu
too compliant to sustain themselves without excessive de
mation during experimental characterization@3#, hence inten-
sifying the challenge to reveal their structure. As a result,
‘‘true’’ structure and its implications for the mechanic
properties of these sol-gel derived materials, e.g., aeroge
not yet theoretically understood. The mystery can be alle
ated by numerical computation to model the random agg
gation process, from which the aggregate structure can
simulated and its properties can be derived mathematical
physically realistic aggregation model, therefore, becom
essential to grow the structure that can represent the
cluster or gel network. The introduction of the ‘‘danglin
bond deflection’’ model is to simulate an important mov
ment of flexible branches in the network. By implementing
together with the conventional aggregation model, a m
realistic gel network with extensive loop structure can
generated.

Percolation theory has been invoked to account for
gelation process@4#, but was contradicted by the unrealis
cally high scaling exponent of modulus against density p
dicted by the theory@5#. Diffusion-limited cluster-cluster ag
gregation~DLCA! @6,7# was regarded as the first model
simulate the sol-gel transition. There are many derivati
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developed to account for aggregation under different reac
conditions, e.g., reaction-limited cluster-cluster aggregat
@8# and finite interparticle binding energetics@9#. More ag-
gregation models are reviewed in Ref.@10#. The agreement
of the various models with reality was usually validated
comparison with the experimental results on the growth
netics~e.g., the evolution of cluster size distribution, exte
of reaction! and the fractal geometry of the aggregate pro
ucts @1,11#.

Despite the rich variety of the aggregation models, f
works have been done to elucidate the structure-property
lationship of such randomly aggregated materials. T
present authors have attempted to use the finite elem
method to measure the linear bulk modulus of on-latt
DLCA networks @12#. The abundance of dead ends on t
DLCA networks leads to an unrealistically high scaling e
ponent m57.6 in the well-known scaling relationship o
aerogels

K}rm, ~1!

whereK is the bulk modulus,r is the relative density, andm
is the scaling exponent usually between 3 and 4 in the
periment@12,13#. After trimming the dead ends, the network
are left with a structure consisting mainly of loops wi
much lower density,rL . These networks obey

K}rL
3.6, ~2!

which agrees with the experimental results. Therefore,
conclude that the loop structure in the trimmed DLCA a
real gel networks accounts for their stiffness. Most of t
past aggregation models were developed with insuffici
emphasis on loop formation during gelation. As a result, th
fail to explain the stiffness of the real gel network. To crea
a structure possessing the mechanical properties of the
gel network, a physically realistic mechanism of clus
movement capable of creating loops in the network must
©2002 The American Physical Society03-1
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included in the aggregation model. The first effort to inclu
deformation, and consequently loop creation, during agg
gation was initiated by one of the authors in the fluctuat
bond aggregation model@14,15#. However, the model was
built upon the on-lattice DLCA model, and so it is less a
plicable for studying mechanical structure-property relatio
ship.

The concept of bond fluctuation is extended to the dev
opment of the dangling bond deflection~DEF! model that
imposes tiny deflections on the dangling bonds of the diff
ing clusters during aggregation. A dangling bond serves
the only bond connecting a~dangling! branch of particles to
a cluster, and the dangling branches are created by the
dom aggregation of particles in the off-lattice DLCA proce
The deflection motion simulates the thermally activated fl
tuation of the dangling branch about its equilibrium positi
with reference to its dangling bond. When the deflect
branch collides with the rest of the same cluster, a lo
within the cluster is formed by irreversible bonding betwe
the colliding particles. By combining the off-lattice DLCA
model with the DEF, a gel network with loop structure c
be generated from a random dispersion of particles. If
simulation is allowed to continue after the aggregation
completed, most of the dangling branches are transform
into loops, and the resulting structure is the subject of t
study. The DLCADEF model is developed as the first s
towards realistic modeling of the growth of a gel netwo
that can account for the mechanical properties of gels. M
detailed explanation of the model and the justification of
assumptions are presented in Sec. II. The growth kine
fractal geometry, and vibrational spectrum of the result
structure are discussed in Sec. III.

