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Stochastic solution of space-time fractional diffusion equations
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Classical and anomalous diffusion equations employ integer derivatives, fractional derivatives, and other
pseudodifferential operators in space. In this paper we show that replacing the integer time derivative by a
fractional derivative subordinates the original stochastic solution to an inverse stable subordinator process
whose probability distributions are Mittag-Leffler type. This leads to explicit solutions for space-time fractional
diffusion equations with multiscaling space-fractional derivatives, and additional insight into the meaning of
these equations.
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I. INTRODUCTION Fractional time derivatives are important in reactive trans-
port, since solutes may interact with the immobile porous
Space-fractional diffusion equatiofis—4] have been use- medium in highly nonlinear ways. There is evidence that
ful as models of anomalous transport in many diverse discisolutes may sorb for random amounts of time that have a
plines, including finance, semiconductor research, biologypower law distribution[8], or move into irregularly sized
and hydrogeology5-7]. In the context of the flow in porous plocks of relatively immobile water, producing similar be-
media, fractional space derivatives model large motionayior[9]. If the first moment of these time delays diverges,

through highly conductive layers or fractures, while frac-then g fractional time derivative appli¢6]. The fractional
tional time derivatives describe particles that remain motionsjme derivative a7g(t)/at” for 0<y<1 is the inverse

less for extended periods of time. Dissolved solutes may SorEapIace transform 087g(s), whereg(s)=£[g(t)] is the

to solid matega[_fBr]hor dn‘fluse Into |n;moplle-\|/v§tf<;:r zones of ,q,a| | aplace transform. In this paper, we find the stochastic
various size¢9]. The scalar space-fractional diffusion equa-gq)tion to the space-time fractional diffusion equation
tion governs Lgy motion, and the tail parameter of the

Lévy motion equals the order of the fractional derivative.

Solutions to the vector space-fractional diffusion equation ) -

are operator ey motions[10] that may scale at different I7q(x,t) =Lq(x,t)+ 8(x) t

rates in different directions. The matrix exponent of the frac- oty ' 1=y

tional derivative is related to the scaling rates in a similar

manner{11,12. A more general diffusion equation governs

any Levy processX(t) [13,14. The probability density \We show that ifX(t) is the stochastic solution to E€L) then

p(x,t) of any such process solves a diffusion-type equationX(Vv,) is the corresponding solution to E®), whereV, is

the inverse Ley process[18] for the stable subordinator
ap(x,t) with index y. The fractional time derivative subordinates
p =Lp(x,t); p(x,0)=8(x), (1) X(t) to the inverse stable subordinatdy.

The space-time fractional diffusion equation is also con-
nected with scaling limits of continuous time random walks
where L is the generator of the Feller semigro&pf(x) (CTRW, sed6]). The spatial operatdr depends on the jump
= [f(x=y)p(y,t)dy [15—-17. In this case, we say that(t) size distributior{11,17. A fractional time derivative of order
is the stochastic solution to E@l). The generatot f(x) 0<y<1 pertains when the random waiting timiebetween
=Iimtlot*1[stf(x)—f(x)]. If X(t) is ana-stable Ley mo-  jumps satisfie(T>t)~t"” so thatE(T)=c. The infinite
tion without drift, thenL is a fractional derivative operator of mean waiting time CTRW limit is the finite mean waiting
order a. time CTRW limit, subordinated to the inverse stable subor-

dinatorV,. The random variabl®, has a Mittag-Leffler dis-
tribution [19] previously noted in connection with fractional
*Electronic address: mcubed@unr.edu time derivativeq4,20] and relaxatiorj21].
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II. CTRW SCALING LIMITS C_”N[Ct]:>Vt as c— oo,

CTRW were introducef22,23 to study random walks on

a lattice. They are now used in physics to model a wid

variety of phenomena connected with anomalous diffusion C_Y/ZW(N[C,[])~(CV)_]-/Z\N([C)’VJ):X(V,[)

[23-25. With finite mean waiting times, the jump process is

asymptotically linear, and the CTRW behaves in a manneasc—x, so that the Brownian motioX(t) is subordinated

similar to the original random walk for large tinf20,26.  to the inverse stable subordinatdy.

