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Convergence accelerator methods are employed to analyze some of the most difficult three-electron integrals
that arise in atomic calculations. These integrals have an explicit dependence on the interelectronic coordinates,
and take the formyriririrlaOrl, exd—@1~A2~7Idr dr,dr,. The focus of the present investigation are the
most difficult cases of the parameter &g}, k, I, m, nt. Several convergence accelerator techniques are studied,
and a comparison presenting the relative effectiveness of each technique is reported. When the convergence
accelerator approach is combined with specialized numerical quadrature methods, we find that the overall
technique yields high-precision results and is fairly efficient in terms of computational resources. Difficulties
associated with the standard numerical precision loss of convergence accelerator techniques are circumvented.
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I. INTRODUCTION tegrals. The integrals in Eql) can be grouped according to
the values taken by the parameter 8em, n}. In order of
The progress on the calculation of a variety of propertiesncreasing complexity:(i) those integrals havindg, m, n
for three-electron atomic systems has been significant over — 1, (ii) those integrals have one of the indicgsm,n}
the past several years. Both the ground and low-lying excitee= — 2, with the other two indices=—1, (iii) and the most
states of the lithium atom have been the focus of much of thelifficult case, two of the indices—2. The indicedi, j, k}
computational activity. There has also been renewed interestre each=—2 (with some restrictions depending on the set
in high-precision spectroscopy of this system. Much of the{l, m, n}) and the orbital exponents, B, y} are individually
recent progress, together with some of the earlier contribugreater than zero.
tions, can be found in two recent revieWk2]. Hylleraas- An energy evaluation for a8 state three-electron system
type calculations have played an important role in many oby the Hylleraas method requires integrals in caseThese
the high-precision calculations. In this approach, the variahave been the most extensively stud[dd-15 and we do
tional method is employed using basis sets that depend exwot consider this case at all in the present work. Gagdas
plicitly on the interelectronic coordinates; . This choice received far less attentiofl6—-22, and caseliii) has re-
has the advantage of reasonably rapid convergence of theeived very little study{18,19. These latter cases are re-
energy and a number of other properties, but at the cost ajuired for energy lower bound calculatiof&3,24] and for
more significant integration problems in comparison to whathe calculation of relativistic components of the energy
is obtained with a basis set of Slater-type orbitals wittrjo  [25,26. Casedii) and(iii) are the focus of the present study.
factors present. Progress on improving convergence acceleration tech-
For the calculation of the energy and a variety of othemiques has been a topic of ongoing interggdT—41. One
properties, such as isotope shifts and hyperfine coupling corebjective of the present investigation is to determine, for the
stants, the integration problems have been substantially resumerical problem under investigation, which of the com-
solved. However, for some important properties, principallymon convergence accelerator techniques is the most robust.
relativistic contributions to the energy or terms that arise inThe principal deciding factor in determining this is the nu-
computing lower bounds for energy levels, there is signifi-merical precision obtained. A key feature of our computa-
cant opportunity to improve upon the existing results. tional strategy is a coupling of convergence accelerator
Using Hylleraas-type basis functions, the integrationmethods with specialized numerical quadrature procedures.
problem for a calculation of atomic three-electrSrstates
reduces to the evaluation of integrals that take the form Il. THEORY

o e mn In what follows, we will assigm= — 2. For caseii) there
|(|,l,k,|,m,n,a,,3,7)=f rirbrara ariexpl—ar;—pBro  are two subcases:and m not both odd and=—1, | andm
bothodd. The former has received more attention, and is by
— yra)dridrydrg, (1)  far the easier integral to evaluate. Many of the integrals in
this case can, in fact, be reduced to a sum of two-electron
wherer; denotes an electron-nuclear distance ajds an  integrals[16]. Integrals withl andm bothodd are treated by
electron-electron separation. It is known that a large class dfreaking the integral down to an infinite sum of contribu-
integrals arising in the four-electron atomic problem usingtions. The individual terms in the sum have been evaluated
Hylleraas expansions can be reduced to the three-electrarsing different approachd46—-22. There are two principal
case[3]; this provides an added incentive to obtain highly issues involved in the numerical computation of one of these
efficient computational algorithms for the three-electron in-integrals. These are the evaluation speed of the individual
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terms in the sum, and the actual numerical summation prowherel , denotes the integral over the angular variables, and
cess. Both issues are of concern in the present study. Cory is an integral over the radial variables. The angular inte-
putational efficiency is an important concern, since the numgral can be written as
ber of integrals required in a high-precision atomic
calculation is enormous, particularly when extensive optimi-
zation of nonlinear parameters is involved.

