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Diffusion of a nearly spherical deformable body in a randomly stirred host fluid
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The motion of a deformable body is investigated for cases in which the body is immersed in an incompress-
ible fluid that is randomly stirred. Sticking to physical situations in which the body departs only slightly from
its spherical shape, we show that the motion of its center is decoupled from its deformation degrees of freedom.
We study the general case in which the velocity field, imposed on the system, is correlated both in space and
time. We derive the mean-squared displacement of the body for the general random velocity field, and consider
several useful cases including: white-noise flow, turbulence-like flow, and thermal agitation.
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I. INTRODUCTION pled in the small deformation approximation. We study the
mean-square displacemgMSD) of an object as a function

Systems of deformable objects immersed in a liquid areof time for a general random velocity field that has given
very common in every day life. Milk and blood, for example, correlations in space and time. For long periods of time the
are such composite systems. Milk can be viewed as an emuMSD is usually linear in time, enabling us to discuss it in
sion of fat globules in water while blood is a suspension ofterms of a diffusion constant that depends on the size of the
cells (that have some rigidityin water. The physical descrip- ©object, R, and the correlations present in the liquid. There
tion of the set of objects present in a given liquid involvesare, of course, cases where the MSD does not behave linearly
the location of the objects, their shape, and in some cases tf@ long times and the method we develop here is quite ca-
strains on the objects or any other fields that are needed fe@ble of dealing with those cases too. Our main concern is in
describe the objects in addition to their location and shapedbjects in which the state of lowest energy is of spherical
The actual solution of such systems is extremely difficultshape. This is the case for deformable objects dominated by
because each object interacts with itself and with the othepurface tensiof3]. Our results concerning the motion of the
objects via hydrodynamic interactions. Hence, we are facingenter of the object will hold also for cases where the shape
a many-body problem with the additional complication, thatof lowest energy is nearly sphericéor example, a body
each object is not described by a single degree of freedorith bending energy4,5] and spontaneous curvature close
(its center of magsbut actually by an infinite number of to that of a sphere with the same volume
degrees of freedom, where all the deformation degrees of Of particular interest is the case of thermal agitation.
freedom, corresponding to all the objects, interact. The situNamely, we calculate velocity correlations of the velocity
ation is simplified a little if the deviation of the objects from field in a liquid at thermal equilibrium and then obtain the
Spherica| Shape remains Smmlz] This happens when the MSD within our general formulation. That prObIem was dis-
agitation of the host liquid is not too strong and when thecussed in the past using the Kirkwood equation for the joint
density of the objects is not too higlslose packing would distribution of the deformations and the center of mass with-
cause finite deformations, although perhaps still treatabl@ut any consideration of the velocity correlatiditg.
within the small deformation approximatiprOur final goal The paper is organized in the following way: In Sec. II,
is to obtain the response of the composite system to a giveyye define the system under consideration, discuss its proper-
velocity field imposed on the liquid. The velocity field we ties, and construct the basic equations. In Sec. Ill, we derive
have in mind may be fixed in time like simple shear or ran-the equation of motion for the center and the MSD in integral
domly fluctuating in time and space. Even in the first caseédnd differential forms. In Sec. IV, we discuss the results and
the velocity field experienced by each object separately mugiemonstrate their use for different kinds of noise realiza-
have a random part due to the random passage of other olons. The specific case of thermal agitation is considered in
jects nearby. The present paper is the first in a series that€c- V. In Appendix A, we construct the velocity correlations
deals with this general problem and it concentrates, withifor the case of thermal agitation and in Appendix B, we
the small deformation approximation, on the diffusion of theconsider the physical conditions under which the small de-
center of mass of a deformable body in the presence of fprmation approximation is valid.
random external velocity field, imposed on the liquid. The
plan is to replace the externally imposed random velocity Il. THE SYSTEM

field affecting a single deformable body by a self-consistent  ~,nsider a single deformable body immersed in a host

random velocity field, that takes into account the fields genyiq. The system is chosen to have the following character-
erated by other deformable objects. It is possible to considggsics:

the center of mass separately from the deformation degrees . . .
of freedom, that will be discussed in a future publication, (1) The host fluid and the material of body are incom-
because as will be shown in the following, they are decoupressible. Consequently a velocity fieldr) can be defined

