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Effect of nonstationarities on detrended fluctuation analysis
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Detrended fluctuation analys{®FA) is a scaling analysis method used to quantify long-range power-law
correlations in signals. Many physical and biological signals are “noisy,” heterogeneous, and exhibit different
types of nonstationarities, which can affect the correlation properties of these signals. We systematically study
the effects of three types of nonstationarities often encountered in real data. Specifically, we consider nonsta-
tionary sequences formed in three wai$:stitching together segments of data obtained from discontinuous
experimental recordings, or removing some noisy and unreliable parts from continuous recordings and stitch-
ing together the remaining parts—a “cutting” procedure commonly used in preparing data prior to signal
analysis;(ii) adding to a signal with known correlations a tunable concentration of random outliers or spikes
with different amplitudes; andiii) generating a signal comprised of segments with different properties—e.g.,
different standard deviations or different correlation exponents. We compare the difference between the scaling
results obtained for stationary correlated signals and correlated signals with these three types of nonstationari-
ties. We find that introducing nonstationarities to stationary correlated signals leads to the appearance of
crossovers in the scaling behavior and we study how the characteristics of these crossovers dégehe on
fraction and size of the parts cut out from the sigiial the concentration of spikes and their amplitu¢®she
proportion between segments with different standard deviations or different correlatio(d #melcorrelation
properties of the stationary signal. We show how to develop strategies for preprocessing “raw” data prior to
analysis, which will minimize the effects of nonstationarities on the scaling properties of the data, and how to
interpret the results of DFA for complex signals with different local characteristics.
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[. INTRODUCTION for heartbeat intervals is different for healthy and sick indi-
viduals [17,28 as well as for waking and sleeping states
In recent years, there has been growing evidence indica{23,33.

ing that many physical and biological systems have no char- To understand the intrinsic dynamics of a given system, it
acteristic length scale and exhibit long-range power-law coris important to analyze and correctly interpret its output sig-
relations. Traditional approaches such as the power-spectrunals. One of the common challenges is that the scaling ex-
and correlation analysis are suited to quantify correlations iponent is not always constafindependent of scaleand
stationary signal§l,2]. However, many signals that are out- crossovers often exist—i.e., the value of the scaling exponent
puts of complex physical and biological systems area differs for different ranges of scald47,18,23,59,6D A
nonstationary—the mean, standard deviation, and higher marossover is usually due to a change in the correlation prop-
ments, or the correlation functions are not invariant undeerties of the signal at different time or space scales, though it
time translation 1,2]. Nonstationarity, an important aspect of can also be a result of nonstationarities in the signal. A recent
complex variability, can often be associated with differentwork considered different types of nonstationarities associ-
trends in the signal or heterogeneous segmép&ichey  ated with different trendse.g., polynomial, sinusoidal, and
with different local statistical properties. To address thispower-law trendsand systematically studied their effect on
problem, detrended fluctuation analy$lBFA) was devel- the scaling behavior of long-range correlated signélks|.
oped to accurately quantify long-range power-law correlaHere we consider the effects of three other types of nonsta-
tions embedded in a nonstationary time sefig@gl]. This tionarities, which are often encountered in real data or result
method provides a single quantitative parameter—the scalinfjom “standard” data preprocessing approaches.
exponenta—to quantify the correlation properties of a sig-  (a) Signals with segments removédrst we consider a
nal. One advantage of the DFA method is that it allows thetype of nonstationarity caused by discontinuities in signals.
detection of long-range power-law correlations in noisy sig-Discontinuities may arise from the nature of experimental
nals with embedded polynomial trends that can mask the trueecordings, e.g., stock exchange data are not recorded during
correlations in the fluctuations of a signal. The DFA methodthe nights, weekends, and holiday#—53. Alternatively,
has been successfully applied to research fields such as DNdiscontinuities may be caused by the fact that some noisy
[3,5-14, cardiac dynamic$17—-37, human gaif38], me- and unreliable portions of continuous recordings must be dis-
teorology [39], climate temperature fluctuatiofgl0—42,  carded, as often occurs when analyzing physiological signals
river flow and dischargf43,44), neural receptors in biologi- [17-37. In this case, a common preprocessing procedure is
cal systemg¢45], and economicf46-58. The DFA method to cut out the noisy, unreliable parts of the recording and
may also help identify different states of the same systenstitch together the remaining informative segments before
with different scaling behavior—e.g., the scaling exponent any statistical analysis is performed. One immediate problem
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is how such cutting procedure will affect the scaling proper-For the correlated signals with superposed random spikes,
ties of long-range correlated signals. A careful considerationve find that the scaling behavior is a superposition of the
should be made when interpreting results obtained from scabcaling of the signal and the apparent scaling of the spikes.
ing analysis, so that an accurate estimate of the true correldVe analytically prove this superposition relation by introduc-
tion properties of the original signal may be obtained. ing asuperposition rule(iii) For the case of complex signals

(b) Signals with random spikea second type of nonsta- Comprised of segments with different local properties, we
tionarity is due to the existence of spikes in data, which isfmd that thglr scaling behavior is a superposition of the ;c.al—
very common in real life signalil7—39. Spikes may arise N9 of the different compongntg—egch compopent contalr_ung
from external conditions that have little to do with the intrin- Ol the segments exhibiting identical statistical properties.
sic dynamics of the system. In this case, we must distinguisfi 'US; to obtain the scaling properties of the signal, we need
the spikes from normal intrinsic fluctuations in the system'sCN!Y {0 €xamine the properties of each component—a much
output and filter them out when we attempt to quantify cor-SIMPIer task than analyzing the original signal.
relations. Alternatively, spikes may arise from the intrinsic | he layout of the paper is as follows: In Sec. II, we de-
dynamics of the system, rather than being an epiphenomendif'ioé how we generate signals with desired long-range cor-
of external conditions. In this second case, careful considef€lation properties and introduce the DFA method to quantify
ations should be made as to whether the spikes should JB€Se correlations. In Sec. Ill, we compare the scaling prop-
filtered out when estimating correlations in the signal, sincée'ti€s of correlated signals before and after removing some
such “intrinsic” spikes may be related to the properties of segments from the signals. In Sec.. IV, we consider the effect
the noisy fluctuations. Here, we consider only the simplef°’ random spikes on correlated signals. We show that the
case, namely, when the spikes are independent of the fluSUPerposition of spikes and signals can be explained by a
tuations in the signal. The problem is how spikes affect the?UPerposition rule derived in Appendix A. In Sec. V, we
scaling behavior of correlated signals, e.g., what kind oftudy signals comprised of segments with different local be-
crossovers they may possibly cause. We also demonstrate fgvior- We systematically examine all resulting crossovers,
what extent features of the crossovers depend on the statid1€ir conditions of existence, and their typical characteristics
tical properties of the spikes. Furthermore, we show how td’;\ssomat_ed with 'the_ dlff(-?rent types of nonstationarities. We
recognize if a crossover indeed indicates a transition fronfummarize our findings in Sec. VI.
one type of underlying correlations to a different type, or if
the crossover is due to spikes without any transition in the Il. METHOD
dynamical properties of the fluctuations.