II. DLCADEF MODEL

A. DLCA „diffusion-limited cluster-cluster aggregation…

The DLCA model implemented here is based on
three-dimensional off-lattice extension@16# of the original
DLCA model @6,7#. The modeling begins by dispersingnp
spherical particles of unit diameter into a cube of edge len
b using the sequential addition method, so that these sph
are neither touching nor overlapping with one another. T
numbernp is estimated by

np5
6

p
rb3, ~3!

with the designated relative densityr for the resulting net-
work. The ~r,b! of the model gel networks studied a
~0.018,159!, ~0.03,100!, ~0.056,79!, ~0.1,63!, and ~0.18,50!.
The box size decreases with increasing density to mainta
ratio of approximately 10:1 betweenb and the mass correla
tion lengthj of the network. The estimation and the dens
dependence ofj will be presented in Sec. III.

A particle or cluster of particles is randomly selected
each iteration to undergo a translational displacement
randomly chosen direction. The probabilityPt( i ) of picking
the clusteri out of total number of clustersnc depends on the
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number distribution of the clusters assuming the clusters p
sess a fractal dimension of 2@6,7#, i.e.,

Pt~ i !5
npc~ i !21/2

(
j 51

nc

npc~ j !21/2

, ~4!

wherenpc( j ) is the number of particles in clusterj. A slight
variation in the fractal dimension and thus the exponent
npc( j ) does not affect the results. The displacement is a u
particle diameter unless the moving particle or cluster c
lides with another particle. If so the moving cluster sto
right at the collision, and a new bond is formed between
two touching particles. Periodic boundary conditions a
implemented so that particles moving out of the box reen
through the opposite side. This translational Brownian m
tion ends when all the particles are aggregated into
single cluster.

B. DEF „dangling bond deflection…

Analogous to the branches of a tree waving in the win
the particles in the clusters fluctuate about their equilibri
positions by thermal energy. The DEF model simulates t
motion in the aggregates by performing small deflections
dangling bonds. A dangling bond is defined as an interp
ticle bond connecting a dangling branch of a particle or cl
ter with another cluster. If the dangling bond is cleaved,
dangling branch becomes isolated. The deflection is p
formed by randomly choosing a dangling bondOAW and a
unit vectorOWW as the axis of rotation. The positionO rep-
resents the particle at one end of the dangling bond
serves as the origin of rotation, andA is the particle at the
other end, meaning thatOAW and AOW refer to two separate
dangling bonds. The dangling branch associated with d
gling bondOAW is the cluster connected to particleA ~includ-
ing A! other than the particleO. This branch is then rotated
aboutOWW by a constant angleu. For a particle within the
dangling branch with an initial positional vectorOKW i , its
final positionOKW f is given by

OHW 5~OKW i•OWW !OWW , ~5a!

HKW i5OKW i2OHW , ~5b!

HUW 5OWW 3HKW i , ~5c!

OKW f5OHW 1HKW i cosu1HUW sinu, ~5d!

whereOHW is defined as the projection ofOKW i ontoOWW . The
angleu is chosen asp/100 rad that is small enough to kee
the maximum particle displacement~i.e., uKiK f

W u! comparable
to or lower than a unit particle diameter even during t
rotation of a large dangling branch. The probabilityPr( i ) of
picking a dangling branchi out of total number of dangling
3-2
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DANGLING BOND DEFLECTION MODEL: GROWTH OF . . . PHYSICAL REVIEW E 65 041403
branchesndb again depends on the mass distribution of
dangling branches~derivations are shown in the Append
A!, and is defined as

Pr~ i !5
npd~ i !3/2

(
j 51

ndb

npd~ j !3/2

, ~6!

where npd( j ) is the number of particles in the danglin
branchj. The heavier branches are less likely to deflect.