1063-651X/2002/681)/0411048)/$20.00 65041104-1 ©2002 The American Physical Society



MOSHE SCHWARTZ AND GAD FRENKEL PHYSICAL REVIEW B55 041104

(Ui(a,t)U(P,12)) = 8imd(a+p) d(a,|ta—t1]),  (2)

where &), is the Kronecker delta and() is the Dirac delta
function, and¢ is a general function of and|t,—t,]. If the
random velocity field is characterized by a length scale and a
characteristic time scale then it is convenient to write it as
d(&q,|t,—t4|/7), where& and 7 are, respectively, the corre-
lation length and the memory time scale of the external ve-
locity.

(5) The surface elements of the body are carried by the
host fluid[7], i.e., each surface point moves according to

FIG. 1. The deformable body is described by a three- F=vexdl)+tvy(r). (©)]

dimensional scalar fields(r). The interior is the region wherg (6) We assume that the external velocity is weak enough
<0, the exterior is the region where>0, athhe outer surface of to cause only minor shape fluctuations of the body.
the body is the locus of the points obeyiggr)=0.

We will be interested in the following in the mean-
squared displacemefi1SD) of the center. Since the body is
deformable the definition of its center is not unique. For
periods of time shorter thanthe result depends on the defi-

; ; ition of the center. It turns out, however, that the value of
(2) The body is characterized by an energy that depend ' . ’ ' -
on its shape. The shape of minimum energy is a sphere. Tﬁ e MSD at longer times does not depend on the specific

. . e choice, because for long times the MS&ccording to any
surface of the body is described by the equatip(r)=0 reasonable definitionis much larger than the size of the

wherey(r) is a scalar three-dimensional fief#lig. 1). (Al-  body. Therefore, the results for the diffusion constant are

though our derivation considers only objects for which thegeneral and do not depend on the specific definition of the

shape of minimum energy is a sphere, all the conclusiongenter which will be determined later. In cases where the

concerning the MSD carry over to cases where the shape @dng time dependence of the MSD is not linear, it is still

minimum energy is nearly spherical. tending to infinity with time, so that again the specific defi-
(3) We consider a system that is linear in the following nition of the center does not matter.

sense: The velocity field induced by a linear superposition of ~ Following the line of derivation of Edwards and Schwartz

force densities is given by the linear superposition of thg7 g], Eq.(3) may be turned into a continuity equation fgr
velocity fields introduced by each force density separately. A

very common example is a system described by the Navier- - - =

Stokes equation in the regime of a low Reynolds number. In E+(Uext+vw)'v‘/’:0- (4)
such a case, the Stokes approximation, in which the equation

for the velocity is linear, applies. The use of the linearity in Consider a deformable body, carried by the host fluid in such
our case is to express the total velocity fielg,,(r) as the a way that at any instant it is nearly spherical. Its state can

sum of vey(r), the velocity field introduced by external thus be characterized by the position of its centgt) and a
sources, an(§¢(F) the velocity field induced by the defor- deformation functiorf(€2,t) that describes the shape by the

throughout the system obeyirg-v=0. An example is a
droplet of one liquid immersed in a different liquid but many
other examples exist.

mation. equation
(4) The external velocity}ext, is random and is chosen to p
have zero average and known correlations. It is convenient to P(r )= BT f(Q,1)—1=0, (5)

