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Lattice-switch Monte Carlo method: Application to soft potentials
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The lattice-switch Monte Carlo method, recently introduced and applied in the context of hard spheres, is
extended to particles interacting through a soft potential. The method utilizes a transformation that switches
between configurations of two different crystalline structures, allowing the phase space of both structures to be
explored in a single simulation and tlfferencebetween their free energies to be determined directly. We
apply the method to determine the fcc-hcp crystalline phase behavior of the classical Lennard-Jones solid.
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[. INTRODUCTION deformations of the potentifl5] and by truncating its range

In recent papergl, 2], we introduced a new technique for [16—18. In such circumstances fluctuation effects are clearly
tackling an old problem. The technique is called lattice-crucial. Such effectsnay have either an anharmonic or a
switch Monte CarloLSMC); the problem is the determina- quantum characteisometimes bothandwill necessarily do
tion of the relative stability of two crystalline structures. The so, at high enough or low enough temperatures, respectively.
LSMC method is built on a transformation that maps a con-A satisfactory, general, computational strategy must deal co-
figuration of one structure onto a candidate configuration oherently with both anharmonic and quantum effects. The
the other by “switching” one set of lattice vectors for the LSMC method can be developed to do so. But in this work
other, while keeping the displacements with respect to thein keeping with the majority of existing simulation ap-
lattice sites constant. The sampling of the displacement corproaches to this problenwe shall neglect quantum effects:
figurations is multicanonically biasg8] to favor paths lead- e study the structural phase behavior of thee might say
ing to gatewayarrangements for which the Monte Carlo 5 given the sensitivity to the potentiatiassicallLJ model.
swit(_:h to Fhe candidate configuration will be a}cqepted. The The layout of the paper is as follows. Section Il defines
configurations obothstructures are sampled withinsingle  \he model, and explores the sensitivity of the ground state to
simulation, and the difference between their free energieg,, range at which the potential is truncated. In Sec. Il we

evaluated from the ratio of their measured probabilities. summarize the statistical mechanics relevant to the phase sta-

In[1,2] we set out f[he_ I.‘SMC method in some detail; we bility problem. Section IV describes the standard approach to
argued that it offers significant advances with respect to &Xiis broblem. based on the small-am litudmasinarmonic
isting strategie$4], preeminently integration methods,6]; b ’ P

and we explored its operation through extensive studies gfeatment of the quctuatic_)n spectru_m, and again explores the
the relative stability of the crystallinécc, hep phases of consequences of potential truncation. Section V formulates
hard spheres. More recen{ly], we have shown that LSMC the LSMC method in the context of soft potentials; Sec. VI

can be set in a somewhat more general framework that aRresents the results it delivers. They show _that the L_SMC
lows exploration offreezing (crystadiquid phase coexist- Method captures the results of the harmonic theory in the
ence; that work also was set in the context of hard spherestegime (high enough density, low enough temperature
In this paper we describe the application of the method tdvhere one would expect the harmonic approximation to be
model crystalline solids with @oft interaction potential of ~satisfactory; and that it extends naturally beyond this regime,
Lennard-Jonef_J) form. The generalization from “hard”to revealing anharmonic corrections that grow with reducing
“soft” potentials has a number of consequences. Temperadensity, in an intelligible way. Since the method focuses di-
ture and pressure become independent control parametaexctly on thedifferenceof the free energies between the
[8]. There is the possibility of real structural phase behaviophases it is able to measure it with precision, despite its
(i.e., crystal-to-crystal transitions induced by changes of temintrinsic smallness. We thus have confidence that the implied
perature and pressyrd]; and harmonic crystal dynamics phase diagram is truly representative of the classical LJ
and its refinementgl0] provide an alternative, approximate, model. Finally in Sec. VIII, we review what we have learned
strategy against which to benchmark the LSMC calculationsfrom this study about the LS methodology and its value in
The LJ model is also of rather wider physical interest: itrelation to the many other strategies that have been used to
provides an excellent account of many features of the behawattack the problem of free-energy measurement; and about
ior of rare gas solid§RGS [11]; one might hope it would LJ systems themselves.
also account for the observgzhasebehavior of RGS, at
least under “normal” conditions[12]. But the observed
phase behavidithe favored RGS crystal structure appears to Il. MODEL AND GROUND STATE
be fcc, almost everywhefé3]) has proved surprisingly hard . . . )
to elucidate[14]. The difference between the ground-state Ve consider a system & particles of spatial coordinates
energies of hcp and fcc actually favors the hcp structure; thér}, confined within a volumeV and subject to periodic
difference is small and its sign can be changed both by smaboundary conditions. Each particle is associated with a
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site of a latticg 19] defined by a set of vectof&},, wherea
indexes the lattice typg20].
The particles interact through some approximation to the

: D

LJ potential
. o\12 [ g\6
o(rij)=4e E E

wherer;;=|r;—r;|. The customary approximation is some
form of truncation, which is required, in principle, to avoid

self-interactions in a finite periodic system and is also a prac-
tical expedient to limit computational cost. One may define a
truncated potential in a number of different ways. Thus, one

may truncate the potential afi@edcutoff r,=mo (for some
chosenm), defining

B(rij) = p(ry)
dal(rij) = 0 :

