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Self-referential method for calculation of the free energy of crystals by Monte Carlo simulation
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We propose a Monte Carlo simulation method for the evaluation of free energies in crystalline systems. In
principle, the method involves evaluating the free-energy difference between syst&hmadécules and B
molecules. This difference, coupled with the assumption that the free energy is extensive and thus proportional
to N, provides sufficient information to obtain the absolute free energy of the crystal. The approach to doubling
the system size does not involve insertion or removal of molecules in the system. Instead, the configurations of
the molecules are expressed in terms of the normal-mode coordinates of a harmonic lattice. By decoupling
certain of these coordinates from the molecule configurations, we obtain a transformation that in effect yields
the system-size doubling. The method is examined via application to a system of hard rods in one dimension.
This simple model is considered principally because of the availability of an analytic solution for its free
energy, which permits accurate testing of the performance and correctness of the proposed method. In using the
hard-rod model we also avoid other complications related to treatment of the temperature, and application of
normal-mode coordinate decoupling in higher dimensions. The proposed method is shown to be able to provide
good results for the free-energy calculation, but further development will be needed before it can be considered
practical for general-purpose use.
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I. INTRODUCTION nal energy and the entropy, respectivelys the pressurey
the volume, andu and N are the chemical potential and

The development of methods for the calculation of thenumber of molecules. In this equatiop, V, and N are
free energy of solids continues to be of interest for severaknown or easily measured in simulatif 3], and u too can
reasons. Improved understanding of conditions promotinge evaluated reliably, albeit with more computational effort
crystallization is important in the petrochemical industry [4]. The amount of computation required for measurement of
where wax formation in oil wells, storage tanks, and pipe-a free-energy difference scales exponentially with the en-
lines causes regular shutdowns at substantial expense. Cnygopy difference between the target and reference systems
tallization is becoming increasingly important in the spe-[56]. The chemical potential is a tractable quantity because
cialty chemical and biochemical industries as a method ofn a fluid it can be determined by a process in which a mol-
separation for components that have low-melting temperaecule is inserted into the simulated systgf-9]. The ac-
tures or where distillation would break down the productscompanying entropy change does not scale with the system
before the boiling point is reached. Product design can alsgize, and consequently the free-energy measurement can be
benefit from an understanding of equilibria in solid phasesaccomplished with a manageable amount of computation re-
Semiconductor alloys exhibit miscibility gaps that strongly gardless of the number of molecules simulated. In contrast,
influence the quality of the product, depending on productiorjirect measurement of the free energy itself, for example by
conditions. All of these phenomena are governed by the fregomputing its difference with respect to an ideal gas, yields a
energy of solid phases relative to fluids, or other crystalline/ajue that scales ds because the free energy is extensive.
solid forms. Molecular modeling of such systems can be adSince the entropy difference too scales withwe find that
vanced through the improvement of methods for evaluatingxtensive free-energy measurements can be quite expensive.
solid-phase free energies by molecular simulation. Thus for fluids, the ability to evaluate an extensive free en-

We begin by pointing out some of the difficulties involved ergy via measurement of an intensive free-energy difference
in measurement of solid-phase free energies by moleculag of great utility.
simulation, with the idea that a discussion highlighting the  Crystalline phases cannot rely on the Euler equation to
problems will aid in the formulation of their solution. How- evaluate the free energy, because the chemical potential is
ever, in the present paper, we do not succeed in overcomingot available as it is for fluids. Insertion of a molecule into a
these difficulties, but we see these efforts as proving a patbrystalline phase leads to a defect, and for the small systems
that might achieve this aim. studied by simulation this single defect corresponds to a con-

Existing methods for measuring free energies of crystalcentration that is not representative of that expected in a bulk
line phases are not applied as easily as those developed fefystal. Thus, solid phase free energies must be measured
fluids. Fluid-phase systems can rely on the Euler reldtidn  directly, by calculation of a difference with a reference sys-

for free-energy calculation tem[10]. Usually this reference is selected to be some sort of
perfect noninteracting crystal, and the free-energy difference
A=U-TS=-pV+uN, (1.1) s evaluated by thermodynamic integration along a reversible

