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Lattice-switch Monte Carlo method: Application to soft potentials
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The lattice-switch Monte Carlo method, recently introduced and applied in the context of hard spheres, is
extended to particles interacting through a soft potential. The method utilizes a transformation that switches
between configurations of two different crystalline structures, allowing the phase space of both structures to be
explored in a single simulation and thedifferencebetween their free energies to be determined directly. We
apply the method to determine the fcc-hcp crystalline phase behavior of the classical Lennard-Jones solid.
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I. INTRODUCTION

In recent papers@1,2#, we introduced a new technique fo
tackling an old problem. The technique is called lattic
switch Monte Carlo~LSMC!; the problem is the determina
tion of the relative stability of two crystalline structures. Th
LSMC method is built on a transformation that maps a c
figuration of one structure onto a candidate configuration
the other by ‘‘switching’’ one set of lattice vectors for th
other, while keeping the displacements with respect to
lattice sites constant. The sampling of the displacement c
figurations is multicanonically biased@3# to favor paths lead-
ing to gatewayarrangements for which the Monte Car
switch to the candidate configuration will be accepted. T
configurations ofbothstructures are sampled within asingle
simulation, and the difference between their free energ
evaluated from the ratio of their measured probabilities.

In @1,2# we set out the LSMC method in some detail; w
argued that it offers significant advances with respect to
isting strategies@4#, preeminently integration methods@5,6#;
and we explored its operation through extensive studie
the relative stability of the crystalline~fcc, hcp! phases of
hard spheres. More recently@7#, we have shown that LSMC
can be set in a somewhat more general framework tha
lows exploration offreezing ~crystal-liquid phase coexist-
ence!; that work also was set in the context of hard spher

In this paper we describe the application of the method
model crystalline solids with asoft interaction potential of
Lennard-Jones~LJ! form. The generalization from ‘‘hard’’ to
‘‘soft’’ potentials has a number of consequences. Tempe
ture and pressure become independent control param
@8#. There is the possibility of real structural phase behav
~i.e., crystal-to-crystal transitions induced by changes of te
perature and pressure! @9#; and harmonic crystal dynamic
and its refinements@10# provide an alternative, approximat
strategy against which to benchmark the LSMC calculatio
The LJ model is also of rather wider physical interest:
provides an excellent account of many features of the beh
ior of rare gas solids~RGS! @11#; one might hope it would
also account for the observedphasebehavior of RGS, at
least under ‘‘normal’’ conditions@12#. But the observed
phase behavior~the favored RGS crystal structure appears
be fcc, almost everywhere@13#! has proved surprisingly har
to elucidate@14#. The difference between the ground-sta
energies of hcp and fcc actually favors the hcp structure;
difference is small and its sign can be changed both by sm
1063-651X/2002/65~3!/036710~12!/$20.00 65 0367
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deformations of the potential@15# and by truncating its range
@16–18#. In such circumstances fluctuation effects are clea
crucial. Such effectsmay have either an anharmonic or
quantum character~sometimes both! andwill necessarily do
so, at high enough or low enough temperatures, respectiv
A satisfactory, general, computational strategy must deal
herently with both anharmonic and quantum effects. T
LSMC method can be developed to do so. But in this wo
~in keeping with the majority of existing simulation ap
proaches to this problem! we shall neglect quantum effects
we study the structural phase behavior of the~one might say
a, given the sensitivity to the potential! classicalLJ model.

The layout of the paper is as follows. Section II defin
the model, and explores the sensitivity of the ground stat
the range at which the potential is truncated. In Sec. III
summarize the statistical mechanics relevant to the phase
bility problem. Section IV describes the standard approac
this problem, based on the small-amplitude~quasiharmonic!
treatment of the fluctuation spectrum, and again explores
consequences of potential truncation. Section V formula
the LSMC method in the context of soft potentials; Sec. V
presents the results it delivers. They show that the LSM
method captures the results of the harmonic theory in
regime ~high enough density, low enough temperatu!
where one would expect the harmonic approximation to
satisfactory; and that it extends naturally beyond this regim
revealing anharmonic corrections that grow with reduc
density, in an intelligible way. Since the method focuses
rectly on thedifferenceof the free energies between th
phases it is able to measure it with precision, despite
intrinsic smallness. We thus have confidence that the imp
phase diagram is truly representative of the classical
model. Finally in Sec. VIII, we review what we have learne
from this study about the LS methodology and its value
relation to the many other strategies that have been use
attack the problem of free-energy measurement; and a
LJ systems themselves.

II. MODEL AND GROUND STATE

We consider a system ofN particles of spatial coordinate

$rW%, confined within a volumeV and subject to periodic
boundary conditions. Each particle is associated with
©2002 The American Physical Society10-1
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site of a lattice@19# defined by a set of vectors$RW %a wherea
indexes the lattice type@20#.

The particles interact through some approximation to
LJ potential

f~r i j !54eF S s

r i j
D 12

2S s

r i j
D 6G , ~1!

where r i j 5urW i2rW j u. The customary approximation is som
form of truncation, which is required, in principle, to avo
self-interactions in a finite periodic system and is also a pr
tical expedient to limit computational cost. One may defin
truncated potential in a number of different ways. Thus, o
may truncate the potential at afixedcutoff r x5ms ~for some
chosenm), defining

fa~r i j !5H f~r i j !2f~r x! r i j <r x

0 r i j .r x
. ~2!

In this case the potential is also ‘‘shifted’’ so as to suppr
the discontinuous change occurring when particle sep
tions pass through the cutoff value, which they do, both s
chastically in the course of the crystal dynamics and syst
atically with changes in control parameters such as densit
pressure.

