
PHYSICAL REVIEW E, VOLUME 65, 041104
Diffusion of a nearly spherical deformable body in a randomly stirred host fluid
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The motion of a deformable body is investigated for cases in which the body is immersed in an incompress-
ible fluid that is randomly stirred. Sticking to physical situations in which the body departs only slightly from
its spherical shape, we show that the motion of its center is decoupled from its deformation degrees of freedom.
We study the general case in which the velocity field, imposed on the system, is correlated both in space and
time. We derive the mean-squared displacement of the body for the general random velocity field, and consider
several useful cases including: white-noise flow, turbulence-like flow, and thermal agitation.
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I. INTRODUCTION

Systems of deformable objects immersed in a liquid
very common in every day life. Milk and blood, for exampl
are such composite systems. Milk can be viewed as an e
sion of fat globules in water while blood is a suspension
cells~that have some rigidity! in water. The physical descrip
tion of the set of objects present in a given liquid involv
the location of the objects, their shape, and in some case
strains on the objects or any other fields that are neede
describe the objects in addition to their location and sha
The actual solution of such systems is extremely diffic
because each object interacts with itself and with the o
objects via hydrodynamic interactions. Hence, we are fac
a many-body problem with the additional complication, th
each object is not described by a single degree of freed
~its center of mass! but actually by an infinite number o
degrees of freedom, where all the deformation degree
freedom, corresponding to all the objects, interact. The s
ation is simplified a little if the deviation of the objects fro
spherical shape remains small@1,2#. This happens when th
agitation of the host liquid is not too strong and when t
density of the objects is not too high~close packing would
cause finite deformations, although perhaps still treata
within the small deformation approximation!. Our final goal
is to obtain the response of the composite system to a g
velocity field imposed on the liquid. The velocity field w
have in mind may be fixed in time like simple shear or ra
domly fluctuating in time and space. Even in the first ca
the velocity field experienced by each object separately m
have a random part due to the random passage of othe
jects nearby. The present paper is the first in a series
deals with this general problem and it concentrates, wit
the small deformation approximation, on the diffusion of t
center of mass of a deformable body in the presence
random external velocity field, imposed on the liquid. T
plan is to replace the externally imposed random veloc
field affecting a single deformable body by a self-consist
random velocity field, that takes into account the fields g
erated by other deformable objects. It is possible to cons
the center of mass separately from the deformation deg
of freedom, that will be discussed in a future publicatio
because as will be shown in the following, they are dec
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pled in the small deformation approximation. We study t
mean-square displacement~MSD! of an object as a function
of time for a general random velocity field that has giv
correlations in space and time. For long periods of time
MSD is usually linear in time, enabling us to discuss it
terms of a diffusion constant that depends on the size of
object, R, and the correlations present in the liquid. The
are, of course, cases where the MSD does not behave line
at long times and the method we develop here is quite
pable of dealing with those cases too. Our main concern i
objects in which the state of lowest energy is of spheri
shape. This is the case for deformable objects dominated
surface tension@3#. Our results concerning the motion of th
center of the object will hold also for cases where the sh
of lowest energy is nearly spherical~for example, a body
with bending energy@4,5# and spontaneous curvature clo
to that of a sphere with the same volume!.

Of particular interest is the case of thermal agitatio
Namely, we calculate velocity correlations of the veloc
field in a liquid at thermal equilibrium and then obtain th
MSD within our general formulation. That problem was di
cussed in the past using the Kirkwood equation for the jo
distribution of the deformations and the center of mass w
out any consideration of the velocity correlations@6#.

The paper is organized in the following way: In Sec.
we define the system under consideration, discuss its pro
ties, and construct the basic equations. In Sec. III, we de
the equation of motion for the center and the MSD in integ
and differential forms. In Sec. IV, we discuss the results a
demonstrate their use for different kinds of noise reali
tions. The specific case of thermal agitation is considered
Sec. V. In Appendix A, we construct the velocity correlatio
for the case of thermal agitation and in Appendix B, w
consider the physical conditions under which the small
formation approximation is valid.

