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Dangling bond deflection model: Growth of gel network with loop structure
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It has been shown that the closed-loop structure in the model gel networks is responsible for their stiffness.
However, the creation of loops has been underestimated in most of the existing kinetic aggregation models
[e.g., DLCA(diffusion-limited cluster-cluster aggregatijoand derivatives A dangling bond deflectiotDEF)
mechanism is proposed to model the fluctuation of dangling branches or dead ends under thermal excitation.
The random deflections of the dangling branches can create loops in the network by forming intracluster bonds,
and proceed during both the gelling and aging processes. The resulting DLCADEF networks have extensive
loop structure with a negligible number of dangling branches. Its growth kinetics and fractal behavior resemble
those of real gels, including volume-invariant gel time and fractal dimension of about 2. The DLCADEF model
is the first attempt to model the gel growth with loop formation by the physically realistic fluctuation mecha-
nism. The mechanical properties of the resulting networks will be studied and verified by comparison with real
gels.
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[. INTRODUCTION developed to account for aggregation under different reaction
conditions, e.g., reaction-limited cluster-cluster aggregation
The aggregation of polymeric or colloidal particles to [8] and finite interparticle binding energetifd]. More ag-

form sparse clusters or gel networks is a common naturagregation models are reviewed in RgL0]. The agreement
phenomenon, and is important in materials proces@]ﬂg of the various models with reality was usuaIIy validated by
The properties and applicabilites of such aggregationcomparison with the experimental results on the growth ki-
derived materials depend on their structural characteristicdietics(e.g., the evolution of cluster size distribution, extent
However, the structure of these aggregates is highly disorof reaction and the fractal geometry of the aggregate prod-
dered[2]; therefore, it is difficult to describe the structure ucts[1,11].
quantitatively. In addition, the sparse networks are usually Despite the rich variety of the aggregation models, few
too compliant to sustain themselves without excessive defoworks have been done to elucidate the structure-property re-
mation during experimental characterizat[@, hence inten- lationship of such randomly aggregated materials. The
sifying the challenge to reveal their structure. As a result, théoresent authors have attempted to use the finite element
“true” structure and its implications for the mechanical method to measure the linear bulk modulus of on-lattice
properties of these sol-gel derived materials, e.g., aerogels, i8LCA networks[12]. The abundance of dead ends on the
not yet theoretically understood. The mystery can be alleviDLCA networks leads to an unrealistically high scaling ex-
ated by numerical computation to model the random aggrePonentm=7.6 in the well-known scaling relationship of
gation process, from which the aggregate structure can baerogels
simulated and its properties can be derived mathematically. A m
physically realistic aggregation model, therefore, becomes Keep™, @)

essential to grow the structure that can repres?nt th‘? e@herek is the bulk modulusp is the relative density, anch
cluster or gel network. The introduction of the “dangling ig the scaling exponent usually between 3 and 4 in the ex-
bond deflection” model is to simulate an important MOVe- yoriment12 13, After trimming the dead ends, the networks
ment of flexible branches in the network. By implementing ity e jeft with a structure consisting mainly of loops with
toge_th.er with the conv_entlonal aggregatlon model, a more. \ch lower densityp, . These networks obey
realistic gel network with extensive loop structure can be
generated. Kocpl®, 2)
Percolation theory has been invoked to account for the
gelation proces§4], but was contradicted by the unrealisti- which agrees with the experimental results. Therefore, we
cally high scaling exponent of modulus against density preconclude that the loop structure in the trimmed DLCA and
dicted by the theory5]. Diffusion-limited cluster-cluster ag- real gel networks accounts for their stiffness. Most of the
gregation(DLCA) [6,7] was regarded as the first model to past aggregation models were developed with insufficient
simulate the sol-gel transition. There are many derivativeemphasis on loop formation during gelation. As a result, they
fail to explain the stiffness of the real gel network. To create
a structure possessing the mechanical properties of the real
*Corresponding author. gel network, a physically realistic mechanism of cluster
Email address: hangma@Princeton.edu movement capable of creating loops in the network must be

1063-651X/2002/6@})/04140310)/$20.00 65041403-1 ©2002 The American Physical Society