The termr,* may be expanded in terms of Legendre |Q(W,W1,W2)=f Pw(€0s012) Py, (€COSH31) Py, (COSH3)
polynomials, and takes the forn6,42,43

X dQ,dQ,dQ5
! o4r° Suw. O, O (6)

1 “[21+1 r{+r T ow 112 Qww, Oww, Ow,w,
= | ===|a"! IanZZ p2el=1pl-2x-1 (2w+1) 17 WwWp FWy Wy
la =0 ri—ral<=o

min[ .| - «] I\ 21=20\(1=2v whered;; denotes a Kronecker delta. Inserting this result into

x> (—4)”(V)( | )(K_V) Eq. (5) leads to

v=0

©

1-1 min k| —xk—1] .
(1=2j—-1
_220 r1—|+2Kr|2—2K—2 JZO 41( J )

S

2i—2v+1 P\(cosb,), ) To evaluate the integral over the radial coordinates, the
expansion for the Sack radial function is employed

I g(W,wW,w)
~o (2w+1)

k=]

1(i,j,k,1,m,—2,a,B,y)=64r° (7

x>

r=0

i

where §) denotes a binomial coefficient. The appearance of

the logarithm factor gives an indication that the evaluation of

the individual contributions to the sum will be far from _ W 2p, | —w—2p

trivial, which indeed turns out to be the case, and also gives R|w(rz,r3)—p§0 Auipl2s< 23> s (8)

some clue that the overall rate of convergence for any series

decomposition is not expected to be high. We will find it

useful to utilize an equivalent expansion where ry3. denotes ming,r;) and r,s. designates
max(,,rs). The coefficienta,,, is given by

©

2w+1) [r§+r§
Wi

20,1, } P.(cosf>), €]

o5
Fip = 2 2
wTo Shlz (= DuW=Hp(—3-4)p

(D)wh'(W+3),

: ©)

a =
whereQ,, denotes a Legendre function of the second kind, v

which leads to some simplifications over E®). For the
other two factors ,, andr in Eq. (1), a standard Sadik4]

expansion in terms of Legendre polynomials is employed Where (n), denotes a Pochhammer symbol. On noting the
property of the Pochhammer symbol

[’

(1= 2 Runy(2,71)Puy, (€0S6020), (4)

Wi=

(—p)q=0 for integer p and g>p, (10

Wheremel(rg,rl) denotes the Sack radial function. A simi-

L then thep summation in Eq(8) terminates a , Where
lar expansion is employed fak. P a®) Pmax

A. The casen=—2,|=—1, m=—1 |

Inserting Eq.(3), the last result and the analogous expan- E_W’ for | even

sion forrh, into Eq. (1), leads to Pmax= (1+1) (11
for | odd.

I=I(i,j,kI,m—2a,B,v)

_ If Eq. (8) and the analogous result f&,,(r5,r;) are sub-
= I r(W,Wq, W)l g(W,Wq,W>), 5 . / mwl3,11
vv2:0 Wi=0 Wy=0 Rl 1:W2)lof 1:W2) ® stituted into Eq(7), then

M s
M s
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(i .k1m,—2,a,B8,y) where
“ Pmax Amax 0
= 3 [ e
82m W=0 (2w+1)p§=: qz_: 8wip8wmg 5 w, for m even

= 13
1,j+1,.k+2, w+2p, | 2 s (m+1) f dd ()
Xf r|l+ r]+ r3+ r\év+ przglv p 2 y OI‘ m O .

