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Driven inelastic Maxwell models with high energy tails
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The solutions of the homogeneous nonlinear Boltzmann equation for inelastic Maxwell models, when driven
by different types of thermostats, show, in general, overpopulated high energy tails of the form;exp(2ac),
with power law tails and Gaussian tails as border line cases. The results are compared with those for inelastic
hard spheres, and a comprehensive picture of the long time behavior in freely cooling and driven inelastic
systems is presented.
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I. INTRODUCTION

Velocity distributionsf (v,t) with overpopulated high en
ergy tails have been observed in many particle systems
inelastic interactions, such as granular materials, and h
been studied experimentally, as well as by computer sim
tions and analytical methods@1#. In experimental studies en
ergy has to be supplied at a constant rate to keep the sy
in a nonequilibrium steady state, while in the other a
proaches freely cooling systems can be studied as well. W
out energy input the velocity distribution will approach
Dirac delta functiond(v) at large time, and consequently a
its moments will vanish, including the root mean squa
~rms! velocity vo(t).

In freely coolingsystems an interesting structure is r
vealed when velocitiesc5v/vo(t) are measured in units o
the rms velocity, and the long time limit is taken while kee
ing c constant, the so-calledscaling limit. In this limit the
rescaled velocity distribution of the homogeneous cool
state can be collapsed on a scaling form or similarity solut

f̃ (c), which exhibits overpopulated power law tai
;1/c2a1d as recently discovered ind-dimensional inelastic
Maxwell models~IMM ! @2–4#, or stretched exponential tails
;exp(2acb) with b51 in inelastic hard sphere~IHS! sys-
tems@5–9#.

This implies that we are dealing with nonuniform a
proaches to limiting behavior, i.e., nonuniformities in t
limits of long times, large velocities, and vanishing inelast
ity. So, one may obtain different results when taking t
limits in different orders, when taking coupled limits, such
the scaling limit~as manifest in the differences between bu
and tail behavior!, or when performing an expansion in pow
ers of the inelasticity first and next the large time limit
taken~typically Gaussian tails are observed!, or when taking
the long time limit at fixed inelasticity~typically overpopu-
lated tails are observed! with a whole wealth of coupled lim-
its in between, as shown by Barratet al. @9# for the one-
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dimensional IHS system driven by Gaussian white noise,
taking the scaling limita↑1 while keeping (12a2)1/3v
fixed.

The goal of this paper is to develop a similar picture f
the structure of the velocity distribution function in the no
equilibrium steady state~NESS! in driven inelastic systems
and to show the existence of overpopulated high energy t
This will be done by analyzing the solution of the nonline
Boltzmann equation in the NESS of driven inelastic Maxw
models, and by combining these results with the availa
information on driven IMM and IHS systems. To carry o
this analysis we use an asymptotic method, developed by
Noije and one of the authors@6#. This method gives robus
results in the IHS case, as confirmed in great detail by
numerical studies listed above.

It is well known that in inelastic hard sphere system
driven by Gaussian white noise, the tail in the velocity d
tribution is a stretched exponential;exp(2acb) with b
53/2 @6–9#. The available results on driven inelastic Ma
well models seem to be contradictory. On the one hand
exact solution for a one-dimensional model shows an ex
nential tail@23#. Other results, however, suggest that the ta
are Gaussian@3,10#. The latter results have been derived@10#
by analyzing the NESS distribution functionafter perform-
ing an expansion in powers of the inelasticity, defined
(12a2), wherea is the coefficient of restitution. However
tails may change depending on the order in which the n
uniformly convergent limits are taken@9#, as we will also see
in the case of driven systems in this paper. Moreover,
concept overpopulation is defined by comparing the
asymptotic forms of@ ln f(v)# with the corresponding form o
the Gaussian distribution, and not by the behavior of
kurtosis or some higher cumulants.

Unfortunately, there is little universality in tails. The pre
ence and also the absence of overpopulated tails dep
strongly on the mode of energy input or the type of therm
stat used~Gaussian tails in an ideal gas heat bath@11#, and
stretched exponential tails when coupled to a white no
thermostat@6#!, on the type of interactions, e.g., inelast
hard spheres versus inelastic Maxwell models, and on
presence and absence of spatial fluctuations. In fact, at a
low rate of energy supply one even observes a crosso
from freely evolving behavior to the driven one, as shown
Ref. @12#. The generic feature is here overpopulation of hi
©2002 The American Physical Society01-1
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energy tails created by inelastic interactions in systems w
initially Gaussian tails, rather than the specific shape of
tail.