HANG-SHING MA, REMI JULLIEN, AND GEORGE W. SCHERER PHYSICAL REVIEW B5 041403

included in the aggregation model. The first effort to includenumber distribution of the clusters assuming the clusters pos-
deformation, and consequently loop creation, during aggresess a fractal dimension of[B,7], i.e.,
gation was initiated by one of the authors in the fluctuating

bond aggregation modé¢lL4,15. However, the model was Npi) ™ 12

built upon the on-lattice DLCA model, and so it is less ap- Pi)=w—"" 4)
plicable for studying mechanical structure-property relation- E Npd j )~ 12

ship. =1

The concept of bond fluctuation is extended to the devel-
opment of the dangling bond deflectid®EF) model that  wheren,((j) is the number of particles in clustgrA slight
imposes tiny deflections on the dangling bonds of the diffusvariation in the fractal dimension and thus the exponent of
ing clusters during aggregation. A dangling bond serves as,{(j) does not affect the results. The displacement is a unit
the only bond connecting @angling branch of particles to particle diameter unless the moving particle or cluster col-
a cluster, and the dangling branches are created by the ralides with another particle. If so the moving cluster stops
dom aggregation of particles in the off-lattice DLCA process.right at the collision, and a new bond is formed between the
The deflection motion simulates the thermally activated fluctwo touching particles. Periodic boundary conditions are
tuation of the dangling branch about its equilibrium positionimplemented so that particles moving out of the box reenter
with reference to its dangling bond. When the deflectingthrough the opposite side. This translational Brownian mo-
branch collides with the rest of the same cluster, a loogion ends when all the particles are aggregated into one
within the cluster is formed by irreversible bonding betweensingle cluster.
the colliding particles. By combining the off-lattice DLCA
model with the DEF, a gel network with loop structure can
be generated from a random dispersion of particles. If the
simulation is allowed to continue after the aggregation is Analogous to the branches of a tree waving in the wind,
completed, most of the dangling branches are transformetne particles in the clusters fluctuate about their equilibrium
into loops, and the resulting structure is the subject of thigoositions by thermal energy. The DEF model simulates this
study. The DLCADEF model is developed as the first stegnotion in the aggregates by performing small deflections of
towards realistic modeling of the growth of a gel network dangling bonds. A dangling bond is defined as an interpar-
that can account for the mechanical properties of gels. Morécle bond connecting a dangling branch of a particle or clus-
detailed explanation of the model and the justification of theter with another cluster. If the dangling bond is cleaved, the
assumptions are presented in Sec. Il. The growth kineticglangling branch becomes isolated. The deflection is per-
fractal geometry, and vibrational spectrum of the resultingiormed by randomly choosing a dangling bo@® and a

structure are discussed in Sec. lll. unit vectorOW as the axis of rotation. The positidd rep-
resents the particle at one end of the dangling bond that
serves as the origin of rotation, aridis the particle at the

S _ other end, meaning th&@A and AO refer to two separate
A. DLCA (diffusion-limited cluster-cluster aggregatior) dangling bonds. The dangling branch associated with dan-

The DLCA model implemented here is based on thegling bondOA is the cluster connected to partidde(includ-
three-dimensional off-lattice extensida6] of the original ing A) other than the particl®. This branch is then rotated
DLCA model [6,7]. The modeling begins by dispersimg  aboutOW by a constant anglé. For a particle within the

spherical particles of unit diameter into a cube of edge Iengtlaanglmg branch with an initial positional vect@K.
b using the sequential addition method, so that these spheres v
inal posmonOKf is given by

are neither touching nor overlapping with one another. Th

B. DEF (dangling bond deflection

Il. DLCADEF MODEL

numbern, is estimated by GH— (OK. - OW)OW, 53
= - :
_6 b3
Mo =7 PP% ® AR,=OK,—OA, (5b)
with the designated relative densipyfor the resulting net- HU=0Wx FTl)<i, (50

work. The (p,b) of the model gel networks studied are

(0.018,159, (0.03,100, (0.056,79, (0.1,63, and (0.18,50.