When the dangling branch runs into another particle d
ing rotation, the rotation will stop at the point when tw
particles first touch each other, before reaching the angleu. If
the two bonding particles belong to the same cluster, a l
within the cluster is closed, and every bond constituting
loop is declared nondangling. In other words, if a bo
within the loop is cleaved, the cluster will still be connect
as one piece. In this model, we assume that the bonds
stituting the loops do not participate in the deflection motio
This is a quite reasonable assumption as such bonds are
efficiently connected against fluctuations, therefore, they
more hindered than the dangling bonds. In reality, deflecti
within the loops are possible, but to the first approximat
these movements are ignored. If the cluster is larger than
size of the box, the deflection motion of a dangling branch
such a cluster may stick one end of it to the other e
through the periodic boundary conditions. Then a ‘‘period
backbone extending from one side of the box to the ot
side is formed and the bonds making up the backbone
classified as nondangling. Moreover, the formation of
backbone can be used as a measure of the gel point, whi
defined as the time when the clusters start to percolate
span the volume of the system. The coordination numbe
each particle is limited to four, and any movement that le
to bond formation of an already saturated particle is rejec
Creation of loops in the gel network by thermally activat
swaying of dangling branches is realistic and significant
the growth process, and this mechanism is approximated
the dangling bond deflections for the modeling of sol-g
transition.

C. DLCADEF „combination of DLCA and DEF…

The two models~DLCA and DEF! represent two differen
cluster movement mechanisms. By combining them
diffusion-limited cluster-cluster aggregate structure w
loops can be simulated. The process is summarized in a
dimensional illustration shown in Fig. 1. At each iteratio
the choice of either DLCA or DEF mechanism depends
their relative frequencies of occurrence. The parametersv t
and v r can be interpreted as the summation of the rela
frequencies of occurrence of the cluster’s translational
placement and the dangling branch’s rotational movem
respectively. They are defined as

v t5(
i 51

nc

npc~ i !21/2, ~7a!
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ndb

npd~ i !23/2, ~7b!

and are equivalent to the denominators of Eqs.~4! and ~6!,
respectively. The probabilityP of having the DLCA mecha-
nism operate at each iteration is such that

P5
v t

v t1Fv r
, ~8!

while for DEF the probability is (12P). The parameterF is
the weighting factor of the two relative frequencies, and
physical motivation of the choices of magnitude ofF is
given in the Appendix B. A time scalet is defined such tha
at each iteration, the clock is incremented by a small timedt,
which is defined as

dt5
1

v t1Fv r
. ~9!

To investigate the effect ofF on the growth mechanism
largely different values ofF510, 100, and 1000 are used
create the DLCADEF networks, together withF50 that re-
duces the model to a purely DLCA process. As a resultF
can also be interpreted as the compliance of the bonds,
that whenF50 the bonds are too stiff to deflect, and th
readiness of deflection increases withF. WhenF is set above
zero, the modeling is allowed to proceed after the aggre
tion has completed until less than 0.1% of the particles
the network belong to dangling branches.

The simulations were carried out on a silicon graph
IRIX server with 270 MHz IP27 processors, and a LINU
workstation with 550 MHz Intel P3 processors. The progra

FIG. 1. Two-dimensional~2D! illustration of 3D DLCADEF
modeling. ~a! Translational random trajectories of particles a
clusters.~b! Dangling bond formation by sticking of particles o
clusters.~c! Dangling bond deflection:~i! both sides of the bond can
be dangling branches;~ii ! only one branch is chosen to deflect at
time. ~d! Loop formation by forming an intracluster bond.
3-3
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runs on a single processor, and requires as much as 4 G
memory and two weeks of computation time for a realizat
of a DLCADEF network.

III. NETWORK STRUCTURE

A. Appearance

The most direct way to analyze the network structure
to ‘‘look’’ at them. Slab views of the model atr50.03, 0.056
andF50, 10, 100, and 1000 with a depth of view of 10 un
of particle diameter are shown in Fig. 2. The particles in
aggregates ofF50 are more scattered than those in the ot
F ’s. The difference can be rationalized by the presence
the dangling bond deflections in theF.0 networks. By the
end of the simulation, the dangling branches abundant in
F50 models are mostly collapsed onto the backbone of
networks to form loops. As a result, bigger pores and den
blobs of particles are observed in the DLCADEF networks
F.0. There is not any apparent difference between the
works of different nonzeroF ’s. The network growth has the
same termination condition, which converts most of the d
ends into loops. Therefore, anyF.0 network, regardless o
the magnitude, becomes an interconnection of dense b
that comprise cyclic chains of particles.