X Y2 Powo24Q I(2rr,) " (r2+rs
#= T8 Qul(2rar2) (ri+r3)] On breaking the integration region appropriately, this last
Xexp—ar,— Bro—yra)dridrodrs, (12 result simplifies to yield

[(i,j,k,I,m,—2a,8,7)

Pmax dmax

_327732 (2W+1)p§_: E Awipdwmd Wo1(W,K+ 2+ 2w+2p+2q,i + 1+m—w—2q,j + 1+ -w—2p,y,a,5)

+Waoi(W,k+2+2w+2p+2q,j+1+1—-w—2p,i+1+m—-w—2d,y,5,a)
+Woo(W,i+1+w+2q,j+1+w+2p,k+2+1+m—2w—2p—2q,a,8,7)
+Wao(W,j+1+w+2p,i+1+w+2q9,k+2+1+m—2w—2p—2q,5,a,7)
+Wgs(w,i+1+w+2q9,k+2+m+2p—2q,j+1+1-w—-2p,a,y,B)

+Wos(w,j+1+w+2p,k+2+1+29—2p,i+1+m—w—2q,8,v,a)}, (14

where
Weu(w, L M.N.2,b,0)= | “xte=ax | “yte-ay fy MNe~o7Q,[(2y2)(y?+7%)1dz, 15)
WQz(W,L,M,N,a,b,C):L xLe*adeL yMebwa[(ny)1(><2+yz)]dyfy ZNe~ %z, (16)
WQS(W,L,M,N,a,b,c):J x'-e*axde y""e*bydyj Ne °2Q, [(2x2) "1(x%+Z%)]dx. (17

0 X y
|

We term these last three the integrals. a more complicated angular integral. If we use E@s.(18),

and the Sack expansion foks,
B. The casen=—2, m=—2

To arrive at a suitable formula for this case, we first note, . . 5
: o 1(i.j.k1,—2,-2,a,8,7)
the use of an alternative expansion fgf° as

©

r3f= 2 r52rg"? “Cq,(cosba), (18) =52 22X (2w 1)agSe(W.w, W)
W,=0 2\i=0 W;=0 W,=0 p=0
X Q(W1W11W2)y (19)

WhereC\}vz(cosegl) denotes a Gegenbauer polynomial. This

alternative expansion is made for the factgf because it
leads to a simpler radial integral, but this is at the expense oivhere the angular integr&, is
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N Inserting Eq.(24) into Eq.(20) and integrating oved;, ¢,
S&Z(W1W11W2):f Pw(c0s01,) Py, (€0S0,3)C,, (COSO3) ¢12, andy, the finite sum of Eq(24) vanishes and we are
left with
X dQ,d0,dQg, (20

and the integral over the radial coordinaggw,wq,w,) is
g &s ! 2) SQ(W1W11W2)

— i+1,.j+1,.k+2,wi+2p I—wj—2p wp  —wp—2
SR(W'Wl'WZ)_f Fi 12 T3 Tyae Tos M31<l31>

_ =16773JWP C0S01,) Py, (COSH;,)Sin 6,060
Xexp—ar;—Bro—yra)drodrodrg. (21 w

P—ary=frz=yrg)drdradrs ) xf Pwl(cosag,l)c\kz(cosﬁ?,l)sin 03,063,
To evaluate the integral over angular coordinates, choose the 0

coordinate system such that 3273
Wil 5WWlleW2, w,=w,, and w;+w, even,
dQ,d0,d03
(25
=sin 01d 61d d)l sin 012d 012d¢125in 031d 031d)( (22)
with where the coefficier‘lt)WlW2 is given in terms ofy functions
by
X= 31— d12. (23
In this coordinate system the addition theorem for Legendre Wo—wW; 1\ wo+w,
polynomials is ( > 5) > !
bw.w.= — . (26)
Pw,(€0S053) = Py, (C0S01,) Py, (COSOa) o W2+W1+§ Wo Wi,
2 2 2
Wy
w;—n)!
S e, (costsa) _—
a=1 (Wytn)t =" If the last two conditions in Eq25) are not met, the angular
n integral is zero.
X P, (COS3;)cOSNY. (24 Inserting Eq.(26) into Eq. (19) yields
|
* Wo Pmax
1)k —2,-2.a,8,7)=167° X X by, > awp
wy=0 w,=0 p=0

