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Fractional Langevin model of memory in financial time series
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Financial time series are random with the absolute value of the price index fluctuations having an inverse
power-law correlation. A dynamical model of this behavior is proposed using a fractional Langevin equation.
The physical basis for this model is the divergence of the microscopic time scale to overlap with the macro-
scopic time scale: a condition that is not observed in classical statistical mechanics. This time-scale separation
provides a mechanism for the market to adjust the volitility of the price index fluctuations.

DOI: 10.1103/PhysRevE.65.037106 PACS nunif)er89.75.Da, 05.45.Tp, 89.65.Gh

In classical statistical physics the separation of the micro- Given the absence of a universally accepted theoretical
scopic and macroscopic time scales is manifest in the centrahodel of the dynamics of financial markets physicists inter-
limit theorem. The separation of time scales implies that theested in understanding the workings of complex phenomena
macroscopic dynamics can be described by the ordinary stdyave turned to uncovering any regularities that might be as-
chastic differential calculus, even if the microscopic dynam-certainable through empirical laW40]. Among the first to
ics are incompatible with the methods of ordinary calculusobserve such regularities in a financial market context was
[1]. When such a separation of time scales exists, the Langddandelbrot, see Refl4] for a review of early work and
vin equation adequately describes the dynamics of the physsubsequent analysis. More recently, Stanley and his cowork-
cal phenomenon. A similar conclusion was reached by Bachers at Boston University have systematically processed one
elier [2] in 1900, in his development of the phase-spaceof the largest financial time series of a tick to tick nature in
equation of motion for the probability density characterizingthe literature, determining for market price index fluctua-
the price fluctuations in the French stock market. The intertions: the correlational properti¢40]; the statistical proper-
pretation of financial markets using random walk modelsties [11]; the statistical properties of volume fluctuations
was given by Cootners ii8], in which an English translation [12]; and the statistical properties for individual companies
of Bachelier’s original paper resides. [13]. The results of their investigations agree with those of

On the other hand, when this separation of time scalesther researchers and indicate that the statistical behavior of
does not exist, the formalism of ordinary statistical physics ifinancial markets cannot be described by the dynamics of
no longer adequate to describe the phenomenon, as discusssahple diffusive processes, as thought by early investigators
for example by Grigolini, Rocco, and Wddi]. In particular,  of the statistics of financial markets, see e.g., Montroll and
a lack of time-scale separation may induce a fractional, stoBadger[14], but requires a more subtle analysis involving
chastic, differential equation on the macroscopic lgied]  fractal statistical processes.
to replace the Langevin equation. This is demonstrably the When the dynamical environment, to which a system is
situation in financial markets where the time scales for indi-coupled, is fractal, for example, a fractal stochastic process,
vidual events are quite small, and the variability in sign ofthe dynamics of the system cannot be represented by the
price indices produce a very short correlation time. Howeversolution of an ordinary differential equation. However, the
the magnitude of the price index changes can have very longolutions to fractional differential operator equations still
memory, in fact, correlation overlap with the longest timeyield mathematically well-defined quantities. Furthermore,
scales in the financial market. the application of fractional equations of motion to physical

The price index fluctuation data from financial marketsand social phenomena can be usefully interpreted in terms of
are not Gaussian, contrary to the early work in R&f, but ~ memory effect§15]. Further, with a number of papers sup-
rather manifest distributions with fat tai[g]. The fluctua- porting the position that the stock market is a fractal envi-
tions in the index of prices have been modeled by a produdonment in timg16,4], we argue that it is justified to employ
function g(t) =s(t) 5(t), wheres(t) represents the changes @ model of the dynamics of such a market using the
in the sign of the price index ang(t) the change in the Riemann-Liouville fractional operatorgl7]. In particular,
magnitude of the price indes]. It is well established that we know that for a physical process with memory, the
g(t) has an exponentially short correlation time due to theLangevin equation is generalized to the form
variability in sign, whereag;(t) has an inverse power-law