For a scalar process, finite variance jumps lead to Brownian The inverse processes have inverse distributional scaling

motion in the scaling limit. Infinite variance jumps with B.=c"B, andV,=c?V,, and together with the classical

power law tails lead to xyy motion. Vector jumps with finite  scaling for Brownian motiotX(ct) = c*?X(t) this shows that

second moments lead to multivariable Brownian motionthe CTRW limit is subdiffusive

Vector jumps with power law tails lead to multivariablévye >

motion, or operator L&/ motion if the power law behavior X(Ver) = X(CVy) =c7X(Vy)

varies with the direction of motiofl1,12. The speed of with Hurst indexH = v/2< 1/2. Si L _
oL o v . SinceP(V,<t)=P(B;=1)

convergence to the CTRW scaling limit, and the implications_ P(tY7B,=1)= P((B,/7) "=t) the random variable/.

for fractional diffusion modeling, are discussed in a recenthas the same density function agi,)”. The densityg., of
1) - y

paper of Barka[27]. .
Many physical applications involve infinite mean waiting the stable rayndom va.r|abI81 has Laplace transform
', Computing moments oft(B;)? shows that

times [21,28. Introducing infinite mean waiting times has £[9,(t)]=e”
the effect of subordinating the CTRW scaling limit to the V¢ has a Mittag-Leffler distributiorf19]. If p(xt) is the
inverse process of a stable subordinator whose indisxthe ~ density ofX(t) then a conditioning argument along with a
same as the power law tail index of the waiting times. Es-Simple change of variable shows thétV;) has density
sentially, this is because the counting process for particle .

jumps is inverse to the jump time process. The jump time q(X,t)=f p(x,(t/5)”)g,(s)ds

process is asymptotically the stable subordinator, so the 0

eHenceN[ct]wcyvt, and together with Eq.3) this yields

counting process for particle jumps is asymptotically the in- .
verse stable subordinator. _ lJ p(x,u)g (tu=¥myu-r-tqy. (5)
A rigorous mathematical proof appears [i29]. We re- vJo 4
count the basic ideas here to emphasize the physical appli- _ _ )
cations. Given iid positive random variablel let T, Analytical estimates iri29] show thatq(k,t)=C|k| = for
=" ,J; denote the time of thath particle jump. The po- large| k||, soX(V,) does not have a normal density and hence

sition of the particle after theith jump is W(n)=X={,Y; cannot be a fraitio_naal Brownian moti¢80]. :
whereY; are iid and assumed independentJof Then N, If P(||YJ|>r)~r_ for some 0<a<'2'then X(t) is an
=maxn:T,<t} counts the number of particle jumps by time a-stable Ley motion and the CTRW limiX(V,) has Hurst

t>0 and the CTRW variabl&/(N;) gives the position of the ir!dexH = vla. Iithe t"’?" index .varies with the spatial coor-
particle at timet>0 (NJ g P dinate, operator norming appli¢s2]. ThenX(ct) =cEX(t)

T E : g
If Y has zero mean and finite second moments, the simpllg":ldS t.OX(VCt) _C.y X(t) so that the I—!urst indek = yE is
random walk of particle jumps a matrix. For a diagonal exponeBt= dlag(,lbzl, o ley)
the ith coordinateX;(t) is an «;-stable L&y motion and
c Y2aW([ct])=X(t) as c—oe, (3)  Xi(Vy) is self-similar with Hurst indexy/ «; . Diagonalizable
matrix exponents introduce a change of coordinates. Re-
where the scaling limiX(t) is a Brownian motion. Shrinking peated eigenvalues thicken probability tails by a logarithmic
the spatial coordinates bg'> compensates expanding the factor, and complex exponents introduce rotations, leading to
time scale byc according to the central limit theorem. If discrete scale invarian¢81]. In every case, the scaling limit

P(J>t)~t~” for some O<y<1 then X(t) of the simple random walk is subordinated by the in-
verse stable subordinat®, and the density changes from
c’l’“YT[Ct]:>Bt as c—® (4) p(x,t) to q(x,t) via Eq.(5) when infinite mean waiting times

are introduced. Next, we show that this change corresponds
according to the extended central limit theorgbs| where  to a fractional time derivative in the diffusion equation.
the scaling limitB; is the stable subordinator procdds3|.

The y-stable random variablB, is totally positively skewed, 1. TIME-FRACTIONAL DIFFUSION EQUATIONS
hence this Ley process is strictly increasing. The inverse
process Wyss[32] and Schneider and Wy4$83] studied a time-
fractional diffusion equation. Zaslavsk$4] introduced the
V. =inf{t:B;> 7} space-time fractional kinetic equatid2) for Hamiltonian

chaos. When L=—-vdldx+Dg*d|x|* Saichev and
is also called the hitting time or first passage time processZaslavsky[35] show that ifp(x,t) solves Eq.(1) then the
Using the fact thatT,,N; are inverse, so tha{N,=x} function q(x,t) given by Eq.(5) solves Eq.(2). When «
={T;y=t}, along with Eq.(4) yields =2 they call the stochastic solution to E() a “fractal
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Brownian motion.” We prefer the term “time-fractional dif- tional Cauchy problen{2) via the inverse Ley transform

fusion” to avoid confusing this process with the well-known (5). We summarize the essentials here in order to clarify the

fractional Brownian motion. In fact, iX(t) is a Brownian  argument.