The box size decreases with increasing density to maintain a

ratio of approximately 10:1 betwednand the mass correla-

tion length¢ of the network. The estimation and the densﬂyWhereOH is defined as the projection 6fK; ontoOW. The

dependence of will be presented in Sec. Il angle # is chosen as/100 rad that is small enough to keep
A particle or cluster of particles is randomly selected atthe maximum particle displaceme(ne., |K K;|) comparable

each iteration to undergo a translational displacement in & or lower than a unit particle diameter even during the

randomly chosen direction. The probabil®y(i) of picking  rotation of a large dangling branch. The probabilty(i) of

the clusteii out of total number of clusters. depends on the picking a dangling branchout of total number of dangling

OK;=OH+HK; cosf+HU siné, (5d)
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branchesy, again depends on the mass distribution of the
dangling branchesderivations are shown in the Appendix
A), and is defined as

i\ 3/2
S O ®)
> Npd())¥?

=1

where np4(j) is the number of particles in the dangling

branchj. The heavier branches are less likely to deflect.
When the dangling branch runs into another particle dur-

ing rotation, the rotation will stop at the point when two

particles first touch each other, before reaching the afidfe

the two bonding particles belong to the same cluster, a loop

within the cluster is closed, and every bond constituting the

loop is declared nondangling. In other words, if a bond

within the loop is cleaved, the cluster will still be connected

as one piece. In this model, we assume that the bonds con- FiG. 1. Two-dimensional2D) illustration of 3D DLCADEF

stituting the loops do not participate in the deflection motion.modeling. (a) Translational random trajectories of particles and

This is a quite reasonable assumption as such bonds are maji@sters.(b) Dangling bond formation by sticking of particles or

efficiently connected against fluctuations, therefore, they arelusters(c) Dangling bond deflectior(i) both sides of the bond can

more hindered than the dangling bonds. In reality, deflectionse dangling branchesii) only one branch is chosen to deflect at a

within the loops are possible, but to the first approximationtime. (d) Loop formation by forming an intracluster bond.

these movements are ignored. If the cluster is larger than the

size of the box, the deflection motion of a dangling branch in Ndb

such a cluster may stick one end of it to the other end we=2, Npdi) %2 (7b)

through the periodic boundary conditions. Then a “periodic” =1

backbone extending from one side of the box to the othe

bnd are equivalent to the denominators of Egs.and (6),

'faspectively. The probabilitp of having the DLCA mecha-
classified as nondangling. Moreover, the formation of th isr% opera{e at egch iterat‘{_:)n is sucr? that

backbone can be used as a measure of the gel point, which is
defined as the time when the clusters start to percolate and w;
span the volume of the system. The coordination number of P= 5t Fo.’
each particle is limited to four, and any movement that leads QT E@r
to bond formation of an already saturated particle is rejectedyhiie for DEF the probability is (+ P). The parameteF is
Creation of loops in the gel network by thermally activatednq \yeighting factor of the two relative frequencies, and the
swaying of dangling branches is realistic and significant inphysical motivation of the choices of magnitude Bfis

the growth process, and this mechanism is approximated by en in the Appendix B. A time scaleis defined such that
the dangling bond deflections for the modeling of sol-gely; gach jteration, the clock is incremented by a small e
transition. which is defined as

®

C. DLCADEF (combination of DLCA and DEF) St= 1

| T ot For
The two model§DLCA and DEB represent two different ot For

cluster movement mechanisms. By combining them, arg investigate the effect oF on the growth mechanism,
diffusion-limited cluster-cluster aggregate structure Wlth|arge|y different values oE=10. 100. and 1000 are used to
loops can be simulated. The process is summarized in a tWegeate the DLCADEFE networks together win=0 that re-
dimensional illustration shown in Fig. 1. At each iteration, y,ces the model to a purely D,LCA process. As a regilt
the choice of either DLCA or DEF mechanism depends oran aiso be interpreted as the compliance of the bonds, such
their relative frgquenmes of occurrence. The parametRrs that whenF=0 the bonds are too stiff to deflect, and the
and o, can be interpreted as the summation of the relativgeaginess of deflection increases withWhenF is set above
frequencies of occurrence of the cluster’s translational disyerg the modeling is allowed to proceed after the aggrega-
placement and the dangling branch’s rotational movemention has completed until less than 0.1% of the particles on