However, as soon as spatial fluctuations are present in
initial state f (v,r ,0) the homogeneous cooling state of IM
and IHS becomesunstable, and the dissipative systems e
hibit the clustering instability@13#, and the phase separat
into cold dense clusters and hot dilute regions. In this con
Baldassarriet al.have investigated in Ref.@2a# what happens
in the presence of spatial fluctuations in a many-body gra
lar lattice Maxwell model, where the local density remai
constant by construction, and hence the clustering instab
is suppressed. Here the mean field theory would also pre
power law tails for the homogeneous cooling state. Ba
et al. @9# also considered the influence of spatial fluctuatio
in the one-dimensional many-body IHS system, either fre
evolving or driven by Gaussian white noise, using molecu
dynamics, and compared their results with the direct simu
tion Monte Carlo~DSMC! method and an exact numeric
method for solving the Boltzmann equation. They fou
even more subtle effects of nonuniform convergence w
taking the scaling limit mentioned above.

The plan of the paper is as follows. In Sec. II the nonl
ear Boltzmann equation for IMM systems is described,
well as the different types of thermostats, and following
observation of Montanero and Santos@8# we map a freely
cooling IMM system on the corresponding IMM, driven by
Gaussian thermostat. So freely cooling systems are ju
special case of driven systems, and we can restrict the w
analysis to IMM and IHS, driven by a variety of thermosta
In Sec. III the resulting tails are shown to be either of pow
law type@2–4,14#, or of exponential type, depending on th
type of thermostats used. We conclude with some con
sions and perspectives.

II. KINETIC EQUATIONS FOR DRIVEN DISSIPATIVE
SYSTEMS

To investigate these NESS in driven systems we ana
the nonlinear Boltmann equation in the simple case of
initially homogeneous and isotropic velocity distributio
f (v,0), where f (v,t) remains homogeneous and isotrop
This can be done by adding a stochastic or determini
force to the microscopic equations of motion, which ma
fests itself in the Boltzmann equation as a source termFf ,
i.e.,

] t f ~v!1Ff ~v!5I ~ f !

5E
n
E dv2g~ v̂12•n!F 1

a
f 1** f 2** 2 f 1f 2G .

~1!

HereI ( f ) is the nonlinear Boltzmann collision term, and th
second equality specializes the collision term to inela
Maxwell models, which are characterized by a collision f
quencyg( v̂12•n) independent of the kinetic energy of th
colliding particles, andâ5a/a is a unit vector. The motiva-
tion for and the construction of these models has been
04030
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cussed in@15,4#, where also the origin of the factor 1/a is
explained. Heref 1** is short for f (v1** ,t), and we have ab-
sorbed constant factors in the time scale. The velocities
time have been dimensionalized in terms of the rms velo
and the mean free time in the initial state, and the dimens
less collision rateg(m) is normalized such that*ng( v̂12•n)
51. Moreover, *n(•••)5(1/Vd)*dn(•••) is an average

over ad-dimensional unit sphere, whereVd52pd/2/G( 1
2 d).

In the Maxwell models discussed here we have eitherg(m)
51 ~as used in@2–4#!, or g(m)5Cumu ~as in @15,10,4,14#!.

The postcollision velocitiesvi* with i , j 5$1,2% are defined
as

vi* 5vi* ~a!5vi2
1
2 ~11a!vi j •nn, ~2!

and therestitutingvelocities, appearing in the collision term
~1!, are given byvi** 5vi* (1/a). Herea is the coefficient of
restitution (0,a,1), andn is a unit vector along the line o
centers of the interacting particles. In one dimension the
gular average*n , as well as the tensorial productnn can be
replaced by 1. The Boltzmann collision operator conser
the number of particles and momentum, but not the ene
and normalizations are chosen such that^1&51 and ^v2&
5 1

2 dvo
2(t), where^•••& denotes an average overf (v,t).

Many authors have used thermostats, of which we c
sider three different types@8#:

Ff ~v,t !55
g

­

­v
•vf ~v,t ! Gaussian

2 1
2 jo

2S ­

­vD
2

f ~v,t ! white noise

g
­

­v
• v̂f ~v,t ! gravity.

~3!

A popular thermostat, used in molecular dynamics simu
tions of elastic systems, is the Gaussian thermostat, whic
based on Gauss’ principle of least constraint@8,16#, and
yields in the present case a friction forcegv with a negative
friction coefficient. Many investigators@3,6,10,17–19# have
added stochastic forces to the equations of motion in
form of Gaussian white noise. Following Ref.@8# we will
also consider the gravity thermostat. The thermostat for
considered here are all scalars, but thermostat forces
tensorial nature have also been considered, e.g., to des
uniform shear flow@20#.