define the external velocity in terms of its spatial Fourier

transform as I )
wherep=|r —r| is the distance of the surface from the cen-

ter in the direction of the solid angle andR is the radius of
> aiq; > the body when not deformed. The deformation function
= Sii— —|ui(q), 1 . . .
Vexi(Q) 2 ( g2 )u,(q) @) f can be expanded in spherical harmonicg(),t)
=37 o3 fi (DY) (Q). The center of the shapey(t),
wherel(q) is a general vector field and the subscripts denotéS defined as that point around Wh'mn(t) :_O' R
Cartesian components. This definition implies only that the The shape of minimum energy is spherical. Therefoge,
fluid is incompressible and in any other way is general. Nextinduced by the deformation is zero for a spherical shape.
invariance under translations in space and time and undeZonsequently, , is generically a linear functional df{(,t)
rotations yields the form of the correlations of the velocity, defining the deformation in Eq5). Therefore the leading
order in the termjw- Vi in Eq. (4) is obtained by taking ¢
<u|(6,t))= 0 and of the spherical shapgero order and5¢ to first order in the
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deformation. Because the total velocity field is taken to be
the sum of the external velocitgle,(t and the velocity induced

by the deformation of the bodg/.,, the external velocity does Forl=1 it is cl h > be d df he |
not affect the spherical symmetry of the problem. The result orl#1 it Is clear thatry can be dropped from the last

is that the equations for the deformation must be diagonal if€™M ©n the left-hand side of EG6). Thereforef((,t) is
the f, /s and have the form linear inv ey, (for long enough times the initial deformations
' have already decaygdConsequently we can always drop,

for small enoughy oy, f in the argument of ¢ on the right-
hand side of Eq(7). (The physical conditions for which this
approximation is valid are discussed in Appendi® Bhis
wherep is a unit vector directed outwards from the center in"€sults in decoupling of the deformation degrees of freedom
the direction ofQ, and from that of the center of the sphere. The equation for the
motion of the center can thus be given, using linear combi-
nations ofY, ,, in vector form as

[p- (Dexc—Fo)]im=0, m=—10.1. ®

fim

1. . .
7+)\Iflm+ﬁ[p'(vext_ro)]lmzoy (6)

(- (Gewt= o) in= | GOl RA= ) =Fo]
XYEn(Q)}. @ f dQp(p-ro)= f dQp[p-vex(To+Rp)]. (9

The \,’s depend only orl and the inhomogeneous part is We integrate the left-hand side of the above and express the
supplied by the external velocityf-or the description to be external velocity in terms of its Fourier transform on the

consistent we assume tha,, at points on the boundary of right hand side to obtain

the sphere does not deviate much from the velocity of its 4
. — L .

center,r,.) The eigenvalues,’s characterize the decay of a ?ro=f dﬂf d3gplp-vex(q,t)Je ' (0T RA (1)

slightly deformed sphere into a sphere in the absence of the

external velocity. Different physical systems are character ;

ized by different sets af,’s. Examples of systems for which We use the partial waves expansids, 14

different sets of\|, have been calculated include: a droplet =

with a surface tension and equal viscosities inside and out- e T RI=D > (—i)4mj(q R)Yin(Qq)Yim(),

side[8] and a droplet with surface tension for a viscosity =0 m=-I

much higher inside the droplet than outsidd. Other sys- 1D

tems for which the following results are applicable to, in the ) i o -

small deformations approximation, include a droplet with awhere€} and(}, are the solid angles in the directions of

bending energy10], a droplet with a bending energy and andg, respectively, angl, is the spherical Bessel function of

in-plane dissipatiof11], and a droplet with both surface orderl. We integrate ovef) and obtain

tension and bending ener¥2]. The case of equal viscosi-

ties |.n.5|de and outsidés] dogs not involve g_boundary- Fo=3f dge 470 Ejo(qR)"'j2(qR)A>5ext(ayt)-

condition problem. Therefore, can be explicitly deter- 3

mined for any deformation and the corresponding sex, &f 12

is easily derived. In other cases the derivation ofxlig may .

be quite difficult. The important point, however, is that evenThe matrixA(q) is given by

in cases where the,’s have not yet been derived, we know

that suchi,’s exist and they are positivi@part fromh q that 2

corresponds to the, incompressible, inflation mode of the Aij=— §5ii+

sphere and\; that corresponds to translation of the sphere,

that must be zero. This is so because a translated sphere“'snay seem thaf on the right-hand side of E¢12) mixes
good as a nontranslated of&). The form of Eq.(6) results  gjrections. However, the bracketed term in Etg) is just a
only from the general characteristics of the system discussgghojection operator on the transverse direction. The external
above, in particular, linearitysuperposition of the velocity  yelocity is incompressible and hence already transverse.

field and the spherical symmetry of the system. This by itseliconsequently, this term acts as a unity operatpr and Eq.
is enough even when the’s are not known yet. Our follow-  (12) |eads to

ing discussion is, therefore, general and not limited to a spe-
cific system.