(€)

respectively. They are defined as the network belong to dangling branches.
Ne The simulations were carried out on a silicon graphics
thZ npc(i)—1/2’ (79 IRIX server with 270 MHz IP27 processors, and a LINUX
i=1 workstation with 550 MHz Intel P3 processors. The program
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runs on a single processor, and requires as much as 4 GB sfill numerous oligomers around, thus suppressing the value
memory and two weeks of computation time for a realizationof (n,,). The variation of gel point versus density aRds

of a DLCADEF network. illustrated in Fig. 4. They's were verified with realizations
at half of the designated box size at each density, which all
IIl. NETWORK STRUCTURE showed negligible size-dependent effects. Thedecreases
with increasing density in almost a power-law fashion. The
A. Appearance shortening oft, with increasingF becomes apparent when

The most direct way to analyze the network structures i®=0-056. This can be rationalized by the fact that dangling
to “look” at them. Slab views of the model gt=0.03, 0.056 bond deflections can lead to polymerization in addition to
andF=0, 10, 100, and 1000 with a depth of view of 10 units qup forrr_1ation, when the deflecting bre}nch collides with a
of particle diameter are shown in Fig. 2. The particles in the"€ighboring cluster. This phenomenon is apparent when the
aggregates df =0 are more scattered than those in the othelUSters are crowded together, especially at high density.
F’s. The difference can be rationalized by the presence of N€refore, when botp andF are high, the largest cluster in
the dangling bond deflections in tfe>0 networks. By the the S|mu_lat|on, which normally_ ha_s also the largest amount
end of the simulation, the dangling branches abundant in th&f dangling bonds, can grow in size much faster than one
F=0 models are mostly collapsed onto the backbone of thavith a lower F. As_ a result, this cluster starts to span the
networks to form loops. As a result, bigger pores and densefo/Ume much earlier and at a much lowgr,y, as illus-
blobs of particles are observed in the DLCADEF networks ofirated in Fig. 8.

F>0. There is not any apparent difference between the net-
works of different nonzer®’s. The network growth has the C. Degree of cross linking
same termination condition, which converts most of the dead The degree of cross linking can be illustrated by the prob-

ends into loops. Therefore, afy>0 network, regardless of apility distribution of the coordination number of particles in
the magnitude, becomes an interconnection of dense blohfie network, as shown in Fig. 5. Particles within a linear

that comprise cyclic chains of particles. chain have coordination number of 2, while those acting as
the branch units have coordination number of 3 or 4. Par-
B. Growth kinetics ticles with coordination number of 1 represent monomeric

The evolutions of the average number of particles in gd€ad ends. FoF>0, the networks have negligible dead
cluster (n,) and the number of dangling bonag, with ends, and more branching as density decreases. The degree

Monte Carlo timet are illustrated in Fig. 3 fop=0.056 and  ©f Pranching increases also with increasigs more dan-
b=79. It was shown that the DLCA model agrees with gling bond deflection takes place at the early stage of aggre-

Smoluchowski's equation of aggregation kinetics at the earhdation- Since the dangling branches of the young primary

stage of growth[1,11]. The (n,) can be derived from clusters are small, the loops formed are small and the coor-
Smoluchowski's eq'uati.on in the form dination number becomes high. However, as density in-

creases, the primary clusters are more crowded together.

t They are likely to percolate and lock up the dangling
(Npey =1+ 0.5-, (100 branches before the branches can deflect freely to form dense
and small loops. Therefore, the coordination number

where 7 is the characteristic time of dimer formation, and decreases.

equals 1 in the DLCA moddlL1]. The correctris recovered

in the DLCA model in this study as shown in Fig(aR

justifying the definition of the Monte Carlo time. However,  The gel networks obtained from the DLCA model exhibit

the 7 decreases with increasiigin the model because more a fractal structur¢l1,16, as do the real fractal aggregates in

restructuring than aggregation takes place at a highby  aerogelg17]. The fractal dimensiom; and the correlation

the dangling bond deflections within the clusters. length ¢ can be estimated from the model gel network by
The number of dangling bonds increases monotonicallyneasuring its pair-correlation functiay(r) defined as

with time for F=0, as shown in Fig. ®). However, for the

F>0 networks, thengy, rises to a maximum point shortly @6 1 on 1 on

after the beginning of aggregation, and then declines to al- g(r)= p Amr? st 24pr? or