)

rij>rx
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FIG. 1. The difference between the ground-state energies per
particle for fcc and hcp structures, as function of density. The solid

the discontinuous change occurring when particle separéj-aShed lines show the results based on the fixed-cutoff truncation
tions pass through the cutoff value, which they do, both stoSchemeEq. (2) with r,=2.5] and the fixed-neighbor-list trunca-

chastically in the course of the crystal dynamics and systemt
atically with changes in control parameters such as density qr

pressure.
Alternatively one may choose a truncation scheme i

acting or not, according to the separation of thttice sites
with which they are associated. Thus, setting mry where

ro is the equilibrium nearest-neighbor separation, we define .

d(rij)
0

Rij=<ry
Rij>ry

Pp(rij)= )

whereR;;=|R,—R;|. The fact that the cutoff, now scales

n
which pairs of particles are identified at the outset as inter-

ion schemdEg. (3) with r,=2.5r4] respectively. Note the order-
qf-magnitude difference between the scales on the left and right
and axes that are used for “exact” and “truncated” results respec-
tively.

The exact result shows the well-known=0 phase be-
havior [11]: there is a single-phase bounda(gt p=pg
=2.172% %) separating hcpd<p,) and fcc >p,) re-
gions. By contrast the fixed-cutoff approximatipEqg. (2)
with r,=2.50] leads to a ground-state energy that varies
wildly with density, as the number of particles within the
interaction range evolves. The impliegeemingly rich
phase behavidrl7] can be traced directly to the truncation.
The fixed-interaction-list approximatiohEq. (3) with r,

appropriately with density ensures that the list of interacting=2.5,] fares differently, but no better: the evolution is

particles prescribed by E@3) is indeed fixed(independent
of density so that a potentiathift is redundant in this case.

smooth, but shows no phase boundary at all.
The moral is clear: to capture phase behavior that is any

The significance of the choice of truncation is revealed intrustworthy sense representative of the true LJ model one

the (classical ground-state energy

E0= E({ﬁ})=<2> d(Ri)), (4)
1]

where the sum countgnce the contribution of eacpair of
interacting particles. Figure 1 shows tH#ference[21] be-
tween the ground-state energies of the two struct(pes
particle

Ae

o__ E{RI)—E({RN)

. ®)

a,a

as a function of density, withr=fcc andar=hcp. In addition
to the exact result following from implementing E)
without approximatiori22—24, we show the results that fol-

must handle the ground-state energies without recourse to
truncation. While it is not our aim to give a definitive treat-
ment of the LJ problentour treatment is classical, after Jall
we shall respect this constraint. Thus, in what follows, we
shall take for thegeneralconfigurational energy the form

E({F}>=E°+<Z> belli)), 6)
ij
with
i = o(Rj)  Rij=r,
be(rij) = 0 Ry>ry (7)

The ground-state energi’® is treated essentially exactly
[25]. The effects of the truncation are restricted to the fluc-

low if the potential is approximated by the truncated formstuation spectrum; we shall discuss théamd the choice of

$a [Eq. (2)] and ¢y, [EQ. (3)].

ry) in due course.
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Il. STATISTICAL MECHANICS The phase boundary is defined by the condition that

The fluctuation spectrurtihe “significant” configurations
{F}) of a crystalline phasex is naturally described by the

displacements with respect to the lattice s{t&}, . Thus we  in the thermodynamicN— ) limit.
make the familiar decomposition

Row(N,T,P)=1, (16)

SR IV. HARMONIC APPROXIMATION
ri= Ri +u;. (8)
- . _ _ . The foundation stone of analytical approaches to the prob-

The partition function(configurational weightof structure  |em of free-energy determination for crystalline solids is the

a, at temperaturd, may then be written as harmonic approximation. The methodology is long estab-
lished[10]; many studies of LJ systems within the harmonic

ZIN,T,V,a)=]1] f du; e~ BEU) (99  approximation(and its refinemenjsexist[28]. Here we use
i [a] the harmonic framework to provide a benchmark of the

S . . _ LSMC work to be presented in following sections. We de-
Here [, signifies integration subject to an appropriate con-g¢ripe it in outline only.
figurational constraint that picks oufrom the entire con- In the harmonic approximation we expand the configura-

figuration space oN particles in volumeV) those configu-  tjonal energy[Eq. (6)] to second order in the displacements
rations that “belong” to crystalline phaser [26]. The (G} [29]
y

partition function defines the Helmholtz free-energy densit

through L
1 EQTH=E(RD+ S X Kfufui+--. (17

f(NrTvvaa):_WInZ(N,T,V,a) (10) (ij),m,v

Hereu* andu! denote cartesian componenis, ( v) of the
i j p

displacementsl of the particles associated with sites j.
The “dynamical” matrix K is defined by{30]

The relative stability of the two phases reflects diféerence
between their free energies, and thus o of their parti-
tion functions[27]

- 1 SeRy) o, BURy) L
A=t N TV, )= H(NTV,@) = = gz RGN TV), CR”_” —¢C(Rij)}n{;n”— °R”_” 8,, (i#1)
1y Ki'=