5 — %) . (13

o= | dGe @RI+ iAARIed 0. (1)

Ill. DERIVATION OF MSD

) o ) Equation(14) is the explicit equation of motion for the cen-
Equation(6) implies that in order thaf, ., stays zero for .

all imes we must have as an equation determining the locder of the body. In the limitR—0 the approximationyo
tion of the center =vexdro,t) is obtained. Note that this equation is general
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and describes the motion of the center for any git@nall F(0)=0 (22)
enough external velocity field.

Next, we calculate the MSD((Ar)?), as a function of and
the elapsed timet. Consider a specific realization of the

external velocity field. F(0)=0. (23
The displacement of the center is given by the ftrivial
equation The latter condition is valid in cases where the correlation

function, ¢(q,t), is finite att=0. The only exception is the
case of white noise, where one must carefully check the re-

sult of the first differentiation and determii€0). [Actually
Eq. (23 is always correct, because any noise that is of physi-
Hence, the MSD is given by cal origin must be correlated in time. The widely used white

: t . _ noise is just a very useful idealization of the real situation,

((AFo(t))2>:f dtlJ’ dt2<F0(t1)-Fo(t2)>. (16)  that will result inF(0)=0 andF () having a value that is

0 0 not small for rather smal’s.] The advantage of the differ-
ential form is that its numerical solution can be easily ob-
tained by advancing (t) in time. Note that Eq(21) above is
not restricted to cases that can be described in terms of a
diffusion constant.

N to,
Aro(t)zforo(t’)dt’. (15

The correlations of the external velocity givengrspace are
obtained from Eqgs(1) and(2). Assuming the decomposition
(15,14

q 't ~ 't e*i‘ﬂ'Fo(tl)e*ilﬂ'Fo(tz)
(Vexi (A1, t1)vex;(d2,t2) ) IV. PROPERTIES OF MSD

:(Uexg(al7t1)vextj(az7tz))<e_iqrrO(tl)e_iqz'rO(tZ)% The random velocity field may be caused by thermal agi-
1 tation which is an equilibrium phenomenon or by a nonequi-
17) librium process such as mechanical stirring. While Ex)

can supply, by numerical solution, the MSD for any velocity
correlation, there are families of velocity correlations in
which at least part of the solution of Eq21) or (20) can be
<e*id-Ar'o(t)>:e*q2/6<(Aro(t))2>, (18) obtained analytically, rendering the process of solving for the
MSD much easier. The simplest case is where the correla-
we obtain tions are white in time, namelys(q,t) = @(q) 8(t). In those
cased-(t) is linear at all timesF(t)=3Dt, whereD is the
‘ ¢ ) ) PR . )
- 2\ _ = q2I6([Fo(t) — Fo(t2)]?) diffusion constant and Eq20) that is an equation for the
((Aro(1)%) Jodtlfodtzf dae e function F(t) is replaced by an explicit expression for the
diffusion constant

and in addition that the distribution aifo(t) is Gaussian,
ie.,

X[jo(aR) +j2(aR)]?

X2

2

87 (= 5 | = - - 2
q D=7f 9° dag(aljo(qR +j2(qR)I% (24
1—@ $(0[ta—ta]). (19 0

) ) ) ~ A family of correlations that is a simple extension of the
[ #(q,At) is the correlation function of the external velocity ahove, where it is quite easy to see what is happening, is
field as defined in Eq(2).] The only term that depends on defined byd(q,t) = (q)&(t/), wereS is a function that

angle is 1- qziz/qz- Performing the angular integration yecays when its argument becomes of order 1. It is clear
JdQq(1—qi/q”)=8/3, and summing up the three terms fom Eq.(23) that for short times the MSD must behavets