Alternatively one may choose a truncation scheme
which pairs of particles are identified at the outset as in
acting or not, according to the separation of thelattice sites
with which they are associated. Thus, settingr x5mr0 where
r 0 is the equilibrium nearest-neighbor separation, we defi

fb~r i j !5H f~r i j ! Ri j <r x

0 Ri j .r x
, ~3!

whereRi j [uRW i2RW j u. The fact that the cutoffr x now scales
appropriately with density ensures that the list of interact
particles prescribed by Eq.~3! is indeed fixed~independent
of density! so that a potentialshift is redundant in this case

The significance of the choice of truncation is revealed
the ~classical! ground-state energy

E05E~$RW %!5(̂
i j &

f~Ri j !, ~4!

where the sum counts~once! the contribution of eachpair of
interacting particles. Figure 1 shows thedifference@21# be-
tween the ground-state energies of the two structures~per
particle!

Dea,ã
0

[
E~$RW %a!2E~$RW %ã!

N
, ~5!

as a function of density, witha[fcc andã[hcp. In addition
to the exact result following from implementing Eq.~5!
without approximation@22–24#, we show the results that fol
low if the potential is approximated by the truncated form
fa @Eq. ~2!# andfb @Eq. ~3!#.
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The exact result shows the well-knownT50 phase be-
havior @11#: there is a single-phase boundary~at r5r0
52.1727s23) separating hcp (r,ro) and fcc (r.ro) re-
gions. By contrast the fixed-cutoff approximation@Eq. ~2!
with r x52.5s# leads to a ground-state energy that var
wildly with density, as the number of particles within th
interaction range evolves. The implied~seemingly rich!
phase behavior@17# can be traced directly to the truncatio
The fixed-interaction-list approximation@Eq. ~3! with r x
52.5r 0# fares differently, but no better: the evolution
smooth, but shows no phase boundary at all.

The moral is clear: to capture phase behavior that is
trustworthy sense representative of the true LJ model
must handle the ground-state energies without recours
truncation. While it is not our aim to give a definitive trea
ment of the LJ problem~our treatment is classical, after al!
we shall respect this constraint. Thus, in what follows,
shall take for thegeneralconfigurational energy the form

E~$rW%!5E01(̂
i j &

fc~r i j !, ~6!

with

fc~r i j !5H f~r i j !2f~Ri j ! Ri j <r x

0 Ri j .r x
. ~7!

The ground-state energyE0 is treated essentially exactl
@25#. The effects of the truncation are restricted to the flu
tuation spectrum; we shall discuss them~and the choice of
r x) in due course.

FIG. 1. The difference between the ground-state energies
particle for fcc and hcp structures, as function of density. The s
line shows the result with no potential truncation. The dotted a
dashed lines show the results based on the fixed-cutoff trunca
scheme@Eq. ~2! with r x52.5s# and the fixed-neighbor-list trunca
tion scheme@Eq. ~3! with r x52.5r 0# respectively. Note the order
of-magnitude difference between the scales on the left and r
hand axes that are used for ‘‘exact’’ and ‘‘truncated’’ results resp
tively.
0-2
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III. STATISTICAL MECHANICS

The fluctuation spectrum~the ‘‘significant’’ configurations

$rW%) of a crystalline phasea is naturally described by the
displacements with respect to the lattice sites$RW %a . Thus we
make the familiar decomposition

rW i5RW i
a1uW i . ~8!

The partition function~configurational weight! of structure
a, at temperatureT, may then be written as

Z~N,T,V,a!5)
i

F E
[a]

duW i Ge2bE($rW%). ~9!

Here* [a] signifies integration subject to an appropriate co
figurational constraint that picks out~from the entire con-
figuration space ofN particles in volumeV) those configu-
rations that ‘‘belong’’ to crystalline phasea @26#. The
partition function defines the Helmholtz free-energy dens
through

f ~N,T,V,a!52
1

Nb
ln Z~N,T,V,a!. ~10!

The relative stability of the two phases reflects thedifference
between their free energies, and thus theratio of their parti-
tion functions@27#

D f aã[ f ~N,T,V,a!2 f ~N,T,V,ã !52
1

Nb
ln Raã~N,T,V!,

~11!

where

Raã~N,T,V![
Z~N,T,V,a!

Z~N,T,V,ã !
. ~12!

If the difference between the densities of the two phase
small, the phase boundary follows immediately as the lo
of points for which D f aã vanishes~the two phases hav
equal statistical weights!. In general, however, the problem
more conveniently formulated in theNTP ensemble. The
relevant partition functions are then

Z~N,T,P,a!5E dVZ~N,T,V,a!e2bPV. ~13!

The difference between the Gibbs free-energy densities
lows as

Dgaã[g~N,T,P,a!2g~N,T,P,ã !

52
1

Nb
ln Raã~N,T,P!, ~14!

where now

Raã~N,T,P![
Z~N,T,P,a!

Z~N,T,P,ã !
. ~15!
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The phase boundary is defined by the condition that

Raã~N,T,P!51, ~16!

in the thermodynamic (N→`) limit.

IV. HARMONIC APPROXIMATION

The foundation stone of analytical approaches to the pr
lem of free-energy determination for crystalline solids is t
harmonic approximation. The methodology is long esta
lished@10#; many studies of LJ systems within the harmon
approximation~and its refinements! exist @28#. Here we use
the harmonic framework to provide a benchmark of t
LSMC work to be presented in following sections. We d
scribe it in outline only.

In the harmonic approximation we expand the configu
tional energy@Eq. ~6!# to second order in the displacemen

$uW % @29#

E~$rW%!5E~$RW %!1
1

2
(

^ i j &,m,n
Ki j

mnui
muj

n1••• . ~17!