path joining the reference and target systems. The most
whereA is the Helmholtz free energy) andS are the inter- widely used technique of this type is due to Frenkel and
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Ladd [11], who employ an Einstein crystal. More recently are analogous to insertion methods that work so well for
methods have been put forth to join phases of different crysfluids. If the method can be shown to be viable for general
talline symmetry[12,13), which can be useful to study poly- systems, the programming and computational expense in-
morphism. volved with sampling normal-mode coordinates would be
One concern with the existing methods for free-energyworthwhile.
measurement in crystals is the possible occurrence of a phase Our approach is developed and demonstrated with Monte
transition along the path of integration. The presence of sucfarlo simulation applied to a canoniodVT) ensemble of
a transition invalidates the use of thermodynamic integrationon€-dimensional hard rods with periodic boundaries. The
and can make other free-energy difference methods difficulf’ethod can be extended to other model systems and to
or impossible to apply. Another issue is one of efficiency.higher dimensions. The hard-rod system is convenient be-
The simulations devoted to traversing the path from the refé@use there exists an analytical solution for its free energy
erence to the target are of no use for other property measurbl6l, correct for any system size, which enables direct com-
ments; such simulations have no intrinsic interest aside fronRarison of results of the proposed method with the exact free
their use in measuring the crystalline free energy. This con€N€rgy
trasts with the situation in the fluid, in which the molecule- L(L—Ng)N-1
insertion free-energy measurement can in many cases be ac- e AMBL=Q(B,L)= ————
complished while simulating the system of interest. Related N!
to this is the ability to perform direct measurement of phas
coexistence in fluid phases via the Gibbs enserf#4,15.
Such a method is inapplicable to equilibria involving solids
In this paper we describe a free-energy -calculatio
method for solids. The approach is based on measuring t
free-energy difference between &lzbarticle system and an
N-particle system plus aN-particle Debye harmonic lattice.
The trick in doing this is to use harmonic normal-mode co-

(1.2

Ei—|ere, Ay and Qy are the Helmholtz free energy and the
canonical partition function, respectively, for a systemNof
"hard rods each of length in a periodic container of length

d; and 8=1/KkT with k Boltzmann’s constant and the ab-
solute temperature. The ensemble-averaged potential energy
of this model is zero, so the free energy and entropy are
equal; this feature eliminates some complications that we

ordinates to parameterize the particle positions in the simyrefer to avoid at this point in the development of the meth-

lated system. In this way we can in effect increase the syster‘ﬁdomgy' The ong-@mensmnéﬁlD) system does not undergo
size without inserting particles or introducing spuriousanY phase transitions, so one might argue that there IS no
boundary effects. The complete set of harmonic norma?OIId phase,_ but the syster? dqes ,,e_Xh'b't the crucial feature
modes for arN-particle system forms a subset of the normalthat the pa_“'c'es_ occupy a Iat_tlce, inasmuch as _for all rel-
modes of the Rl-particle system, making it possible to con- evapt conﬂ_guranons eaCh p-art|cle may be unambiguously as-
struct a free-energy path between them by switching on théouated with a 1D Iatt!ce site. .
modes not common to both system sizes. Further, since the In the following section we devel_op thg formal|§m for the
free energy is an extensive quantity, and presuming we Caﬂro_pose_d method. Monte Carlo S|rr_1ulat|on details are de-
ignore finite-size effectdas is reasonable for sufficiently scribed In Sec. lll. We present and discuss the results in Sec.
large systems this free-energy difference is equivalent to IV-and give our conclusions in Sec. V.
the free energy of th&l-particle system.

This approach requires sampling of configurations in Il. FORMALISM

which certain normal modes of the\2particle system are As is well known[17], the energy of a system of par-

zero, and consequently it requires trial displacements ifjcjeg interacting harmonically with force constant
normal-mode space instead of the more conventional trial

particle displacements in one-dimensional Cartesian space. N
This does not affect the sampling of thé&zhard-rod con- U(yN)=2 _
figuration space except to fix the system’s center-of-mass =11
(c.m.)_, which is addressed below. Although the_ samplm_g O.C'whereyi is the Cartesian position vector of parti¢leslative
curs in normal mode space, the test for accepting or rejectln% a referencélattice sitg position, can be recast as a sum of
a configuration is done conventionally by computing the enpn noninteracting harmonic osc}llators whedeis the spa-
ergy expressed via Cartesian coordinates. ’

