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Voronoi tessellation of the packing of fine uniform spheres
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The packing of uniform fine spherical particles ranging from 1 to 1260has been simulated by means of
discrete particle simulation. The packing structure is analyzed, facilitated by the well established Voronoi
tessellation. The topological and metric properties of Voronoi polyhedra are quantified as a function of particle
size and packing density. The results show that as particle size or packing density de¢retse=sverage
face number of Voronoi polyhedra decreases, and the distributions of face number and edge number become
broader and more asymmetri@;) the average perimeter and area of polyhedra increase, and the distributions
of polyhedron surface area and volume become more flat and can be described by the log-normal distribution.
The topological and metric properties depicted for the packing of fine particles differ either quantitatively or
qualitatively from those reported in the literature although they all can be related to packing density. In
particular, our results show that the average sphericity coefficient of Voronoi polyhedra varies with packing
density, and although Aboav-Weaire's law is generally applicable, Lewis’s law is not valid when packing
density is low, which are contrary to the previous findings for other packing systems.
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I. INTRODUCTION lation has been widely accepted as a powerful tool to study
the structure of disordered system. In fact, it has been di-
Fine particles ranging from 100 down to Quim are im-  rectly used in the study of transport properties, e.g., effective
portant to many industries, including mineral, materials,thermal conductivity of porous media or composite solids
pharmaceutical, and chemical industries. For those particle§15—17. The Voronoi tessellation has been extended to the
cohesive forces such as the van der Waals force and tHeacking of multisized spherdd.8,19 or nonspherical par-
electrostatic force are dominaft,2]. Consequently, their ticles[20]. Recently Ogeet al. [21,22] performed a rather
packing behavior is quite different from that of coarse par-comprehensive investigation of the topological and metric
ticles [3-5], and understanding of the underlying physics inProperties of Voronoi polyhedra as a function of packing
terms of forces and structure is necessary in order to producdensity. Their packings were built numerically through ran-
results of wide application. However, at present it is ex-dom sequential adsorptidRSA) and modified Powell algo-
tremely difficult, if not impossible, to study experimentally rithm where forces between particles were not considered.
the packing structure of fine particles and quantify directly In this paper, we apply the Voronoi tessellation to analyze
the effect of the cohesive forces. Computer simulation haghe packings of fine particles ranging from 1 to 10G6n.
been an attractive alternative. This is particularly true in re-Different from Ogeret al. [21,22, our packings are gener-
cent years because of the use of the so-called discrete el@ted by means of a DEM-based model and hence more re-
ment method DEM) [6]. By this method, particle packing lated to the packing of fine particles in reality. We quantify
can be readily studied as a dynamic process, consistent witR€ topological and metric properties of Voronoi polyhedra
common practice in realitj7,8]. Recently, we successfully and their variation with particle size or packing density.
simulated the packing of fine particles by incorporating the
van der Waals force into the DEW®]. Our simulated rela- 1. SIMULATION METHOD
tionship between packing density and particle size agrees o _ _
well with that measured. We also analyzed the packing struc- A packing is constructed through DEM in which the mo-
tures in terms of the commonly used structural parameter8on of individual particles and their interaction with each
such as radial distribution functiofRDF) and coordination ~Other are tracefb,9]. This motion is governed by the contact
number. forces, the van der Waals force, and the gravity, as illustrated
A further analysis of the packing structure can peschematically in Fig. 1. The displacement of particlef
achieved by quantifying the metric and topological proper-adiusR; and massn; in a time step can be computed based
ties of the Voronoi polyhedrfl0] (also called Dirichlet cells On Newton’s second law of motion given by
in two dimensiong11]). Such analysis is very useful as it
can provide information much richer than the one- dv;