Hereui
m anduj

n denote cartesian components (m, n) of the

displacementsuW of the particles associated with sitesi , j .
The ‘‘dynamical’’ matrix K is defined by@30#

Ki j
mn5H Ffc8~Ri j !

Ri j
2fc9~Ri j !G n̂i j

mn̂i j
n 2

fc8~Ri j !

Ri j
dmn ~ j Þ i !

2(
kÞ i

Kik
mn ~ j 5 i !

~18!

with

n̂i j [
RW i j

Ri j
. ~19!

As a result of the truncation scheme adopted in Eq.~6! the
ground-state energy in Eq.~17! is essentially exact~in the
limit of large enoughN), while the fluctuation term contain
contributions only from interactions falling within th
~density-dependent! cutoff.

Within this approximation theNVT partition function
@Eq. ~9!# can be expressed in the form

Z~N,T,V,a!5@2p/b#3N/2exp@2bE~$RW %a!#@detK ~a!#21/2,
~20!

whereK (a) is the 3N33N matrix whose elements are de
fined by Eq.~18! ~applied to phasea). Then the fluctuation
contribution to the free-energy density of phasea in the
harmonic approximationis measured@31# by

f a
h[

1

2Nb
ln@detK ~a!#5

1

2Nb (
j 51

3(N21)

ln l j
a , ~21!
0-3
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where l j
a @ j 51, . . . ,3(N21)# denote the nonzero eigen

values of the matrixK (a). The differencebetween the har-
monic contributions to the free-energy densities of the t
phases follows as

D f aã
h

5 f a
h2 f ã

h
5

1

2Nb
lnFdetK ~a!

detK ~ ã !
G . ~22!

These expressions can be evaluated numerically with r
tive ease~for modestN values!, allowing investigation of the
influence of the potential truncation. Figure 2 showsf h, as
defined by Eq.~21! @32#, for the two structures in systems o
N5216 particles, at a densityrs35A2, for different choices
of cutoff. We have chosen@33# to parameterize the cutoff b
the inverse of the numbernx of interacting neighbors~the
number of particles falling within the cutoff range!. The free-
energy ‘‘scale’’ on which to assess the significance of th
results is set by thedifferencebetween the values for the tw
structures. On this scale the values off h for the two struc-
tures each evolve significantly between the two extrem
But the differencebetween these free energies varies re
tively little: the values for the two extremes differ by on
2%. Figure 3 shows that this statement remains true ov
wide range of densities, and for a substantially larger sys
size N. The conclusion we draw is that, in contrast to t
ground-state energy~Sec. II, Fig. 1!, the fluctuationcontri-
bution to the free-energydifferenceof interest in thehar-
monic approximationcan be accurately captured by a mod
incorporating only relatively short-range interactions.
might seem reasonable to suppose that this state of af
extends beyond the harmonic limit and we have indeed p
ceeded on this basis: for the most part our LSMC stud
have focused on the truncated model defined in Eq.~7!, with
r x51.5r 0 and nx518. But the results presented below i
clude a retrospective check on the consistency of this
sumption.

Figure 3 also shows that the dependence of the f
energy difference upon system sizeN ~finite-size effects! is

FIG. 2. The harmonic contributions to the free-energy den
@Eq. ~21!; note @32## for fcc and hcp structures withN5216, and
rs35A2. The results are expressed as functions of the numbe
interacting neighborsnx @33#.
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significant on the relevant scale: the harmonic free-ene
difference changes by some 25% betweenN5635216 and
N512351728. Our direct matrix-diagonalization treatme
is not readily extended to largerN values. But our results for
the harmonic free-energy difference between the two str
tures forN5123 lie within 3% of the harmonic thermody
namic limit reported in@34#; and we find that a 1/N extrapo-
lation of our N563 and N5123 results is consistent with
that limit. Accordingly our LSMC studies have also bee
largely restricted to these two system sizes.

V. LATTICE-SWITCH MC METHOD

The problem of phase behavior is succinctly expresse
Eqs.~12! or ~15!: the relative stability of~free-energy differ-
ence between! two phases is determined by the ratio of t
associated partition functions. It is helpful~both conceptually
and practically! to recognize that ratio for what it is: the rati
of the equilibrium probabilities with which a system, free
exploreboth phases, will visit each one. The LSMC metho
provides the strategy needed to captitalize on this identifi
tion. We have described the method fully elsewhere@2#, in
the context of a system of hard spheres. The description
will, therefore, be brief and will focus on the adaptatio
needed to accommodate soft interactions.

In principle, LSMC represents a simple and intuitive e
tension of the MC framework@6# conventionally used for
exploration of a single~structural! phase. The ‘‘single-phase
MC method updates the particle displacements for fixed
tice vectors; LSMC augments this procedure by updates
the lattice vectors with the displacements held fixed. By ‘‘u
date’’ of the lattice vectors we mean replacing the entire
of lattice vectors describing the current structure with a
that describes the other structure. The current particle c
figuration, which ‘‘belongs’’ to the phase space associa
with the current structure, is thus mapped onto a part
configuration that ‘‘belongs’’ to the phase space of the ot
structure.