(wy+wy) even
i i 2p |—wq—2 —Wy—2 —_
X f A P P e Quy[(2rarg) )]
Xexp(—arqi— Bro—yra)dridrodrs, (27
and pmax iS given by Eq.(11) with w replaced byw, . If the integration range is appropriately subdivided, then

[(,j,k,I,—2,—2,a,B,7)

*® W2 Pmax
:16773WE_0 WE_O leWZpZO Ay, p{ Wor(Wy K+ 2+ Wy +Wo+2p,i = 1= Wy, j + 1+ —w;—2p,y,a,8)
2~ 1~ -

(wytwy) even
+Wo1(Wy, K+2+w;+wo+2p,j+1+1—w;—2p,i—1-wW,,y,8,a)
+Waa(Wy,i+1+Wy,j+14+w;+2p,K+1—w;—w,—2p,a,B,7)

+WQ2(W1,j +1+Wl+ 2p,| +1+W2,k+|—Wl—W2—2p,,8,a,'y)
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+WQ3(W1,i +1+W2,k+W1_W2+ 2p,J +1+|—W1—2p,a,'y,,8)

+Woa(Wy,j+1+wW;+2p,k+2+1+w—w;—2p,i—1-w,,B,7,a)}. (28

The indexl is =—1, subject to the constraint thatj+k  of the functionsf(t), g(t), andh(t). The functionf(t) can
+1+4)=0, with combinations of the indicds j, k} satisfy-  be written in the following form:

ing some additional constraints, in order that the integral is

convergent. The barely convergent integrals for désedo

not arise in any applications with which we are familiar.

f(t)= (L+1)(at+Dbt+c)c7 T

C. Simplification of the W, integrals

X,F1(L+1,1.L+2;(at+bt+c) tat), (35

To evaluate the two key results obtained so far, E&4)
and(29), it is necessary to be able to compute the integrals in

Egs. (15—(17). Following an earlier approach for some re- where ,F, denotes a hypergeometric function. Ftt) we

lated integrald17] we proceed as follows. With the change

of variablesx=uy, y=zt, we have

1
WQl(W,L,M,N,a,b,c)ZE!f tbrM+l
0

X Qul(2t) " H(1+t3)]f(t)dt,

(29)
whereL=L-+M+N+2, and
. fl utdu 20
M=, autrbtroF T 30
With the change of variables=yt, y=2zuy,
Woo(w,L,M,N,a,b,c)
1
=£!f trQuL(2D) "1 (1+t3)]g(tdt, (31)
0
where
1 UL+M+ldU
9(H)= Jo (aut+bu+c)ctt (32)
With the change of variables=zt, y=zu, we have
1
WQS(W,L,M,N,a,b,c):af ttQ,[(2t) 1
0
X (1+t2)]h(t)dt, (33
where
1 uMdu
(34)

h(t)= ot(at+bu+c)fF T

The key to an efficient evaluation of the, integrals lies

have

1
9= LrM+2)(at+bro)r™

X,F1(£L+1,1L+M+3;(at+b+c) L(at+b)),

(36)
and forh(t)
tM+l
hO)=TN+2) | Gatrprroyert 2P et 1L
L+N+3;(at+c)(at+bt+c) H— !
(at+c)(a ©) )~ GiFbr o)
X,F1(£+1,1.L+N+3;(at+c)(at+b+c) " 1)y.
(37)

Equation(37) can be rewritten in a form more suitable for
computation in cases involvingl >—1 as

h(t)= (L+1,1M+2;

(at+b+c)F*?t 2F

M+1

(at+bt+c)~*? 2F

(M+1)

b(at+b+c) Y- (L+1,1;

