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Driven inelastic Maxwell models with high energy tails
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The solutions of the homogeneous nonlinear Boltzmann equation for inelastic Maxwell models, when driven
by different types of thermostats, show, in general, overpopulated high energy tails of the-fpt-ac),
with power law tails and Gaussian tails as border line cases. The results are compared with those for inelastic
hard spheres, and a comprehensive picture of the long time behavior in freely cooling and driven inelastic
systems is presented.
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I. INTRODUCTION dimensional IHS system driven by Gaussian white noise, by
taking the scaling limita]1 while keeping (+ «?)%
Velocity distributionsf(v,t) with overpopulated high en- fixed. _ _ o
ergy tails have been observed in many particle systems with The goal of this paper is to develop a similar picture for

inelastic interactions, such as granular materials, and hav&e structure of the velocity distribution function in the non-

been studied experimentally, as well as by computer simula@qu”ibrium steady stattNESS in driven inelastic systems,

. . . ; and to show the existence of overpopulated high energy tails.
tions and analytical methods]. In experimental studies en- This will be done by analyzing the solution of the nonlinear

ergy has to be supplied at a constant rate to keep the systegy|;mann equation in the NESS of driven inelastic Maxwell
in a nonequilibrium steady state, while in the other ap-mogels, and by combining these results with the available
proaches freely cooling systems can be studied as well. Withnformation on driven IMM and IHS systems. To carry out
out energy input the velocity distribution will approach a this analysis we use an asymptotic method, developed by van
Dirac delta functions(v) at large time, and consequently all Noije and one of the authof$]. This method gives robust

its moments will vanish, including the root mean squareresults in the IHS case, as confirmed in great detail by the
(rms) velocity vy(t). numerical studies listed above.

In freely coolingsystems an interesting structure is re- It is well known that in inelastic hard sphere systems,
vealed when velocities=V/v(t) are measured in units of driven by Gaussian white noise, the tail in thceé velocity dis-
the rms velocity, and the long time limit is taken while keep-T1PUtion is a stretched exponentiatexp(-ac’) with b
. . o L =3/2 [6-9]. The available results on driven inelastic Max-
ing ¢ constant, the so-callescaling limit In this limit the

. o . well models seem to be contradictory. On the one hand the
rescaled velocity distribution of the homogeneous coolingay ¢t solution for a one-dimensional model shows an expo-

state can be collapsed on a scaling form or similarity solutiotential tail[23]. Other results, however, suggest that the tails
f(c), which exhibits overpopulated power law tails are Gaussiaf3,10]. The latter results have been derijdd]
~1/c?2*9 as recently discovered id-dimensional inelastic by analyzing the NESS distribution functiaiter perform-
Maxwell models(IMM ) [2—4], or stretched exponential tails, INg an expansion in powers of the inelasticity, defined as
~exp(—ac®) with b=1 in inelastic hard spher@HS) sys- (1_— a?), wherea is the cqefficient of restitgtion. .However,
tems[5-9]. tails may change depending on the order in which the non-
This implies that we are dealing with nonuniform ap- _umformly convergent limits are take[ﬂ_], as we will also see
proaches to limiting behavior, i.e., nonuniformities in the N the case of driven systems in this paper. Moreover, the
limits of long times, large velocities, and vanishing inelastic-CONCept Qverpopulatlon IS Qef|ned by comparing the
ity. So, one may obtain different results when taking the@SYmptotic forms ofln f(u)] with the corresponding form of

limits in different orders, when taking coupled limits, such ast"€, Gaussian distribution, and not by the behavior of the
the scaling limit(as manifest in the differences between bulkkurtosus or some higher cumulants.

nd tail behavior or when performing an expansion in pow- Unfortunately, there is little universality in tails. The pres-
and tail behavior or when perto g an expansion In pPOW- onea ang also the absence of overpopulated tails depend
ers of the inelasticity first and next the large time limit is

- . . _ strongly on the mode of energy input or the type of thermo-
taken(typically Gaussian tails are obseryedr when taking stat used Gaussian tails in an ideal gas heat bftt], and

the long time limit at fixed inelasticitytypically overpopu-  giretched exponential tails when coupled to a white noise
lated tails are observeavith a whole wealth of coupled lim- thermostat[6]), on the type of interactions, e.g., inelastic
its in between, as shown by Barret al. [9] for the one-  hard spheres versus inelastic Maxwell models, and on the
presence and absence of spatial fluctuations. In fact, at a very
low rate of energy supply one even observes a crossover
*Email address: ernst@phys.uu.nl from freely evolving behavior to the driven one, as shown in
"Email address: brito@seneca.fis.ucm.es Ref.[12]. The generic feature is here overpopulation of high
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energy tails created by inelastic interactions in systems witltussed in15,4], where also the origin of the factordlfis
initially Gaussian tails, rather than the specific shape of thexplained. HereT* is short forf(vi* ,t), and we have ab-
tail. sorbed constant factors in the time scale. The velocities and