Without further refinement this simple procedure will n

y

of

FIG. 3. Thedifferencebetween the harmonic contributions t
the free-energy density@Eq. ~21!# of the two structures for system
sizesN5216 andN51728 as function of density. The solid an
dashed lines correspond to different fixed-neighbor-list trunca
schemes.
0-4
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LATTICE-SWITCH MONTE CARLO METHOD: . . . PHYSICAL REVIEW E 65 036710
in general work: an equilibrium configuration of one stru
ture will typically have as its conjugate~i.e., will map into! a
relatively high-energy configuration of the other structu
The lattice switch MC step will typically be rejected. T
make it work the sampling of the configurations of ea
structure must be multicanonically biased@3# to enhance the
probabilities of those states~we call them gateway states!
from which a switch can be attempted with a reasona
likelihood of success. The bias needs to reflect thedifference
between the excitation energies@35# of conjugate pairs. To
that end we define an order parameter@36#

M[M~$uW %!5E~$uW %,$RW %hcp!2E~$uW %,$RW % fcc!, ~23!

where

E~$uW %,$RW %a!5b@E~$rW%!2E~$RW %a!#, ~24!

measures the excitation energy of configuration$rW%[$uW %,a
~the amount by which it exceeds the ground-state energ
structurea) in units of kT5b21. The energy difference de
fined in Eq.~23! is the analog of the ‘‘overlap order param
eter’’ utilized in our studies of hard spheres@1,2#.

Given the relationship between the energy of a configu
tion and the energy of its conjugate one sees that displ
ment patterns$uW % drawn from equilibrium sampling of the
fcc ~hcp! configuration space will give predominantly pos
tive ~negative! values of$M%. The gateway states lie in be
tween @37#; in the thermodynamic limit they have vanish
ingly small equilibrium probability. We thus require to
engineer a multicanonical sampling algorithm to enhance
probability along a notional line inM space, extending from
the ‘‘equilibrium’’ M values~whosemagnitudereflects the
energy cost of a LS acting on atypical configuration!
through to the small-M gateway configurations. This aim i
realized by augmenting the system energy function Eq.~6!
appropriately,

bE~$rW%!→bE~$rW%!1h@M#[Ẽ~$rW%!. ~25!

Here h@M# is a multicanonical weight function@3# that
must be chosen so as to allow the system to access the
way configurations. For this purpose it is sufficient~though
not necessarily optimal! to construct the weights such th
the multicanonical distributionP(MuN,T,$h% . . . ) @38# is
roughly flat. The desired ratio of partition functions@Eq. ~12!
or ~15!#, is identified with the ratio of the aggregatecanoni-
cal probabilities of the two phases

Raã~N,T, . . . ![
P~auN,T, . . . !

P~ ãuN,T, . . . !
5

(
$M%

P~M,auN,T, . . . !

(
$M%

P~M,ãuN,T, . . . !

~26!

and can be obtained from the corresponding~measured! mul-
ticanonical distributions by reweighting~folding out the
weights!
03671
.

le

of

-
e-

e

te-

(
$M%

P~M,auN,T, . . . !

(
$M%

P~M,ãuN,T, . . . !

5

(
$M%

eh[M] P~M,auN,T,$h%, . . . !

(
$M%

eh[M] P~M,ãuN,T,$h%, . . . !

. ~27!

The last step removes theexplicit bias resulting from the
weights, leaving only the desired legacy@39#—that both
phases are visited with the canonical probabilities. Not
that, in contrast to the hard-sphere problem, whereM serves
as a unique identifier of the phase, the relevant sums in E
~26! and ~27! involve the phase labels explicitly.

VI. LATTICE-SWITCH MC IMPLEMENTATION DETAILS

Our MC procedure involves stochastic sampling of thr
classes of variable: the displacement vectors$uW %; the volume
V; and the set of lattice vectors$RW %a indexed, collectively, by
the lattice labela. The sampling of$uW % andV follows stan-
dard prescriptions@6#, with the effective configurational en
ergy ~controlling metropolis acceptance probabilities! given
by Eq. ~25!. Stochastic updating of the lattice labela ~the
lattice switch! is discussed extensively in@2#. We summarize
the essentials.

There are many ways of defining the switch transform
tion ~lattice-to-lattice mapping!; for the fcc-hcp problem the
prescription illustrated in Fig. 4 is simple and efficient.

In the cases in which the two phases related by the sw
have significantly different volumes the switch operation c
accommodate an appropriate dilation@40#. In this case we
did not find that necessary: thus, as implemented here,
switch transformation preserves bothV and $uW % @41,42#.
With the prescription adopted in Eq.~23! the switchalso
leavesM ~and thush@M#) unchanged@43#. The switch

FIG. 4. The LS transformation applied to the ground-state c
figuration. The diagram shows six close-packed (x-y) layers.~The
additional bracketed layer at the bottom is the periodic image of
layer at the top.! The circles show the boundaries of particles l
cated at the sites of the two close-packed structures. In this rea
tion of the fcc→hcp lattice switch, the top pair of planes are le
unaltered, while the other pairs of planes are relocated by tran
tions, specified by the black and white arrows.
0-5
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FIG. 5. Examples of ‘‘best-estimate’’ weigh
functions for systems ofN563 particles.~a! The
Lennard-Jones~LJ! weight function ~for p
50,kT/e50.285) is compared with the weigh
function for hard spheres~HS; see@2#! at a pres-
sure chosen such that the densities of the t
systems are comparable.~b! Weight functions for
the p50 LJ system at three different temper
tures.
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acceptance probability is then simply

Pa~a→ã !5min@1,exp~2DẼ!#, ~28!

where@44#

DẼ[b@E~$uW %,$RW %ã!2E~$uW %,$RW %a!#, ~29!

is the energy cost of the switch.
The practical core of the whole procedure lies in the

termination of the multicanonical weight functionh@M#. In
generic terms the task is simple: the weight function is
rameterized by a discrete set of weights each associated
an interval ofM space of widthm0 ~that we set to a constan
value, m051) and together extending across the relev
range ofM space~the values appropriate for the equilibriu
structures!; the weights are refined iteratively until the sam
pling distribution is sufficiently close to the multicanonic
ideal. Details of the techniques we used are described e
where@45#.