This self-referential method to evaluate the free energy iélal dimension of the system

appealing because it circumvents some of the problems out- o BN

lined above for the existing methods. The perturbation path U(7°M) == > Ay(m) 72, (1.9
never really departs from the target system, so we need not 2m=1

be concerned with encountering a phase transition along th
way, and at all times other properties of the target syste
remain accessible to measurement. However, this meth
does not avoid the problem with measuring an extensive fre

@ 2
nbrs?[')’i_')’j] : (1.3

he coordinates;,,, in this reformulation describe collective
otions of the particles, such that tkilh Cartesian deviation
=1---DN) is given as

energy, and moreover, the need to sample in normal-mode DN
space is a complicating factor. We believe that the ideas un- K) = m k 1.
derlying this method can lead to alternatives for solids that v m§=:1 mén(m.k), @9
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where the vectorspy(m,k) are the normal modes for the 4 mode 1,N=5
system. These modes can be expressed as the eigenvectors of
the harmonic interaction matrix, and their corresponding ei-
genvalues\ y(m) are the harmonic force constants for the
collective motion described by the normal-mode coordinate
7w N @ harmonic system of unit force constant. If the
minimum-energy configuration of the harmonic oscillators
forms a lattice, the normal-mode coordinates are given by
the reciprocal lattice vectof4.8]. Each plane-wave vector in

a small system will have a counterpart in a larger system that
points in the same direction and has the same wavelength.
We can in effect “grow” the system by coupling to the small
system those modes that are found only in the larger one. To
fix ideas, and for the purpose of demonstrating and testing
the methodology, we henceforth restrict our consideration to direction

——-
direction
of motion

mode 2, 2N =10

sauepunog olpousd

periodic boundaries

periodic one-dimensional systems, for which of motion! mode 1, 2N = 10
dn(m,K)=N"Y7sin(2mk/N)+ cog 2rmk/N)] FIG. 1. Examples eigenvectors for a systenioénd 2N hard
rods which describe the motion of the hard rods. Each curve de-
m,k=1.N (1.6 scribes the amount the rod at any position is displaced as the coor-
dinate » for the mode varies. The frequencies of mode 1 of the
and system and mode 2 of the\2system are identical. Mode 1 and the
other odd modes of theN2 system have no counterparts in tNe
27m system
An(m)=2|1—co — | (1.7 ystem.

We Categorize the normal modes of a One_dimensiond)artides in the system volume, and we note that the Jacobian

system of N particles asvenor odd The even modes are for this transformation is unity. Let us now decouple the

symmetric about the center of the system, while the odd one@dd-mode coordinates® from the Hamiltonian of the sys-

are antisymmetric; we number them accordingly with everiém of particles, and have these coordinates instead couple to
and odd indices ' a collection of independent harmonic oscillators. In the re-

sulting hybrid system formed from the original particles and

Bon(M,K)= don(mk+N) m even, these oscillators, the particle pqnfiguratiqns will be con-
(1.9 strained to a subset of those originally available. These con-
Bon(M,K) = — don(Mk+N) m odd. : figurations will exhibit the symmetry of the even modes, and

consequently they will have particles in one half of the sys-
tem occupying the same relative positions as particles in the

Each normal mode, or eigenvector, of tNeparticle system o
g P y other half. In addition, because all modes of bheystem are

is directly proportional to aevennumbered normal mode of
the 2N system. This is pictured in Fig. 1, showing that moderepresented by the even moxdes of ifké System, the com-

1 of the N-particle system has precisely the same frequencflete set of N even modes can describe all configurations of

X he N-particle system in each half. But because each half
as that of mode 2 of thel\Isystem. Moreover, the amplitude moves identically, the configuration-set accessible to the
of mode 1 of theN system is that of mode 2 of theN2

- 5 odd-mode-decouplethybrid) 2N system is exactly that of
system multiplied by y - Al modes of theN system have e N system. Since the system size is doubled, the energy of
exactly this relationship to a corresponding mode in the 2 each configuration will be exactly double that of either half,
system, specifically, mode of the N system corresponds to  assuming periodic boundaries are employed. Consequently
mod/e 2n of the 2N system, so that ¢y(mK)  the hybrid N-partition function(superscript) is related to
=22, (2m,k). The odd modes of theN2 system have no  that of an unmodifiedN-particle partition function
counterparts in th&l system, and contributions to the Carte-
sian v from these modes are what set the configurations of * oL E)\72NJ d EJ d»%exd — BU E
the 2N system apart from those of tiié system. Qzn(B.2L) 2L 7 7 X~ AUan(77)]