However, as soon as spatial fluctuations are present in thtme have been dimensionalized in terms of the rms velocity
initial statef(v,r,0) the homogeneous cooling state of IMM and the mean free time in the initial state, and the dimension-
and IHS becomesinstable and the dissipative systems ex- |ess collision ratey(u) is normalized such that,g(V,,-n)

hibit the clustering instability[ 13], and the phase separates —1 woreover, [, (- --)=(1/Q)fdn(---) is an average
into cold dense clusters and hot dilute regions. In this context N

. . : 1
Baldassarret al. have investigated in Reff2a] what happens over ad-dimensional unlt. sphere, whefe;= de/Z/F.(gd).

in the presence of spatial fluctuations in a many-body grand" the Maxwell models discussed here we have eig{gr)
lar lattice Maxwell model, where the local density remains— L (&S used if2—4]), or 9(_'““)*:C_|M_| (@s in[15,10,4,19).
constant by construction, and hence the clustering instability 1€ postcollision velocities! with i,j={1,2} are defined
is suppressed. Here the mean field theory would also prediéS

power law tails for the homogeneous cooling state. Barrat

et al.[9] also considered the influence of spatial fluctuations Vi =V (a)=Vi—3(1+a)v;-nn, (2

in the one-dimensional many-body IHS system, either freely

evolving or driven by Gaussian white noise, using molecularng therestituting velocities, appearing in the collision term
dynamics, and compared their results with the direct simulag) are given byw** =v* (1/a). Herea is the coefficient of
tion Monte Carlo(DSMC) method and an exact numerical regtitytion (0<a<1), andn is a unit vector along the line of

method for solving the Boltzmann equation. They foundgenters of the interacting particles. In one dimension the an-

even more subtle effects of nonuniform convergence Whe@ular averagd,, as well as the tensorial produet can be

taking the scaling limit mentioned above. _ replaced by 1. The Boltzmann collision operator conserves
The plan of the paper is as follows. In Sec. Il the nonlin-iha number of particles and momentum, but not the energy,

ear Boltzmann equation for IMM systems is described, as,,4 normalizations are chosen such that=1 and (v?2)
well as the different types of thermostats, and following an_ 1q,2(y) where(- - -) denotes an average ovi(,t).
observation of Montanero and San{@ we map a freely 2Maﬁy f;luthors have used thermostats, of WhiC,h we con-
cooling IMM system on the corresponding IMM, driven by a sider three different typeig]; ’

Gaussian thermostat. So freely cooling systems are just a '
special case of driven systems, and we can restrict the whole

analysis to IMM and IHS, driven by a variety of thermostats. (

. . . v—-vf(v,t) Gaussian
In Sec. Il the resulting tails are shown to be either of power N
law type[2-4,14, or of exponential type, depending on the 92
type of thermostats used. We conclude with some conclu- Fi(v,t)={ —3 g W) f(v,t) white noise (3)

sions and perspectives.

J . .
II. KINETIC EQUATIONS FOR DRIVEN DISSIPATIVE \ 95y Vi) graviy.

SYSTEMS

To investigate these NESS in driven systems we analyz& Popular thermostat, used in molecular dynamics simula-
the nonlinear Boltmann equation in the simple case of arfions of elastic systems, is the Gaussian thermostat, which is
initially homogeneous and isotropic velocity distribution Pased on Gauss’ principle of least constrdié1€], and
f(v,0), wheref(v,t) remains homogeneous and isotropic.y',el‘,js in the Ppresent case a fI’IC.tIOI’l forgg with a negative
This can be done by adding a stochastic or deterministiffiction coefficient. Many investigatori3,6,10,17—-19have
force to the microscopic equations of motion, which mani-&dded stochastic forces to the equations of motion in the

fests itself in the Boltzmann equation as a source tgfim oM of Gaussian white noise. Following R¢8] we will

ie. also consider the gravity thermostat. The thermostat forces
considered here are all scalars, but thermostat forces of a
af(v)+ Fi(v)=1(f) tensorial nature have also been considered, e.g., to describe
uniform shear flow[20].