most zero at the end of the simulation. There is a dip in the

Ngp OCCUrring at timet, which is larger for networks with a wheredn is the number of spherical particles, located within

smallerF, except forF =0. This happens when the formation the spherical shell at a distance betweemdr + ér from a

of a periodic backbone converts a large number of the origiparticle. Thep term in Eqg.(11) normalizesg(r) to 1 when

nally dangling bonds to nondangling bonds, given that theythe length scale becomes so large that the network appears

belong to the backbone. As a result, the time at which the dipo be homogeneous in density. T9ér)’'s of F=0 and 100

takes place is regarded as the gel pojat at p=0.03 are illustrated in Fig. 6, which are averaged from
The ty occurs at a low(n,) because of the highly het- all the particles in the five realizations of eaghl§,F) com-

erogeneous distribution of cluster size during the aggregabination. A comprehensive analysis of the pair correlation of

tion, such that the spanning cluster is present when there atee DLCA networks was given in Refgl6] and[18]. There

D. Pair correlation

11
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FIG. 2. 50 (lengthx 50 (width)x 10 (depth) slab view of some DLCADEF model gel networks in the form of particle aggregates.
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is a minimum in eacly(r) separating the fractal and homo- 1000 77— ' g
geneous regimes, and the minimum is defined as the mass L p=0.056 F = 1000/
correlation length€. The fractal dimensionl; can be evalu- 300 [ b= 79 unit particle diameter / ]
ated from the volume integral @f(r), defined ad(r), ~ - :
r )
f(r)=f g(r)4mr?drocrd, (12) g 600
0 &
_ _ _ _ M. 400
which scales with the distanae<¢ with the exponents . =™ I
An illustration of howd; is evaluated fronf(r) is shown in v I
Fig. 7 for F=0, 100 andp=0.03. Although¢ is about 10, 200 T
only the regime between 3 and 6 is considered as fractal to
avoid the crossover effect towardsand singularities be- ol
low 3.
The variation ofd; with p is illustrated in Fig. 8, with the (a)
fractal range at eachfrom whichd; are evaluated. The;'s
of the DLCA networks agree with the results in REES]. 1.210°
The monotonic increase df with p in the DLCA network is
captured also in th&>0 DLCADEF networks. The higher 1:10° |
d; than the classical value of 1.8 in the single-cluster DLCA
model[10,1]] is due to the crossover effect—the interpen- % gao
etration of the clusters in the finite-density systems. How- 2 I
ever, the values of the>0 DLCADEF networks are ap- ‘é 610" [
parently lower than those of the DLCA networks at the same T i
density, although they are fairly insensitive to the magnitude & a0t
of F. The lowerd; can be accounted for by the compaction
effect of the DEF mechanism on the network. Dense blobs of 510t
particles are created by formation of small cyclic structures
due to dangling bond deflections. The higher local density

within the blobs lead to steeper drop of density away from
them, which is equivalent to a smaller fractal dimension. (b) £ ()

The variation of¢ with p and F is illustrated in Fig. 9,
which shows that the mass correlation length increases with FIG. 3. (a) Evolution of average number of particles per cluster
decreasing density. Comparatively, the dependengeoafF  (n,o) with time t (arrows denote,). (b) Evolution of the number
is much less sensitive. The minima @{r)’'s of the F>0 of dangling bondsy, with time t (arrows denoteg, characterized
DLCADEF networks are always deeper than those of theby the sudden drop afyy).
DLCA networks. The depth can be attributed to the compac-
tion effect of the dangling bond deflections that form dense
blobs in the networks and make the structure more spatially

inhomogeneous.
104 3 T v T T T
E. Spectral dimension ‘ o & F=10
i ¥ X F=100
While the geometric aspects of the fractal structures can 1000 ¢ . + F=1o00| 3
be represented by the fractal dimension and mass correlation 2 &)
length, the spectral dimensiah, is a parameter commonly E I : 1
used to characterize the dynamic aspects of fractal objects, g 100F O
such as transport and relaxation properties. The number of & i X - ]
vibration modedN(w) of an object is related to the spectral B 10 L I J o
density(density of statésp(w) and vibration frequencwy by 4
[0} I + X
N(w>=f p(o)de’ o o, (13 e E
0 w—0 [ +Z
. . . . . P 0.1 - —— s
whered is exactly the dimensionality of the object if it is 0.01 0.1
Euclidean, but equald, for a fractal[19]. The spectral di- p

mension of the DLCADEF network can be evaluated by the
random walk analysis: a pointer is allowed to diffuse from  FIG. 4. Gel pointty vs densityp for F>0 DLCADEF net-
one particle to a connected adjacent one at each step, startingrks (the error bars are smaller than the size of the symbols
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1000 — :
f(r) oc 1%
[ for3<r<6& p=0.03