B. Growth kinetics

The evolutions of the average number of particles in
cluster ^npc& and the number of dangling bondsndb with
Monte Carlo timet are illustrated in Fig. 3 forr50.056 and
b579. It was shown that the DLCA model agrees w
Smoluchowski’s equation of aggregation kinetics at the ea
stage of growth@1,11#. The ^npc& can be derived from
Smoluchowski’s equation in the form

^npc&5110.5
t

t
, ~10!

where t is the characteristic time of dimer formation, an
equals 1 in the DLCA model@11#. The correctt is recovered
in the DLCA model in this study as shown in Fig. 3~a!,
justifying the definition of the Monte Carlo time. Howeve
thet decreases with increasingF in the model because mor
restructuring than aggregation takes place at a higherF by
the dangling bond deflections within the clusters.

The number of dangling bonds increases monotonic
with time for F50, as shown in Fig. 3~b!. However, for the
F.0 networks, thendb rises to a maximum point shortl
after the beginning of aggregation, and then declines to
most zero at the end of the simulation. There is a dip in
ndb occurring at timet, which is larger for networks with a
smallerF, except forF50. This happens when the formatio
of a periodic backbone converts a large number of the or
nally dangling bonds to nondangling bonds, given that th
belong to the backbone. As a result, the time at which the
takes place is regarded as the gel pointtgel.

The tgel occurs at a loŵ npc& because of the highly het
erogeneous distribution of cluster size during the aggre
tion, such that the spanning cluster is present when there
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still numerous oligomers around, thus suppressing the va
of ^npc&. The variation of gel point versus density andF is
illustrated in Fig. 4. Thetgel’s were verified with realizations
at half of the designated box size at each density, which
showed negligible size-dependent effects. Thetgel decreases
with increasing density in almost a power-law fashion. T
shortening oftgel with increasingF becomes apparent whe
r>0.056. This can be rationalized by the fact that dangl
bond deflections can lead to polymerization in addition
loop formation, when the deflecting branch collides with
neighboring cluster. This phenomenon is apparent when
clusters are crowded together, especially at high den
Therefore, when bothr andF are high, the largest cluster i
the simulation, which normally has also the largest amo
of dangling bonds, can grow in size much faster than o
with a lower F. As a result, this cluster starts to span t
volume much earlier and at a much lower^npc&, as illus-
trated in Fig. 3~a!.

C. Degree of cross linking

The degree of cross linking can be illustrated by the pr
ability distribution of the coordination number of particles
the network, as shown in Fig. 5. Particles within a line
chain have coordination number of 2, while those acting
the branch units have coordination number of 3 or 4. P
ticles with coordination number of 1 represent monome
dead ends. ForF.0, the networks have negligible dea
ends, and more branching as density decreases. The d
of branching increases also with increasingF as more dan-
gling bond deflection takes place at the early stage of ag
gation. Since the dangling branches of the young prim
clusters are small, the loops formed are small and the c
dination number becomes high. However, as density
creases, the primary clusters are more crowded toge
They are likely to percolate and lock up the dangli
branches before the branches can deflect freely to form d
and small loops. Therefore, the coordination numb
decreases.

D. Pair correlation

The gel networks obtained from the DLCA model exhib
a fractal structure@11,16#, as do the real fractal aggregates
aerogels@17#. The fractal dimensiondf and the correlation
length j can be estimated from the model gel network
measuring its pair-correlation functiong(r ) defined as

g~r !5
p/6

r

1

4pr 2

dn

dr
5

1

24rr 2

dn

dr
, ~11!