Let us consider the partition function of theN2system, 1
expressed in terms of normal-mode coordinates Xexr{ _ E’Bw E ) An(m) 77r2n

1 E_O
QZN:WI dnEdﬂoei’BU(W 7 ), (19) _
A =A"N LdnE exd —2BUn(75)] | dy°
where the superscriptsE" and “ O” on » indicate the set of 1
even and odd normal-mode coordinates, respectively,Aand xexp{ —~Bw X, \y(m)7?
is the thermal de Broglie wavelength. The limits of integra- 2" odd
tion are over all normal-mode coordinate values that have all

=2"N2Qu(28,L)QR(B), (1.10
036709-3
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where the factor of 2V arises from the Jacobian associatedsame system with the odd-mode coordinates decoupled from

with expressing the configurations of thesystem in terms the particle configurations and instead coupled to a set of

of the normal mode coordinates of thal Zystem.QY is the  harmonic oscillatoréthere is also the temperature difference,

partition function for the odd-mode harmonic oscillators, in-but we can ignore this for the hard-rod potential that forms

cluding a factor ofA ~N, it is given exactly as our present focys We evaluate this ratio via a multistage

free-energy perturbatiofFEP calculation. The procedure

()= 1 H ( 2 )1/2 may be applied in either of two directions. In one approach,
N B ANm,odd ,Bw)\N(m)

(1.1 which we will designate as “upstaging,” the series proceeds
from the hybrid system to the fullR® system; in the other,
Thus, the free energy of aN-rod system can be given in which we designate “downstaging,” FEP proceeds from the
terms of the hybrid B system at twice the temperature. full 2N system to the hybrid. We ud¢ stages, one for each
Presently we will circumvent the temperature issue by dealedd-numbered mode of theN2 system. In each stage, a
ing only with the hard-rod potential, where the configura-single odd normal modm is selected for a FEP calculation.
tional energy may have values of zero or infinity only. In Once the mode is coupladipstaging or decoupleddown-
Sec. V we discuss extensions from this simplifying case. staging in a FEP calculation, it remains so for the rest of the
If it may be taken that the free energy is an extensivestages of the series.

guantity, we have If we are upstaging, the perturbation consists of coupling
this mode to the configuration of rods, and turning off its
AN(B,L)=An(B,2L) = AN(B,L). (112 harmonic potential. The FEP ensemble average gives the

Combined with Eq(1.8) via the canonical-ensemble bridge free-energy difference for one stage as

equation[19] 1
O BL) exq—,BAAm]=<®(m)exp{+§w)\mnﬁ1)>
exil ~ BAN(B.L)] = ) " aas
Qn(B,L) :
e Q(BI2)Qun(B.2L) In this formula,®(m) is a type of Heaviside function: it is
=2 - . zero if coupling modem to the hard-rod system causes any
Qon(pl2,2L) rod overlaps or misorderings, and it is unity otherwise; this

(1.13 implements the hard-rod potential. Then*-1" subscript on
the ensemble average indicates that hard-rod configurations
Equation(1.13 forms the basis of the proposed method forare sampled using all even normal modes and all odd modes
calculating the free energy of a crystalline phase. The ratio ofhat became coupled in previous FEP stages in the series, and
partition functions can be evaluated by molecular simulatiorthat modem and all others are decoupled from the rod con-
via any of a number of standard methods. We will consideffigurations. Of these decoupled modes, only mous rel-

the application of free-energy perturbation. ~ evant to the FEP calculation. When the perturbation is per-
We note also that the desired free energy can be obtaingdrmed, the value of the coordinatg, is selected from a
from the simulation data via this relation Gaussian distribution, with probability density proportional
to exp(- w)\mnﬁ/Z). The total free-energy difference for con-
Qon(B,2L) verting the hybrid system to a fully coupled\N2system is
exf + BAN(B.L)]=exd + BAN(B.2L) ]~ ng y >y y pledNssy
Qn(B.L) obtained by summing the Eq1.15 free energies over all
_ —N/2 stages.
X+ BhAan(B.2L)]2 If we are downstaging, the perturbation consists of decou-
Qﬁ(ﬁlz)QZN(ﬁvZL) pling the mode from the configuration of rods, and turning
" . (1.14 on its harmonic potential. The appropriate ensemble average
Qon(BI2,2L) is