(c) Signals with different local behavioA third type of
nonstationarity is associated with the presence of segmen
in a signal that exhibit different local statistical properties,

e.g., different local standard deviations or different local cor- (a) First, we generate an uncorrelated and Gaussian dis-

relations. Some examples |n'clude the foII0W|r(_g) 24-h tributed sequencey(i) and calculate the Fourier transform
records of heart rate fluctuations are characterized by sed- efficientsy(q)

ments with larger standard deviation during stress and physI- . . . . .
cal activity and segments with smaller standard deviation (b) The desired signal(i) must exhibit correlations that

during rest[19]; (b) studies of DNA show that coding and are defined by the form of the power spectrum
noncoding regiqns are'characterized .by diff_erent types of S(g)=(u(q)u(—q))~q =7, (1)
correlationg 5,8]; (c) brain wave analysis of different sleep

stages(rapid eye movement sleep, light sleep, and deefvhereu(q) are the Fourier transform coefficients ofi)
sleep indicates that the signal during each stage may havand y is the correlation exponent. Thus, we genenatg)
different correlation propertie$62]; (d) heartbeat signals using the following transformation:

during different sleep stages exhibit different scaling proper-

ties [33]. For such complex signals, results from scaling u(q)=[S(a)1"?5(q), 2)
analysis often reveal a very complicated structure. It is a

challenge to quantify the correlation properties of these sigihereS(q) is the desired power spectrum in Hd).

nals. Here, we take a first step toward understanding the (¢) We calculate the inverse Fourier transformugf)) to
scaling behavior of such signals. obtainu(i).

We study these three types of nonstationarities embedded We use the stationary correlated signgl) to generate
in correlated signals. We apply the DFA method to stationangignals with different types of nonstationarities and apply the
correlated signals and identical signals with artificially im- DFA method[3] to quantify correlations in these nonstation-
posed nonstationarities, and compare the difference in thary signals.
scaling results(i) We find that cutting segments from a sig-  Next, we briefly introduce the DFA method, which in-
nal and stitching together the remaining parts does not affeatolves the following step§3].
the scaling for positively correlated signals. However, this (i) Starting with a correlated signali(i), where i
cutting procedure strongly affects anticorrelated signals=1, ... Nmpax, @andNy,yis the length of the signal, we first
leading to a crossover from an anticorrelated regiae integrate the signai(i) and obtairy(k)EEik=1[u(i)—(u}],
small scalesto an uncorrelated regim@t large scales (i) where(u) is the mean.

Using a modified Fourier filtering methd®3], we gen-
Erate stationary uncorrelated, correlated, and anticorrelated
?gnalsu(i) (i=1,2,3 ... Ny wWith a standard deviation
o=1. This method consists of the following steps.
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We compare the results of the DFA method obtained from
the nonstationary signals with those obtained from the sta-
tionary signalu(i) and examine how the scaling properties
of a detrended fluctuation functida(n) change when intro-
ducing different types of nonstationarities.

600 800 1000

WA,(,Q: Il. SIGNALS WITH SEGMENTS REMOVED

0 . . . .

= W ,Awf% In this section, we study the effect of nonstationarity

= 40 ,A-vweﬂv‘&f ] caused by removing segments of a given length from a signal
-80 and stitching together the remaining parts—a “cutting” pro-

0 200 400 600 800 1000 cedure often used in preprocessing data prior to analysis. To
k address this question, we first generate a stationary correlated
FIG. 1. (a) The correlated signal(i). (b) The integrated signal  Signalu(i) (see Sec. )lof lengthN,,, and a scaling expo-
y(k)==K_,[u(i)—(u)]. The vertical dotted lines indicate a box of nent «, using the modified Fourier filtering methd®3].
sizen= 100, the solid straight line segments are the estimated lineaNext, we divide this signal intd\,,,,/W nonoverlapping
“trend” in each box by least-squares fit. segments of siz&V and randomly remove some of these
segments. Finally, we stitch together the remaining segments
(i) The integrated signay(k) is divided into boxes of in the signalu(i) [Fig. 2], thus obtaining a surrogate non-
equal lengtm. stationary signal, which is characterized by three parameters:
(i) In each box of lengtm, we fit y(k), using a polyno- the scaling exponent, the segment sizé/, and the fraction
mial function of orderl, which represents thizend in that ~ Of the signalu(i), which is removed.
box. They coordinate of the fit line in each box is denoted by ~ We find that the scaling behavior of such a nonstationary
y.(K) (see Fig. 1, where linear fit is usedsince we use a Signal strongly depends on the scaling exponentf the
polynomial fit of orderl, we denote the algorithm as DHA- original stationary correlated signal(i). As illustrated in

(iv) The integrated signal(k) is detrended by subtracting Fig. 2b), for a stationananticorrelatedsignal witha=0.1,
the local trendy,(k) in each box of lengt. the cutting procedure causes a crossover in the scaling be-

(v) For a given box size, the root-mean-squarems)  havior of the resultant nonstationary signal. This crossover
fluctuation for this integrated and detrended signal is calcuappears even when only 1% of the segments are cut out. At
lated: scales larger than the crossover scale the rms fluctuation
function behaves af(n)~n®% which means an uncorre-
lated randomness, i.e., the anticorrelation has been com-

B 1 max ) pletely destroyed in this regime. For all anticorrelated signals
F(n)= Nimax gl [y(K)=yn(k)]". @ with exponeniv<<0.5, we observe a similar crossover behav-

ior. This result is surprising, since researchers often take for
granted that a cutting procedure before analysis does not

(vi) The above computation is repeated for a broad rangehange the scaling properties of the original signal. Our
of scales(box sizesn) to provide a relationship between simulation shows that this assumption is not true, at least for
F(n) and the box size. anticorrelated signals.

A power-law relation between the average root-mean- Next, we investigate how the two parameters—the seg-
square fluctuation functioR (n) and the box siza indicates ment sizeW and the fraction of points cut out from the
the presence of scaling:(n)~n“. The fluctuations can be signal—control the effect of the cutting procedure on the
characterized by a scaling exponenta self-similarity pa-  scaling behavior of anticorrelated signals. For a fixed size of
rameter that represents the long-range power-law correlatioime segmentsW=20), we find that the crossover scalg
properties of the signal. &= 0.5, there is no correlation and decreaseswith the increasingfraction of the cut out seg-
the signal is uncorrelate@vhite noise; if «<<0.5, the signal ments[Fig. 2(c)]. Furthermore, for anticorrelated signals
is anticorrelated; ifa>0.5, the signal is correlatd®4]. with small values of the scaling exponente.g.,a=0.1 and