VII. LATTICE-SWITCH MC RESULTS

A. Features of the LS operation

We begin by presenting a selection of results chosen
illustrate features of the LS operation itself; results for t
quantities of more immediate physical interest appear in
subsections that follow.

Figure 5 provide examples of weight functionsh@M#
constructed such that the associatedweighteddistribution
P(Muh@M#) is effectively ‘‘flat’’ ~the multicanonical idea
@3#!. To the extent that itis flat one can regard the weigh
function as a logarithmic measure of theunweighted~equi-
librium! distribution P(M). The peaks in the weight func
tions thus locate the ‘‘equilibrium’’ values ofM for each
phase, the peaks at positive~negative! M corresponding to
fcc ~hcp! phases respectively. The heights of these pe
measure, on a logarithmic scale, the size of the free-en
barrier to be negotiated for an escape from that phase, a
the route offered by LS@46# .

Figure 5~a! compares the results for the soft LJ potent
of primary interest here, with the results for a system of
same number of particles interacting as hard spheres@2#. The
thermodynamic parameters were chosen so that the two
03671
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tems have essentially the same densities. It is clear
‘‘softening’’ the potential greatly reduces the barriers agai
switching @47#.

Figure 5~b! shows the weights for the~zero-pressure! LJ
system for a range of temperatures. The ‘‘barrier heigh
grow with increasing temperature reflecting the growing e
ergy mismatch between typical configurations and their c
jugates.

The value ofM for which h@M# assumes its minimum
~zero @46#! value—corresponding to the macrostates of lo
est probability in the equilibrium ensemble—identifies t
gateway macrostates. This identification is apparent op
tionally in Fig. 6 that shows that the probability of a switc
being accepted is maximal in the region whereh@M# has its
minimum. Though this identification is not self-evident
true, it is not surprising: the defining constraint on the ‘‘ga
way’’ macrostates~namely that they should allow a switch! is
sufficiently tight to ensure that they have the lowest proba
ity of all the macrostates that it isnecessaryto sample.

Close scrutiny of Fig. 5~b! shows that theM valueMG ,
locating the gateway states is nonzero and shifts with te
perature. To understand this one should recall that the g

FIG. 6. The multicanonical weightsh ~solid line! and the prob-
ability of acceptance of a switchpacc as a function ofM in the
region nearM50. The system parameters areN563, p50, and
kT/e50.285.
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FIG. 7. Temperature dependence of the pro
ability distribution P(M) for a system ofN
563 Lennard-Jones particles at zero pressure
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way states are such that the switch energy costDẼ @Eq. ~29!#
is close to zero@48#. Recalling the definition ofM we see
that the conditionDẼ50 implies M5MG5NbDe fcc, hcp

0 :
the behavior ofMG can thus be traced to the difference
ground-state energies.

Figure 7 shows the equilibriumM distributions for the
zero-pressure LJ system at the three different temperat
featuring in Fig. 5~b!: in each case we sample the multic
nonical distributions defined by the appropriate set
weights ~allowing both phases to be sampled! and then re-
weight to obtain the equilibrium distribution. Equation~15!
shows that the relative stability of the two phases is direc
reflected in the ratio of the integrated areas of the peak
the equilibriumM distribution. We thus see immediate
and transparently from Fig. 7 that, while the hcp structure
favored at low enough temperature~as implied by the differ-
ence between the ground-state energies at this pressure
1!, the favored phase at high enough temperatures is fcc

B. Benchmarking: LSMC and the harmonic approximation

A comparison between the results based on harmo
crystal dynamics~Sec. IV! and LSMC is worthwhile for two
reasons. In the regime of low enoughT, the harmonic theory
is necessarily correct: comparison with LSMC results th
provides a check on the overall consistency of the LS fram
work. In the regime of higherT, we must expect the har
monic theory to be growingly inaccurate: comparison w
LSMC allows us to explore the extent of these inaccurac

Figure 8 shows the results of LSMC studies in theNVT
ensemble, at two different densities, for a range of temp
tures. In each case the solid line is the free-energy differe
in the harmonic approximation, which combines the grou
state-energy difference@Eq. ~5!# and the harmonic contribu
tion to the free energy@Eq. ~22!#:

D f

e
5

De0

e
1

D f h

kT

kT

e
~harmonic!. ~30!

The LS values follow from simulations determining theM
distributions for the appropriate state point and applying
~11!. Evidently, the two methods agree at low enough te
peratures, where the harmonic theory is trustworthy; this p
vides a reassuring consistency check. As we have alre
noted, the results of Ref.@34# provide consistency checks o
the harmonic studies themselves.

The differences between the results of the two meth
should, then simply reflect the anharmonic effects that
captured by the LS studies. The differences grow with
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creasing temperature and decrease with increasing den
this behavior is consistent with simple qualitative expec
tions @49#.

At both densities the deviations from harmonic behav
are such as to favor hcp: we see no change in the sign o
‘‘anharmonic’’ contributions, with increasing density, su
gested by the perturbation-theory calculations in@18#.

At kT/e50.4 and rs351.092, we find D f /e
520.000 074(16), which is virtually indistinguishable from
the predictions of the harmonic theory. In contrast Ref.@50#
~which uses an integration method to determine the free
ergies of each phase separately! reportsD f /e520.066(4) at
kT/e50.4 andrs351; this seems irreconcilable with ou
results.

At the temperatures of most immediate physical inter
~whereD f 50) the discrepancies between the two metho
are small, even for the zero-pressure density. We may
expect that the harmonic theory of the fcc-hcp phase bou
ary will not prove far wrong; this is indeed the case.