— n S 14
dimensional(1D) RDF that has eliminated by averaging the m; E_Ej: (Fij+Fj+Fj+mg @
three-dimensional nature of a packing of parti¢le2]. Since
the work of Berna[13] and Finne)[ 14], the Voronoi tessel- and
* ; 4 . f . dow, "
Corresponding author. FAX+61-2-9385-5956; email address: l; 5 ! :z (RiXFiSj _/“rRi|Fir}|wi)a 2)
a.yu@unsw.edu.au t i

1063-651X/2002/6&4)/0413028)/$20.00 65041302-1 ©2002 The American Physical Society



R. Y. YANG, R. P. ZOU, AND A. B. YU PHYSICAL REVIEW EG65 041302

applied along two horizontal directions to avoid the lateral
wall effect. The simulation was started with particles dispers-
ing homogeneously without overlap in the box. Then, the
particles were allowed to settle down under gravity and dur-
ing this densification process, they would collide with neigh-
boring particles and bounce upward or downward. This dy-
namic process ended when all particles reached their stable
positions with an essentially zero velocity as a result of the
damping effect for energy dissipation. This packing process
is equivalent to a physical operation to transform a fluidized
bed to a fixed bed by stopping gas supply. The simulations
were performed for monosized particles, with their diameters
ranging from 1 to 100Qum. Totally, seven packings were
used for the present analysis as listed in Table II.

III. RESULTS AND DISCUSSION

We considered the following properties resulting from the
Voronoi tessellation.

g ymg
(@) Number of edges for each polyhedron face.
FIG. 1. Schematic illustration of the forces acting on particle (b) Number of faces for each polyhedron.
from contacting particl¢ and noncontacting particle (c) Perimeter and area of a polyhedron face.

. . d) Perimeter, area and volume of a polyhedron.
wherev;, w;, andl; are, respectively, the translational and G POty

angular velocities, and the moment of inertial of particle ' 6 former two properties are known as typical topological
Fij, Fij, andFjj represent, respectively, the normal contact

ij 1 ! properties and the latter two are the most widely used metric
force, the tangential contact force, and the van der Waalg operties, These properties are distributed variables, as a
force imposed on particleby particlej. The first part of the  5¢,ra) consequence of disordered packing structure for each
right-hand side in Eq(2) is the torque due to the tangential gjzeq particles. The following discussion will focus on how

force Fj; , whereR; is a vector running from the center of the these properties vary with particle sideor packing density
particle to the contact point with its magnitude equal to parc,

ticle radiusR; . The second patrt is the rolling friction torque
T{j arising from the elastic hysteresis loss and time-
dependent viscous dissipatip23,24], and u, is the coeffi-
cient of rolling friction. This friction resistance has been Figure 2 shows the percentage of polyhedra viitaces
demonstrated to play a critical role in achieving physically orfor different sized particles. For the packing of 10@fn
numerically stable sandpile, viz. the unconfined packing ofoarticles C=0.605), the distribution is almost symmetric
particles[25]. Table | gives equations used to calculate thewith f =14 being the most prevailing value. Significant con-
forces. More detail can be found from our previous pdpér tribution also comes froni=13 and 15. This is consistent

A packing was formed with 5000 particles in a rectangu-with the previous experimental and numerical studies of the
lar box of width 15 particles in diameter, larger than the boxpacking of hard sphereld4,21,29. When particle size or
of width 10 particles diameter used in our previous wi@k packing density decreases, the distribution becomes broader
to improve the accuracy and statistical reliability of the re-and more asymmetric. The percentage of polyhedra with 12
sulting Voronoi polyhedra. Periodical boundary conditionsfaces remains a constaaround 7% for all the packings,
were consistent with the previous studg0].

A. Topological properties

TABLE I. Summary of forces acting on particlefrom particlej. In these equationE=Y/(1—52), R
=RRj/(Ri+R)), &smax—ud (2—0)/2(1-7)]&, [28], h=maxh,hyy,), Y is Young’s modulusg is the Pois-
son ratio,fij; = (Rj— R,«)/|Ri - Rj|, vn is the normal damping coefficient is the sliding friction coefficient,
& is the total tangential displacemeht, is the Hamaker constant, aihg,;,, is the minimum gap.