wheredn is the number of spherical particles, located with
the spherical shell at a distance betweenr andr 1dr from a
particle. Ther term in Eq.~11! normalizesg(r ) to 1 when
the length scaler becomes so large that the network appe
to be homogeneous in density. Theg(r )’s of F50 and 100
at r50.03 are illustrated in Fig. 6, which are averaged fro
all the particles in the five realizations of each (r,b,F) com-
bination. A comprehensive analysis of the pair correlation
the DLCA networks was given in Refs.@16# and@18#. There
3-4
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FIG. 2. 50 (length)350 (width)310 (depth) slab view of some DLCADEF model gel networks in the form of particle aggreg
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is a minimum in eachg(r ) separating the fractal and homo
geneous regimes, and the minimum is defined as the m
correlation lengthj. The fractal dimensiondf can be evalu-
ated from the volume integral ofg(r ), defined asf (r ),

f ~r !5E
0

r

g~r !4pr 2 dr}r df , ~12!

which scales with the distancer ,j with the exponentdf .
An illustration of howdf is evaluated fromf (r ) is shown in
Fig. 7 for F50, 100 andr50.03. Althoughj is about 10,
only the regime between 3 and 6 is considered as fracta
avoid the crossover effect towardsj and singularities be-
low 3.

The variation ofdf with r is illustrated in Fig. 8, with the
fractal range at eachr from whichdf are evaluated. Thedf ’s
of the DLCA networks agree with the results in Ref.@18#.
The monotonic increase ofdf with r in the DLCA network is
captured also in theF.0 DLCADEF networks. The highe
df than the classical value of 1.8 in the single-cluster DLC
model @10,11# is due to the crossover effect—the interpe
etration of the clusters in the finite-density systems. Ho
ever, the values of theF.0 DLCADEF networks are ap-
parently lower than those of the DLCA networks at the sa
density, although they are fairly insensitive to the magnitu
of F. The lowerdf can be accounted for by the compacti
effect of the DEF mechanism on the network. Dense blob
particles are created by formation of small cyclic structu
due to dangling bond deflections. The higher local den
within the blobs lead to steeper drop of density away fr
them, which is equivalent to a smaller fractal dimension.

The variation ofj with r and F is illustrated in Fig. 9,
which shows that the mass correlation length increases
decreasing density. Comparatively, the dependence ofj on F
is much less sensitive. The minima ing(r )’s of the F.0
DLCADEF networks are always deeper than those of t
DLCA networks. The depth can be attributed to the comp
tion effect of the dangling bond deflections that form den
blobs in the networks and make the structure more spat
inhomogeneous.

E. Spectral dimension

While the geometric aspects of the fractal structures
be represented by the fractal dimension and mass correla
length, the spectral dimensionds is a parameter commonl
used to characterize the dynamic aspects of fractal obje
such as transport and relaxation properties. The numbe
vibration modesN(v) of an object is related to the spectr
density~density of states! r~v! and vibration frequencyv by

N~v!5E
0

v

r~v8!dv8 }
v→0

vd, ~13!

whered is exactly the dimensionality of the object if it i
Euclidean, but equalsds for a fractal@19#. The spectral di-
mension of the DLCADEF network can be evaluated by t
random walk analysis: a pointer is allowed to diffuse fro
one particle to a connected adjacent one at each step, sta
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FIG. 3. ~a! Evolution of average number of particles per clus
^npc& with time t ~arrows denotetgel!. ~b! Evolution of the number
of dangling bondsndb with time t ~arrows denotetgel , characterized
by the sudden drop ofndb!.

FIG. 4. Gel pointtgel vs densityr for F.0 DLCADEF net-
works ~the error bars are smaller than the size of the symbols!.
3-6
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DANGLING BOND DEFLECTION MODEL: GROWTH OF . . . PHYSICAL REVIEW E 65 041403
at any particle of the network. By the scaling argument@20#,
the mean square distance between the starting position
the current position̂R2& is related to the number of stepsns
by

FIG. 5. ~a! Probability distribution of the coordination numbe
of the particles in the DLCADEF networks ofF5100. ~b! Prob-
ability distribution of the coordination number of the particles in t
DLCADEF networks ofr50.056.

FIG. 6. Pair-correlation functiong(r ) of DLCADEF networks
at r50.03 andF50,100.
04140
nd

^R2&}ns
ds /df , ~14!

when ^R2& is smaller thanj2, the upper size limit of the
fractal regime.