S kv .

where gi ik (j=i)
(18)

RN TV =2 NV @) 12 wi
aa ] _Z(N,T,V,E) with

If the difference between the densities of the two phases is ~ ﬁij 9
small, the phase boundary follows immediately as the locus Mi=R. - (19)

of points for which Af; vanishes(the two phases have !

equal statistical weightsin general, however, the problem is As a result of the truncation scheme adopted in @g.the
more conveniently formulated in thHTP ensemble. The ground-state energy in E417) is essentially exactin the
relevant partition functions are then limit of large enoughN), while the fluctuation term contains
contributions only from interactions falling within the
Z(N,T,P,a)=f dVZ(N,T,V,a)e PPV, (13) (den;ity-dependeht:utpﬁ. _ N .
Within this approximation theNVT partition function

The difference between the Gibbs free-energy densities fol[-Eq' (9)] can be expressed in the form

lows as 3
Z(N,T,V,a)=[27/ B]*N?exf — BE({R} ) ][detK (a)]*?,
Ag.z=9(N,T,P,a)=g(N,T,P,a) (20)
1 whereK («) is the NX 3N matrix whose elements are de-
== N_Bln Raz(N,T,P), (14 fined by Eq.(18) (applied to phaser). Then the fluctuation
contribution to the free-energy density of phagein the
where now harmonic approximations measured31] by
Z(N,T,P,a) 1 1 gy
RN, T, P)=————~. 15 fl=_——In[detk(a)]= =— In\®, (21
( Z(N.T.P,2) a3 o= N Mdek()]= 5573 J.Zl P
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FIG. 3. Thedifferencebetween the harmonic contributions to
FIG. 2. The harmonic contributions to the free-energy densitythe free-energy densityEq. (21)] of the two structures for system
[Eq. (21); note[32]] for fcc and hcp structures witN=216, and  sizesN=216 andN=1728 as function of density. The solid and
pol= J2. The results are expressed as functions of the number adashed lines correspond to different fixed-neighbor-list truncation
interacting neighbors, [33]. schemes.

where\{ [j=1,...,3\N—1)] denote the nonzero eigen- significant on the relevant scale: the harmonic free-energy

values of the matrix (). The differencebetween the har- difference changes by some 25% betw®en6°=216 and

monic contributions to the free-energy densities of the twoN=12°=1728. Our direct matrix-diagonalization treatment

phases follows as is not readily extended to largéfvalues. But our results for
the harmonic free-energy difference between the two struc-

. | detK (@) tures forN=12° lie within 3% of the harmonic thermody-
Afm;zf*;—fzzwln —. (22 namic limit reported irf34]; and we find that a N extrapo-
B | detk(a) lation of our N=6° and N=12° results is consistent with

) ] ] that limit. Accordingly our LSMC studies have also been
These expressions can be evaluated numerically with re'%rgely restricted to these two system sizes.

tive easgfor modestN valueg, allowing investigation of the
influence of the potential truncation. Figure 2 shoffls as
defined by Eq(21) [32], for the two structures in systems of
N= 216 particles, at a densipu®= \/2, for different choices The problem of phase behavior is succinctly expressed in
of cutoff. We have chosefB83] to parameterize the cutoff by Eqgs.(12) or (15): the relative stability offree-energy differ-

the inverse of the number, of interacting neighborgthe  ence betweentwo phases is determined by the ratio of the
number of particles falling within the cutoff rang&he free-  associated partition functions. It is helpflloth conceptually
energy “scale” on which to assess the significance of thesand practically to recognize that ratio for what it is: the ratio
results is set by thdifferencebetween the values for the two of the equilibrium probabilities with which a system, free to
structures. On this scale the valuesf8ffor the two struc-  exploreboth phases, will visit each one. The LSMC method
tures each evolve significantly between the two extremesprovides the strategy needed to captitalize on this identifica-
But the differencebetween these free energies varies relation. We have described the method fully elsewhigxk in
tively little: the values for the two extremes differ by only the context of a system of hard spheres. The description here
2%. Figure 3 shows that this statement remains true over will, therefore, be brief and will focus on the adaptations
wide range of densities, and for a substantially larger systemeeded to accommodate soft interactions.

size N. The conclusion we draw is that, in contrast to the In principle, LSMC represents a simple and intuitive ex-
ground-state energySec. Il, Fig. 1, the fluctuationcontri-  tension of the MC framework6] conventionally used for
bution to the free-energgifferenceof interest in thehar-  exploration of a singléstructural phase. The “single-phase”
monic approximatiorctan be accurately captured by a modelMC method updates the particle displacements for fixed lat-
incorporating only relatively short-range interactions. lIttice vectors; LSMC augments this procedure by updates of
might seem reasonable to suppose that this state of affaitke lattice vectors with the displacements held fixed. By “up-
extends beyond the harmonic limit and we have indeed prodate” of the lattice vectors we mean replacing the entire set
ceeded on this basis: for the most part our LSMC studiesf lattice vectors describing the current structure with a set
have focused on the truncated model defined in(Bq.with  that describes the other structure. The current particle con-
r,=1.5, and n,=18. But the results presented below in- figuration, which “belongs” to the phase space associated
clude a retrospective check on the consistency of this aswith the current structure, is thus mapped onto a particle