Force Symbol Equation Reference
n — — ~ —

Normal force Fi [2EVRE32— y,E \/E\/g—n(vij i) I [24]
Tangential F?j —sgn(s) psl Fir} HL1—[1—min(&s, & mad/ésmad} [26]
force
van der y Ha 64R’R’(h+R +R;) A

Fij N 5 > > 2 nij [2127J
Waals force 6 (h“+2R;h+2R;h)*(h“+2R;h+2R;h+4RR;)
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TABLE Il. Averaged topological and metric properties of Voronoi polyhedra.

Size Packing  Edge numbers  Face numbers  Perimeter of Area of Volume of
(pem) density per facé per polyhedron polyhedron polyhedron  polyhedron
1 0.188 5.217 15.33 35.63 12.49 3.102
5 0.341 5.211 15.20 20.08 7.82 1.593
10 0.427 5.201 15.01 18.33 6.58 1.256
20 0.469 5.197 14.94 17.62 6.09 1.131
50 0.519 5.191 14.84 16.84 5.61 1.009
100 0.573 5.177 14.58 16.11 5.17 0.913
1000 0.605 5.167 14.41 15.72 4.95 0.865

&The perimeter and area of face can be derived from the perimeter and area of the polyhedron.

Figure 3 shows the percentage of faces weithdges as a molecular dynamic§MD) simulation to generate packings
function of packing density. Parallel to the variation of thewith different packing densities. RSA packing is built se-
face distribution in Fig. 2, the edge distribution also becomegjuentially with the simple rule that the next particle, whose
broader and more asymmetric when packing density deeenter is chosen at random, should not overlap the previous
creases. Vertices in the Voronoi construction represent thenes. This algorithm can only generate packing with packing
intersection of four Voronoi polyhedrén random configu- density up to 0.3833]. To obtain a homogenous packing of
rations. By the Euler relation, the average number of faceshigher packing density, Ogest al. [22] adopted the MD
per polyhedrorf) and the average number of edges per poly-simulation where an initial packing is built using Powell al-
hedron facge) are linked[31]: gorithm, followed by “thermal” expansion. The particles in

the resulting packing are not touching and such a packing is

(e)=6—12(f). (3 therefore “nonstable” under external forces. On the other
hand, the Powell packin@4] is built sequentially by adding
The data listed in Table Il confirm that our results strictly particle by choosing the site nearest to a plane surface, in
obey this relation. Therefore, eithég) or (f) alone can be contact with three particles already placed. This model simu-
used in a quantitative analysis. Figure 4 shdfyss a func- lates the packing under gravity and is anisotropic. The results
tion of packing density, indicatingf) increases as packing of Jullienet al.[32] were obtained with the Jodrey-To(JT)
density decreases. The results reported in the literature asdgorithm[35], which is a collective algorithm. The JT simu-
also plotted for comparison, showing our results agree quitéation starts with a random distribution of points with inner
well with those obtained by Finnejl4] and Jullienet al.  and outer radii. The inner radius defines the true density and
[32]. Note that our results also agree with those obtainedhe outer a nominal density. By moving the position of points
from the so-called Powell packirf@2], but are consistently and shrinking the outer radius, the overlaps among particles
higher than the results obtained by Og¢rl. [22] using the are gradually eliminated. The final packing is formed when
RSA algorithm and spatial dilution of the Powell packing. the true density equals the nominal density, and its structure

Different simulation algorithms represent different is isotropic[32].
mechanisms of forming a packing and hence generate differ- Obviously, the above algorithms are largely developed
ent results. Ogeet al. [22] used both RSA algorithm and from geometrical consideration and cannot simulate the dy-
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FIG. 2. The distribution of number of faces per polyhedron as a FIG. 3. The distribution of number of edges per face as a func-
function of packing densit{. tion of packing densityC.
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FIG. 5. Equatior(4) applied to the packings with different pack-