We note that for anticorrelated signals, the scaling expoe=0.2, we find thaih, and the fraction of the cut out seg-
nent obtained from the DFA method overestimates the truenents display an approximate power-law relationship. For a
correlations at small scal¢61]. To avoid this problem, one fixed fraction of the removed segments, we find that the
needs first to integrate the original anticorrelated signal androssover scalay increaseswith increasingsegment siz&V
then apply the DFA methofb1]. The correct scaling expo- [Fig. 2(d)]. To minimize the effect of the cutting procedure
nent can thus be obtained from the relation betweeand on the correlation properties, it is advantageous to cut
F(n)/n [instead ofF(n)]. In the following sections, we first smaller number of segments of larger side Moreover, if
integrate the signals under consideration, then apply DFA-Zhe segments that need to be removed are too ¢oge at a
to remove linear trends in these integrated signals. In order tdistance shorter than the size of the segmeiitsnay be
provide a more accurate estimate fn), the largest box advantageous to cut out both the segments and a part of the
sizen we use isN,,/10, whereN,, .« is the total number of signal between them. This will effectively increase the size
points in the signal. of the segmentV without substantially changing the fraction
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FIG. 2. Effects of the “cutting” procedure on the scaling behavior of stationary correlated sighals= 22° is the number of points in
the signalgstandard deviatioor= 1) andW is the size of the cut out segmenfa). A stationary signal with 10% of the points removed. The
removed parts are presented by shaded segments ofA&iz20 and the remaining parts are stitched togetfi®r.Scaling behavior of
nonstationary signals obtained from an anticorrelated stationary iggeling exponenk<<0.5) after the cutting procedure. A crossover
from anticorrelated to uncorrelated € 0.5) behavior appears at scale . The crossover scale, decreases by increasing the fraction of
points removed from the signal. We determimg based on the differenck between the logarithm df(n)/n for the original stationary
anticorrelated signalg=0.1) and the nonstationary signal with cut out segmemisis the scale at whiclA=0.04. Dependence of the
crossover scale,, on the fraction(c) and on the siz&V (d) of the cutout segments for anticorrelated signals with different scaling exponents

a. (e) Cutting procedure applied to correlated signats>0.5). In contrast tgb), no discernible effect on the scaling behavior is observed
for different values of the scaling exponemt even when up to 50% of the points in the signals are removed.

of the signal that is cut out, leading to an increase in thehe removed segmenfsee Figs. &) and 2d)], we observe
crossover scale, . Such a strategy would minimize the that n, increases with the increasing value of the scaling
effect of this type of nonstationarity on the scaling propertiesexponente, i.e., the effect of the cutting procedure on the
of the data. For small values of the scaling exponenfa scaling behavior decreases when the anticorrelations in the
<0.25), we find thah, andW follow power-law relation-  signal are weakerd closer to 0.5).

ships[Fig. 2(d)]. The reason we do not observe a power-law Finally, we consider the case of correlated signa(s)
relationship betweem, and W and betweem, and the with 1.5>a>0.5. Surprisingly, we find that the scaling of
fraction of cut out segments, for the values of the scalingcorrelated signals is not affected by the cutting procedure.
exponenta close to 0.5, may be due to the fact that theThis observation remains true independently of the segment
crossover regime becomes broader when it separates scalisige W—from very small W(=5) up to very largeW
regions with similar exponents, thus leading to an uncer{=5000) segments—even when up to 50% of the segments
tainty in definingn,, . For a fixedW and a fixed fraction of are removed from a signal witii,,,,~ 10° points[Fig. 2(e)].
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IV. SIGNALS WITH RANDOM SPIKES 12 (a) Signal (a=0-2- o=1)
In this section, we consider nonstationarity related to the 0
presence of random spikes in the data and we study the effect 12
of this type of nonstationarity on the scaling properties of 12 .

(b) Spikes: 5%, Asp=4

"'I||'Al el
AR T T

correlated signals. First, we generate surrogate nonstationary

signals by adding random spikes to a stationary correlated

signalu(i) [see Sec. Il and Figs(8-3(c)]. 2
We find that the correlation properties of the nonstation- 12 :

ary signal with spikes depend on the scaling exporewf (c) Sigpal + spikes

the stationary signal and the scaling exponeg} of the 0 WWWHWWWWM

spikes. When uncorrelated spikes,,=0.5) are added to a

[ T (-
T T

Signal
o

correlated or anticorrelated stationary sigffailgs. 3d) and 120 500 1000
3(e)], we observe a change in the scaling behavior with a ) 1
crossover at a characteristic scale. For anticorrelated sig- 10 ' '
nals (<0.5) with random spikes, we find that at scales (d) © Anti~corr. signal+spikes
smaller thann,, the scaling behavior is close to that ob- Anti—corr. signal F, )/n: @=0.2
served for the stationary anticorrelated signal without spikes, o :Plkes Fse(.n)/“r‘lj%’ Ayl Qf@\‘?f
while for scales larger than,, there is a crossover to ran- = uperposition rule e
dom behavior. In the case of correlated signals-(0.5) with >=~ :
random spikes, we find a different crossover from uncorre- 4
lated behavior at small scales, to correlated behavior at large 10™
scales with an exponent close to the exponent of the original
stationary correlated signal. Moreover, we find that spikes
with a very small amplitude can cause strong crossovers in 7 a,=05 |n,
the case of anticorrelated signals, while for correlated sig- 10'2100 '101 pps 0 10° 10°
nals, identical concentrations of spikes with a much larger n
amplitude do not affect the scaling. Based on these findings, .
we conclude that uncorrelated spikes with a sufficiently large 10 '
amplitude can affect the DFA results at large scales for sig- (€) o Correlated signak+spikes
nals with «<0.5 and at small scales for signals with Corr. signal F, (n)/n: 0=0.8
~05. 100 LT Spikes Fs?(p)/n: 5%, A=10 A
. . . —-—-- Superposition rule p i
To better understand the origin of this crossover behavior, = P e
we first study the scaling of the spikes orbee Fig. &)]. § P i
By varying the concentratiop(O<p=<1) and the amplitude = 100 | m(,/f//
As,, of the spikes in the signal, we find that for the general Y 77 0g=05
case when the spikes may be correlated, the rms fluctuation 7
function behaves as . s
107 ¢ 0=0.8
Fsp(n)/n=ko\/BASpn“SP, (4) 10° 10° 102 163 164 10°

wherek, is a constant and, is the scaling exponent of the
spikes.

Next, we investigate the analytical relation between the
DFA results obtained from the original correlated signal, the
spikes, and the superposition of signal and spikes. Since the FIG. 3. Effects of random spikes on the scaling behavior of
original signal and the spikes are not correlated, we can usgationary correlated signaléa) An example of an anticorrelated
a superposition rulgsee[61] and Appendix A to derive the ~ signalu(i) with scaling exponentr=0.2, Np,=2%, and stan-
rms fluctuation functionF(n)/n for the correlated signal dard deviationo=1. (b) A series of uncorrelated spikesxd,

with spikes, =0.5) at 5% randomly chosen positiofisoncentrationp=0.05)
and with uniformly distributed amplitudeg, in the interval
[F(n)/n]2=[F,,(n)/n]2+[Fsp(n)/n]2, (5) [—4,4]. (c) Superposition of the signals iria) and (b). (d)

Scaling behavior of an anticorrelated signgli) («=0.2) with

. spikes =1, =0.05, a.,=0.5). For n<ny, F(n)/n
where F,(n)/n and Fgy(n)/n are the rms fluctuation ~pF,,(n)/€:ffna, whpereF,,(n)/nSips the )scaling function of t(hg sig-
functions for the signal and the spikes, respectively,, u(i). Forn>n,, F(n)/n~Fgn)/n~n. (e) Scaling be-
To confirm this theoretical result, we calculate havior of a correlated signali(i)(«=0.8) with spikes A,
J[F ,(n)/n]>+[Fey(n)/n]* [see Figs. &) and 3e)] and =10, p=0.05, ay,=05). For n<n,, F(n)/n~F(n)/n
find that Eq.(5) is remarkably consistent with our experi- ~n@p», For n>n,, F(n)/n~F (n)/n~n“. Note that whena
mental observations. = a5,=0.5, there is no crossover.
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Using the superposition rule, we can also theoretically 15 (a) Signal with scgments of diff. o
predict the crossover scale, as the intercept between E o & ‘ wi% M‘”’W
F,(n)/n andFgy(n)/n, i.e., whereF,(ny)=Fg,(ny). We 2 ' Wm}* ‘_\‘ w -
find that 15 o=4— o=l o=01 W