This formulation has the advantage of not relying on the 1

extensive nature of the free energy, but it is useless practi- exq—ﬁAAm]=<®(m)eXF< - —whmﬂfn)> . (116
cally since it requires prior knowledge 8%, . We present it 2

here only because, given the exact expressionAigr for . ) o

hard rods, it can be used to test whether the simulation prd=€re, ®(m) functions again to eliminate from the average
vides correct values of the partition-function ratio without @ny perturbations that lead to hard-rod overlaps or misorder-

invoking also the extensive free-energy approximation.  ings. The system samples configurations obtained from all
even modes, as well as the odd modixluding m) that

have not yet been decoupled from the rods in the perturba-
tion series. The Gaussian term for normal-mode coordinate
We examine a system of hard rods in one dimension, for,, in this average uses whatever valuergf happens to be
which the free energy for any is given exactly by Eq(1.2). in place when the perturbation is applied to decouple
The ratio of partition functions in Eq1.13 describes a from the hard-rod configuration. For a downstaging pertur-
system of N particles with complete freedom, relative to the bation, we can easily examine a large range of force con-

m

[ll. SIMULATION METHOD AND DETAILS
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stantsw for the harmonic reference with each perturbation.
Becausey,, for the perturbation is given by its present value,
examination of many force constants simply entails evalua-
tion of the Gaussian term in E(L.16 for each. This proce-
dure contrasts with an upstaging perturbation, where to ex-
amine many force constants at once, we must generate for
each a random value af, and couple it to the hard rods and
check for overlap. It is helpful to be able to consider many
harmonic references, because force constants that are too
small or too large will lead to inaccurate FEP averages due to
poor sampling, and the optimum force constant may be dif-
ficult to identify a priori.

There are two types of moves used in each simulation, the
perturbation move between the reference and target systems
mentioned above, and a trial normal-mode displacement
move used to generate configurations of the rods. The 00
normal-mode displacement is the random displacement of a
randomly chosen mode, and is analogous to the typical trial
particle displacement in Cartesian space. All rods move col-

lectively in response to a normal-mode displacement trial. FIG. 2. Radial distribution function for a system of ten hard rods

This is easily accomplished by dlspl,acmg each rod in accory; gensityp* =0.7, evaluated using conventional Monte Carlo sam-
dance with the normal-mode vector’s contribution to its po-pjing in Cartesian coordinates, and sampling in normal-mode coor-

sition (as opposed to regenerating the configuration by sumginates.
ming all the coupled modgsCandidate modes include all

the even modes and those odd modes that are presenfly the square root of the eigenvalue of the selected mode
coupled to the rods configuration. The even made 0,  yields an appropriate trial step size. We chose a global step
which corresponds to uniform translation of the system ofsize to give an acceptance rate of 35%. The current value of
rods, is excluded from sampling. This has the consequenage selected mode is shifted by the trial displacement to gen-
of fixing the center of mass of the rods. The effect of thiserate a trial configuration, similar to adding a trial particle
constraint on the free energy can be evaluated exactly for thgisplacement to the current particle position in Cartesian co-
hard-rod system, and we include this consideration in oubrdinates. The trial configuration is transformed into Carte-
comparison of the simulation and exact free energies. sian coordinates to test for overlap of the hard rods, rejecting
The choice to perform a FEP trial or a trial in the Markov the configuration if overlap or misordering occurs, and ac-
chain is made at random, with probability such that one ofcepting it otherwise.
every N trials is a FEP trial move. If the move selectedisa \We performed simulations to measure the free energy of a
Markov trial phonon displacement, a mode from the setystem of hard rods using the proposed method, considering
coupled to the hard-rods configuration is selected, each withoth upstaging and downstaging approaches. We examined
equal probability. The trial displacement for that mode issystem sizes ranging frolMd=4 to N=100. For each sys-
determined randomly according to a uniform distributiontem, we performed a series NfFEP stages. In each stage we
over some step size. In a conventional Monte Carlo displaceperformed 10 Monte Carlo cycles, where each cycle con-
ment trial, the maximum step size is the same for identicakists of N trials of a phonon displacement or FEP test trial
particles. This is not appropriate for normal-mode displacein proportion as described above. We examined a very broad