motion, the stochastic solution to EL) in this case, then Use s” 1=L[t”/T'(1—y)] and take Laplace-Fourier

the stochastic solution to E@2) is X(V,) whereV, is the transforms %—Kk,t—s) in Eq. (2) to get s?q(k,s)

inversey-stable subordinator. This interesting stochastic pro= (k) q(k,s) +s” 1, where (k) is the Fourier symbol of

cess is self-similar with Hurst index/2 so it is subdiffusive. L, so thatF[Lf(x)]=#(k)f(k). Then

HoweverX(V,) does not have a Gaussian distribution and it

does not have stationary incremeh®9|, so it is not frac- st 1

tional Brownian motion. q(k,s)= mzsv f
Barkai, Metzler, and Klaftef20] introduce a fractional

“exp ~[s7— (k) u}du

0

Fokker-Planck equation equivalent to with *
q f " =f s te”p(k,u)du, (6)
0
V(%) 3°
Toox myy lae using fge 2'du=a"! and p(k,t)=e*®!, which follows

) from Eq. (1). Use d(e %"Y)/ds=—ys* tue 5" to get
Barkai[4] applies Eq.(5), which he calls the inverse kg gy-1g=s"u— _(yy)~Id(e"5'V)/ds. Recall that e

transform ofp(x,t), to the solution of Eq(1) in order to = £rg (t)] and write
solve this fractional Fokker-Planck equation. 7
Scalar solutions to Eq1) with oS o (sl Jmefsully“gy(v)du
0
J 1- a9« 1+8 9¢
L=—UO7—+D 23 —+ zﬂ_a R —1ysy,— U
X I(—=X) Ix =fo e g (u""u-dt. 7)

are a-stable densitie$36,37], purely symmetric when the

skewness3=0 [2,38] and maximally skewed wheg=1 | "€N compute

[3,34]. When a=2 the skewnesg$3 is irrelevant, and the 14 -
solutions are normal densities. Vector solutions for s? le sU= U d_s( f e_Stgy(U‘l’Vt)u‘l’th)
0
L =—0U- V + DV% 1 ©
=—| te S'g,(u"urdt (8)
are multivariable stable densiti¢$l], whereV, is the op- yuJo

erator with Fourier symbol and combine with Eq(6) to write q(k,s) as

e a o0 1 o0 3 3 3
fw”_luk 6)m(6)do. fo (WL te~g. (U~ Yt)u 1/ydt)p(k'u)du
If =2, this integral reduces to)A(ik)" where the matrix = o [ EPPUN ST
A hasij componentf ¢;6;m(#)d6, and solutions are vector = Jo e fo p(k,u)g,(u yt);u 7 dudt.

Brownian motion.
Operator stable densities, where the stable index depengg invert the Laplace transform to obtain
on the coordinate, solve E@l) with

t 0
L=—v-V+3V-AV+F, a(k.t)= ;fo p(k,u)g,(tu™")u"t""tdu
where the generalized fractional derivative and invert the Fourier transform to get E8).
F(x)= f [F(x—y)=F(x)+yVi(x)]de(y) IV. CONCLUSIONS
Infinite mean waiting times subordinate CTRW scaling
and d¢(rE0)=r 2drm(6)de is an operator stable Mg limits to an inverse stable subordinator, equivalent to apply-

measurg 10,12,39. These are all abstract Cauchy problemsing an inverse [ey transform(5) to the solution density.
[16,17 whose solutiorp(x,t) is the family of densities for a  Since the solutions to time-fractional diffusion equations are
Lévy process, a stationary independent increment processso obtained via the inverse e transform, ay-fractional
that includes Brownian motion an@peratoy Lévy motion  time derivative in a diffusion equation has the effect of sub-
as special cases. Baeumer and Meerschd6itgive a rig-  ordinating the stochastic solution to the inverse process of a
orous mathematical proof that any solution to the abstrac-stable subordinator. When applied to the classical diffusion
Cauchy problem(l) is transformed to a solution of the frac- equation, this procedure produces the “fractal Brownian mo-
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tion” of Saichev and Zaslavsky as the solution to the time-dination by an inverse stable subordinator, but in that case
fractional diffusion equation, a model for subdiffusion. This the two processes are dependent.

interesting stochastic process is not the same as fractional

Browman motion, but rather a completely different stocha;— ACKNOWLEDGMENTS
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