:f f AV, a(Vap 1) if** Y Montanero and Santd$] made the interesting observa-
n 20WVaz 5T 1o 12y tion that the Boltzmann equation for the NESS distribution

! f(v,») driven by a Gaussian thermostatigentical to the

@ equation for the scaling or similarity solutiof(c) in the
Herel (f) is the nonlinear Boltzmann collision term, and the freely cooling statéi.e., 7f=0) provided both equations are
second equality specializes the collision term to inelasti€Xpressed in rescaled distributions. These are defined as
Maxwell models, which are characterized by a collision fre-f(v,t) =[v(t)]”“F(v/v(t)) for the homogeneous cooling
quencyg(Vi,-n) independent of the kinetic energy of the state, and a$(v,%)=[vo(*)] F(v/vy(*)) for the NESS,
colliding particles, andh=a/a is a unit vector. The motiva- Which implies for both rescaled functions the normalizations,
tion for and the construction of these models has been disfdcf(c){1,c2 ={1,d}.
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In terms of these rescaled variables the Boltzmann equdor asymptotically larges;, whereasc, is in the bulk range,

tion for f(c) in the NESS becomes ie.,

Cd e R(cy,Cp)=exd —a(ch +c? —cD)]. (5)

Yoo T d ac The exponent is proportional tf for <1 and 0<b<2,

2 except for grazing collisions, where it vanishes. This happens
— d\% w, d\% : : 2

[(F)=FF= __0(_) f:__<_) i 4) in a small  interval of lengthO(1/(1 a )cl]) neare
2vg\dc 2d\ dc = /2, where (£ a?)cy|cosfd=0(1). Outside this interval

g 9 w0 9 R vanishes exponentially fast, and inside- O(1). Weinsert

2 F=—2 " F this estimate oR, which is independent aof,, in the colli-

[ Vo OC 2(c) dc sion terms(1) and(4), and carry out the integrations over

and over the angle of incidence by making the substitution

To derive the equalities in the last column, one multiplies¢= m/2—x/c;. This yields the following estimate for the
the Boltzmann equatiof®) to the left with fdcc?, and intro- ~ gain term:
duces the second moment of the reduced collision operator,
w,=—[dec?l(f), to obtain w,=[—dy,—d&/v3(x), IQNJ dnf deolcy - n[5fyfp~f,85" 15, (6)
—2g(c)/vy()] respectively. These equalities are used to
eliminate the parameters,é5/v2,g/v, in the first column.  where the constani~ (1) and the exponerst={0,1} cov-

For Maxwell modelsw, can be calculated exactigee[4])  ers both collision frequencia(x), discussed below Eq1).
with the result w,=;(1-a?) for g(u)=1 and w, A comparison of the gain and loss terms in E#) shows
=3[d/(d+1)](1-@?) for g(u)=C|ul. The momenc)  that fora<1, the ratiol 4/I,~O(L/c$**) for ¢;>1. So, un-
=(|cl) in Eq. (4) has to be calculated from the NESS distri- der the assumption that the stretched exponential form is
butionf(c) in the bulk range, i.e¢=0(1), wheref(c) is  valid, the gain term can be neglected in the asymptotic analy-
given in lowest approximatiori6,10] by the Maxwellian  sjs, and the collision integral is given byf)=—T(c,). It is
w~ Y2exp(—c?). This yields(c)=T"(3(d+1))/T'(3d). important to note that this estimate breaks downedd,

The Boltzmann equatiot¥) for the rescaled distribution because ther or ¢ integral converges nonuniformly in
functionf(c) in the NESS not only holds fad-dimensional near the grazing collisions, and the limitf1 cannot be
Maxwell models, but also fod-dimensional inelastic hard taken under the integral sign in the gain term.
spheres,  provided fg/vg,y,g/vo are replaced by After these preparations we msert the stretched exponen-
§§/v§,y,g/v§ (see discussion in Ref6,8]). Therefore, ob- tial form into the Boltzmann_ equatiofd), and .match the
taining the solution of Eq(4) in the NESS for all three leading exponents on both sides of the equation, as well as

thermostat forces above covers a large range of represen%\:e coefficients in the exponents of these terms. This gives

e following results for the asymptotic high energy tail of

tive cases. ~ . . .
f(c)~exp(—ad) in d-dimensional IMM:
lll. HIGH ENERGY TAILS b=0, inconsistent (Gaussiaj
Following the procedure of Ref6] we make the ansatz b=1, a=y2d/w, (whitenoise, (7)
of stretched exponential behavior for the high energy tail, b=1, a=2(c)/w, (gravity).