C. The fcc-hcp phase boundary

We have established that LSMC provides us with a w
of determining the difference between the free energies
the two phases atsomepoint in the space of thermodynam
coordinates. We must now turn to the practical task of int
est here: the determination of the phase behavior itself. T
task may be divided into two—extrapolation and trackin
First ~‘‘extrapolation’’! we need to use the data accumulat

FIG. 8. The difference@21# between the Helmholtz free-energ
densities of the two structures for a system ofN5123 particles at a
density of~a! rs351.092 close to the zero-pressure density and~b!
rs351.538 the density at whichDe fcc, hcp

0 is maximal. In each case
the solid line represents the results of a harmonic calculation, wh
follows Eq. ~30! with intercepts and gradients given b
De0/e50.000 869 8 @0.001 152# and D f h/kT520.002 574
@20.002 949# for cases~a! @~b!# respectively. The data points ar
the results of LSMC studies utilizing Eq.~11!.
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at our initially chosen state point to infer the location ofsome
point on the phase boundary~and refine it as necessary!.
Second~‘‘tracking’’ ! we need to map out the phase bounda
emanating from that point. There are many ways of addre
ing these tasks; we shall focus on the strategies we h
found most useful, while noting other approaches that pro
less satisfactory here.

Both extrapolation and tracking stages make use of
fact that thederivativesof the free-energy difference can b
expressed in terms of the differences between single-p
averages of appropriate observables

]@bDg#

]b
5

1

N
^DE1pDV&5Dh ~31a!

and

]@bDg#

]p
5

1

N
^DV&5Dv, ~31b!

whereDh andDv represent the differences between the
thalpy per particle and mean volume per particle, for the t
phases. Since the densities of fcc and hcp phases are
similar at coexistence@51# the p derivative @Eq. ~31b!# is
hard to determine accurately. But theb derivative@Eq. ~31a!#
is readily measurable to the required precision, using
appropriate single-phase averages already available in th
simulations used to determineDg itself. GivenDg and itsb
derivative a simple linear extrapolation~LE! scheme pro-
vides an estimate of the phase boundary temperature fo
chosen pressure. Figure 9 provides an example. The extr
lation works well—a reflection of the fact that the behav
is close to harmonic over the region involved. Figure 9 a
shows the results generated by a single histogram extrap
tion ~HE! @52# in which the M distribution measured
through the histogram accumulated at the initial state poin
used to estimate the distribution at other temperatures. In
case HE fares much worse than LE. The reason is that
HE predictions for some extrapolated temperatureb explic-

FIG. 9. Comparison of linear extrapolation~LE! and histogram
extrapolation~HE! methods for determining thep50 hcp-fcc phase
boundary temperatureT0(p50) on the basis of simulation dat
accumulated atkT/e50.1 and p50 for a system ofN563

Lennard-Jones particles. Our best estimate ofT0(p50) is also
shown.
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itly utilize the statistical information that the simulation
~performed atb0) give about the dominant configurations
b; this information typically resides in the poorly sample
wings of the measured distribution. By contrast LE implicit
modelsthe measured distribution~in this case! as two Gaus-
sians, each centered on the average for the phase, w
characteristics are then determined by the well-sampled
gions of the measured distribution. LE does well when~as
here! the near-Gaussian assumption is good.

Once a point on the phase boundary is established the
of the boundary can, in principle, be mapped by numeri
integration of the phase boundary derivative that follo
from Eqs. ~31a! and ~31b!. This strategy—Gibbs-Duhem
~GD! integration—has been widely and effectively used@53#.
In this context, however, it is undermined by the problem
have already noted with the measurement of the volume
ference at coexistence. The resulting inaccuracies are c
pounded by the generic draw back of GD—the absence
any self-correction mechanism. Figure 10 shows the res
of a low-order predict-evaluate-correct~PEC! GD integra-
tion: on its own GD is clearly not suited to the present pro
lem. Instead we chose a strategy which, while making us
GD to the extent it is trustworthy, employs LS to correct
Starting at some coexistence pointp1 ,b1 say we choose a
different pressurep25p11Dp. We use the GD derivative to
predict the associated transition temperatureb2

e . If the dif-
ference betweenb2

e and b1 is not statistically significant
~given the errors associated with the GD derivative! we reset
b2

e5b1. The multicanonical weights used atb1 ,p1 provide
estimates of the weights atb2

e ,p2 that can be easily refined
The process is completed by ab extrapolation to the phas
boundary ~as discussed above!. Sustaining switching be-
tween phases as the phase boundary is traced out deliv
running consistency check. In this case the computatio
cost is actuallyless than it would be to determine the GD
derivative to the accuracy required to make GD itself viab
Figure 10 shows some representative results.

Using these techniques we have mapped out the hcp
phase boundary from the zero-pressure limit, through to
maximum pressure at which hcp is classically stable aT
50. The results are gathered together in Fig. 11. In the c

FIG. 10. Comparison of lattice-switch~LS! and Gibbs-Duhem
~GD! methods for mapping out a high-pressure section of the ph
boundary for a system ofN563 Lennard-Jones particles. The re
sults of harmonic theory are also shown.
0-8
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of the smaller (N563) system we gathered LS data alon
the entire phase boundary, demonstrating agreement with
results of harmonic theory except in a low-pressure reg
where the break-down of the harmonic approximation beg
to be apparent. In the case of the larger (N5123) system we
focused our LS studies on this low pressure region, mapp
out the phase boundary fromp50 through to the pressure a
which it becomes indistinguishable from the predictions
the harmonic theory. The dashed line through the LS po
is based on a simple phenomenology of the growth of an
monic effects with decreasing density@49,54#. While the de-
viations from the harmonic (NVT) theory are certainly re-
solvable, they are always small. And indeed the same gen
structure and scale of the phase diagram is apparent in
neering~if semiquantitative! harmonic lattice dynamics stud
ies of 50 years ago@24#. It is harder to make useful connec
tions with more recent studies. Jackson and Swol@55# and
Choi et al. @17# both appeal to perturbation theories using
truncated potential giving a complex phase behavior. In@18#
the same method is applied to a system without truncat
but the perturbation theory presupposes hard-sphere re
now known to be incorrect, and is in any case restricted
high temperatures (kT/e*1).