0 590 1000
Ko | e asp) !
Nx = ( \/BAS pb_o) ! (6) (b) Anti—correlated signal: 0:<0.5 .
% of segments with W=20, 6,=4: i °©

since the rms fluctuation functions for the signal and | oo ‘
the spikes are F,(n)/n=bon* [61] and Fgy(n)/n £ ° 30% L8
=k0\/BASpn“sp [Eqg. (4)], respectively. This result predicts = = 95% Jo s
the position of the crossover depending on the parameters L80 et
defining the signal and the spikes. 58 CLet :

Our result derived from the superposition rule can be use- 10" /;/ .
ful to distinguish two casegi) the correlated stationary sig- . °°§°-1n= .
nal and the spikes are independéetg., the case when a 10 10 n 10
correlated signal results from the intrinsic dynamics of the s
system while the spikes are due to external perturbations 10 , )
and (i) the correlated stationary signal and the spikes are (c) Anti~correlated signal: ¢=0.1
dependente.qg., both the signal and the spikes arise from the 95% 7
intrinsic dynamics of the systemin the latter case, the iden-
tity in the superposition rule is not corresee Appendix A z

2

V. SIGNALS WITH DIFFERENT LOCAL BEHAVIOR 10

Next, we study the effect of nonstationarities on complex =-3%
patchy signals where different segments show different local o % s o s 700
behavior. This type of nonstationarity is very common in real % of segments with =4
world data[5,8,19,33,62 Our discussion of signals com- .
posed of only two types of segments is limited to two simple (d) Correlated signal: 0>0.5
casesia) different standard deviations aitld) different cor- . | % of segments with W=20, 6,=4: .4
relations. 10 0% 6

© 3% =09
] ° 30%
A. Signals with different local standard deviations § 10 £ 95%

Here we consider nonstationary signals comprised of seg- ,
ments with the same local scaling exponent, but different 10
local standard deviations. We first generate a stationary cor-
related signal(i) (see Sec. )lwith fixed standard deviation 10” & e s
o1=1. Next, we divide the signal(i) into nonoverlapping n

segments of siz&/. We then randomly choose a fractiprof
the segments and amplify the standard deviation of the signal FIG. 4. Scaling behavior of nonstationary correlated signals
in these segmentsr,=4 [Fig. 4a)]. Finally, we normalize with different local standard deviation&) Anticorrelated signal
the entire signal to global standard deviation=1 by  (@=0.1) with standard deviatiom;=1 and amplified segments
dividing the value of each point of the signal by with standard deviationr,=4. The size of each segment W
m_ =20 and the fraction of the amplified segmentpis0.1 from the
For nonstationaryanticorrelated signals @<0.5) with  total length of the signalNpa.=2%). (b) Scaling behavior of the
segments characterized by two different values of the star9nal in(@ for a different fractionp of the amplified segments
dard deviation, we observe a crossover at secale[Fig. (after normallzatlor_] of the globe str_;\ndard deviation to ynity
4(b)]. For small scales<n., , the behavior is anticorrelated crossover from anticorrelated behavnaf:éo_.l) at small scales to
with an exponent equal to the scaling exponenof the random behavior ¢=0.5) at large scales is observéd) Depen-

iqinal stati fi lated si N Eor | | dence of the crossover scatg, on the fractionp of amplified
original stationary anticorrelated signgli). For large scales segments for the signal i@). n, is determined from the difference

n>ny, W? f'nd 6_1 transition to rapdom bl_ahaVIOr with expo- A of log;d F(n)/n] between the nonstationary signal with ampli-
nent 0.5, indicating that the anticorrelations have been defeq segments and the original stationary signal. Here we choose
stroyed. The dependence of crossover soaleon the frac- A =0.04. (d) Scaling behavior of nonstationary signals obtained
tion p of segments with larger standard deviation is shown irfrom correlated stationary signals#k>0.5) with standard devia-
Fig. 4(c). The dependence is not monotonic becausepfor tion o;=1 for a different fraction of the amplified segments with
=0 and p=1, the local standard deviation is constants,=4. No difference in the scaling is observed, compared to the
throughout the signal, i.e., the signal becomes stationary angtiginal stationary signal.
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thus there is no crossover. Note the asymmetry in the value 6 (a) Si with seements of d1ff o
of ny—a much smaller value af,, for p=0.05 compared to g
p=0.95[see Figs. &) and 4c)]. This result indicates that | =09
very few segments with a large standard deviatmympared -6 =09 o N
. 6 T

to t_he rest_of the 5|gn}_alcan have a strong effect on th_e = (b) 90% component with 0,.=0.1
anticorrelations in the signal. Surprisingly, the same fraction £ o
of segments with a small standard deviatioampared to the 7
rest of the signaldoes not affect the anticorrelations up to -6 :

. 6 .
relatively Iarge_ scales. _ _ (¢) 10% component with 0,=0.9

For nonstationarycorrelated signals @>0.5) with seg- 01— h b " Wh

ments characterized by two different values of the standard '
deviation, we surprisingly find no difference in the scaling of -6 0 500 1060
F(n)/n, compared to the stationary correlated signals with i

constant standard deviatipRig. 4(d)]. Moreover, this obser-

vation remains valid for different sizes of the segmé#_\ts e (d) o Signal with segments of diff, a, W=20
and for different values of the fractiom of segments with {77 90% component with 0, =0.1
larger standard deviation. We note that in the limiting case of N (- 10% component with a:=0.9
very large values ofr, /o1, when the values of the signal in Superposition rule
the segments with standard deviati@ncould be considered = J
close to “zero,” the results in Fig. (d) do not hold and we § 10° ,=0.9 .
observe a scaling behavior similar to that of the signal in Fig. = ﬂ
5(c) (see following section )
10
B. Signals with different local correlations N

Next we consider nonstationary signals that consist of 104100 05 e i P i
segments with identical standard deviations=(1) but dif- n
ferent correlations. We obtain such signals using the follow-
ing procedure(1) generate two stationary signalg(i) and FIG. 5. Scaling behavior of a nonstationary signal with two
uy(i) (see Sec. )lof identical lengthN,,a, and with different  gitferent scaling exponentga) Nonstationary signaflength Ny,
correlations, characterized by scaling exponentsand a,; =22, standard deviatiowr=1), which is a mixture of correlated