The results of the random walk on two DLCADEF ne
works of r50.03 is shown in Fig. 10, with one havingF
50 and the other one havingF5100. Each curve represen
an average of all the particles as the starting point in o
realization. For a Euclidean object, (ds /df) equals 1. The
mean square diffusion coverage^R2& for the DLCADEF net-
works increases much more slowly with the number of ste
as expected for their fractal nature. The exponent (ds /df) is
evaluated between̂R2&59 and 100 in this density level
The ds of each individual DLCADEF network is calculate
by multiplying the exponent (ds /df) by thedf obtained from
g(r ). The dependence ofds on r andF is illustrated in Fig.
11. Theds is fairly independent ofF, except atr50.018

FIG. 7. Volume integral of pair-correlation functionf (r ) of
DLCADEF networks atr50.03 andF50,100.

FIG. 8. Variation of fractal dimensiondf with density r for
variousP’s of the DLCADEF networks.~For clarity, the data points
are slightly spread along ther axis over their designatedr, with
smallerF towards the lower end and vice versa. The spread al
thedf axis refers to the spread of the model realizations. The ra
of r at each density represents the fractal regime wheredf is evalu-
ated.!
3-7
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HANG-SHING MA, RÉMI JULLIEN, AND GEORGE W. SCHERER PHYSICAL REVIEW E65 041403
where theds for F50 is distinctly lower than those for th
nonzeroF ’s. By linearly extrapolating theds of F50 to-
wardsr50, which corresponds to the single-cluster limit
the DLCA model,ds'1.1 is recovered, which was demo
strated previously@21#.

The validity of the derivation ofds by the random walk
algorithm is based on the fact that the spatial part of
diffusion equation is equivalent to that of the harmonic wa
equation. However, because of that, the measured value
only the scalar approximation of the trueds . Moreover, al-
though the DEF model assumes deflections only occur a
dangling bonds, the origins of bond deflections and harmo
vibrations should be related. While the assumptions in
DEF model are effectively first-order approximations, t
spectral dimension is nevertheless obtained as the chara
istic exponent of the vibration spectrum of the whole resu
ing structure by treating every bond equally.

FIG. 9. Variation of correlation lengthj with densityr for vari-
ousF ’s of the DLCADEF networks.~For clarity, the data points are
slightly spread along ther axis over their designatedr with smaller
F towards the lower end and vice versa. The spread along thej axis
refers to the spread of the model realizations.!

FIG. 10. Mean square diffusion distance^R2& against the num-
ber of stepsns derived from the random walk analysis of twor
50.03 DLCADEF networks atF50 and 100, respectively.
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e
e
are

he
ic
e

ter-
-

IV. CONCLUSION

The DLCADEF model has shown close resemblance
the traditional DLCA in terms of the growth kinetics, fract
structure, and spectral dimension. Since the DLCA has b
correlated to the real gels, such as aerogels in this con
@1,16,18#, the DLCADEF model should also be a suitab
model of the gelation process. In addition, the dangling bo
deflections create loops in the network. The extensive lo
structure with negligible dead ends makes DLCADEF n
works more physically realistic models for analysis of t
structure and the mechanical properties of gels. The stud
the mechanical properties of the DLCADEF networks h
been published in Ref.@22#.

The dangling bond deflection model, which principal
simulates an intracluster reorganization, can be implemen
with other types of kinetic aggregation models to simula
the sol-gel transition under different reaction condition
However, there are no constraints imposed in the pres
model on the bond angles or the extent of deflection of d
gling bonds. As a result, the degree of cyclic structure f
mation may be overestimated in the DLCADEF model. Su
an effect is partially counteracted by the assumption in
DEF model that the bonds in the loops are considered
infinitely stiff regardless of the loop size. However, this a
sumption is in fact not physically realistic. More realist
aggregation model can be developed at the expense of c
putation time and with better understanding of colloid
phenomena.
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FIG. 11. Variation of spectral dimensionds with densityr for
variousF ’s of the DLCADEF networks.~For clarity, the data points
are slightly spread along ther axis over their designatedr with
smallerF towards the lower end and vice versa. The spread al
the ds axis refers to the spread of the model realizations.!
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visualization program generously provided by Roger
Sayle.