II. THE SYSTEM

Consider a single deformable body immersed in a h
fluid. The system is chosen to have the following charac
istics:

~1! The host fluid and the material of body are incom
pressible. Consequently a velocity fieldvW (rW) can be defined
©2002 The American Physical Society04-1
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throughout the system obeying¹W •vW 50. An example is a
droplet of one liquid immersed in a different liquid but man
other examples exist.

~2! The body is characterized by an energy that depe
on its shape. The shape of minimum energy is a sphere.
surface of the body is described by the equation:c(rW)50
wherec(rW) is a scalar three-dimensional field~Fig. 1!. ~Al-
though our derivation considers only objects for which t
shape of minimum energy is a sphere, all the conclusi
concerning the MSD carry over to cases where the shap
minimum energy is nearly spherical.!

~3! We consider a system that is linear in the followin
sense: The velocity field induced by a linear superposition
force densities is given by the linear superposition of
velocity fields introduced by each force density separately
very common example is a system described by the Nav
Stokes equation in the regime of a low Reynolds number
such a case, the Stokes approximation, in which the equa
for the velocity is linear, applies. The use of the linearity
our case is to express the total velocity fieldvW total(rW) as the
sum of vW ext(rW), the velocity field introduced by externa
sources, andvW c(rW) the velocity field induced by the defor
mation.

~4! The external velocity,vW ext , is random and is chosen t
have zero average and known correlations. It is convenien
define the external velocity in terms of its spatial Four
transform as

vexti
~qW ![(

j
S d i j 2

qiqj

q2 D uj~qW !, ~1!

whereuW (qW ) is a general vector field and the subscripts den
Cartesian components. This definition implies only that
fluid is incompressible and in any other way is general. Ne
invariance under translations in space and time and un
rotations yields the form of the correlations of the velocit

^ul~qW ,t !&50 and

FIG. 1. The deformable body is described by a thre

dimensional scalar fieldc(rW). The interior is the region wherec
,0, the exterior is the region wherec.0, and the outer surface o

the body is the locus of the points obeyingc(rW)50.
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^ul~qW ,t1!um~pW ,t2!&5d lmd~qW 1pW !f~q,ut22t1u!, ~2!

whered lm is the Kronecker delta andd() is the Dirac delta
function, andf is a general function ofq andut22t1u. If the
random velocity field is characterized by a length scale an
characteristic time scale then it is convenient to write it
f(jq,ut22t1u/t), wherej andt are, respectively, the corre
lation length and the memory time scale of the external
locity.

~5! The surface elements of the body are carried by
host fluid @7#, i.e., each surface point moves according to

rẆ5vW ext~rW !1vW c~rW !. ~3!

~6! We assume that the external velocity is weak enou
to cause only minor shape fluctuations of the body.

We will be interested in the following in the mean
squared displacement~MSD! of the center. Since the body i
deformable the definition of its center is not unique. F
periods of time shorter thant the result depends on the defi
nition of the center. It turns out, however, that the value
the MSD at longer times does not depend on the spec
choice, because for long times the MSD~according to any
reasonable definition! is much larger than the size of th
body. Therefore, the results for the diffusion constant
general and do not depend on the specific definition of
center which will be determined later. In cases where
long time dependence of the MSD is not linear, it is s
tending to infinity with time, so that again the specific de
nition of the center does not matter.

Following the line of derivation of Edwards and Schwar
@7,8#, Eq. ~3! may be turned into a continuity equation forc

]c

]t
1~vW ext1vW c!•¹W c50. ~4!

Consider a deformable body, carried by the host fluid in su
a way that at any instant it is nearly spherical. Its state
thus be characterized by the position of its centerrW0(t) and a
deformation functionf (V,t) that describes the shape by th
equation

c~rW,t ![
r

R
1 f ~V,t !2150, ~5!

wherer[urW2rW0u is the distance of the surface from the ce
ter in the direction of the solid angleV andR is the radius of
the body when not deformed. The deformation functi
f can be expanded in spherical harmonics,f (V,t)
5( l 50