FIG. 4. Variation of average face number of Voronoi polyhedra )
ing density.

with packing density.

namic process of a packing in reality. This problem can bdng results of fine particles. It is also interesting to note that
overcome by DEM, which considers not only the gravity pbutWhen packing d_ensny increases from 0.573 to 0.605, there is
also the forces associated with granular materials. In fact, th@ sudden drop in parametar

present DEM simulation is specific to fine particles packed

under gravity. Therefore, different from the other simulation

algorithms, its packing density corresponds to particle size, a

real physical parameter, not simply the stage of simulation.

B. Metric properties

In this section, we investigate the variation of metric

As shown elsewherf9], the change of particle size actually Properties of Voronoi polyhedra, such as face perimeiigr (
represents the relative importance between the cohesive va#Cce area &), polyhedron perimeterR), polyhedron sur-
der Waals force and the gravity. For coarse particles, théace area §), and polyhedron volume\), with packing
gravity is dominant and the packing density is 0.605, thedensity C. For each property, we consider its d|str.|but|on
typical poured packing density under the gravity. GentleBnd average value). For the purpose of comparison, all
vibrating/tapping would increase packing density to 0.64, aglistributions are represented in terms>df(=x/(x)), the
measured by Finnejl4]. Therefore, it is not surprising that reduced metric element with its average value as a reference.
the present results are comparable to those obtained with tHé'e applicability of Lewis's and Desch’s laj4] will also
gravity as the dominant force but different from the resultsP& €xamined. _ _
Figure 7 shows the results for face area. It is obvious from
Aboav-Weaire's law, which was first proposed by Aboav Fig- 7(@ that the average face ared) decreases with pack-
[36] with the original aim of understanding the mechanisming density, approximately proportional © % There are

of the growth of polycrystals, describes the correlation befWo peaks in the distribution of face areas for a packifig.
7(b)]. The first one is very strong and realized what

from Ogeret al. [22].

tween neighboring polyhedra, given by

fm(f)=((f)—a)f+(f)a+ u,, (@ 12 08
where u,(=(f2)—(f)?) is the second moment of the distri- 10 o 4
bution of f, m(f) is the average number of faces in neigh- . 1 04
boring polyhedra, ana is the only unknown parameter in 8 r
the equation. This law has been found to be valid for various A a
2D packings[37] and can be predicted from maximum en- 3 6 0.0
tropy argumentg38]. There are also a few reports of 3D 1y =
networks to which this law is approximately applicafB®— 4+ o
41]. It can be seen from Fig. 5 that Aboav-Weaire's law is ° 1 .04
also applicable to every packing in the present work. Figure 2 L %
6 shows the values ofi, and a as a function of packing A
density. It is evident that g, increasesa decreases, which 0 L L L 0.8
is in agreement with the suggestion of Le €ard Delannay 0 0.2 0.4 0.6 08
[42]. In fact, Godrehe et al. [43] has reported thaju, .Packing (.iensityC. '

=10.5 anda~ —1 for their packing, which is largely arbi-
trarily built. It appears that their value is well connected with

FIG. 6. Parameterg, (¢) anda (A) in Aboav-Weaire’s law as

the present correlation betwegn anda, based on the pack- a function of packing density.
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FIG. 7. Face area of Voronoi polyhedra as a function of packing ®
densityC. (a) Average face are@units ofd?); (b) probability density FIG. 8. Face perimeter of Voronoi polyhedra as a function of
distribution. packing densityC. (a) Average face perimetéunits ofd); (b) prob-

. . . ability density distribution.
tends to zero. The second one is obtained at a higher value of

face area and varies wit@. In particular, this peak shifts age face area and perimeter, as observed in Figs. 7 and 8.