ments because each mode contributes differently to the pafange of harmonic force constants with each FEP stage.
ticle motion. The long-wavelength modes describe a motion

where adjacent particles move in a similar fashigm,., for

the translation mode, all particles move an equal distance in
the same directionwhile the short-wavelength modes repre-  Because we use a nonstandard method of sampling, we
sent a motion where the distances adjacent particles mowee interested in verifying that configurations important to
may vary significantly, and possibly in opposite directions.the hard-rod system are properly sampled. To do this, we
Applying the same step size to all modes would not result ircompare the radial distribution function measured in a
an equal acceptance rate of trial configurations between th@ormal-mode simulation with that from a conventional
modes. We showefR0] that the standard deviations of the Monte Carlo simulation. The results for a system of ten rods
singlet probability density distributions of the hard-rod andat a density ofp*=No/L=0.7 are shown in Fig. 2. The
harmonic systems are identical and proportional to the ineurves of the two simulations are essentially indistinguish-
verse square root of their eigenvalues. Correspondingly, wable, lending confidence to the normal-mode sampling
have also observed that the set of step sizes giving the sameethod.

trial configuration acceptance rate between the modes to be The approach to correcting the free energies for the c.m.
proportional to the inverse square of the eigenvalues. Thisotion is described in the Appendix. The correction requires
allows us to use a single global step size which when dividednowledge of the c.m. distribution in an unconstrained sys-
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[
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% O Normal mode
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IV. RESULTS AND DISCUSSION

036709-5



C. DANIEL BARNES AND DAVID A. KOFKE PHYSICAL REVIEW E 65 036709

- N=2p*=0095
104  —o-N=2p*=07 0 -

] - N=3 -~ N=4 ——N=5

z —~—N=10 = N=50

S 08

%

5 =

£ z

< <

< 4 N =50
—0- p*=0.50
-0 p*=0.95
— Exact

T LR T Ty T T T T

0.01 0.1 1 10 100
Force constant o {(units of chsiz)

| I | I I I I ! I J
10° 10" 10° 10° 10" 10° 10° 10" 10° 10
Force constant o (units of ch{Z)

9

FIG. 3. Error in the free energy given by the upstaging self-
referential method, as a function of harmonic force conséafr
hard-rod systems of various sizes at densip&s=0.7 and 0.95,
respectively.

FIG. 4. Free energy given by the downstaging self-referential
method, as a function of harmonic force constanfor hard-rod
systems of Rl=100 particles at densitigs* =0.7 and 0.95, respec-
tively.

tem. In the Appendix we compare the distribution obtained
by standard, Cartesian-space Monte Carlo sampling with thef force constant they agree to within the confidence limits
analytic expressions used to apply the correction. The simwsf the simulation data.
lation data are noisy, but are consistent with the analytic It is of interest to examine the free-energy change associ-
forms. ForN larger than 50 or so, the c.m. correction is ated with each stage of the FEP series. One might consider
smaller than the confidence limits of the measured freavhether the contribution from each stage depends on the
energies. wavelength of the normal-mode coordinate being decoupled
Figure 3 plots the difference between the exact free enfrom the rod configurations. Equatiofl.6) indicates that
ergy given by Eq(1.2), and the simulation result based on each wavelength is doubly degenerate, with the middle
Eqg.(1.15, as a function of the harmonic force constarfor ~ modes having the shortest wavelendthode 99 for N
various system sizes at densitjgs of 0.7 and 0.93we note  =200), and the end modes having the longegsbdes 1 and
that p* =1.0 is close packing This is an upstaging FEP 199. We ran three simulation series, changing the order of
series. The simulation results exhibit a systematic error thadecoupling of the modes. First we turned them off in numeri-
increases with increasing system size, and which appears t@l order, from long to short wavelength for mode 99, back
be unaffected by density. A reasonable explanation for théo long wavelength. We also ran simulations turning the
error is that in some or all of the FEP stages there are cormodes off from long to short wavelength, and finally turning
figurations of the target that are not adequately sampled bthe modes off from short to long wavelength. In Fig. 5 we
the reference system. We examine this question further bgslot the entropy change per stage for these three simulations
low. We have not pursued this method further as we consideas a function of the number of modes still coupled, so that
upstaging to be a less effective approach than downstaginthe data at the right correspond to the first perturbation of the
owing to the inability of upstaging to sample as easily aseries and the data on the left the last stage of the series. We
broad range of force constants. present this in terms of the entropy because it is useful for
Figure 4 plots the free energy per particle as a function ofliscussion that follows below; the free-energy change is
the harmonic force constant for simulations using @cl6. trivially related by a sign change and a vertical shift of 0.5 to
This is a downstaging series. Here there exists a broad rangecount for the harmonic energy. We do not find a systematic
of harmonic force constants for which the simulation resultsdependence of the free-energy change on the frequency of
are in very good agreement with the exact free-energy valughe mode. Instead, we observe that the free-energy change
We have compared the simulation data to the exact valueassociated with the decoupling of a mode depends on the
expected from Eq(1.2), using both Eqg.(1.13 which is  order in which it lies in the sequence. The first decoupled
based on assuming an extensive free energy(moidshown mode, for example, contributes a constant amount to the
in Fig. 4 Eq. (1.14 which is less practical but invokes no overall free-energy difference, regardless of which mode it
such approximation. FoN=100 and the higher densities, is.
the difference between these comparisons is not significant. Finally, we turn to the topic of the accuracy of these cal-
The simulation data are consistently lower than the exactulations. We have argued elsewh¢B6,21,22 that FEP
value taken from either formula, but over significant rangescalculations must be performed in a direction such that con-
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Number of modes coupled FIG. 6. Average entropy difference per particle for the down-