` (m52 l
l f l ,m(t)Yl ,m(V). The center of the shape,rW0(t),

is defined as that point around whichf 1m(t)50.
The shape of minimum energy is spherical. Therefore,vW c

induced by the deformation is zero for a spherical sha
Consequently,vW c is generically a linear functional off (V,t)
defining the deformation in Eq.~5!. Therefore the leading
order in the termvW c•¹c in Eq. ~4! is obtained by taking¹c

of the spherical shape~zero order! andvW c to first order in the

-
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DIFFUSION OF A NEARLY SPHERICAL DEFORMABLE . . . PHYSICAL REVIEW E 65 041104
deformation. Because the total velocity field is taken to
the sum of the external velocityvW ext and the velocity induced
by the deformation of the bodyvW c the external velocity does
not affect the spherical symmetry of the problem. The res
is that the equations for the deformation must be diagona
the f l ,m’s and have the form

] f lm

]t
1l l f lm1

1

R
@ r̂•~vW ext2rẆ0!# lm50, ~6!

wherer̂ is a unit vector directed outwards from the center
the direction ofV, and

@ r̂•~vW ext2rẆ0!# lm5E dV$r̂@vW ext~rW01R~12 f !r̂ !2rẆ0#

3Yl ,m* ~V!%. ~7!

The l l ’s depend only onl and the inhomogeneous part
supplied by the external velocity.~For the description to be
consistent we assume thatvW ext at points on the boundary o
the sphere does not deviate much from the velocity of

center,rẆ0.) The eigenvaluesl l ’s characterize the decay of
slightly deformed sphere into a sphere in the absence of
external velocity. Different physical systems are charac
ized by different sets ofl l ’s. Examples of systems for whic
different sets ofl l have been calculated include: a drop
with a surface tension and equal viscosities inside and
side @8# and a droplet with surface tension for a viscos
much higher inside the droplet than outside@9#. Other sys-
tems for which the following results are applicable to, in t
small deformations approximation, include a droplet with
bending energy@10#, a droplet with a bending energy an
in-plane dissipation@11#, and a droplet with both surfac
tension and bending energy@12#. The case of equal viscos
ties inside and outside@8# does not involve a boundary
condition problem. ThereforevW c can be explicitly deter-
mined for any deformation and the corresponding set ofl l ’s
is easily derived. In other cases the derivation of thel l ’s may
be quite difficult. The important point, however, is that ev
in cases where thel l ’s have not yet been derived, we kno
that suchl l ’s exist and they are positive~apart froml0 that
corresponds to the, incompressible, inflation mode of
sphere andl1 that corresponds to translation of the sphe
that must be zero. This is so because a translated sphe
good as a nontranslated one@8#!. The form of Eq.~6! results
only from the general characteristics of the system discus
above, in particular, linearity~superposition! of the velocity
field and the spherical symmetry of the system. This by its
is enough even when thel l ’s are not known yet. Our follow-
ing discussion is, therefore, general and not limited to a s
cific system.

III. DERIVATION OF MSD

Equation~6! implies that in order thatf 1,m stays zero for
all times we must have as an equation determining the lo
tion of the center
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@ r̂•~vW ext2rẆ0!#1m50, m521,0,1. ~8!

For lÞ1 it is clear thatrẆ0 can be dropped from the las
term on the left-hand side of Eq.~6!. Thereforef (V,t) is
linear invW ext ~for long enough times the initial deformation
have already decayed!. Consequently we can always dro
for small enoughvW ext , f in the argument ofvW ext on the right-
hand side of Eq.~7!. ~The physical conditions for which this
approximation is valid are discussed in Appendix B.! This
results in decoupling of the deformation degrees of freed
from that of the center of the sphere. The equation for
motion of the center can thus be given, using linear com
nations ofY1,m , in vector form as

E dVr̂~r̂•rẆ0!5E dVr̂@r̂•vW ext~rW01Rr̂ !#. ~9!

We integrate the left-hand side of the above and express
external velocity in terms of its Fourier transform on th
right hand side to obtain

4p

3
rẆ05E dVE d3qr̂@ r̂•vW ext~qW ,t !#e2 iqW •(rW01Rr̂). ~10!

We use the partial waves expansion@13,14#

e2 iqW •(Rr̂)5(
l 50

`

(
m52 l

l

~2 i ! l4p j l~qR!Ylm* ~Vq!Ylm~V!,

~11!

whereV andVq are the solid angles in the directions ofr̂

andqW , respectively, andj l is the spherical Bessel function o
order l. We integrate overV and obtain

rẆ053E dqW e2 iqW •rW0S 1

3
j 0~qR!1 j 2~qR!AD vW ext~qW ,t !.