slightly towards higher face areas and gradually flattens out By definition, the average volume of polyhedi is in-

as the packing density decreases. For the packing @il versely proportional to packing densitZ, i.e., (V)

particles C=0.188), the peak vanishes completely. Figure 8= (1/6)7d®/C. The present results suggest that the average

shows that the average face perimeter decreases with packipgrimeter(P) and surface are&) of polyhedra are, respec-

density, whereL.«C~ % Unlike the face area distribution, tively, proportional toC~Y3 andC~23, as shown in Fig. 9.

the face perimeter distribution has only one strong peak thathis relationship was also found by Oggtral.[21] for their

becomes weaker and shifts slightly towards a higher fac@acking. However, as discussed above, the previous and

perimeter as packing density decreases. present results are quantitatively different as they are corre-
The change of the distribution of face area or perimeteksponding to different physical systems.

results from the change of proportion of “touching” particles  Two parameters have been found to be useful in relating

[45]. The area and perimeter of a Voronoi face between twahese average values, given by

touching particles must be greater than a certain minimum

value because of the physical constraint that two particles 36m(V)?

cannot overlap. As packing density decreases the number of 1= ()3

touching particlegcoordination numberdecreasef9]. This

causes a decrease in the height of the second peak in the famed

area distribution and the peak in the face perimeter distribu-

tion. On the other hand, the loose open-tree structure of fine K==

particles gives large face areas and hence an increased aver- 273

®
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FIG. 9. Average surface ar O, units ofd?) and perimeter . . . .
g €8 ( ) P function of packing densitg; lines are the results from E7).

(P) (A, units ofd) as a function of packing densify. The lines are,

respectively, given by (S)=4.007&"2?-0.6232 and (P) o ) _
=15.69 132 7488. ume distribution shifts more substantially to lower volumes

than that of the area distribution and the whole curve be-
comes more asymmetric with a quite long tail. As pointed
'out by Montoro and Abasc@l 2], the asymmetry observed is

72/3 . .
andK,C~“"is the average length per unit voluri6]. For 5 consequence of the fact that there is no upper limit for the
the RSA packings, Ogest al.[21] found thatK, andK; are  mayimum area or volume of a polyhedron, conversely, there

independent of packing density and approximately equal tQs 5 |ower limit because the area or volume of each polyhe-
about 0.75 and 14.3, respectively. However, our results shoy,qn myst be larger than a certain value to contain a particle.
that bothK, andK; vary with packing density. As shown in - £qr quantitative and general application, in the past vari-
Fig. 10,K, increases antl, decreases with packing density. 4,5 attempts have been made to fit the distribution of area
Our results are consistent with those obtained by Jodrey angh,j yolume of polyhedra using statistical distributions, such

Tary [35] who focused on th&,-C relation, and well con- 45 Gaussian, Gamma, and Maxwell distributifts 47—49.

nected with the face-centered cultfcc) packing, the theo-  thege distributions are either too complicated or unable to
retical maximum packing for monosized spheres. This trendhyide satisfactory results. As shown in Figs. 11 and 12,
indicates that as packing density or particle size decreasegg the area and volume distributions can be well described

the average shape of polyhedron in a packing is less spherl'b-y the log-normal distribution, given by
cal. ’

Figures 11 and 12 show the distributions of the reduced
polyhedron surfac&s* and volumeV*. Both distributions f(x*)=
become wider when particle size or packing density de-