V. LATTICE-SWITCH MC METHOD

sumption. configuration that “belongs” to the phase space of the other
Figure 3 also shows that the dependence of the freestructure.
energy difference upon system sike(finite-size effectsis Without further refinement this simple procedure will not
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in general work: an equilibrium configuration of one struc-  FCC HCP
ture will typically have as its conjugatee., will map intg a ® ®
relatively high-energy configuration of the other structure.
The lattice switch MC step will typically be rejected. To ©) ®
make it work the sampling of the configurations of each (%)
structure must be multicanonically biased] to enhance the O
probabilities of those statelsve call them gateway states ©
from which a switch can be attempted with a reasonable O O]

likelihood of success. The bias needs to reflectdifference p
between the excitation energig35] of conjugate pairs. To

that end we define an order paramée&s] FIG. 4. The LS transformation applied to the ground-state con-

figuration. The diagram shows six close-packeey] layers.(The
— 1y — 1B _ > B additional bracketed layer at the bottom is the periodic image of the
M=MEup) = E{Ub{Rhnep) ~ £({uh {R}reo) (29) layer at the top.The circles show the boundaries of particles lo-
cated at the sites of the two close-packed structures. In this realiza-

h
where tion of the fce—hcp lattice switch, the top pair of planes are left
P >y = unaltered, while the other pairs of planes are relocated by transla-
E({ul{Rta) = BLE(rH) —E({R}a)], (24 tions, specified by the black and white arrows.

measures the excitation energy of configuraffof={u},«
(the amount by which it exceeds the ground-state energy of 2 P(M,a|N,T,...)
structurea) in units ofkT= 1. The energy difference de- {Mm}
fined in Eq.(23) is the analog of the “overlap order param-
eter” utilized in our studies of hard sphergs?2]. > P(M,2|N,T,...)

Given the relationship between the energy of a configura- {M}
tion and the energy of its conjugate one sees that displace-
ment patterngu} drawn from equilibrium sampling of the > e™IP(M,a|N, T {7}, ...)
fcc (hep configuration space will give predominantly posi- M @7
tive (negative values of{ M}. The gateway states lie in be- N B '
tween[37]; in the thermodynamic limit they have vanish- > e™IP(M, 2N, T {7}, ...)

ingly small equilibrium probability. We thus require to M

engineer a multicanonical sampling algorithm to enhance th
probability along a notional line i space, extending from
the “equilibrium” M values(whosemagnitudereflects the
energy cost of a LS acting on gpical configuration
through to the smallM gateway configurations. This aim is
realized by augmenting the system energy function (By.
appropriately,

The last step removes thexplicit bias resulting from the
weights, leaving only the desired lega¢$9]—that both
phases are visited with the canonical probabilities. Notice
that, in contrast to the hard-sphere problem, wheteserves

as a unique identifier of the phase, the relevant sums in Egs.
(26) and (27) involve the phase labels explicitly.

VI. LATTICE-SWITCH MC IMPLEMENTATION DETAILS

BE(rH—BE(rh+ 7 MI=E({r}). (25
Our MC procedure involves stochastic sampling of three

Here 5[ M] is a multicanonical weight functiof3] that classes of variable: the displacement vecfals the volume
must be chosen so as to allow the system to access the gate-

way configurations. For this purpose it is sufficiétitough V; and the set of lattice vecto{ﬁz}a indexed, collectively, by
not necessarily optimalto construct the weights such that the lattice labekr. The sampling ofu} andV follows stan-
the multicanonical distributio®(M|N,T,{7} ...) [38] is dard prescription$6], with the effective configurational en-
roughly flat. The desired ratio of partition functioﬁsq. (120  ergy (controlling metropolis acceptance probabilifiegven

or (15)], is identified with the ratio of the aggregatanoni- by Eq. (25). Stochastic updating of the lattice label(the
cal probabilities of the two phases lattice switch is discussed extensively [2]. We summarize

the essentials.
There are many ways of defining the switch transforma-
P(a|N,T ) {%} P(M,a|N,T, ...) tion (lattice-to-lattice mapping for the fcc-hcp problem the
T prescription illustrated in Fig. 4 is simple and efficient.
P(aN,T,...) ~ In the cases in which the two phases related by the switch
E P(M,a|N,T, ...) have significantly different volumes the switch operation can

Raa(NT,..0)

b (26) accommodate an appropriate dilatipf0]. In this case we
did not find that necessary: thus, as implemented here, the
and can be obtained from the correspondimgasurefimul-  switch transformation preserves both and {u} [41,42.
ticanonical distributions by reweighting(folding out the  With the prescription adopted in E423) the switchalso
weights leaves M (and thusn[ M]) unchanged43]. The switch
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. ‘ / functions for systems dfl=6° particles.(a) The
F ! h a Lennard-Jones(LJ) weight function (for p
g wl | g =0kT/e=0.285) is compared with the weight
3 \ =, function for hard sphere@S; se€/2]) at a pres-
- VoS . sure chosen such that the densities of the two
Vg L systems are comparablg) Weight functions for
0 y ] 2 i e WTIe=01 the p=0 LJ system at three different tempera-
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acceptance probability is then simply

tems have essentially the same densities. It is clear that

“softening” the potential greatly reduces the barriers against

P.(a—a)=min1,exgd—AE)], (28)  switching[47].