we obtain, denoting the MSD bly(t) while for long times it must be linear i since fort> r the
. . time dependence cannot be distinguished from white noise
F(t)= 167Tf dt’f q2dge ) p(q,t") (Fig. 2). The functiong(q), will naturally have a cutoff fac-
0 0 tor g(qé), where ¢ is the correlation length. Clearly, the
X[jo(aR) +j(qR)T2(t—t"). (20) correlation length cannot be expected to be smaller than the

distance between the particles of which the fluid is composed
Equation(20) can be turned also to a differential equation.and not larger than the size of the system.
Differentiating Eq.(20) twice we obtain The MSD depends, of course, on the rafie R/ ¢£. Gen-
erally speaking, ag increases the slope of the MSD and
.o e o 2Rt . . 2 particularly the diffusion constant decreases. This is due to
F(t)_l%fo adge O (a,0lio(qR +j2(aR] the fact that asy increases, different regions of the surface
(21)  become less correlated and move in different directiging.
3). In the limit y— o, the movement of the center ceases and
The initial conditions are F(t) is always zero. In the limiy— 0, the bracketed Bessel
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FIG. 2. The MSD for a fluid with a memory time scalg
=Cr/&.

term in Egs.(20) and (21) can be replaced by unitisince

PHYSICAL REVIEW E 65 041104

C o
¢ for a<l1
R3+a
Do (26)
C
_§ for a>1.
R4

In the opposite limitR/é— 0 we find that regardless ef

c
[Note here that we have written the power-law dependence
of ¢(q) asq®é® but having other dimensional constants in
the model may mak€ depend onr¢, so that Eqs(26) and
(27) may be considered only as equations that yield the de-
pendence oD on the radiusR.]
The dependence of the diffusion constant on the decay

limgr .ol jo(qR) +]2(qR)]=1). A close inspection of the e scale can be also deduced when the correlation function

derivation reveals that this limit produces the same MSDg separabldi.e.

equation as the equation for the approximatigr v ex(r o).

the second fami)y Using simple dimen-
sional analysis, Eq20) leads to the conclusion that the dif-

That is, the latter approximation is accurate for an infinitefusion constant is linear i (in addition to the possible

correlation length, or point particles.

In the following we will consider the dependence of the

diffusion constant on the size of the objdRt Consider a
correlation such ag(q,t)=C4s(t)(qé€)“g(qé), whereg is a

dependence o€ on 7): D~Cr.

There is another class of velocity correlations that is not
separable but allows the calculation of the long-time behav-
ior of the MSD. This class is defined by a scaling form of the

cutoff function andg(0)>0. Note that as discussed above Vvelocity correlations
the results that will be obtained here for the diffusion con- . 8
stant hold true also for a finite correlation time. We insert the ¢(q,)=Cq “f(I'qt"), (28)

above correlation function into E420), then substitute R
with u, and obtain

_ 8nCé"
- 3R3+a

fmduuz*“g(éLJ)[jo(U)ﬂz(U)]z- (25

0

In the limit R/§— we distinguish between two cases:
<1 and a>1. Since the largeu dependence ofjy(u)
+j,(u) is proportional to cos(/u?> we find that

D
Dy
10
e~ 25?
dlg,t)=C e 'l
8 e t) (£q)?
61 ,
$la,t) = C O(1 — g€)O(1 — t/7)
4 .
¢(qat) =C e—qlfze—t‘/r
2,
0 10 20 30 40
R/

wherel” andC are dimensional constanfss a function with

a finite decay length, and<3. The solution is obtained by
assuming thaF (t) = At”. The integrand in Eg21) has in it
two functions, each cutting the integral off at different value
of g that is a function of. The dominant cutoff at large times
t, is the one that cuts the integrand off at smati&x. What
remains is just a scaling argument that leads from(E#). to
the following result:

y if T>1
V=11 0f =1 (29)
where
2
4/(5— if R
(5—a) <=,
V= 2 . (30)
2+(a—3)B if =—
5-a

Note that Eq.(29) results from the fact that even F(t)

=0 for larget the leading behavior oF(t) is still linear.
Note also that in Eq(30) the two options have to be evalu-
ated first in order to check which of the conditions applies.
An explicit equation for the prefactok can also be easily

FIG. 3. The diffusion constant for typical separable random ve-obtained. We solved Ed21) numerically with«=5/3 and

locity correlationsDy=C/&°.