M+2;bt(at+bt+c)‘1)]. (39

A problematic case occurs foi(t) whenM = — 1. When this
situation arises, the following alternative formula is em-

in part in setting up a fast and high precision determinatiorployed:
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D. Moments of the Legendre functions of the second kind

ht) [I at+bt+c
= crnrz | N
(at+c) t(at+b+c) The last integrals that require discussion are the moments
L+N LeN+1—k of the Legendre functions of the second kind. These are
L+N+1) (—b) : : o
+> - 7 needed for the numerical quadratures, which we detail in the
k=0 K [k=(L+N+1)] following section. The required integrals are
tL+N+1—K 1
@bt o TE @tk b ot N A [
1
(39 M(m,w)=f tMWolQ[(2t) TH(1+t2)]dt  for m=0.
0
In Eqg. (39) the standard summation conventiaff_{}=0 (40)

whenm<0 is employed. The last equation has the potential
to lead to significant figure loss, but in practical calculations
given the likely ranges for the valuégs,m,n}, this was not The Legendre functions of the second kind are expanded in a

found to be a problem.

series, and after a little manipulation we obtain

(w/2)

(—1)*(2w—2k)! 1

1+t

M(m,w) = 55 2,

[(w=1)/2

wW—2«k
s (W_Z") fltm+2w—2x—2n—1|n
o kI (W— k) (W—2k)! 2W 2K &, n 0 1—

2(w—2k)—1 1

td'[

(w2 102] (—1)"(2w—4x—2—2n)!

a ;o (2k+1)(w—k) 2" 2«1 nZo nl(w—2xk—1—n)l(w—2xk—1—2n)!

L1 W‘Z“E‘H” (W—ZK—l—Zn) 1 "
uTaTimen =, T (M+2w—2k-2n-27-1)’ 4

where the notatiofx| is used to designate the floor function; w—1
the greatest integer not larger thanMethods to deal with My (m,w) = W{ML(m.W—l)ﬂL M (m+2w—1)}
the integrals involving a log factor that occur in the last

equation have been discussed elsewh&vé An alternative (w—1)

approach to the evaluation of the moments employs
cursive scheme

2w—1
M(m,w) = W{M(m,w— 1) +M(m+2w—-1)}

and by taking advantage of the results

74(3
m(00=- "2, (45)
(w—1)
- M(m+2w—2), (42
w 1| 7? [1-(—D)"]
ML(m,O)za E(2+(—1)m)—Tln2

which can be readily derived using the standard recursive

formula for Legendre functions of the second kind.
The more complicated moments defined by

ML(m,W)=foltm+w’lQW[(2t)’1(1+tz)]lntdt,

_§ (m+K)[1-(-1)™K]

P 2 , m=1. (46)

In Eqg. (45) ¢{(n) denotes the Riemann zeta function.

for m=0, (43) E. Modified moments involving the Legendre functions

of the second kind

are also required. They can be calculated by the recursive In order to carry out some of the specialized numerical

formula

quadratures discussed in the following section, it is necessary
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to find an efficient scheme to evaluate the following modifiedorthogonal polynomialg;(x)}7"y*. Wheeler[47] formu-

moments: lated an efficient recursive algorithm for implementing those
(12 (1 results; the necessary details are concisely presenfejn
C ) (ot _1ygw—1 -1 2 In order to calculate th&/g integrals to high precision, it
Mun(1, W) (2))! fo Pi2t= DT Qul(2) (1) Jdt. is necessary to compute q%adrature points and weights for
(47) the weight functions
By expanding the Legendre function of the first kind, the Vo (Hh=t71Q,[(2t) }(1+1?)] (52
following result can be obtained:
and
(J|)2 [i/2] j—2k
Mm(j W)= 2021 & % IEO BiM(j —2k—1,w), V(D) =t In(t)Q,[(2t) H(1+1t?)]. (53
(48)  The second weight function is necessary because the loga-
h rithmic factor in Eq.(39) is poorly sampled by the quadra-
where ture sum in Eq(52) for t near zero; inclusion of this term in
(—1)%(2j — 2K)! the weight function eliminates the problem. If the orthogonal
=T i , (49) polynomials; are based on the shifted Legendre polynomi-
kI (j =kt (j—2k)! als[49], then the necessary modified moments may be cal-
. culated by the formulas given in Sec. Il E.
B :(J —2k)(_1)|2j2k| (50) Using quadruple-precision arithmeti¢with a 32-bit
tkj | ' word), calculating the Wy, integrals to the maximum-