10 .
3 4 5 6 7 8910 20

r (unit particle diameter)

06 ; . . FIG. 7. Volume integral of pair-correlation functiof(r) of
r (1 F=0 DLCADEF networks afp=0.03 andF=0,100.
051 F=10 1
L e
» z = R?)ocn > 14
oal , _ (RO)een =/, 14

03

probability

0.2

(b)

011

coordination number

when (R?) is smaller than&?, the upper size limit of the
fractal regime.

The results of the random walk on two DLCADEF net-
works of p=0.03 is shown in Fig. 10, with one havirfg
=0 and the other one havirfg=100. Each curve represents
an average of all the particles as the starting point in one
realization. For a Euclidean objectd{/d;) equals 1. The
mean square diffusion covera@ig?) for the DLCADEF net-
works increases much more slowly with the number of steps,

FIG. 5. (a) Probability distribution of the coordination number as expected for their fractal nature. The exponeigtd;) is

of the particles in the DLCADEF networks &= 100. (b) Prob-

evaluated betweefR?)=9 and 100 in this density level.

ability distribution of the coordination number of the particles in the The dg of each individual DLCADEF network is calculated

DLCADEF networks ofp=0.056.

by multiplying the exponentds/ds) by thed; obtained from

g(r). The dependence af; on p andF is illustrated in Fig.

at any particle of the network. By the scaling argumexti],
the mean square distance between the starting position and
the current positiogR?) is related to the number of steps

by

g(r)

0.9

3 4 5 6 78910 20

11. Thedy is fairly independent of, except atp=0.018

2.4 . . : :
— =0
23 | F=10 3 <r<a]
e o= 100
T = 1000
22f k]
<~ I
2.1 ¢ 3<r<6 ]
5 [3<r<10 Iﬁ
4
) K I N N | .
0.01 0.02 0.03 0.04 0.05 0.06

p

FIG. 8. Variation of fractal dimension; with density p for
variousP’s of the DLCADEF networks(For clarity, the data points
are slightly spread along the axis over their designated, with

r (unit particle diameter)

FIG. 6. Pair-correlation functiog(r) of DLCADEF networks

at p=0.03 andF=0,100.

smallerF towards the lower end and vice versa. The spread along
the d; axis refers to the spread of the model realizations. The range
of r at each density represents the fractal regime wHeie evalu-
ated)
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FIG. 11. Variation of spectral dimensialy with densityp for
variousF's of the DLCADEF networks(For clarity, the data points
are slightly spread along the axis over their designateg with
smallerF towards the lower end and vice versa. The spread along
the dg axis refers to the spread of the model realizatipns.

FIG. 9. Variation of correlation lengté with densityp for vari-
ousF’s of the DLCADEF networks(For clarity, the data points are
slightly spread along thg axis over their designatggwith smaller
F towards the lower end and vice versa. The spread along dhes
refers to the spread of the model realizatipns.