VIII. DISCUSSION

We divide this concluding section into three. First w
shall take stock of where we stand on thegenericproblem

FIG. 11. A variety of approximations to the classical Lenna
Jones phase diagram. In all cases the difference between
ground-state energies of the two structures is essentially exact
fluctuation contribution to the energy is truncated according to
~7!, with r x51.5r 0. The dashed and solid lines are the results
harmonic calculations~for the two system sizes!. The dash-dotted
line is a phenomenological parameterization of the anharmonic
fects @54#. The scale at the top of the figure shows the pressure
selected points on the~LS N5123, NPT) coexistence curve. Tie
line structure is unresolvable on the scale of the figure.
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addressed here: the development of a general computat
technique for the study of the phase behavior of crystall
matter. Then we shall summarize what we have lear
about theparticular problem we have chosen to address: t
equilibrium phase behavior of the LJ model. Finally we sh
consider the implications of the LJ model predictions f
studies of the crystallization process itself.

1. The technique

To assess the LS technique we must now set it in cont
The task of determining the phase behavior of solids

traditionally been seen as requiringseparatecalculations of
the absolutefree energies of the competing phases, linki
each to some reference system. This approach was pione
by Frenkel and Ladd@5# and has been implemented in
variety of forms, differing according to the choice of refe
ence system~Einstein solid, harmonic solid, ideal gas, . .!
and how the linking path is negotiated~integration, extended
sampling! @50,56–59#. The problem facing this strategy i
that the quantity of physical interest—the free-energy diff
ence between the phases—is typically small~in the vicinity
of a phase boundary necessarily so! compared to the absolut
free energies of the separate phases; one is left with the
of determining the difference between two ‘‘relatively large
numbers@60# that arethemselvesof little or no physical in-
terest. It is possible to make this strategy deliver results
comparable accuracy to that of LS, for comparable com
tational resource@61#. But the extent of the signal-to-nois
problem provides strong motivation for developing a mo
direct strategy.

The essence of a ‘‘direct strategy’’ is that it should foc
on the free-energydifferencebetween~relative likelihood of!
the two phases: this requires a ‘‘path’’ connecting the disjo
configuration spaces of the two phases. The pioneering s
here is that of Rahman and Jacucci@62#. Subsequent studie
in this vein can be differentiated according to whether~in the
terminology of@62#! the path is ‘‘physical’’ or ‘‘nonphysical’’
and according to how the path is traversed@63–65#. Refer-
ence @65#, devoted to the hcp-fcc phase behavior of ha
spheres, provides the most recent instance of the use
‘‘physical’’ path between the two structures@66#, explored
with multicanonical sampling@3#. In that case the ‘‘physica
path’’ was found to encounter some stubbornly physical b
riers that~the authors report! made it less efficient than a LS
strategy that they also explored.

The LS technique belongs to the class of ‘‘direct’’ met
ods that exploit a ‘‘nonphysical’’ path. One can see it@67# as
a reformulation of the strategy used by Moodyet al. @63# in
early ~though numerically inconclusive! studies of polymor-
phic crystalline behavior. The principal additional feature
LS is that we have used extended~‘‘multicanonical’’! sam-
pling instead of multistage sampling; that change, combin
with the availability of massively more computational r
source produces a technique that—we have seen here a
@2#—delivers the precision one requires, with readily quan
fiable uncertainties, in a physically transparent fashion.

There are two noteworthy ways in which the LS fram
work could be fruitfully developed. First, as noted in@2#, one
may fold into the switch operation any desired transform
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A. N. JACKSON, A. D. BRUCE, AND G. J. ACKLAND PHYSICAL REVIEW E65 036710
tion of the displacement coordinates, provided one takes
propriate account~through the Jacobian! of the resulting
warping of the configuration space@68#. In particular one can
define a switch operation that preservescollective ~normal
mode! coordinates rather thanlocal coordinates. In thehar-
monic region such an operation will workwithout the need
for any weighting; the barrier~to be surmounted by multica
nonical methods! is reduced to that associated with the a
harmonic contributions. This approach is currently under
vestigation.

Second, the current framework is strictly classical. It
clearly desirable to extend the framework to include qu
tum effects; we plan to do so within a path integral form
ism @69#.

2. The system

We turn now to the particular system~the LJ model! we
chose for this exploratory study. From some standpoints
choice proved ill advised; while LJ is regarded as the gen
soft potential, its phase behavior is acutely sensitive to
tails ~notably the range of interactions permitted! that are
largely arbitrary adjuncts of the phenomenology. The div
sity of LJ phase diagrams featuring in the literature is te
mony to this sensitivity. Should one wish to take the
potential at face value and establish a definitive phase
gram one must certainly investigate the effects of potent
range truncation and~other! finite-size effects systematically
We have attempted to do so here: we have dealt exactly
the ground-state energies; we have seen that our trunc
scheme for the excitation energy captures the thermodyn
cally limiting behavior well in the harmonic regime~Figs 2,
3!; and we find no evidence to doubt it when one mov
beyond the harmonic region@70#. We have some confidenc
then that Fig. 11 does indeed capture the classical LJ c
talline phase behavior.
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3. The implications

If the calculations reported here are to represent m
than an exercise in equilibrium statistical mechanics th
their results need to be related to studies of the crystalliza
process itself. It is not easy to do so in any satisfying wa