~12!

The matrixA(qW ) is given by

Ai j 52
2

3
d i j 1S d i j 2

qiqj

q2 D . ~13!

It may seem thatA on the right-hand side of Eq.~12! mixes
directions. However, the bracketed term in Eq.~13! is just a
projection operator on the transverse direction. The exte
velocity is incompressible and hence already transve
Consequently, this term acts as a unity operatord i j , and Eq.
~12! leads to

rẆ05E dqW e2 iqW •rW0@ j 0~qR!1 j 2~qR!#vW ext~qW ,t !. ~14!

Equation~14! is the explicit equation of motion for the cen

ter of the body. In the limitR→0 the approximation,rẆ0

5vW ext(rW0 ,t) is obtained. Note that this equation is gene
4-3
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MOSHE SCHWARTZ AND GAD FRENKEL PHYSICAL REVIEW E65 041104
and describes the motion of the center for any given~small
enough! external velocity field.

Next, we calculate the MSD,̂(DrW0)2&, as a function of
the elapsed time,t. Consider a specific realization of th
external velocity field.

The displacement of the center is given by the triv
equation

DrW0~ t !5E
0

t

rẆ0~ t8!dt8. ~15!

Hence, the MSD is given by

^~DrW0~ t !!2&5E
0

t

dt1E
0

t

dt2^rẆ0~ t1!•rẆ0~ t2!&. ~16!

The correlations of the external velocity given inq space are
obtained from Eqs.~1! and~2!. Assuming the decompositio
@15,16#

^vexti
~qW 1 ,t1!vextj

~qW 2 ,t2!e2 iq1
W

•rW0(t1)e2 iq2
W

•rW0(t2)&

5^vexti
~qW 1 ,t1!vextj

~qW 2 ,t2!&^e2 iq1
W

•rW0(t1)e2 iq2
W

•rW0(t2)&,

~17!

and in addition that the distribution ofDrW0(t) is Gaussian,
i.e.,

^e2 iqW •DrW0(t)&5e2q2/6^(Dr 0(t))2&, ~18!

we obtain

^~DrW0~ t !!2&5E
0

t

dt1E
0

t

dt2E dqW e2q2/6^[ rW0(t1)2rW0(t2)] 2&

3@ j 0~qR!1 j 2~qR!#2

3(
i

S 12
qi

2

q2D f~q,ut22t1u!. ~19!

@f(q,Dt) is the correlation function of the external veloci
field as defined in Eq.~2!.# The only term that depends o
angle is 12qi

2/q2. Performing the angular integratio
*dVq(12qi

2/q2)58p/3, and summing up the three term
we obtain, denoting the MSD byF(t)

F~ t !516pE
0

t

dt8E
0

`

q2dqe2q2/6F(t8)f~q,t8!

3@ j 0~qR!1 j 2~qR!#2~ t2t8!. ~20!

Equation~20! can be turned also to a differential equatio
Differentiating Eq.~20! twice we obtain

F̈~ t !516pE
0

`

q2dqe2q2/6F(t)f~q,t !@ j 0~qR!1 j 2~qR!#2.

~21!

The initial conditions are
04110
l

.

F~0!50 ~22!

and

Ḟ~0!50. ~23!

The latter condition is valid in cases where the correlat
function,f(q,t), is finite att50. The only exception is the
case of white noise, where one must carefully check the
sult of the first differentiation and determineḞ(0). @Actually
Eq. ~23! is always correct, because any noise that is of phy
cal origin must be correlated in time. The widely used wh
noise is just a very useful idealization of the real situatio
that will result in Ḟ(0)50 andḞ(d) having a value that is
not small for rather smalld ’s.# The advantage of the differ
ential form is that its numerical solution can be easily o
tained by advancingF(t) in time. Note that Eq.~21! above is
not restricted to cases that can be described in terms
diffusion constant.