attainable precision requires quadrature sums as largé as
lIl. COMPUTATIONAL APPROACH =80, althoughN as small as 30 is sufficient for many of the
integrals. The quadrature size required depends primarily on
There have been significant advances in computer techw; at run time, values ol may be read from a small lookup
nology over the past couple of years. One of the principatable containing empirically determined optimal choices.
advances has been the development of extremely inexpen- While Sack and Donovan’s approach substantially im-
sive memory, relative to what existed just a few years backproves numerical stability, some precision loss was still ob-
This plays a pivotal role in how one might think about solv- served. However, the numerical instability can be alleviated
ing problems of the type explored in this work. Storing sig-by calculating the quadrature points and weights using a
nificant amounts of auxiliary functionevhen they are not large number of digits imATHEMATICA [50]. The values of
too costly to computeis the underlying strategy of the nu- fx, 41N |, which were stored in a table as a one-time cal-
merical approach that we develop. culation, were determined for both weight functions with
ranging between 0 and 53 ahtbetween 30 and 80.
A. Specialized numerical quadrature

In Sec. II, theW,, integrals were reduced to sets of one- B. Efficient computation of auxiliary functions

dimensional quadratures. Some closed-form expressions for a computationally swift implementation of numerical
these integrals may be obtaini], but their structure is not  guadrature techniques for evaluating té, integrals re-
well suited to efficient computation. The approach given hergyuires a rapid method for computing the auxiliary functions
is to employ a specialized Gaussian quadrature techniqugjven in Egs.(30), (32), and (34). Such a method, in turn,
which permits the required integrals to be rapidly eVa'QateC%ecessitates an efficient procedure for calculating the hyper-
to high precision. The essential approach is to approximatgeometric function,F(«,1;y;z) to high precision.

the integral by a compact sum Standard series expansions for the hypergeometric func-
L N tion converge rather slowly for certain argument values. To
f s(x)V(x)dx~2 S(X) v , (51) avoid use of the standard series expansion fgfunction
0 i=1 may be Taylor expanded about a large number of padipts

€[0,1) for a wide range of integer-valuedandy. Calcula-
whereV(x) is a given weight function, an¢k; ,vi}iNzl isa tion of a specific hypergeometric function value can then be
set of function evaluation points and corresponding weightsperformed by summing a Taylor series using the expansion
An effective procedure for choosing the points and weightsoefficients corresponding to the neargst Since the power
involves first finding the set of polynomials that are orthogo-term (z—z,)" approaches zero very rapidly with increasing
nal over the weight function/. As standard methods for n, only a small number of Taylor series terms need to be
performing this calculation are extremely ill conditioned, ansummed to achieve full precision. The expansion coeffi-
alternative approach was employed, which lends itself to im<ients, which may be formulated in terms of specific hyper-
proved numerical stability. Sack and Dono\d®] (see also geometric function values, can be stored in a substantial
[46]) developed a method for finding the points and weightdookup table.
via a set ofmodifiedmoments, which are the inner products  As the auxiliary functiond, g, andh lie at the innermost
of the weight function with the members of some set ofloop of the l-integral calculation, the overall speed of the
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TABLE I. Relative performance of some diffe
integrals.