Montanero and Santos@8# made the interesting observa
tion that the Boltzmann equation for the NESS distributi
f (v,`) driven by a Gaussian thermostat isidentical to the
equation for the scaling or similarity solutionf̃ (c) in the
freely cooling state~i.e.,Ff 50) provided both equations ar
expressed in rescaled distributions. These are defined
f (v,t)5@vo(t)#2df̃ „v/vo(t)… for the homogeneous coolin
state, and asf (v,`)5@vo(`)#2df̃ „v/vo(`)… for the NESS,
which implies for both rescaled functions the normalizatio

*dcf̃ (c)$1,c2%5$1,1
2 d%.
1-2
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In terms of these rescaled variables the Boltzmann eq
tion for f̃ (c) in the NESS becomes

Ĩ ~ f̃ !5F̃ f̃ 55
g

­

­c
•cf̃ 5

v2

d

­

­c
•cf̃

2
jo

2

2v0
2 S ­

­cD
2

f̃ 52
v2

2d S ­

­cD
2

f̃

g

vo

­

­c
• ĉf̃ 5

v2

2^c&

­

­c
• ĉf̃ .

~4!

To derive the equalities in the last column, one multipl
the Boltzmann equation~4! to the left with*dcc2, and intro-
duces the second moment of the reduced collision oper
v252*dcc2 Ĩ ( f̃ ), to obtain v25@2dg,2djo

2/vo
2(`),

22g^c&/vo(`)# respectively. These equalities are used
eliminate the parametersg,jo

2/vo
2 ,g/vo in the first column.

For Maxwell models,v2 can be calculated exactly~see@4#!
with the result v25 1

4 (12a2) for g(m)51 and v2
5 1

2 @d/(d11)#(12a2) for g(m)5Cumu. The moment̂ c&
5^ucu& in Eq. ~4! has to be calculated from the NESS dist
bution f̃ (c) in the bulk range, i.e.,c5O(1), where f̃ (c) is
given in lowest approximation@6,10# by the Maxwellian

p2d/2exp(2c2). This yields^c&5G„1
2 (d11)…/G( 1

2 d).
The Boltzmann equation~4! for the rescaled distribution

function f̃ (c) in the NESS not only holds ford-dimensional
Maxwell models, but also ford-dimensional inelastic hard
spheres, provided jo

2/vo
2 ,g,g/vo are replaced by

jo
2/vo

3 ,g,g/vo
2 ~see discussion in Refs.@6,8#!. Therefore, ob-

taining the solution of Eq.~4! in the NESS for all three
thermostat forces above covers a large range of repres
tive cases.

III. HIGH ENERGY TAILS

Following the procedure of Ref.@6# we make the ansat
of stretched exponential behavior for the high energy t
i.e., f̃ (c).A exp(2acb) with 0,b,2 anda.0, and deter-
mine b anda by inserting this ansatz in the rescaled Bol
mann equation~4! and requiring self-consistency. The bord
line caseb→0 corresponds to power law tails, andb→2
corresponds to Gaussian tails.

Following Krook and Wu@21# and Ernst@22#, we give an
estimate for the collision operatorĨ ( f̃ ) for c1 being in the
asymptotic range (c1@1). If particle 1 is a fast particle, the
dominant contribution to the Boltzmann collision ter
comes from collisions with particle 2 with velocities that a
typically in the bulk range@c25O(1)#. Consequentlyc12 in
the collision terms~1! and ~4! can be replaced byc1, i.e.,
uc12•nu.uc1•nu, and the asymptotic dynamics simplifie
to c1** 5c12 1

2 @11(1/a)#c1•nn[c2 and c2** 5 1
2 @1

1(1/a)#c1•nn[c1 . Next we make an estimate of the ga
term in the collision operator under the assumption that
stretched exponential behavior holds asymptotically for la
c1. To do so we consider the ratioR(c1 ,c2)[ f 1** f 2** / f 1f 2
04030
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for asymptotically largec1, whereasc2 is in the bulk range,
i.e.,

R~c1 ,c2!.exp@2a~c1
b 1c2

b 2c1
b!#. ~5!