Figure 8b) shows the weights for thezero-pressupel.J
where[44] system for a range of temperatures. The “barrier heights”
_ L . grow with increasing temperature reflecting the growing en-
AE=B[E({u},{R}7)—E{u}{Rt,) 1. (290  ergy mismatch between typical configurations and their con-
jugates.
is the energy cost of the switch.

_ o The value of M for which [ M] assumes its minimum
The practical core of the whole procedure lies in the de<zero[46]) value—corresponding to the macrostates of low-
termination of the multicanonical weight functiogf M]. In

_ -ano _ G est probability in the equilibrium ensemble—identifies the
generic terms the task is simple: the weight function is pagateway macrostates. This identification is apparent opera-

rameterized by a discrete set of weights each associated witfbonally in Fig. 6 that shows that the probability of a switch
an interval ofM space of widthm, (that we set to a constant being accepted is maximal in the region whefeV] has its

value, my=1) and together extending across the relevanininimum. Though this identification is not self-evidently
range of M space(the values appropriate for the equilibrium true, it is not surprising: the defining constraint on the “gate-
structurey the weights are refined iteratively until the sam- way” macrostategnamely that they should allow a switcis

pling distribution is sufficiently close to the multicanonical sufficiently tight to ensure that they have the lowest probabil-
ideal. Details of the techniques we used are described elsgy of all the macrostates that it isecessaryo sample.
where[45].

Close scrutiny of Fig. &) shows that the\ value Mg,
locating the gateway states is nonzero and shifts with tem-
VII. LATTICE-SWITCH MC RESULTS

perature. To understand this one should recall that the gate-
A. Features of the LS operation

T T I T T T
We begin by presenting a selection of results chosen tc

illustrate features of the LS operation itself; results for the L
guantities of more immediate physical interest appear in the
subsections that follow.

Figure 5 provide examples of weight functiong M ]
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S 0 P (M) T
constructed such that the associatedighteddistribution = 4 _
P(M|y[M]) is effectively “flat” (the multicanonical ideal g
[3]). To the extent that its flat one can regard the weight =, [ 1
function as a logarithmic measure of thaweighted(equi- Qﬁo4 - \ —
librium) distribution P(M). The peaks in the weight func- | } |
tions thus locate the “equilibrium” values oM for each i
phase, the peaks at positiyeegative M corresponding to 02~ uk 7

fcc (hcp phases respectively. The heights of these peaks L _
measure, on a logarithmic scale, the size of the free-energ: . | n,.nnnnﬂ”” i HHHﬂﬂnnm, .
barrier to be negotiated for an escape from that phase, alon  -10 - 0 5

the route offered by L$46] .

M
Figure 5a) compares the results for the soft LJ potential

FIG. 6. The multicanonical weights (solid line) and the prob-
of primary interest here, with the results for a system of theapility of acceptance of a switch,.. as a function ofM in the

same number of particles interacting as hard spH@&jeIhe  region nearM=0. The system parameters aie=6°, p=0, and

thermodynamic parameters were chosen so that the two sygT/e=0.285.
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way states are such that the switch energy Ads{Eq.(29)] ~ creasing temperature and decrease with increasing density;
is close to zerd48]. Recalling the definition of\i we see this behavior is consistent with simple qualitative expecta-

that the conditiorAE=0 implies M= Mg=NBAEY, 1oy 1O1S149)

the behavior ofMg can thus be traced to the difference in areA;u?:%tggigi:\?sr trrl'ce q\?v\giistleoeni(jrgr:r;:aerTno?r:g gier;a:)/;()'[;we
ground-state energies. p- g g

Figure 7 shows the equilibriunM distributions for the anharmonic” contributions, with increasing density, sug-

zero-pressure LJ system at the three different temperatur@é3 ‘thed E}Il_/thf girtuf:gon—thtiolryogglcul\?vtleon%mn?. Af/
featuring in Fig. §b): in each case we sample the multica- _ " * 067:1(16) h'chg.g rtually indistinauishable fiom
nonical distributions defined by the appropriate set of, = , Which 1S virtually indistingut

. : the predictions of the harmonic theory. In contrast RBf]
weights (allowing both phases to be samplednd then re- . X ; .
weight to obtain the equilibrium distribution. Equati¢ihb) (which uses an integration method to determine the free en-

shows that the relative stability of the two phases is directlyerg'ef of each ph%s_e s.epgralet;ports_Af/e— f0'066(.4) at
reflected in the ratio of the integrated areas of the peaks iff /€= 0-4 andpo”=1; this seems irreconcilable with our
the equilibrium M distribution. We thus see immediately results. . . Lo

and transparently from Fig. 7 that, while the hcp structure is At the temperatur_es of mo_st immediate physical interest
favored at low enough temperatui@s implied by the differ- (where Af=0) the discrepancies between the two methods

ence between the ground-state energies at this pressure, e small, even for the_ zero-pressure density. We may thus
1), the favored phase at high enough temperatures is fcc. pect that the harmonic theory qf t_he fee-hep phase bound-
' ary will not prove far wrong; this is indeed the case.