correlation function. Such inverse power-law behavior has do(t) J’t o N —

been observed in many other complex phenomena, such as dt * OK(t o (t)dt=1(t), @
crack growth[6], earthquake$7], turbulence 8], and for a

review of a number of others, see, for example, Ref. where the memory kernel determines the influence of the

process between points in timigt) is the random force and
the two are related by means of a generalized fluctuation-
*Email address: westb@aro.arl.army.mil dissipation relatio18]. Herein we incorporate the memory
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through a phenomenological memory kernal given by a frac- 1L
tional derivative rather than through E@.). This approach
has been taken by West, Bologna, and Grigo[ib®] in
physical systems, so the fractional Langevin equation we;
suggest is the one proposed first by €die and Nonnenma-

cher[20] in a rheology context
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1=a>0, whereé(t) is a stochastic process, whose statistics
must be specified and the initial value for the process is

given by vo. The operator D{[-] is chosen to be a 0005 00 malzed time difimence o8
Riemann-Liouville fractional derivative, see, for example, _ _ _ _
[17,20. FIG. 1. Autocorrelation functioib) is plotted versus the dimen-
The general solution to the fractional Langevin E2). is sionless time intervat on log-log graph paper and a least-squares
given by[19-21] fit to the function for 0.00%z=<0.02 with the phenomenological

equation. Only the values=0.9, 0.8, 0.7, and 0.6 are shown.

t
U(t):UOEa(_[)\t]a)+j X" TIE, (—NX®) E(t—x)dX, of the autocorrelation function on the fractional derivative
0 ’ index. The analytic form of the autocorrelation function is
(3 determined to bé19]

where the Green’s function for the solutidh, ,(x) is the C(r,t)
generalized Mittag-Leffler function given by the series

(_1)k+|—2()\|)ka+|a—l(1_z)|a
E, s(X) Ei Xt a>0, B>0 (4) IZI Izl I'ka)I'(la+1) Fi(1-2)
«sX= 2 Tkavpy 0 A0 - e |
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In the caseB=1, the series reduces to the Mittag-Leffler G = ko)l (la+ 1)
function. In addition wherv=1, the Mittag-Leffler function (5)
becomes an exponential, so that the solution to the fractional
Langevin equation can become identical to that for anwhereF, (q)=F(1;1—ka;1+la:q) is the hypergeometric
Ornstein-Uhlenbeck proce$&1], but only when thef fluc-  function. In Fig. 1 we observe the decrease in the auto-
tuations are given by a Wiener process. For financial marketsorrelation function as a function af We fit this decrease
the dynamical variable is often given by the retuu(t) with the phenomenological equati@(z)=Az 8, over the
=In[p(t+T)/p(T)], wherep(t) is the price of a given stock at range 0.00&z=<0.02, where the empirical parametérsind
time t. The quantity of interest in our modé&?) is the mag- B are functions of the fractional derivative index The pa-
nitude of the price changas(t)=|u(t)|, which essentially rameters are obtained by a least-squares fit of the indicated
coincides with»(t) mentioned previously. With this defini- phenomenological equation to the autocorrelation function
tion of the dynamical variable we have for the initial condi- (5). The values of the parameters for each valuexafre fit
tion vy=0 in Egs.(2) and(3), and the fractional Langevin in the indicated range yielding the coefficiemds=—1.18
equation for the financial market only represents the magni+2.03x andB=0.81—-0.84a«.
tude of the price index variations. In our dynamical model, We can see from the figure that for early, but not too early,
we only impose the condition that the random driving forcetimes each curve has a dominant inverse power-law form,
is & correlated and we do not constrain the process with &ut each with a different slope. Using the least-square fits,
particular choice of statistical distribution. we write for a fixed-length time series the autocorrelation