(2) divide the signalsuy(i) and uy(i) into nonoverlapping segments with exponent; =0.1 (90% of the signaland segments
segments of siz&V; (3) randomly replace a fractiop of the  with exponenta,=0.9 (10% of the signal The segment size is
segments in signal,(i) with the corresponding segments of W=20, (b) the 90% component containing all segments with
u,(i). In Fig. 5a), we show an example of such a complex =0.1 and the remaining segmeritgith «,=0.9) are replaced by
nonstationary signal with different local correlations. In thiszero, (c) the 10% component containing all segments with
section, we study the behavior of the rms fluctuation function=0.9 and the remaining segmeritgith «;,=0.1) are replaced by
F(n)/n. We also investigateé=(n)/n separately for each Zero, (d) DFA results for the mixed signal ife), for the individual
component of the nonstationary sigralhich consists only components inb) and (c), and our prediction obtained from the
of the segments with identical local correlatipasid suggest ~ SUPerposition rule.
an approach, based on the DFA results, to recognize such
complex structures in real data. signal is small. This observation is pertinent to real data such
In Fig. 5(d), we present the DFA result on such a nonsta-as(i) heart rate recordings during sleep where different seg-
tionary signal, composed of segments with two differentments corresponding to different sleep stages exhibit differ-
types of local correlations characterized by exponents ent types of correlationg33], (i) DNA sequences including
=0.1 anda,=0.9. We find that at small scales the slope ofcoding and noncoding regions characterized by different cor-
F(n)/n is close toa; and at large scales the slope ap-relations[5,8,16, and(iii) brain wave signals during differ-
proachesa, with a bump in the intermediate scale regime. ent sleep staggd$2].
This is not surprising sincev;<a, and thusF(n)/n is To better understand the complex behavioF¢h)/n for
bound to have a small slope{) at small scales and a large such nonstationary signals, we study their components sepa-
slope (@,) at large scales. However, it is surprising that al-rately. Each component is composed only of those segments
though 90% of the signal consists of segments with scalingn the original signal that are characterized by identical cor-
exponenta;, F(n)/n deviates at small scalem410) relations, while the segments with different correlations are
from the behavior expected for an anticorrelated sigr{a) substituted with zerosee Figs. B) and 5c)]. Since the two
with exponenta, [see, e.g., the solid line in Fig(l®]. This  components of the nonstationary signal in Fig)%re inde-
suggests that the behaviorB{n)/n for a nonstationary sig- pendent, based on the superposition f&lg. (5)], we expect
nal comprised of mixed segments with different correlationghat the rms fluctuation functiorf-(n)/n will behave as
is dominated by segments exhibiting higher positive correla~/[F,(n)/n]?+[F,(n)/n]?, whereF,(n)/n andF,(n)/n are
tions even in the case when their relative fraction in thethe rms fluctuation functions of the components in Figb) 5
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and Hc), respectively. We find a remarkable agreement be- 10’ : .
tween the superposition rule prediction and the result of the (a) Components with
DFA method obtained directly from the mixed sigri&ig. anti—correlated segments
5(d)]. This finding helps us understand the relation between 0=0.1, W=20 ¥
the scaling behavior of the mixed nonstationary signal and its gl p=1 (stationary signal) s
s_ 10 o p=0.9 a°
components. = 257 o0
5 o p=0.5 Ao o

Information on the effect of such parameters as the scal- § ap=0.1 AAgn” Oo‘z
ing exponentsy; and «,, the size of the segmen®, and = Aggu‘joooo 0.5
their relative fractionp on the scaling behavior of the com- o | eéénoooo
ponents provides insight into the scaling behavior of the Bo00°
original mixed signal. When the original signal comes from : a=0.1
real data, its composition & priori unknown. A first step is 10° 10 1710 10t 1o
to “guess” the type of correlationgexponentsa; and ay) n
present in the signal, based on the scaling behavior of 10° , ,
F(n)/n at small and large scal¢Big. 5(d)]. A second step is (b) Components with
to determine the parametafg¢ andp for each component by 1 | correlated segments
matching the scaling result from the superposition rule with 0=09,W=20
the original signal. Hence in the following sections, we focus ~ . Pf(l);smmary signal)
on the scaling properties of the components and how they SQ_ 10 DP:O:S
change withp, @, andW. % » s p=01

1. Dependence on the fraction of segments B

First, we study how the correlation properties of the com- 107
ponents depend on the fractiprof the segments with iden-
tical local correlations. For components containing segments 10‘2100 o 7 i ~ o
with anticorrelations (&< «<0.5) and fixed sizeW [Fig. n
5(b)], we find a crossover to random behavier0.5) at
large scales, which becomes more pronounc¢slhift to FIG. 6. Dependence of the scaling behavior of components on

smaller scaleswhen the fractiorp decreasefFig. 6(a)]. At the fractionp of the segments with identical local correlations, em-
smallscales (<W), the slope o (n)/n is identical to that ~Phasizing data collapse amall scales. The segment size W
expected for a stationary signali) (i.e., p=1) with the =20 and the length of the componentsNs,a,=2. (&) Compo-
same anticorrelationsolid line in Fig. §a)]. Moreover, we nents containing antlcorrelate_d 'segm_eni?@.l) atsmall scales
observe a vertical shift i (n)/n to lower values when the (N<W). The slope offF(n)/n is identical to that expected for a
fraction p of nonzero anticorrelated segments decreases. wationary p=1) signal with the same anticorrelations. After res-
find that at small scales, after rescalifgn)/n by p, all ~ ¢ing F(m/n by p, at small S(I:ale; all curves collapse on the
curves collapse on the curve for the stationary anticorrela’[efiatj.rve for the stationary anticorrelated signi) Components con-

. . . . ining correlated segments € 0.9) atsmall scales i<W). The
signal u(i) [Fig. 6@]. Since at small scalesnEW) the slope of F(n)/n is identical to that expected for a stationany (

behavior ofF(n)/n does not depend on the segment ske =1) signal with the same correlations. After rescall@)/n by

this collapse indi,cates that the vertical_shifﬂ-‘l(m)/n i,S due Jp, at small scales all curves collapse on the curve for the station-
only to the fractionp. Thus, to determine the fractiom of ary correlated signal.

anticorrelated segments in a nonstationary sigmakture of
anticorrelated and correlated segments, Fi@]5we only  an identical fractiorp of anticorrelated segmenfBig. 6(a)].
need to estimate at small scales the vertical shift(n)/n  Thus, for a mixed signal where the fraction of correlated
between the mixed signéFig. 5(d)] and a stationary signal segments is not too smak.g.,p=0.2), the contribution at
u(i) with identical anticorrelations. This approach is valid small scales of the anticorrelated segmentE (n)/n of the
for nonstationary signals where the fractipf the anticor-  mixed signal[Fig. 5d)] may not be observed, and the be-
related segments is much larger than the fraction of the comavior (values and slopeof F(n)/n will be dominated by
related segments in the mixed sigiglg. 5a)], since only  the correlated segments. In this case, we must consider the
under this condition the anticorrelated segments can domisehavior ofF (n)/n of the mixed signal at large scales only,
nateF(n)/n of the mixed signal at small scalgsig. 5d)].  since the contribution of the anticorrelated segments at large
For components containing segments with positive correscales is negligible. Hence, we next study the scaling behav-
lations (0.5<@<1) and fixed siz&V [Fig. 5(c)], we observe jor of components with correlated segmentdaage scales.
a similar behavior foi=(n)/n, with collapse asmall scales For components containing segments with positive corre-
(n<W) after rescaling by/p [Fig. 6b)] (for a>1, there are lations and fixed sizaV [Fig. 5c)], we find that atlarge
exceptions with different rescaling factors, see Appendix B scales the slope d¥(n)/n is identical to that expected for a
At small scales the values &f(n)/n for components con- stationary signali(i) (i.e., p=1) with the same correlations
taining segments with positive correlations are much largefsolid line in Fig. 1a)]. We also observe a vertical shift in
compared to the values &f(n)/n for components containing F(n)/n to lower values when the fractigmof nonzero cor-
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10° : : need to rescal&(n)/n by yp(1—p) [see Fig. )]. Note
(a) Components with that there is a difference between the rescaling factors for
10 correlated segments components with anticorrelated and correlated segments at
Mﬁi’f&fgmary signal) s small [Figs. 6a)—6(b)] and large[Figs. 7a)—7(b)] scales.
B 10' We also note that for components with correlated segments
£ («>0.5) and sufficiently smalp, there is a different rescal-
= 10° ing factor of yp(1—p) in the intermediate scale reginisee
= Appendix B, Fig. 10.
; For components containing segments of white noige (
10 =0.5), we find no change in the scaling exponent as a func-
tion of the fractionp of the segments, i.eq=0.5 for the
10'2100 o 0 0 o 10° components at both small and large scales. However, we ob-
n serve at all scales a vertical shift iF(n)/n to lower values
o with decreasing:  F(n)/n~/p.
(b) Components with
anti—correlated segments gg@ 2. Dependence on the size of segments
s: :‘ ;)(.)gzv =20 gaﬂ Next, we study how the scaling behavior of the compo-
B L o p=0.84 BSEA nents depends on the size of the segmeit&irst, we con-
é 10 2 p=0.36 00@3@ 0.5 sider components containing segments with anticorrelations.
B oooooggg For a fixed value of the fractiop of the segments, we study
§ c,ooooo<>o°°0°|jDgﬁ2 how F(n)/n changes withV. At small scales, we observe a
= 000 oat behavior with a slope similar to that for a stationary signal
ST @ 08 e u(i) with identical anticorrelationgFig. 8a)]. At large
s sans” scales, we observe a crossover to random behéiponent