K is known as the sphericity coefficient of a polyhedron

1
oo g SIS X w120,

creases. However, it is found that the peak value of the vol- (7
0.9 15.4 8 5
o C=0.605
A o C=0519
N & C=0427
08 1 15.0 > 6 I x C=0.188
s £
a =
a S
¥ 0.7 N o 1 14.6 = 5’
a ~ .g
a [u] AA g
06 o 1 142 [
a
(=]
A
0.5 ! : : 13.8 v s SO S
0 02 04 06 08 04 07 1 13 L6 19 22
Packing density Relative volume V*
FIG. 10. Dimensionless ratid$,; ((0) andK, (A) as a function FIG. 12. The relative volume distribution of Voronoi polyhedra
of packing densityC, wherel and A correspond to the fcc pack- as a function of packing density; lines are the results from Eq.
ing. (7).
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wherex®..., as the lower limit, is assumed to correspond to
the surface arear(d?) or volume (rd®/6) of a sphereyu is
theoretically related to the mean val(¢ and standard de-
viation o [50], here given by u=In{X)—Xmin)—IN(X))
—0?/2. Both(S) and(V) can be calculated from the knowl-
edge ofC. Figure 13 shows that also varies withC, de-
scribed by a simple linear equation. Therefore, for fine par- 0.95
ticles, the area and volume distributions of Voronoi

polyhedra can be well treated as a function of a single vari-

1.15

Ralative area S,*

able, i.e., packing densitg. 0.75 e
Lewis’s law[51] and Desch’s law52] are two empirical 0o 12 14 1 18 20 2 2A

relations which state thdtn three dimensionsthe average Number of faces f

volumeV; and surface are§; of f faced Voronoi polyhedra (b)

each vary linearly with, given, respectively, by . )
FIG. 14. The relationship betwedn) the volume andb) the

f—(f) area off-faced polyhedra and the number of faces for packings with

Vi=1+ K (8) different packing densitie€.
v
and Aboav-Weaire's law is exact. However, the present study
shows an opposite: Lewis’s law is not always valid even
f—(f) when Aboav-Weaire’s law is applicable.
Si=1t (©)
S

. IV. CONCLUSIONS
whereK, andKg are parameters dependent on packing den-

sity [22]. The two empirical laws have been observed in  We have reported the results of the statistics of Voronoi
many cellular network$37,53—-55. Oger et al. [21] have  polyhedron for the packing of fine particles, simulated by a
shown that the two equations are also applicable to theiDEM-based algorithm. Typical topological and metric prop-
RSA packings. Rivier and Lissowskb6] tried to use the erties have been quantified as a function of particle size or
maximum entropy method to show these linear relationshippacking density. Our results show the following.

maximize the entropy under some constraints. However, as (1) As packing density or particle size decreades,the
pointed out by Chiy57], this maximum entropy approach average face number of Voronoi polyhedra decreases, the
cannot derive or prove these laws. Actually, Drouffe anddistributions of face number and edge number become
Itzykson [54] showed that in 2D Lewis’s law is no more broader and more asymmetrity) the average perimeter and
valid when the number of edges>12. The present results area of polyhedra increase and the distributions of polyhe-
indicate that the above equations are only valid for largedron surface area and volume become more flat. Both distri-
particles with higher packing densitg>50 um, C>0.5), butions can be described by the log-normal distribution
as shown in Fig. 14. When particle diameter is less than 1@&hose parameters can all be related to packing dengiy;
um (C=0.427), significant deviation from linearity can be geometric ratiok; andK,, given by Eqgs(5) and (6), de-
found. Forted41] reported that Lewis's law is exact when creases and increases, respectively.
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(2) Different simulation algorithms represent different packing density; against the findings of Ogaral. [21,22
mechanisms of forming a packing of particles, and hencend Forteq41], although Aboav-Weaire's law is generally
different physical packing systems. Consequently, the topoapplicable to fine particles, Lewis’s law is not valid when
logical and metric properties depicted for the packing of finepacking density is low.
particles quantitatively differ from those reported in the lit-

erature for othe_r packing systems z_ilthough they all can be ACKNOWLEDGMENT
related to packing density. Conflicting results can also be
observed. For example, contrary to the results of Gxjexl. The authors are grateful to ARCAustralian Research

[21,22], the present results show thidt and K, vary with  Council for financial support of this work.
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