B=23/5. The long-time dependence Bft) is depicted in
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F | Vg KeT
In (—;) : e ::E = B
157 . D 5myR’ (34)
10/ N Note that this result, for a liquid membrane that has liquid
g inside as well as outside, is different from the Stokes result
for a hard spherd We may expect Eq33) to hold only for
gq<1/¢ where¢ is the interparticle distance in the liquid but

= X sinceR is expected to be very large comparedétove are
% / 4 l6n (E)Bt always in the situation described by E@6) with a=—2.]
=3 R The latter result is similar to the result for a polymer sub-

jected to thermal fluctuationfl7] (with a different pre-

-101 factor).
FIG. 4. The MSD for typical nonseparable random velocity cor- APPENDIX A: VELOCITY CORRELATIONS
relations with the scaling formy(q,t)=Cq~ “exp(—Iqt®), where FOR THERMAL AGITATION

we choosex=3 and 8= 2. The MSD depends on the two nondi-
mensional variables: [VR)Y#t and u=CR* >t =28 The
MSD scales for long times a$’® in agreement with our scaling
argument.

We wish to determine the exact form of the velocity cor-
relation function for the case of thermal agitation. Consider a
system in which the random velocity field results from ther-
mal agitation. The transversal part of the linearized Navier-

Fig. 4. We see that the long-time dependence is given b?tOkeS equation reads
F(t)=t!? which is exactly the result predicted by H0). P Ei

Note that in thi e=20. WYq_ o
(Note that in this case=2p.) n vq vq+pm, (A1)

V. THERMAL AGITATION Wherez;q is the Fourier transforniFT) of the velocity field,

Of particular interest is the case where the fluctuations inv is the kinematic viscosity is the FT of the force density
the velocity field are due to thermal agitation. We describedn the liquid, p is the number density of the particles, amd
the effect of temperature by a scalar potengiadnd a vector is the mass of a liquid particle.
potential A, that fluctuate, have zero average and local cor- \We solve this equation under the condition that the force
relations in space and time. Both give rise to a force densitglensity is white noise in time and obtain
field _ _ 5 o

o (vi(tDvh(ty)y=e "l tlpivly, o, (A2)
F=—Vo+VXA, (32)
where the last average on the right-hand side is an equal time
that generates in its turn the fluctuating velocity field in the@verage. It is clear from the above that the velocities at dif-
liquid. Since the velocity field is divergenceless, the scalaférent times are correlated, as opposed to white noise. It is
potential affects only pressure. Hence, the Fourier transforrRossible however to consider effective white-noise correla-
of the velocity field is given within the Stokes approximation tions by integrating the right-hand side of EA2) over time

by and replacing then the decay function expt?t,—t,|) by
some a(q) 5(t,—t;), that will produce the same integral.
- > igxA(q,t) This yields for the effective white-noise velocity field,
v(q,)= B (32
7q

- - 2 o
. _ . o _ (Ui(Q,t)Uj(p,tr)) =— 8(ta—t)(vqupleq,  (A3)
where 7 is the viscosity of the liquid. Since the correlations vq

of ,&(F,t) are local in space and time, it follows tha(q), R
defined by Eq(2), is given by where we denqte the effective velocity field byand the real
one byz?. (vqup,) must be proportional té(p+q) because
- c of invariance to translations and [&;; —qiqj/qz] because
d(q)=—, (33 of incompressibility. Comparing with Eq33), we conclude
q that there is no additional dependencempm herefore,

wherec is a dimensional constant. Dimensional analysis re-
veals thatc must be proportional t&gT/ 7 (with a dimen- Loy =c’ S(t,—t