APPENDIX A: DERIVATION OF Pr

Consider two extreme and simplified cases: if the d
gling branch is spherical and fractal~i.e., the density de-
creases from the center of the sphere towards the perime!,
and the vector pointing from the associated dangling bon
the center of the branch coincides with the axis of rotati
then the dangling bond deflection causes the dangling bra
to rotate through an angle ofu rad. Assuming that the radiu
of the dangling branch isa, by the Debye expression@23# the
rotational diffusion correlation timet r is

t r5
4pha3u

3kT
, ~A1!

whereh is the solvent viscosity andkT is the thermal energy
If the fractal dimension of the dangling branch is 2, the nu
ber of particles of unit diameter in the branchnpd can be
related to its radiusa by

npd5ha2, ~A2!

whereh is a proportionality constant of the order 1. Combi
ing Eqs.~A1! and ~A2! yields

1

t r
5

3h3/2kT

4phu
~npd!

23/2, ~A3!

where the reciprocal oft r can be interpreted as the frequen
of occurrence of the rotation as a function ofnpd.

If the bond-to-center vector is orthogonal to the axis
rotation, the dangling branch will circle around the axis. T
trajectory involves moving the branch center along an arc
radiusa and lengthl, where

l5au. ~A4!

Sinceu(5p/100),l, especially when the dangling branc
is large, the translational component of the trajectory is
sumed to be the rate-limiting step. According to the Einste
Smoluchowski equation@23#, the translational diffusion co
efficient D of a sphere is

D5
l2

2t r*
, ~A5!
n-

id

n
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where t r* is the translational correlation time for rotation
The diffusion coefficient can be correlated to the sphere
dius a by

D5
kT

6pha
, ~A6!

which is called the Stokes-Einstein equation@23,24#. By
eliminatingD in Eqs.~A5! and~A6!, and eliminatinga andl
with Eqs.~A2! and ~A4!,

1

t r*
5

h3/2kT

3phu2 ~npd!
23/2, ~A7!

which has the same form as Eq.~A3! with different magni-
tude of the proportionality constant. Therefore, in both ca
the frequency of occurrencev r scales with the number o
particles in the dangling branch with an exponent of21.5.

APPENDIX B: ESTIMATION OF F

For the translational Brownian diffusion, the translatio
correlation timet t can be evaluated by Eqs.~A5! and ~A6!,
with l set to 1 andt r* substituted byt t ~i.e., displacement by
a unit particle diameter!, and the final form is

1

t t
5

AhkT

3ph
~hpc!

21/2. ~B1!

The parameterF should be approximately the ratio of th
coefficients in Eqs.~A3! and ~B1!, or Eqs.~A7! and ~B1!,
which are

F'
3h3/2kT/4phu

AhkT/3ph
5

9h

4u
'O~10!, ~B2a!

or

F'
h3/2kT/3phu2

AhkT/3ph
5

h

u2 'O~1000!, ~B2b!

given that we choseu5p/100 in the simulation. Therefore
the effect ofF on the DLCADEF process was tested atF
510, 100, and 1000.
s
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HANG-SHING MA, RÉMI JULLIEN, AND GEORGE W. SCHERER PHYSICAL REVIEW E65 041403
~World Scientific, Singapore, 1987!.
@12# H.-S. Ma, J.-H. Pre´vost, R. Jullien, and G. W. Scherer, J. No

Cryst. Solids277, 127 ~2000!.
@13# J. D. LeMay, inMechanical Properties of Porous and Cellula

Materials, edited by K. Sieradzki, D. J. Green, and L. J. Gi
son, Mater. Res. Soc. Symp. Proc. No. 207~Materials Re-
search Society, Pittsburgh, 1991!, p. 21.

@14# R. Jullien and A. Hasmy, Phys. Rev. Lett.74, 4003~1995!.
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