IV. PROPERTIES OF MSD

The random velocity field may be caused by thermal a
tation which is an equilibrium phenomenon or by a noneq
librium process such as mechanical stirring. While Eq.~21!
can supply, by numerical solution, the MSD for any veloc
correlation, there are families of velocity correlations
which at least part of the solution of Eqs.~21! or ~20! can be
obtained analytically, rendering the process of solving for
MSD much easier. The simplest case is where the corr
tions are white in time, namely,f(q,t)5f̃(q)d(t). In those
casesF(t) is linear at all times,F(t)[3Dt, whereD is the
diffusion constant and Eq.~20! that is an equation for the
function F(t) is replaced by an explicit expression for th
diffusion constant

D5
8p

3 E
0

`

q2 dqf̃~q!@ j 0~qR!1 j 2~qR!#2. ~24!

A family of correlations that is a simple extension of th
above, where it is quite easy to see what is happening
defined byf(q,t)5f̃(q)G̃(t/t), wereG̃ is a function that
decays when its argument becomes of order 1. It is c
from Eq.~23! that for short times the MSD must behave ast2

while for long times it must be linear int, since fort@t the
time dependence cannot be distinguished from white no
~Fig. 2!. The functionf̃(q), will naturally have a cutoff fac-
tor g(qj), where j is the correlation length. Clearly, th
correlation length cannot be expected to be smaller than
distance between the particles of which the fluid is compo
and not larger than the size of the system.

The MSD depends, of course, on the ratiog5R/j. Gen-
erally speaking, asg increases the slope of the MSD an
particularly the diffusion constant decreases. This is due
the fact that asg increases, different regions of the surfa
become less correlated and move in different directions~Fig.
3!. In the limit g→`, the movement of the center ceases a
F(t) is always zero. In the limitg→0, the bracketed Besse
4-4
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term in Eqs.~20! and ~21! can be replaced by unity~since
limqR→0@ j 0(qR)1 j 2(qR)#51). A close inspection of the
derivation reveals that this limit produces the same M

equation as the equation for the approximationrẆ05vW ext(rW0).
That is, the latter approximation is accurate for an infin
correlation length, or point particles.

In the following we will consider the dependence of t
diffusion constant on the size of the objectR. Consider a
correlation such asf(q,t)5Cd(t)(qj)ag(qj), whereg is a
cutoff function andg(0).0. Note that as discussed abo
the results that will be obtained here for the diffusion co
stant hold true also for a finite correlation time. We insert
above correlation function into Eq.~20!, then substituteqR
with u, and obtain

D5
8pCja

3R31a E0

`

duu21agS j

R
uD @ j 0~u!1 j 2~u!#2. ~25!

In the limit R/j→` we distinguish between two cases:a
,1 and a.1. Since the largeu dependence ofj 0(u)
1 j 2(u) is proportional to cos(u)/u2 we find that

FIG. 2. The MSD for a fluid with a memory time scale.F0

[Ct2/j3.

FIG. 3. The diffusion constant for typical separable random
locity correlations.D0[Ct/j3.
04110
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D}5
Cja

R31a
for a,1

Cj

R4
for a.1.

~26!

In the opposite limitR/j→0 we find that regardless ofa

D}
C

j3
. ~27!

@Note here that we have written the power-law depende
of f(q) as qaja but having other dimensional constants
the model may makeC depend onj, so that Eqs.~26! and
~27! may be considered only as equations that yield the
pendence ofD on the radiusR.#

The dependence of the diffusion constant on the de
time scale can be also deduced when the correlation func
is separable~i.e., the second family!. Using simple dimen-
sional analysis, Eq.~20! leads to the conclusion that the di
fusion constant is linear int ~in addition to the possible
dependence ofC on t): D;Ct.

There is another class of velocity correlations that is
separable but allows the calculation of the long-time beh
ior of the MSD. This class is defined by a scaling form of t
velocity correlations

f~q,t !5Cq2a f ~Gqtb!, ~28!

whereG andC are dimensional constants,f is a function with
a finite decay length, anda,3. The solution is obtained by
assuming thatF(t)5Atn. The integrand in Eq.~21! has in it
two functions, each cutting the integral off at different val
of q that is a function oft. The dominant cutoff at large time
t, is the one that cuts the integrand off at smallerq’s. What
remains is just a scaling argument that leads from Eq.~21! to
the following result:

n5H ñ if ñ.1

1 if ñ<1, ~29!

where

ñ55
4/~52a! if b,

2

52a

21~a23!b if b>
2

52a

. ~30!