If one tries to make contact with observations on RGS o
is faced with a whole range of effects that are potentia
important. We have already noted the need to extend
framework to include quantum effects—clearly important f
the lighter RGS and essential in understanding the beha
of Helium. But the link with real systems is also complicat
by two other manifestations of the fcc-hcp knife edge
which the LJ model sits. That knife edge is presumably
flected in the sensitivity of the observed structure to impu
ties @71#; it also means that effects that are missing from
two-body central force LJ phenomenology~and that are not
crucial to other aspects of the RGS behavior! need to be
addressed@14#. As a more limited objective one may try t
make contact withsimulationsof the crystallization process
in LJ systems. There have been many studies of this k
Much of the focus has been on the initial stages of
process—in particular, the suggestion@72# that the route to
the thermodynamically favored phase traverses a region
a bcc structure. This phenomenon~for which there is simu-
lation support@73#! is a useful reminder of the importance o
the kinetic pathways by which the equilibrium state
reached, in the long term. The evidence from the most
tailed study known to us@74# is that a fcc structure emerge
in that ‘‘long term’’ @75#. But this study utilized a LJ poten
tial truncated atr x52.3s; and we have seen that such deta
matter as regards the ‘‘true’’ equilibrium behavior. In an
case, given the LJ knife edge, it seems likely that the p
ticular long term behavior that does emerge may well ha
more to do with the kinetics than the thermodynamics. T
interplay is probably better explored in a system other th
LJ. Recent work has begun to address this interesting
@76#.
s-
. W.
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identifies the orthodox lattice convoluted with the orthod

basis. For the purposes of LSMC$RW %a merely identifies one
particular configuration of structurea. The particular simplic-
ity ~perfect periodicity! of this configuration is not essential t
the LSMC procedure; the ‘‘lattice switch’’ is but a simple ca
of a more general strategy that switches between config
tions of different phases@7#.

@20# We shall frequently suppress thea label when no ambiguity
results.

@21# Whenever we refer to the ‘‘difference’’ between the~free! en-
ergies of the two structures we shall mean, specifically,
value for fcc minus the value for hcp.

@22# The relevant lattice sums are defined in, e.g.,@23#. The results
generated and used here are in agreement with those tabu
in @24#.

@23# N. W. Ashcroft and N. D. Mermin,Solid State Physics~Saun-
ders, Philadelphia, 1976!.

@24# T. H. K. Barron and C. Domb, Proc. R. Soc. London, Ser
227, 447 ~1955!.

@25# The ground-state energies were computed as paramete
functions of density, in the limits of largenx and N; these
functions were then used in subsequent simulations.

@26# While this constraint deserves some thought@2# it is imple-
mented naturally and automatically within a MC framework

@27# In the present work~in contrast to our studies of hard spher
@1,2,7#! we shall display factors ofb5@kT#21 explicitly.

@28# See, for example, Ref.@24#; D. J. Lacks and G. C. Rutledge,
Chem. Phys.101, 9961 ~1994!; R. G. Della Valle and E.
Venuti, Phys. Rev. B58, 206 ~1998!.

@29# For the purposes of the harmonic theory the ‘‘lattice sites’’ a
assumed to be positions of classical equilibrium for the p
vailing mechanical constraints.

@30# See e.g., A. A. Maradudin, inDynamical Properties of Solids,
edited by G. K. Horton and A. A. Maradudin~North-Holland,
Amsterdam, 1974!, p. 18.

@31# More specificallyf h is the harmonic contribution to the free
energy density to within terms that do not depend upon
phase labela and are thus irrelevant to the free-energydiffer-
enceof interest.

@32# The origin of the ordinate scale in Fig. 2 is fixed by impl
menting Eq.~21! with the eigenvaluesl j

a expressed in units o
e/s2.

@33# If one forms the abscissa for Fig. 2 fromr x rather thannx each
f h function shows discontinuities at thoser x values wherenx

changes; the difference between the two functions shows
continuities whereeither nx value change~such as those see
in the plot of the ground-state energy difference in Fig.!.
Parameterizing the cutoff bynx , and interpolating between th
values associated with the observable discrete values of
variable, reveals essentially smooth underlying behavior.

@34# Z. W. Salsburg and D. A. Huckaby, J. Comput. Phys.7, 489
~1971! evaluate the harmonic contribution to the free energ
of each phase, at the densities that minimize their respec
ground-state energies, using a potential including first- a
second-neighbor interactions.

@35# In simulations conducted in theNVT ensemble it is convenien
to factor out the difference between ground-state ener
DE0[NDe0 ~which is thenindependentof configuration! and
defineM in terms of the excitation energies alone. In theNPT
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ensemble the ground-state energy difference is configura
dependent~varies with density! and there is less advantage
making this separation.

@36# The sign convention adopted here has no deep significanc
@37# They lie near~but not at! M50, see Sec. VII A.
@38# Here . . . identifies the appropriate ensemble variableV or P.
@39# One may see the use of multicanonical weights~sampling with

them; then folding them out! as a way of ‘‘simply improving’’
~albeit infinitely! the statistical precision of an unbiased es
mator of the desired ratio.

@40# See, for example, the study of the freezing transition in@7#.
@41# There are other possibilities to which we return in Sec. VII
@42# In our studies of hard spheres@2# we treated the ratio of the

unit cell parametersc anda for the hcp structure as a simula
tion variable. We were unable to resolve any departure fr

the ideal close-packed limitc/a5A8
3 . We did not reopen this

issue in the present studies: thec/a ratio is fixed throughout at
its ideal value.

@43# If the switch is required to accommodate a significant chan
in some quantity other than the lattice type~e.g., the volume!
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