staging process, given as a function of the harmonic force constant.
FIG. 5. Entropy change per stage for downstaging series, as a

function of the number modes not yet uncoupled. System density ikibit entropy changes that are aboutKL.greater than the
p*=0.95 and harmonic force constantis=5x10°kTo~ % the  average value, thus indicating that the appropriate range of
number of rods in simulation ikl= 100. force constant suggested in Fig. 6 provides only a rough

guideline, and that more extreme value®fter or harder,
figurations important to the reference system encompass allepending on whether upstaging or downstaging is being
the configurations important to the target. A necessary conperformed are appropriate.
dition for this to hold is that the entropy of the reference
be greater than the entropy of the target, and thus the entropy
change for the perturbation be negative. This condition is
not sufficient however, inasmuch as it can happen that the We have shown this self-referential approach to be ca-
reference and target have comparable-sized importaqtable of calculating the free energy of a system of hard rods
configuration-space volumes which nevertheless do not conusing the downstaging perturbation direction, from the
pletely overlap. However, the larger and more negative th@N-hard-rod system to th&l-hard-rod plus harmonic sys-
entropy difference, the more likely it is that the target con-tems. The sign of the entropy change for each of the pertur-
figuration set is wholly contained in the reference configura-bation stages must be negative to yield accurate results, and
tion set. In this FEP method, we have the ability to tune thehe harmonic system can be adjusted to ensure this criterion
harmonic system so that the target can always be made e met. We also demonstrated that the correction to the free-
have a smaller entropy than the reference. For the upstagirenergy per stage is not a function of the wavelength of the
calculation, we require that the harmonic potential be suffiperturbation mode, but only of the number of modes with
ciently broad to encompass all the relevant contributions ofvhich the hard-rod system still interacts. The proposed
the perturbation mode to the hard-rod system as it is couplesicheme can quickly become computationally expensive with
to it. Likewise, for the downstaging calculation, we need theincreasing system size because it calculdNemdependent
harmonic potential to be narrow, so that it is well containedaverages, one for each stage.
within the range explored in the hard-rod system as the mode One possible approach to increase the efficiency of the
is decoupled. Figure 6 shows an average measure of the emethod is to conduct fewer FEP stages, and in each to de-
tropy change per stage for several densities, computed fromouple more than just one normal mode. However, in other
the exact formulas for the hard-rod and harmonic free enemork [6] we have shown that the optimal staging method
gies, as a function of the harmonic force constant. The curveses intermediate stages with equal entropy differences of
shows that the entropy difference for the highest-density sysAS/k=—2. Since the entropy difference for each stage is
tem is substantially different from zero for force constantsalready in this range, this heuristic would indicate that we
greater than about 2Qappropriate for downstagingr less  cannot improve efficiency by having fewer, coarser stages.
than about 10 (appropriate for upstaging Perhaps the Another approach would apply a “parameter hopping”
poor quality of the upstaging results has something to danethod, in which Monte Carlo trials are performed that lead
with the insufficiently soft harmonic systems examined into fluctuations in the number of coupled modes. One might
those simulations. The entropy change for each FEP stage, aacounter difficulty with this approach in determining the
already presented in Fig. 5, provides a more fine-grainedppropriate weighting function to apply to encourage the
view of the character of the FEP calculation. We must havesystem to explore the full range of coupliffgom none to all
all stages in an appropriate range of entropy difference to@f the odd modes but this problem is tractable and its ex-
obtain completely accurate results. Clearly, some stages ermination is worthwhile.