B. Benchmarking: LSMC and the harmonic approximation

. . C. The fcc-h h bound
A comparison between the results based on harmonic © fec-nep phase boundary

crystal dynamicgSec. IV) and LSMC is worthwhile for two We have established that LSMC provides us with a way
reasons. In the regime of low enou@hthe harmonic theory of determining the difference between the free energies of
is necessarily correct: comparison with LSMC results therthe two phases aomepoint in the space of thermodynamic
provides a check on the overall consistency of the LS framecoordinates. We must now turn to the practical task of inter-
work. In the regime of highell, we must expect the har- est here: the determination of the phase behavior itself. This
monic theory to be growingly inaccurate: comparison withtask may be divided into two—extrapolation and tracking.
LSMC allows us to explore the extent of these inaccuraciestirst (“extrapolation”) we need to use the data accumulated
Figure 8 shows the results of LSMC studies in th¥ T

ensemble, at two different densities, for a range of temperaa) oot ———————— b T
tures. In each case the solid line is the free-energy differenct . — Harmonic theory{ - — Harmonic theory 1
in the harmonic approximation, which combines the ground- I ° LSMC ¢ LSMC

state-energy differendéeg. (5)] and the harmonic contribu-

tion to the free energjEq. (22)]: ) 5
Af A€ +Afh kT _ 20 000t 1 el
T = T W ? (harmonig. ( ) : - :
00025 'o‘lzs ' 0!5 'o.|75 ' I1 003 5 ' Jt ' tls ' zla o
The LS values follow from simulations determining the kire kTre

distribut_ions for the appropriate state point and applying Eg. FIG. 8. The differencg¢21] between the Helmholtz free-energy
(11). Evidently, the two methods agree at low enough teMenities of the two structures for a systenNo 123 particles at a
pgratures, wherg the harr_nonlc theory is trustworthy; this PrOgensity of(a) po3=1.092 close to the zero-pressure density énd
vides a reassuring consistency check. As we have already,3—1 538 the density at which €2, hepiS Maximal. In each case
noted, the results of Reff34] provide consistency checks on the solid line represents the results of a harmonic calculation, which
the harmonic studies themselves. follows Eq. (30) with intercepts and gradients given by

The differences between the results of the two methodg % ¢=0.0008698 [0.001153 and Af"kT=-0.002574
should, then simply reflect the anharmonic effects that ar¢—0.002 949 for cases(a) [(b)] respectively. The data points are
captured by the LS studies. The differences grow with in-the results of LSMC studies utilizing E¢L1).
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FIG. 10. Comparison of lattice-switcti.S) and Gibbs-Duhem

FIG. 9. Comparison of linear extrapolatiébE) and histogram  (GD) methods for mapping out a high-pressure section of the phase

extrapolation(HE) methods for determining the=0 hcp-fcc phase  boundary for a system dfl=6° Lennard-Jones particles. The re-
boundary temperaturgy(p=0) on the basis of simulation data sults of harmonic theory are also shown.

accumulated atkT/e=0.1 and p=0 for a system ofN=63
Lennard-Jones particles. Our best estimateTgfp=0) is also

shown itly utilize the statistical information that the simulations

(performed afBg) give about the dominant configurations at
B; this information typically resides in the poorly sampled
wings of the measured distribution. By contrast LE implicitly
modelsthe measured distributiofin this case as two Gaus-

at our initially chosen state point to infer the locatiorsoime
point on the phase boundafand refine it as necessary

Second“tracking” ) we need to map out the phase boundary_.
X . sians, each centered on the average for the phase, whose
emanating from that point. There are many ways of address- o .
%haractenstlcs are then determined by the well-sampled re-

ing these tasks; we _shall f_ocus on the strategies we hav ions of the measured distribution. LE does well wtias
found most useful, while noting other approaches that proveﬁ ; C
erg the near-Gaussian assumption is good.

less satisfactory here. . - .
Both extrapglation and tracking stages make use of the Once a point on the_phage _boundary is established the_ rest
fact that thederivativesof the free-energy difference can be pf the boundary can, in principle, be mapped by numerical

expressed in terms of the differences between single-pha
averages of appropriate observables