¢ a=0.5) with an increasing crossover scale whéhin-
creases. At large scales, we also find a vertical shift with
increasing values ofF (n)/n whenW decreases$Fig. 8a)].

FIG. 7. Dependence of scaling behavior of components on thé/loreover, we find that there is an equidistant vertical shift in
fraction p of the segments with identical local correlations, empha-F(n)/n when W decreases by a factor of 10, suggesting a
sizing data collapse darge scales. The segment sizeWé=20 and  power-law relation betweeR(n)/n andW at large scales.
the length of the components Kimq,=2%. (&) Components con- For components containing correlated segments with a
taining correlated segments€0.9) atlarge scales 4>W). The  fixed value of the fractiop we find that in the intermediate
slope of F(n)/n is identical to that expected for a stationay ( gqgle regime, the segment si#éplays an important role in
=1) signal with the same correlations. After rescalif(@)/n by p, the scaling behavior df (n)/n [Fig. 8(b)]. We first focus on
at large scales all curves collapse on the curve for the stationa%e intermediate scale regime when bqik=0.1 and W
correlated signal(b) Components containing anticorrelated seg- =20 are fixedmiddle curve in Fig. &)]. We fina that for a
ments @=0.1) atlarge scales (>W). There is a crossover to . ) ’
random behavior ¢=0.5). After rescaling=(n)/n by p(1—p), small fractionp of the correlated segments(n)/n has slope
all curves collapse at large scales. a=_0.5, |nd|cat_|ng random behawo_[Flg. 8_(b)], which

shrinks whenp increasegsee Appendix B, Fig. 10 Thus,

for components containing correlated segmeR{$))/n ap-
related segments in the component decreases. We find thgfoximates at large and small scales the behavior of a sta-
after rescaling=(n)/n by p, at large scales all curves col- tionary signal with identical correlationsy& 0.9), while in
lapse on the curve representing the stationary correlated sighe intermediate scale regime there is a plateau of random
nal u(i) [Fig. 7(@]. Since at large scalesi$W), the effect  pehavior due to the random “jumps” at the borders between
of the zero segments of si2¥ on the rms fluctuation func- the nonzero and zero Segme[ff'm‘]_ 5(0)] Next, we consider
tion F(n)/n for components with correlated segments is negthe case when the fraction of correlated segmeritsfixed
ligible, even when the zero segments are 50% of the compauhile the segment siz&/ changes. We find a vertical shift
nent[see Fig. @], the finding of a collapse at large scales wijth increasing values foF(n)/n when W increaseqFig.
indicates that the vertical shift Iﬁ(n)/n is Only due to the 8(b)], as opposed to what we observe for components with
fractionp of the correlated segments. Thus, to determine th@nticorrelated segmeniiig. 8a)]. Since the vertical shift in
fraction p of correlated segments in a nonstationary signah:(n)/n is equidistant wherW increases by a factor of 10,
(which is a mixture of anticorrelated and correlated segmentgyy finding indicates a power-law relationship between
[Fig. 5@]), we only need to estimate at large scales ther(n)/n andW.
vertical shift inF(n)/n between the mixed signfFig. 5(d)]
and a stationary signal(i) with identical correlations.

For components containing segments with anticorrela-
tions and fixed siz&V [Fig. 5b)], we find that at large scales
in order to collapse thE(n)/n curves o>W) [Fig. 6(@] we

10° 10" 10

3. Scaling expressions

To better understand the complexity in the scaling behav-
ior of components with correlated and anticorrelated seg-
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10’ : : : : Similarly, at large scales>W, we find that the contribu-
(a) Components with tion of F 4, n)/n is negligible[see Fig. 7a)], thus from Eq.
anti—correlated segments (7) we have
\ 0=0.1, p=0.1
_ 100 ¢ Zg:;go F(n)/n=Fc{n)/n~bgpn®. 9
§ & W=2 However, in the intermediate scale regime, the contribution
§10-1 of FiandN)/N to F(n)/n is substantial. To confirm this we
Lo use the superposition rulgeq. (7)] and our estimates for
882 000050 Feon(n)/n at small[Eqg. (8)] and large[Eq. (9)] scaleq65].
. o 6 6a08882° The result we obtain from
107 ¢ 0=0.1
10° 100 100 100 10°  10° Frano(ﬂ)/ﬂ=\/[F(n)/n]z—[bo\/gﬂa]z—[|Oopnc’]2
n (10
10° ‘ overlaps withF(n)/n in the intermediate scale regime, ex-
(b) Components with hibiting a slope of~0.5: F 4 dN)/n~n%® [Fig. 9a)].
1 ggg‘;lati‘(i) Segments 5 Thus, FrandN)/n is indeed a contribution due to the random
L S w'=’218(_) : 28 ] jumps between the nonzero correlated segments and the zero
° W=20 ; 2 segments in the compondsee Fig. &c)].
£ o L s W=2 /{dﬁzy}g‘;ﬂg ] Further, our results in Fig.(B) suggest that in the inter-
E':« 5 ’ mediate scale regime;(n)/n~W9(®) for fixed fractionp
(see Sec. VBR where the power-law exponegt(a) may
be a function of the scaling exponeat characterizing the
correlations in the nonzero segments. Since at intermediate
scalesF ,,{n)/n dominates the scalinpeq. (10) and Fig.
9(a)], from Eq.(7) we findF 4,dn)/n~F(n)/n~W%{=) We

10* 10°

also find that at intermediate scal&g,n)/n~+p(1—p) for

fixed segment siz8V (see Appendix B, Fig. 10 Thus from
FIG. 8. Dependence of the scaling behavior of components ofEq. (7) we find F,,{n)/n~F(n)/n~p(1—p). Hence we

the segment siz@/. The fractionp= 0.1 of the nonzero segments is obtain the following general expression:

fixed and the length of the componentsNs,,,=2°. (a) Compo-

nents containing anticorrelated segments=0.1). At large scales FrandN)/Nn~h(a)yp(1— p)Wgc(“)n°'5. (11

(n>W), there is a crossover to random behaviar=0.5). An

equidistant vertical shift iff (n)/n whenW decreases by a factor of Here we assume thé&t.,,{n)/n also depends directly on the

10 suggests a power-law relation betwégm)/n andW. (b) Com-  type of correlations in the segments through some function

ponents containing correlated segmenis=0.9). At intermediate  h(a).

scales,F(n)/n has slopex=0.5, indicating random behavior. An To determine the form ofi.(«) in Eq. (11), we perform

equidistant vertical shift ifF(n)/n suggests a power-law relation the following steps.

betweenF(n)/n andW. (a) We fix the values op and «, and from Eq.(10) we

calculate the value df,,,{n)/n for two different values of

ments at different scales, we employ the superposition rulghe segment siz#, e.g., we chooskV; =400 andW,= 20.