. . . . . <qu p> c ( 2 1)
sionless proportionality constantA detailed calculation
yields a proportionality constant equal to#P 3 (see Ap-
pendix A). The final conclusion is that fdR larger than the Now, we wish to relate the velocity to temperature. Consid-
interparticle distance in the liquilb], ering that our continuous liquid is actually made up Nf

sij— ). (Ad)
g
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discrete particles each having a masswe know that the
total kinematic energy of the liquid isNBKgT/2 and as a
result we find

(w3(7))= BT (A5)

m

Expressingﬁ in terms of its FT and integrating while keep-
ing in mind that the number of degrees of freedom should be
conserved and equal td\Byields

KgT FIG. 5. The validity condition for the approximatiofg) The
'=—3, (AB) deformation is negligible in respect to the velocity correlation
2mp(27) length. Therefore the approximation hold®) The deformation

length is longer than the correlation length. The velocities on the

from which we can see that surfaces of the sphere and droplet are uncorrelated.

c= KgT (A7) velocities on the sphere and on the body are uncorrelated,
n(2m)3 and the approximation is unjustified.
We turn to evaluaté. WhenR<¢ it is clear thatf can be
and the full correlation function reads made small by haviny,; small enough so that indedrlf

<¢. The more interesting caseR¢>1. The deformatiori

KgT is determined by Eq6)

(Ui(a,t)uj(p,tp)) = (2W)35<5+d)5<t2—t1)
7 fl,m+)\lfl,m+QI,m:01 (B3)
qiq;| 1 .
X| 8~ ? ? (A8) whereQ, w=1/R[p-vexidim. Clearly,
4
APPENDIX B: VALIDITY OF THE SMALL |Qiml <& ([ Yiml)vext; (B4

DEFORMATION APPROXIMATION

The validity of Eq.(20) is limited by the approximation of Whereve,is the typical magnitude of the external velocity.
replacing Jext[FO+ R(1+f);3] by l;ext(F0+ R[J) that has The average of the spherical harmonic is bound and of order

. , AR ne and therefore can be dropped oiff; , is comparable
been discussed in Sec. Ill. The approximation implies thagvith Q. [Eq. (B3)], therefore, in order thak f<¢ we must

we can, in the limit of small deformations, replace the veIoc—haVe x £ A condition that must be true for all values
ity at the surface with the velocity on the undeformed sphere, Vext<Aié.

To check the approximation, we expand E8) to the first of | and especially for the smallest denoted\| i, . There-
nontrivial order inf, fore,

PO R Vext<Niminé- (B5)
J dQY 1 (Q)p-[VexdTo+ Rp) +RI(Q,1)

In most cases, however, we can find a stronger condition for
the validity of the small deformation approximation. We ex-
pect Q) , to decline as the squared root of the number of
The approximation is justified if the first-order term is neg-ndependent surface elements, i.e., @R, so thatkf;
ligible with respect to the zeroth-order term. A careful in- ~Vext/R¢/R. Therefore the condition, E¢B2), implies that
spection reveals that this condition holds if vext<MR. Therefore,

X(p-V)Uexd(To+Rp)—To]=0. (B1)

Rf(Q,t1)<é, (B2) Uext<NminR- (B6)

for any spatial angl€) at any instant of time. The following Both conditions can be easily maintained in a viscous fluid.
argument is somewhat more intuitive. The deformation of thelhe above conditions are general and depend on the specific
body is of the sizeRf, and the external velocity changes at system via\,. For example for a droplet with a surface-
length scales that are comparable with the correlation lengttension energy and equal viscosities inside and outside, the
&. If the deformation is smaller than the correlation lengthminimal eigenvalue is\,=16/35\/7R [8] (where\ is the

[Fig. 5@a)] the external velocity does not change on thesurface-tension constant amdis the viscosity and the con-
length scale of the deformation, and the approximation iglition is ve.<3e\/#, while for a viscosity much larger in-
valid. On the other hand, if the correlation length is shorterside \;min=A,=3\/7R [9] andv < 3\/ 5 where 7 is the

than the deformation length scal€ig. 5(b)] the external viscosity inside the droplet.
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