V. CONCLUSIONS
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tems or states that are examined only as a bridge between the

147 . ) target and reference systems, and which are otherwise irrel-
. s T Eficé_gs evant. We do not anticipate problems in this direction, but
o o w + p* =050 further study is needed.
104 o e The second critical extension of the method is to higher
o dimensions. The appropriate way to proceed with this is to
0.8 o o work directly with reciprocal-lattice vectors as the basis for

the particle coordinatdd 7]. An appropriate set of wave vec-
tors can be selected to double the system size in one direc-
tion (along a direct-lattice vectpwvia sequential coupling of
basis functions corresponding to the appropriéiedd” )
wave vectors. The overall approach would be much more
valuable if it could be developed in a way that does not
require complete system doubling, but instead could function
by coupling or decoupling a few select modes. Presently it
Center of mass (units of o) does not seem that this formulation can be accomplished,
given the variation of free energy with perturbation mode
FIG. 7. Configurational center-of-mass distribution for a systemthat was observed in this paper.
of five hard rods. The dark line is the result of an analytic formula, The proposed method has demonstrated some promise for
and the light line describes data from a conventional Monte Carladevelopment of different avenues to solving the problem of
simulation.(a) Density p* =0.5; (b) p* =0.95. calculating free energies of crystals by molecular simulation.
However, further testing and perhaps reformulation of the
Certain problems can be anticipated in extending thignethodology is warranted before considering the approach to

method to more practically interesting systems. First is the’® @ viable solution to the problem. The method does at least

issue of the temperature. We were able to ignore this detaffPeN UP new thinking toward this issue, and can point the

here because of our focus on a hard potential, but for th&/@Y 0 variants that may be of some utility.
method to have any real value it must be applicable to soft

potentials as well. Our view now is that the temperature must

be stepped up or down as the modes are decoupled or ACKNOWLEDGMENT
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APPENDIX

In the normal-mode Monte Carlo simulations, ttexven
mode corresponding to uniform translation of the system al-
ways remains uncoupled in both thikand 2N systems. The
contribution of this mode to the free energy differs slightly
for the two systems, and for accurate calculations we should
include it in the free-energy difference. One way to view this
contribution is to consider the distributid®(x) of the center

+—NL=05 of mass(c.m) in an unconstrained system. This distribution
is shown in Fig. 7 for a system of five hard rods at two
N/ =07 densities. The figure compares simulation measurements of
this distribution with an analytic form we developed previ-
ously [20]. The c.m. exhibits a peak at the center of the
periodic system, which is simply a reflection of the fact that
there are fewer ways to arrange the rods when the c.m. is
0 : : : : : : | constrained to be elsewh_ere. It is,_for example, impossible to
20 40 60 80 100 120 140 arrange the nonoverlapping rods in any way that causes the
N c.m. to be located at the edges of the boundary. The effect
attenuates, and the distribution becomes flatter, with increas-
FIG. 8. Additive correction to the free-energy difference pering density. The partition functio®y(x) having the c.m.
particle for the neglect of center-of-mass motion, as a function oftonstrained withimx of some pointx is related to the un-
system size for two densities. constrained partition functio@y by

40x10° |
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correction to &,
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Qn(X)=QnNPn(X)AX. (1.1 by multiplying by the ratio of the distributions2,y /Py,
where the distributions are evaluated at the center of the
system. This correction is plotted in Figs. 7 and 8 as a func-

This formula indicates that we can correct for the unequation of system-sizeN, for two densities. On the whole, the
effect of the c.m. constraint on tié—2N FEP calculation  correction is not significant.
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