(see[61] and Appendix A. For each component we have (b) From the expression in E¢L1), at the same scatein

the intermediate scale regime, we determine the ratio

F(n)/n=\[Fcor{nM)/N]?+[Frandn)/n]?, (7)
Frand W)/ F rand Wa) = (W3 /W) 9e ). (12
whereF .,(n)/n accounts for the contribution of the corre- (©) We plot FandWs)/FrandW,) Vs @ on a linear-log

lated or anticorrelated nonzero segments Bpg{n)/n ac-  scale[Fig. 9(b)]. From the graph and E¢12) we obtain the
counts for the randomness due to “jumps” at the bordersjependence

between nonzero and zero segments in the component.

Components with correlated segmefas>0.5). At small IN[Fand WO)/F rand Wo) ]
scalesn<W, our findings presented in Fig(l§ suggest that Oe(a)= In(W; /W,)
there is no substantial contribution frof,,{n)/n. Thus
from Eq.(7), Ca—C/2, 05<a<1
= (13
0.50 for a>1,
F(n)/n~F{(n)/n~by\/pn, (8

whereC=0.87+0.06. Note thag.(0.5)=0.
where bgn® is the rms fluctuation function for stationary = To determine ifF ,,{n)/n depends or(«a) in Eq. (11),
(p=1) correlated signalgEq. (6) and[61]]. we perform the following steps.
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FIG. 9. (a) Scaling behavior of components containing corre-
lated segmentsa(>0.5). F(n)/n exhibits two crossovers and three

PHYSICAL REVIEW & 041107

[Fig. 9b)] for all values of the scaling exponent &
<1.5. From this overlap and from Eq&l2) and (14), we
obtain

h(a)

_ (@)
hog "V

W9c(@) = (15)

for every value ofa, suggesting thal(«)=const and thus
FrandN)/n can finally be expressed as

Franc(n)/nw \ p(l_ p)VVgC(“)nO'S.

Components with anticorrelated segme(#s<0.5). Our
results in Fig. 6a) suggest that at small scalescW there is
no substantial contribution df,,{Nn)/n and that

(16)

F(n)/n%Fcorr(n)/nAabo\/Bn“, a7

a behavior similar to the one we find for components with
correlated segmenf&q. (8)].

In the intermediate and large scale regimes{V), from
the plots in Figs. ®) and 8a) we find that the scaling be-
havior of F(n)/n is controlled byF,,,{Nn)/n and thus

F(n)/n~=F 4,dn)/n~+/p(1—p)Wa(@n0s,

whereg,(a)=Ca— C/2 for 0<«a<0.5[see Fig. ®)], and
the relation forF,,{Nn)/n is obtained using the same proce-
dure we followed for Eq(16).

(18

VI. CONCLUSIONS

scaling regimes at small, intermediate, and large scales. From the

superposition rul¢Eqg. (7)] we find that the small and large scale
regimes are controlled by the correlatiors<0.9) in the segments
[Feordn)/n from Egs.(8) and (9)] while the intermediate regime
[Frandn)/n~n°%from Eq.(10)] is dominated by the random jumps
at the borders between nonzero and zero segméntShe ratio
Frand W1 =400)/F ,{ W,=20) in the intermediate scale regime for
fixed p and different values otr, and the ratioF ,,{ @)/F and @
=0.5) for fixedp andW=W, /W, . F.,,{n)/n is obtained from Eq.
(10) and the ratios are estimated for all scalds the intermediate

In this paper we studied the effects of three different types
of nonstationarities using the DFA correlation analysis
method. Specifically, we consider sequences formed in three
ways: (i) stitching together segments of signals obtained
from discontinuous experimental recordings, or removing
some noisy and unreliable segments from continuous record-
ings and stitching together the remaining pafts; adding
random outliers or spikes to a signal with known correla-
tions, and(iii) generating a signal composed of segments

regime. The two curves overlap for a broad range of values for thgyith different properties, e.g., different standard deviations

exponenta, suggesting thaF,,{n)/n does not depend oh(«)
[see Eqgs(11) and(16)].

(a) We fix the values op andW and calculate the value of
Frandn)/n for two different values of the scaling exponent
a, e.g., 0.5 and any other value affrom Eq. (10).

(b) From the expression in E@L1), at the same scalein
the intermediate scale regime, we determine the ratio

h(a)
h(0.5

Frand @) . h(a)
Frand 0.5 h(0.5)

Wgc(a)fgc(o-s): Wgc(a),

(14

sinceg.(0.5)=0 from Eq.(13).

(c) We plotF and @)/Fand 0.5) vsa on a linear-log scale
[Fig. 9(b)] and find that whemWW=W, /W, [in Egs.(12) and
(14)] this curve overlaps WithF nd W1)/Frand Ws) VS @

or different correlations. We compare the difference between
the scaling results obtained for stationary correlated signals
and for correlated signals with artificially imposed nonsta-
tionarities.

(i) We find that removing segments from a signal and
stitching together the remaining parts does not affect the
scaling behavior of positively correlated signals &&®
>0.5); even when up to 50% of the points in these signals
are removed. However, such a cutting procedure strongly
affects anticorrelated signals, leading to a crossover from an
anticorrelated regiméat small scalesto an uncorrelated re-
gime (at large scaleés The crossover scale, increases with
increasing value of the scaling exponentfor the original
stationary anticorrelated signal. It also depends both on the
segment size and the fraction of the points cut out from the
signal: (1) ny decreases with the increasing fraction of cut
out segments an(?) n, increases with increasing segment
size. Based on our findings, we propose an approach to mini-
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mize the effect of the cutting procedure on the correlationverena Schulte-Frohlinde for reading the manuscript and for
properties of a signal: When two segments that need to bkelpful suggestions.

removed are on distances shorter than the size of the seg-

ment, it is advantageous to cut out both the segments and the APPENDIX A: SUPERPOSITION RULE

part of the signal between them. )