%tegration of the phase boundary derivative that follows
rom Egs. (318 and (31b). This strategy—Gibbs-Duhem
(GD) integration—has been widely and effectively u$gd|.
JBAg] 1 In this context, however, it is undermined by the problem we
B :N<AE+ pAV)=Ah (313 have already noted with the measurement of the volume dif-
ference at coexistence. The resulting inaccuracies are com-
pounded by the generic draw back of GD—the absence of

and
any self-correction mechanism. Figure 10 shows the results
JBAG] 1 of a low-order predict-evaluate-correEC GD integra-
p =N<AV>=AU, (81b  tion: on its own GD is clearly not suited to the present prob-

lem. Instead we chose a strategy which, while making use of

whereAh andAv represent the differences between the enCD 10 the extent it is trustworthy, employs LS to correct it.
thalpy per particle and mean volume per particle, for the two>tarting at some coexistence poy,, say we choose a
phases. Since the densities of fcc and hcp phases are vefifferent pressur@,=p; +Ap. We use the GD derivative to
similar at coexistenc§51] the p derivative [Eq. (31b] is  Predict the associated transition temperatafe If the dif-

hard to determine accurately. But tBederivative[Eq. (31a]  ference betweerg; and B, is not statistically significant

is readily measurable to the required precision, using thégiven the errors associated with the GD derivatiwe reset
appropriate single-phase averages already available in the L& = 3;. The multicanonical weights used Af,p; provide
simulations used to determingy itself. GivenAg and its@  estimates of the weights &;,p, that can be easily refined.
derivative a simple linear extrapolatiofE) scheme pro- The process is completed bygextrapolation to the phase
vides an estimate of the phase boundary temperature for th®mundary (as discussed abojneSustaining switching be-
chosen pressure. Figure 9 provides an example. The extraptween phases as the phase boundary is traced out delivers a
lation works well—a reflection of the fact that the behavior running consistency check. In this case the computational
is close to harmonic over the region involved. Figure 9 alsccost is actuallylessthan it would be to determine the GD
shows the results generated by a single histogram extrapolderivative to the accuracy required to make GD itself viable.
tion (HE) [52] in which the M distribution measured Figure 10 shows some representative results.

through the histogram accumulated at the initial state pointis Using these techniques we have mapped out the hcp-fcc
used to estimate the distribution at other temperatures. In thishase boundary from the zero-pressure limit, through to the
case HE fares much worse than LE. The reason is that theaximum pressure at which hcp is classically stabld at
HE predictions for some extrapolated temperat@rexplic-  =0. The results are gathered together in Fig. 11. In the case
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addressed here: the development of a general computational
technique for the study of the phase behavior of crystalline
matter. Then we shall summarize what we have learned
about theparticular problem we have chosen to address: the
equilibrium phase behavior of the LJ model. Finally we shall
consider the implications of the LJ model predictions for
studies of the crystallization process itself.

1. The technique

© * EI,E/’/ “ To assess the LS technique we must now set it in context.
5 = n\}; . The task of determining the phase behavior of solids has
02l --- HarmonicN=633 | traditionally been seen as requirisgparatecalculations of
) ~ Harmonic N=12 the absolutefree energies of the competing phases, linking
L ° LS-NPTN=633 _ each to some reference system. This approach was pioneered
o LSNVIN=6, hep by Frenkel and Ladd5] and has been implemented in a
0.1 LS-NPTN-12 - variety of forms, differing according to the choice of refer-
ence systentEinstein solid, harmonic solid, ideal gas, ). .
i 1 and how the linking path is negotiatédtegration, extended
0 i ! 1|5 . . sampling [50,56-59. The problem facing this strategy is

that the quantity of physical interest—the free-energy differ-
p03 ence between the phases—is typically snallthe vicinity
of a phase boundary necessarily sompared to the absolute
FIG. 11. A variety of approximations to the classical Lennard-free energies of the separate phases; one is left with the task
Jones phase diagram. In all cases the difference between tlf determining the difference between two “relatively large”
ground-state energies of the two structures is essentially exact; theumberg 60] that arethemselvesf little or no physical in-
fluctuation contribution to the energy is truncated according to Eqterest. It is possible to make this strategy deliver results of
(7), with ry,=1.5(. The dashed and solid lines are the results Ofcomparab|e accuracy to that of LS, for comparable compu-
harmonic calculationgfor the two system sizesThe dash-dotted  tational resourcé61]. But the extent of the signal-to-noise
line is a phenomenological parameterization of the anharmonic efproplem provides strong motivation for developing a more
fects[54]. The scale at the top of the figure shows the pressures &§jrect strategy.
selected points on thdS N=12°, NPT) coexistence curve. Tie-  The essence of a “direct strategy” is that it should focus
line structure is unresolvable on the scale of the figure. on the free-energgifferencebetweenrelative likelihood of
of the smaller N=63) system we gathered LS data along the two phases: this requires a “path” connecting the disjoint
the entire phase boundary, demonstrating agreement with ti@nfiguration spaces of the two phases. The pioneering study
results of harmonic theory except in a low-pressure regiomere is that of Rahman and Jacu@2]. Subsequent studies
where the break-down of the harmonic approximation begin# this vein can be differentiated according to whetfierthe
to be apparent. In the case of the large<(12°) system we  terminology of[62]) the path is “physical” or “nonphysical”
focused our LS studies on this low pressure region, mappingnd according to how the path is traver§é8—65. Refer-
out the phase boundary from=0 through to the pressure at ence[65], devoted to the hcp-fcc phase behavior of hard
which it becomes indistinguishable from the predictions ofspheres, provides the most recent instance of the use of a
the harmonic theory. The dashed line through the LS point$physical” path between the two structurg¢§6], explored
is based on a simple phenomenology of the growth of anhakyith multicanonical sampling3]. In that case the “physical
monic effects with decreasing densj#9,54. While the de-  path” was found to encounter some stubbornly physical bar-
viations from the harmonicNVT) theory are certainly re- riers that(the authors repormade it less efficient than a LS
solvable, they are always small. And indeed the same generafrateqgy that they also explored.
structure and scale of the phase diagram is apparent in pio- The'LS technique belongs to the class of “direct’” meth-
neering(if semiquantitativg harmonic lattice dynamics stud- < that exploit a “nonphysical” path. One can sef5i] as
ies of 50 years agf4]. It is harder to make useful connec- a reformulation of the strategy used by Mooelyal. [63] in