The exponent is proportional toc1
b for a,1 and 0,b,2,

except for grazing collisions, where it vanishes. This happ
in a small u interval of lengthO„1/@(12a2)c1#… near u
5p/2, where (12a2)c1ucosuu.O(1). Outside this interval
R vanishes exponentially fast, and insideR.O(1). Weinsert
this estimate ofR, which is independent ofc2, in the colli-
sion terms~1! and~4!, and carry out the integrations overc2
and over the angle of incidence by making the substitut
u5p/22x/c1. This yields the following estimate for the
gain term:

I g;E dnE dc2uĉ1•nusf 1f 2; f 1ds11/c1
s11 , ~6!

where the constantd;O(1) and the exponents5$0,1% cov-
ers both collision frequenciesg(m), discussed below Eq.~1!.
A comparison of the gain and loss terms in Eq.~1! shows
that fora,1, the ratioI g /I l;O(1/c1

s11) for c1@1. So, un-
der the assumption that the stretched exponential form
valid, the gain term can be neglected in the asymptotic an
sis, and the collision integral is given byĨ ( f̃ ).2 f̃ (c1). It is
important to note that this estimate breaks down asa↑1,
because then or u integral converges nonuniformly ina
near the grazing collisions, and the limita↑1 cannot be
taken under the integral sign in the gain term.

After these preparations we insert the stretched expon
tial form into the Boltzmann equation~4!, and match the
leading exponents on both sides of the equation, as we
the coefficients in the exponents of these terms. This gi
the following results for the asymptotic high energy tail
f̃ (c);exp(2acb) in d-dimensional IMM:

b50, inconsistent ~Gaussian!,

b51, a5A2d/v2 ~white noise!, ~7!

b51, a52^c&/v2 ~gravity!.

The ansatz of a stretched exponential tail for a Gauss
thermostat turns out to be inconsistent in IMM, and sugge
a power law decay. The self-consistent method of@6# does
not lead to a prediction. In this case, which is equivalent
the freely evolving case, has been extensively discusse
Refs.@2–4,14#. For comparison we also quote the results
d-dimensional inelastic hard spheres. One easily verifies
the above estimate yields for hard spheres,Ĩ g.
2c1b1 f̃ (c1) with b15*nuv̂1•nu5G( 1

2 d)/@ApG„1
2 (d11)…#

~see Ref.@4#!, and one obtains immediately the results
Ref. @6#, i.e., f̃ (c);exp(2acb) with

b51, a5db1 /v2 ~Gaussian!,

b5 3
2 , a5A8db1

9v2

~white noise!, ~8!

b52, inconsistent ~gravity!.
1-3
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IV. CONCLUSIONS AND PERSPECTIVES

The theoretical results for IMM in Eq.~7! and for IHS in
Eq. ~8! show for which cases the rescaled form of the NE
distribution function f̃ (c) at large energies is consistent
described by stretched exponentials with 0,b,2, where all
moments exist. In IMM the caseb50 is a border line case
corresponding to power law tails, as discussed in R
@2–4,14#. The case of the gravity thermostat for IHS wi
b52 is another border line case with Gaussian tails, wh
has been discussed in Ref.@8#.

The results also show that the form of the high ene
tails is by no means universal. It not only depends stron
on the type of thermostat, but also on the type of interact
model. For instance, in the case of the white noise thermo
the distributions have stretched exponential tails withb51
for Maxwell models, and for IHS it isb53/2. In the case of
the Gaussian thermostat or freely cooling systems there
power law tails @2–4# in inelastic Maxwell models, and
stretched exponentials withb51 for inelastic hard spheres
We also observe that the tails for a given thermostat in I
have smaller overpopulation as for the same thermosta
IMM, because the collision rate in the hard sphere ca
which is proportional tog(m);uc12u, is much more efficient
in randomizing the velocities at high energies than in Ma
well models.

When comparing thermostats for a given model we n
that the overpopulation decreases in the order in which
.

d,
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thermostats are listed. The stronger the source terms a
large velocities, the larger is the overpopulation. Wea
source terms at large velocities yield smaller overpopu
tions, closer to Maxwellian tails. We have not been able
determinea priori criteria for lower bounds on the sourc
strength at large velocities, below which there always will
a Gaussian tail.

Freely cooling dissipative systems~without energy input!
are totally equivalent to the special case of driving by
Gaussian thermostat, and are, therefore, included in our c
prehensive analysis.

In summary, the most common scenario for spatially h
mogeneous driven dissipative systems is that an arbit
initial distribution f (v,0), bounded by a Gaussian distrib
tion at large energies—the scenario for singularinitial distri-
butions with power law tails is more complicated~see Ref.
@4b#!—approaches a nonequilibrium steady state~NESS!
f (v,`) with an overpopulated high energy tail. Theglobal
stability of this NESS in spatially homogeneous systems
been shown in Ref.@4b# for inelastic Maxwell models,
driven by a Gaussian thermostat, or equivalently for an
elastic Maxwell model in the homogeneous cooling st
without energy input.
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