(i) Signals with superposed random spikes. We find that Here we show how the DFA results for any two signials
for an anticorrelated signal with superposed spikes at smafind g [denoted as=¢(n) and F4(n)] relate with the DFA
scales, the scaling behavior is close to that of the stationar?SUIt for the sum of these two signals-g [denoted as
anticorrelated signal without spikes. At large scales, there i§+¢(n), Wheren is the box length(scale of analysig. In
a crossover to random behavior. For a correlated signal witfhe general cases, we fiffl;—Fg[<F¢, ;<F+Fy. When
spikes, we find a different crossover from uncorrelated bethe two signals are not correlated, we find that the following
havior at small scales to correlated behavior at large scalegiperposition rulés valid: Ff, ;=Ff{+Fg. Here we derive
with an exponent close to the exponent of the original stathese relations.
tionary signal. We also find that the spikes with identical First we summarize again the procedure of the DFA
density and amplitude may have a strong effect on the scamethod[3]. It includes the following steps: starting with an
ing of an anticorrelated signal while they have a muchoriginal signalu(i) of length N, we integrate and obtain
smaller or no effect on the scaling of a correlated signal—y(k)=2}‘:l[u(j)—(u)], where (u) is the mean ofu(i).
when the two signals have the same standard deviations. Wiéext, we dividey(k) into nonoverlapping boxes of equal
investigate the characteristics of the scaling of the spiketengthn. In each box we fit the signal(k) using a polyno-
only and find that the scaling behavior of the signal withmial functiony,(k) =ag+a;x(k) +a,x?(k) + - - - +ax3(k),
random spikes is a superposition of the scaling of the signavherex(k) is thex coordinate corresponding to tléh sig-
and the scaling of the spikes. We analytically prove this sunal point. We calculate the rms fluctuation functiéiin)
perposition relation by introducing superposition rule = \/(1/Nmax)EEL“i‘*[y(k)—yn(k)]z.

(iif) Signals composed of segments with different local -

To prove the superposition rule, we first focus on one

properties. We find the following. ) ) particular box along the signal. In order to find the analytic
(a) For nonstationary correlated signals comprised of Se0axpression of best fit in this box, we write

ments that are characterized by two different values of the
standard deviation, there is no difference in the scaling be- n
havior compared to stationary correlated signals with con-  I(ag, ...,a5)= 2 {y(k)—[ag+ - - - +axS(k)]}?,
stant standard deviation. For nonstationary anticorrelated sig- -
nals, we find a crossover at scalg . For small scales (A1)
<n, the scaling behavior is similar to that of the stationary\yhere a,,,m=0, . .. s, are the same for all points in this
anticorrelated signals with constant standard deviation. FO§ox The “best fit” requires thad,,,m=0, . .. s satisfy
large scalesi>n, , there is a transition to random behavior.
We also find that very few segments with large standard al
deviation can strongly affect the anticorrelations in the sig- Efoy m=0,...s. (A2)
nal. In contrast, the same fraction of segments with standard
deviation smaller than the standard deviation of the rest o€ombining Eq(A1) with Eq.(A2) we obtains+ 1 equations
the anticorrelated signal has much weaker effect on the scal-
ing behavior— is shifted to larger scales. Ym=aotmotaitmit - tastms, mM=0,...5,

(b) For nonstationary signals consisting of segments with (A3)
different correlations, the scaling behavior is a superposition

) . where

of the scaling of the different components—where each com-
ponent contains only the segments exhibiting identical corre-

lations and the remaining segments are replaced by zero. ! - ,

Based on our findings, we propose an approach to identify ym:kzl y(k)x"(k), tmi:kz1 x™(k), j=0,...s.
the composition of such complex signals: A first step is to (A4)
“guess” the type of correlations from the DFA results at

small and large scales. A second step is to determine therom Egs.(A3) we determineng,ay, . . . ,as.

parameters defining the components, such as the segmentFor the signals, g, andf + g, after the integration in each
size and the fraction of nonzero segments. We studied holwox we have

the scaling characteristics of the components depend on

these parameters and provide analytic scaling expressions. fm=aotmoT @1tmi+ - - - T Astms, M

0,...5,
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wheref,, g9,,, and f+qg),, correspond ty,, in Egs.(A3). ' .

Comparing the three groups of equations in E4S), we 10° Sgrﬁﬁg;%néigggms .0
find that when we add the first two groups together, the left o a=1.2, W=20 OOCD’DD
side become$,+g,,= (f+9),, which is precisely the left Ei ° p=0.9 00,8 0%

i i ; ; a o p=0.5 0%,a7,%
side of the third group of equations. Thus we find 8 00 0,8
FL 10 s p=0.1 OOEEEAA
~ opR
= qEBs
al=ap+al,, m=0,...s (AB) = 1.2%%5
= - 4] .
and for each poink in every box, the polynomial fits for the EE 10 8 g®
signalsf, g, andf + g satisfy
10_3 0 1 2 3 4 5
(F+9)n(k)=f(K)+gn(k). (A7) 10 10 10 10 10 10

This result can be extended to all boxes in the signals. For

. : FIG. 10. Dependence of the scaling behavior of components on
the signalf + g we obtain P g P

the fractionp of the segments with strong positive correlatioas (
=1.2). The segment size i&/=20 and the length of the compo-

Nmax

5 1 ) ) nents isN,,,= 22°. After rescalingF (n)/n by yp(1—p), all curves
Fiio=N kZl [f(k)—fn(k)]°+[g(k) —gn(k)] collapse at small scales £ W) with slope 1.2 and at intermediate
max K=

scales with slope 0.5. The intermediate scale regime shrinks hen

+2[f(k)—f(k)][g(k)—gn(k)]. (Ag)  increases.

After the substitutions f(k)—f,(k)=Y(k) and g(k)
—0n(k) =Y4(k), we rewrite the above equation as

the third term in Eq(A9) is close to zero and we obtain the
following superposition rule:

Ff =Ff+Fe. (A12)

Nmax Nmax
> [Yi(K)12+ 2 [Yg4(k)]12
k=1 k=1

o)
9
Nimax APPENDIX B: STRONGLY CORRELATED SEGMENTS

N
- For components containing segments with stronger posi-
+2k21 Yi(k)Yg(k) :Ff2+F§ tive correlations ¢>1) and fixedW=20, we find that at
small scales f<W), the slope ofF(n)/n does not depend
Nmax on the fractiorp and is close to that expected for a stationary
+ N ax gl Yi(K)Yg(k). (A9)  signalu(i) with identical correlationgFig. 10. Surprisingly

we find that in order to collapse thg(n)/n curves obtained
In the general case, we can utilize the Cauchy inequalitfor different values of the fractiop, we need to rescale
F(n)/n by \p(1—p) instead of\/p, which is the rescaling

Nmax Nmax 12/ Npax 1/2 factor at small scales for components containing segments
> Y(K)Yq(K) << > [Yf(k)]Z) ( >0y (k)]z) with correlationsa<1. Thusa=1 is a threshold indicating
k=1 g k=1 =R when the rescaling factor changes. Our simulations show that

this threshold increases when the segment ¥izacreases.
For components containing a sufficiently small fractfon

of correlated segments(0.5), we find that in the interme-

diate scale regime there is a crossover to random behavior

with slope 0.5. TheF(n)/n curves obtained for different

values ofp collapse in the intermediate scale regime if we

rescaleF(n)/n by vp(1—p) (Fig. 10. We note that this

sn K= 30 K. Th btain > Nmeny (k random behavior regime at intermediate scales shrinks with
k:'ﬁy( )=Zk=1Yn(K)- us we obtain X TY(K)  the increasing fractiop of correlated segments and, as ex-

=3, "Y4(k) =0, whereY;(k) andYy(k) fluctuate around pected, forp close to 1 this regime disappeaisee thep

zero. WhenY (k) andY (k) are not correlated, the value of =0.9 curve in Fig. 1

(A10)
and we find

(Fi—Fg)?<Ff, y<(F1+Fg)?=|F(—Fg|<F{,g<F+Fq.
(A11)
From Egs. (A3) for m=0, in every box we have
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