i.e., f(c)=Aexp(acd) with 0<b<2 anda>0, and deter- S _
mine b anda by inserting this ansatz in the rescaled Boltz- The ansatz of a stretched exponential tail for a Gaussian
mann equatioitd) and requiring self-consistency. The border thermostat turns out to be inconsistent in IMM, and suggests
line caseb—0 corresponds to power law tails, ahe-2 @ power law decay. The self-consistent method@jfdoes
corresponds to Gaussian tails. not lead to a prediction. In this case, which is equivalent to
Following Krook and Wi21] and Emns{22], we give an  the freely evolving case, has been extensively discussed in
estimate for the collision operat&ﬁ(?) for ¢, being in the Refs.[2—4,14|. 'For comparison we also quote the res.u_lts for
asymptotic rangeq,>1). If particle 1 is a fast particle, the d-dimensional inelastic hard spheres. One easily verifies that

dominant contribution to the Boltzmann collision term the above estimate yields for hard spheref,=
comes from collisions with particle 2 with velocities that are —c,B;:f(cy) with B1=[nlvy-N| =T(3d)/[ Vol (:(d+1))]
typically in the bulk rangéc,=O(1)]. Consequently;, in (see Ref[4]), and one obtains immediately the results of
the collision terms(1) and (4) can be replaced by, i.e.,  Ref.[6], i.e., T(c)~exp(=ac®) with

|ci-n|=]|c;-n|, and the asymptotic dynamics simplifies

to c*=c¢—3[1+(Ya)]c;-nn=c_  and c*=3[1 b=1, a=dB;/w, (Gaussiaj
+(1/a)]c-nn=c, . Next we make an estimate of the gain 8dg

term in the collision operator under the assumption that the b=32, a=+/ ! (white noise, (8)
stretched exponential behavior holds asymptotically for large w2

c;. To do so we consider the ratR(c,,c,)=f1* f3* /f,f, b=2, inconsistent (gravity).
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IV. CONCLUSIONS AND PERSPECTIVES thermostats are listed. The stronger the source terms are at
. . . large velocities, the larger is the overpopulation. Weaker
e el o N goure tems t lage veacies yied maler overpopue
) o ions, closer to Maxwellian tails. We have not been able to
distribution functionf(c) at large energies is consistently geterminea priori criteria for lower bounds on the source
described by stretched exponentials with <2, where all  strength at large velocities, below which there always will be
moments exist. In IMM the cade=0 is a border line case, 5 Gaussian tail.
corresponding to power law t_ails, as discussed in R_efs. Freely cooling dissipative systensithout energy input
[2-4,14. The case of the gravity thermostat for IHS with gre totally equivalent to the special case of driving by a
b=2 is another border line case with Gaussian tails, whichzayssian thermostat, and are, therefore, included in our com-
has been discussed in R&] prehensive ana'ysis_

_The results also show that the form of the high energy |n summary, the most common scenario for spatially ho-
tails is by no means universal. It not only depends stronglynogeneous driven dissipative systems is that an arbitrary
on the type of thermostat, but also on the type of interactionnitial distribution f(v,0), bounded by a Gaussian distribu-
model. For instance, in the case of the white noise thermostgjign at large energies—the scenario for singitéial distri-
the distributions have stretched exponential tails viith1 butions with power law tails is more complicatésee Ref.
for Maxwell models, and for IHS it i&=3/2. In the case of [4b])_approaches a nonequi]ibrium Steady StMSS
the Gaussian thermostat or freely cooling systems there angy, ) with an overpopulated high energy tail. Théobal
power law tails[2—4] in inelastic Maxwell models, and stapility of this NESS in spatially homogeneous systems has
stretched exponentials with=1 for inelastic hard spheres. peen shown in Ref[4b] for inelastic Maxwell models,
We also observe that the tails for a given thermostat in IHSjriven by a Gaussian thermostat’ or equiva|ent|y for an in-
have smaller overpopulation as for the same thermostat iBjastic Maxwell model in the homogeneous cooling state
IMM, because the collision rate in the hard sphere caseyithout energy input.
which is proportional tay(u)~|cy4, is much more efficient
in randomizing the velocities at high energies than in Max- ACKNOWLEDGMENTS
well models.
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