where thedg for F=0 is distinctly lower than those for the IV CONCLUSION

nonzeroF’s. By linearly extrapolating thels of F=0 to- The DLCADEF model has shown close resemblance to
wardsp =0, which corresponds to the single-cluster limit of the traditional DLCA in terms of the growth kinetics, fractal
the DLCA model,ds~1.1 is recovered, which was demon- structure, and spectral dimension. Since the DLCA has been
strated previously21]. correlated to the real gels, such as aerogels in this context
The validity of the derivation ofls by the random walk [1,16,19, the DLCADEF model should also be a suitable
algorithm is based on the fact that the spatial part of thenodel of the gelation process. In addition, the dangling bond
diffusion equation is equivalent to that of the harmonic wavedeflections create loops in the network. The extensive loop
equation. However, because of that, the measured values asgucture with negligible dead ends makes DLCADEF net-
only the scalar approximation of the tradg. Moreover, al-  works more physically realistic models for analysis of the
though the DEF model assumes deflections only occur at thetructure and the mechanical properties of gels. The study of
dangling bonds, the origins of bond deflections and harmoni¢he mechanical properties of the DLCADEF networks has
vibrations should be related. While the assumptions in théyeen published in Ref22].
DEF model are effectively first-order approximations, the The dangling bond deflection model, which principally
spectral dimension is nevertheless obtained as the charactgimulates an intracluster reorganization, can be implemented
istic exponent of the vibration spectrum of the whole result-with other types of kinetic aggregation models to simulate
ing structure by treating every bond equally. the sol-gel transition under different reaction conditions.
However, there are no constraints imposed in the present
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model on the bond angles or the extent of deflection of dan-
gling bonds. As a result, the degree of cyclic structure for-
mation may be overestimated in the DLCADEF model. Such
an effect is partially counteracted by the assumption in the
DEF model that the bonds in the loops are considered as
infinitely stiff regardless of the loop size. However, this as-
sumption is in fact not physically realistic. More realistic
aggregation model can be developed at the expense of com-
putation time and with better understanding of colloidal
phenomena.
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visualization program generously provided by Roger A.where 7} is the translational correlation time for rotation.

Sayle. The diffusion coefficient can be correlated to the sphere ra-
diusa by
APPENDIX A: DERIVATION OF P,
kT
Consider two extreme and simplified cases: if the dan- D= 6rna’ (AB)

gling branch is spherical and fractéle., the density de-

creases from the center of the sphere towards the perimeter .. . - . .
and the vector pointing from the associated dangling bond t(‘)Nh'Ch is called the Stokes-Einstein equatif28,24. By

the center of the branch coincides with the axis of rotationsvlim'Eat;n&[)z;naigs(iﬁ‘? ) and(A6), and eliminatinga and\
then the dangling bond deflection causes the dangling branch as- '

to rotate through an angle @éfrad. Assuming that the radius

312
of th_e dang!ing pranch ia, b_y the_ Deb_ye expressid@a3] the i* - :—k;(npd)*’z, (A7)
rotational diffusion correlation time, is Tr ™7
4rnae which has the same form as E@\3) with different magni-
T 3kT (A1) tude of the proportionality constant. Therefore, in both cases

the frequency of occurrence, scales with the number of
wherey is the solvent viscosity anklT is the thermal energy. particles in the dangling branch with an exponent-df.5.
If the fractal dimension of the dangling branch is 2, the num-
ber of partiCleS of unit diameter in the brannlgd can be APPENDIX B: ESTIMATION OF E
related to its radiua by
For the translational Brownian diffusion, the translation

Npg=ha?, (A2)  correlation timer, can be evaluated by EqEA5) and (A6),

with A set to 1 andr; substituted byr, (i.e., displacement by

whereh is a proportionality constant of the order 1. Combin- a unit particle diameterand the final form is

ing Egs.(Al) and(A2) yields

1 3h¥%T 1 hkT
7 Fmgp (A3) 7= By (T (B1)
r

where the reciprocal of, can be interpreted as the frequency The parameteF should be approximately the ratio of the
of occurrence of the rotation as a functionrgf; coefficients in Eqs(A3) and (B1), or Egs.(A7) and (B1),
If the bond-to-center vector is orthogonal to the axis ofwhich are

rotation, the dangling branch will circle around the axis. This
trajectory involves moving the branch center along an arc of 3h¥%T/4mne 9h
radiusa and length\, where F~ ——=—=~0(10), (B2a)

\/ﬁkT/3777] 46
A=ad. (A4)

Since 8(= 7/100)<\, especially when the dangling branch of

is large, the translational component of the trajectory is as- h32%T/37 62 h

sumed to be the rate-limiting step. According to the Einstein- F~ TRemhnT —~0(1000 (B2b)
Smoluchowski equatiof23], the translational diffusion co- VhkT/3my & ’

efficient D of a sphere is

given that we chos®= /100 in the simulation. Therefore

2
D= )‘_* (A5)  the effect ofF on the DLCADEF process was tested Fat
2 =10, 100, and 1000.
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