The traditional quantities calculated from the magnitudefunction in the interval 0.00%k 7<0.02 is
of the logarithm of the price time series are the autocorrela-
tion function and the standard deviation of the time series, C(7)oc7 081084 (6)
both of which are regarded as measures of the volatility,
depending on the contek®2]. We can calculate these quan- where, since &a<1, we have an inverse power law in
tities using the solution to the fractional Langevin Eg).  for most of the range od. Here we can use the data analysis
The autocorrelation function C(r,t)={(v(t)v(t  of Gopikrishnaret al.[10] for the correlation function of the
—7)){v(t)?) is constructed using Eg3), where the brack- absolute value of the price returns in their Figo)3or that of
ets denote averages over thdluctuations, which are as- Liu et al.[11] in their Fig. 8a). The value of the power-law
sumed to bes correlated in time, with a finite magnitude. We index in the theoretical Ed6) is determined from Ref.10]
express the autocorrelation function as a function of the dito be 0.8} 0.84¢=0.30+0.08, indicating a power-law in-
mensionless time differenae= 7/t to extract the dependence dex a=0.60=0.10. Further, using a Tauberian theorem, we
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conclude that the high-frequency form of the spectrum isx1/w, that is, a spectrum corresponding td hbise. As the
given by the inverse power law index deviates from &<1, the more clustered the process
—0.19-0.84x becomes and the more the events in the distant past influence
Sw)*w @ the present behavior of the financial market. Peters refers to
as long asx<1. this as pink noisg16]. Further, the greater the deviation

The autocorrelation function was devised as a quantitativd©m 1, the less reliable differential models of the market
measure of the linear dependence of the elements in Gaud2ecome. This is a consequence of the fact that the fractal
ian random processes. Thus, even when the autocorrelatigiimension is a measure of the degree of irregularity of the
function drops precipitously to zero, this does not mean thatime series. To understand this we note that the nearest
the price movements are statistically independent of one arfeighbor correlation coefficient for a fractal processris
other, only that the price increments do not contain signifi-= 2372D—1 [9]. A completely correlated process has 1
cant linear correlations, as has been well documef2&d implying D=1, whereas an uncorrelated random process has
The autocorrelation function is somewhat more difficult tor =0 implying D= 1.5, the fractal dimension for Brownian
interpret when the statistics of the fluctuations are not Gausswnotion[4]. Thus, as the fractal dimension increases from 1.0
ian, but are of the inverse power-law form observed in finanto 1.5 the process becomes more and more irregular, mani-
cial markets. One possible interpretation is that the lack ofesting less and less structure. The range of the fractal di-
exponential relaxation indicates that the memory process imension is given by 1.28D=1.0.
not smooth. Rather, the inverse power law suggests a slipage Note that a financial market is more than a collection of
or jerkiness to the system response, such as found in eartmdividual investors and, therefore, its collective behavior
guakes, in the relaxation of stress in viscoelastic materials, ineed not be the same as that of a “reasonable” average in-
microcrack propagation, and in the cascade of energy in tuivestor. The influence of the past events on the present events
bulent fluid flow[6]. This behavior is quite common in social is found to be manifest in an intrinsic “inertia” in the mar-
phenomend9], where there is a buildup of “strain” that ket. A fractional derivation in the range~la=1/2, such as
often goes unnoticed until it is “released,” producing a sig- found in the present fit to financial market data, implies that
nificant change in the system dynamics. This trigger is ofterwhen the price fluctuation increases, the probability of in-
initiated by an innocuous event, thereby giving the eventreased volitility increases and when the price fluctuation
significance that is completely out of proportion to its truedecreases, the probability of increased volitility decreases.
value. In this way the financial market responds strongly toThis mechanisms tends to slightly destablize the financial
the news that has been anticipated. market, by adjusting the market strategy to amplify the in-

The integer value of the fractional derivative index fluence of the change in the magnitude of the price index
=1 is a singular point. Ata=1" the phenomenological fluctuations and this behavior is reflected in the value of the
spectrum given by Eq(7) is asymptotically given bys(w) fractal dimensiorD =1.15.
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