Note that Eq.~29! results from the fact that even ifF̈(t)
50 for large t the leading behavior ofF(t) is still linear.
Note also that in Eq.~30! the two options have to be evalu
ated first in order to check which of the conditions applie
An explicit equation for the prefactorA can also be easily
obtained. We solved Eq.~21! numerically witha55/3 and
b53/5. The long-time dependence ofF(t) is depicted in
-
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Fig. 4. We see that the long-time dependence is given
F(t)}t1.2, which is exactly the result predicted by Eq.~30!.
~Note that in this caseñ52b.!

V. THERMAL AGITATION

Of particular interest is the case where the fluctuations
the velocity field are due to thermal agitation. We descr
the effect of temperature by a scalar potentialw and a vector
potentialAW , that fluctuate, have zero average and local c
relations in space and time. Both give rise to a force den
field

FW 52¹W w1¹W 3AW , ~31!

that generates in its turn the fluctuating velocity field in t
liquid. Since the velocity field is divergenceless, the sca
potential affects only pressure. Hence, the Fourier transf
of the velocity field is given within the Stokes approximatio
by

vW ~qW ,t !5
iqW 3AW ~qW ,t !

hq2
, ~32!

whereh is the viscosity of the liquid. Since the correlation
of AW (rW,t) are local in space and time, it follows thatf̃(q),
defined by Eq.~2!, is given by

f̃~q!5
c

q2
, ~33!

wherec is a dimensional constant. Dimensional analysis
veals thatc must be proportional toKBT/h ~with a dimen-
sionless proportionality constant!. A detailed calculation
yields a proportionality constant equal to (2p)23 ~see Ap-
pendix A!. The final conclusion is that forR larger than the
interparticle distance in the liquid@6#,

FIG. 4. The MSD for typical nonseparable random velocity c
relations with the scaling form,f(q,t)5Cq2aexp(2Gqtb), where
we choosea5

5
3 andb5

3
5 . The MSD depends on the two nond

mensional variables: (G/R)1/bt and m5CRa2512/bG22/b. The
MSD scales for long times ast6/5 in agreement with our scaling
argument.
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5phR
. ~34!

Note that this result, for a liquid membrane that has liqu
inside as well as outside, is different from the Stokes res
for a hard sphere.@We may expect Eq.~33! to hold only for
q,1/j wherej is the interparticle distance in the liquid bu
sinceR is expected to be very large compared toj, we are
always in the situation described by Eq.~26! with a522.#
The latter result is similar to the result for a polymer su
jected to thermal fluctuations@17# ~with a different pre-
factor!.

APPENDIX A: VELOCITY CORRELATIONS
FOR THERMAL AGITATION

We wish to determine the exact form of the velocity co
relation function for the case of thermal agitation. Conside
system in which the random velocity field results from the
mal agitation. The transversal part of the linearized Nav
Stokes equation reads

]vq
i

]t
52nq2vq

i 1
Fi

rm
, ~A1!

wherevW q is the Fourier transform~FT! of the velocity field,
n is the kinematic viscosity,FW is the FT of the force density
in the liquid,r is the number density of the particles, andm
is the mass of a liquid particle.

We solve this equation under the condition that the fo
density is white noise in time and obtain

^vq
i ~ t1!vp

j ~ t2!&5e2nq2ut22t1u^vq
i vp

j &eq , ~A2!

where the last average on the right-hand side is an equal
average. It is clear from the above that the velocities at
ferent times are correlated, as opposed to white noise.
possible however to consider effective white-noise corre
tions by integrating the right-hand side of Eq.~A2! over time
and replacing then the decay function exp(2nq2ut22t1u) by
some a(q)d(t22t1), that will produce the same integra
This yields for the effective white-noise velocity field,

^ui~qW ,t1!uj~pW ,t2!&5
2

nq2
d~ t22t1!^vq

i vp
j &eq , ~A3!

where we denote the effective velocity field byuW and the real
one byvW . ^vq

i vp
j & must be proportional tod(pW 1qW ) because

of invariance to translations and to@d i j 2qiqj /q2# because
of incompressibility. Comparing with Eq.~33!, we conclude
that there is no additional dependence onq. Therefore,

^vq
i vp

j &5c8d~ t22t1!Fd i j 2
qiqj

q2 G . ~A4!