tions with more recent studies. Jackson and S\g6| and ; ; - -
. . ) ) early (though numerically inconclusiyestudies of polymor-
Choi et al. [17] both appeal to perturbation theories using aphic crystalline behavior. The principal additional feature of

truncated potential.giving.a complex phase .behavio[:LB] . LS is that we have used extend&dnulticanonical”) sam-
the same methoq is applied to a system without truncatio ling instead of multistage sampling; that change, combined
but the perturbation theory presupposes hard-sphere resu

K 0 be | t and is | rricted t th the availability of massively more computational re-
NOW Known 1o be INCOITect, and IS In any case restricted 1qq,  ce produces a technique that—we have seen here and in
high temperaturesk(T/e=1).

[2]—delivers the precision one requires, with readily quanti-

fiable uncertainties, in a physically transparent fashion.
There are two noteworthy ways in which the LS frame-
We divide this concluding section into three. First we work could be fruitfully developed. First, as noted &1, one

shall take stock of where we stand on thenericproblem  may fold into the switch operation any desired transforma-

VIIl. DISCUSSION
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tion of the displacement coordinates, provided one takes ap- 3. The implications

propriate accoun{through the Jacobianof the resulting If the calculations reported here are to represent more
warping of the configuration spafé8]. In particular one can than an exercise in equilibrium statistical mechanics then
define a switch operation that presenaslective (normal  their results need to be related to studies of the crystallization
mode coordinates rather thadoncal coordinates. In théar-  process itself. It is not easy to do so in any satisfying way.

monicregion such an operation will wonwithout the need If one tries to make contact with observations on RGS one
for any weighting the barrier(to be surmounted by multica- is faced with a whole range of effects that are potentially
nonical methodsis reduced to that associated with the an-important. We have already noted the need to extend the

harmonic contributions. This approach is currently under inff@mework to include quantum effects—clearly important for

vestigation. the lighter RGS and essential in understanding the behavior

Second, the current framework is strictly classical. It iSof Helium. But the link with real systems is also complicated

by two other manifestations of the fcc-hcp knife edge on

clearly desirable to extend the framework to include quanyhich the LJ model sits. That knife edge is presumably re-

tum effects; we plan to do so within a path integral formal-fiected in the sensitivity of the observed structure to impuri-
ism [69]. ties[71]; it also means that effects that are missing from the
two-body central force LJ phenomenologand that are not
2. The system crucial to other aspects of the RGS behayineed to be
) addressedl14]. As a more limited objective one may try to
We turn now to the particular syste(the LJ model we  make contact wittsimulationsof the crystallization process
chose for this exploratory study. From some standpoints thaf, | 3 systems. There have been many studies of this kind.
choice proved ill advised; while LJ is regarded as the generi¢juch of the focus has been on the initial stages of the
soft potential, its phase behavior is acutely sensitive to deprocess—in particular, the suggestiof2] that the route to
tails (notably the range of interactions permitettiat are  the thermodynamically favored phase traverses a region with
largely arbitrary adjuncts of the phenomenology. The diver-a bcc structure. This phenomengor which there is simu-
sity of LJ phase diagrams featuring in the literature is testi{ation suppor{73]) is a useful reminder of the importance of
mony to this sensitivity. Should one wish to take the LJthe kinetic pathways by which the equilibrium state is
potential at face value and establish a definitive phase diaeached, in the long term. The evidence from the most de-
gram one must certainly investigate the effects of potentialtailed study known to ug74] is that a fcc structure emerges
range truncation angbthey finite-size effects systematically. in that “long term” [75]. But this study utilized a LJ poten-
We have attempted to do so here: we have dealt exactly withal truncated at,=2.30; and we have seen that such details
the ground-state energies; we have seen that our truncationatter as regards the “true” equilibrium behavior. In any
scheme for the excitation energy captures the thermodynamease, given the LJ knife edge, it seems likely that the par-
cally limiting behavior well in the harmonic regim&igs 2, ticular long term behavior that does emerge may well have
3); and we find no evidence to doubt it when one movesmore to do with the kinetics than the thermodynamics. That
beyond the harmonic regidir0]. We have some confidence interplay is probably better explored in a system other than
then that Fig. 11 does indeed capture the classical LJ cryd-J. Recent work has begun to address this interesting area
talline phase behavior. [76].
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identifies the orthodox lattice convoluted with the orthodox

basis. For the purposes of LSM{(Ei}a merely identifies one
particular configuration of structure. The particular simplic-
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