Now, we wish to relate the velocity to temperature. Cons
ering that our continuous liquid is actually made up ofN

-
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discrete particles each having a massm, we know that the
total kinematic energy of the liquid is 3NKBT/2 and as a
result we find

^v2~rW !&5
3KBT

m
. ~A5!

ExpressingvW in terms of its FT and integrating while keep
ing in mind that the number of degrees of freedom should
conserved and equal to 3N yields

c85
KBT

2mr~2p!3
, ~A6!

from which we can see that

c5
KBT

h~2p!3
, ~A7!

and the full correlation function reads

^ui~qW ,t1!uj~pW ,t2!&5
KBT

h~2p!3
d~pW 1qW !d~ t22t1!

3Fd i j 2
qiqj

q2 G 1

q2
. ~A8!

APPENDIX B: VALIDITY OF THE SMALL
DEFORMATION APPROXIMATION

The validity of Eq.~20! is limited by the approximation o
replacing vW ext@rW01R(11 f ) r̂ # by vW ext(rW01Rr̂) that has
been discussed in Sec. III. The approximation implies t
we can, in the limit of small deformations, replace the velo
ity at the surface with the velocity on the undeformed sphe
To check the approximation, we expand Eq.~8! to the first
nontrivial order inf,

E dVY1,m* ~V!r̂•@vW ext~rW01Rr̂ !1R f~V,t !

3~ r̂•¹W !vWext~rW01Rr̂ !2rẆ0#50. ~B1!

The approximation is justified if the first-order term is ne
ligible with respect to the zeroth-order term. A careful i
spection reveals that this condition holds if

R f~V,t !!j, ~B2!

for any spatial angleV at any instant of time. The following
argument is somewhat more intuitive. The deformation of
body is of the sizeR f, and the external velocity changes
length scales that are comparable with the correlation len
j. If the deformation is smaller than the correlation leng
@Fig. 5~a!# the external velocity does not change on t
length scale of the deformation, and the approximation
valid. On the other hand, if the correlation length is shor
than the deformation length scale@Fig. 5~b!# the external
04110
e

t
-
e.

e

th

is
r

velocities on the sphere and on the body are uncorrela
and the approximation is unjustified.

We turn to evaluatef. WhenR!j it is clear thatf can be
made small by havingVext small enough so that indeedR f
!j. The more interesting case isR/j.1. The deformationf
is determined by Eq.~6!

ḟ l ,m1l l f l ,m1Ql ,m50, ~B3!

whereQl ,m[1/R@ r̂•vW ext# lm . Clearly,

uQlmu,
4p

R
^uYlmu&vext , ~B4!

wherevext is the typical magnitude of the external velocit
The average of the spherical harmonic is bound and of o
one and therefore can be dropped off.l l f l ,m is comparable
with Ql ,m @Eq. ~B3!#, therefore, in order thatR f!j we must
havevext,l lj. A condition that must be true for all value
of l and especially for the smallestl l denotedl l min . There-
fore,

vext,l lminj. ~B5!

In most cases, however, we can find a stronger condition
the validity of the small deformation approximation. We e
pect Ql ,m to decline as the squared root of the number
independent surface elements, i.e., asj/R, so that l l f l ,m
;vext /Rj/R. Therefore the condition, Eq.~B2!, implies that
vext,l lR. Therefore,

vext,l lminR. ~B6!

Both conditions can be easily maintained in a viscous flu
The above conditions are general and depend on the spe
system vial l . For example for a droplet with a surface
tension energy and equal viscosities inside and outside,
minimal eigenvalue isl2516/35l/hR @8# ~wherel is the
surface-tension constant andh is the viscosity! and the con-
dition is vext,

16
35 l/h, while for a viscosity much larger in-

sidel lmin5l25 1
2 l/hR @9# andvext,

1
2 l/h whereh is the

viscosity inside the droplet.

FIG. 5. The validity condition for the approximation.~a! The
deformation is negligible in respect to the velocity correlati
length. Therefore the approximation holds.~b! The deformation
length is longer than the correlation length. The velocities on
surfaces of the sphere and droplet are uncorrelated.
4-7
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