PHYSICAL REVIEW E65 036707

rent convergence accelerator techniques on representative

Convergence accelerator method

1(isj k.1, m—2,a,8,7)

Levin-u method
Levint’ method
Wynn p method
Weniger(method 1
Weniger(method 2

Levin-u method
Levint’ method
Wynn p method
Weniger(method 1
Weniger(method 2

Levin-u method
Levint’ method
Wynn p method
Weniger(method 1
Weniger(method 2

1(0,0,0-1,—1,—2,0.65,2.9,2.7)
15.271 059 472 580 983 291 193
15.2710
15.271 059 472 580 983 29
15.27
15.2710
1(1,1-2,1,1-2,2.7,2.7,2.7)
9.405 035 706 957 597 571 712 81
9.405 035 706 957
9.405 035 706 957 597 571
9.405 035 706 9
9.405 035 706 957 5
1(1,1,2,3,3- 2,4.338,4.338,7.384)
0.499 366 182 632 626 760 958 228:689 2
0.499 366 182 632 626 7600 2
0.499 366 182 632 626 7600 2
0.499 366 182 632 62610 2
0.499 366 182 632 626 760 §8.0 2

computation depends heavily on the degree to which they aredd, Eq.(14) is a logarithmically converging infinite series
optimized. Hence it is worthwhile to compute Taylor seriesthat behaves asymptotically as
coefficients for as many, values as resources will allow. In
ay
1~

particular,z>0.95 leads to a very slowly converging hyper- A
k"’

geometric series, so tabling many coefficients in this region n
is particularly beneficial.

(54)

wheren may be at least as low as 3.5 for the worst cdse (

C. Application of convergence accelerator techniques

For the case wherk and m are not both odd, Eq.(14)
reduces to a finite series. However, wheand m are both

—1m=—1). Furthermore, Eq(28) is an infinite series
that converges logarithmically regardless of the valud. of
Asymptotically, it also has the behavior of E&4), wheren

TABLE II. Sample values for the integral$i,j,k,l,m,—2,«,8,y) for | andmtaking odd integer values.

1(iyj k.1, m,—2,@,8,7)

Integral value

1(1,1,1,1,1-2,2.7,2.7,2.7)
1(0,0,0,3,1;- 2,0.65,2.9,2.7)
1(0,0,0,1-1,—2,0.65,2.9,2.7)
1(0,0,0-1,—1,—2,0.65,2.9,2.7)
1(2,1,1,3,3; 2,4.338,4.338,7.384)
1(1,1,1-1,—1,-2,1,2,3)
1(1,2,0-1,—1,—2,2,1,3)
1(2,3,1,3-1,-2,4,3,2)
1(0,0,0,1,1;- 2,0.65,2.9,2.7)
1(0,0,0,1,1>- 2,0.6,2.5,2.5)
I(-1,-1,-1,1,1-2,0.65,2.9,2.7)
1(2,1,0,1,1-2,1,1,1)
1(1,1,1,1,1-2,1,1,1)
1(0,2,3,3,1-2,1,2,3)
I(—2,-1,2,1,3-2,1,1,1)
I(-1,-1,0,3,1-2,1,1,1)
1(0,0,0,3,3-2,0.65,2.9,2.7)
1(0,0,0,5,3+2,0.65,2.9,2.7)
1(0,0,0,5,5+-2,0.65,2.9,2.7)

7.187 646 245 091 837 752 640 509 647
4.057 986 194 190 158 421 616 751 504148
1.698 678 160 331 952 701 523 944353
1.527 105 947 258 098 329 119 3510
4.993 661 826 326 267 609 582 286897°

1.539 760 693 224 313 153 271 8878

3.033016 868 423 766 832 086 43"

1.231 923 984 891 346 014 701 890 06418"
8.010 294 020 625 911 698 150 966 020168
2.035 406 498 195 068 857 011 288 4201(H
7.290 827 553 016 028 983 342 145 559148

9.081 208 531 877 960 030 338 360 04019°

1.078 827 141 800 904 545 813 023 95814°

1.215736 501 201 013 767 334 217 899 17"

1.009 981 064 833 779 122 292 237 518026

8.372981 669 415 318 211 538 998 165739
7.592 744 871 252 500 069 580 632 97618
8.347 041 021 416 493 583 756 762 89544
3.744 463 346 021 418 929 820 423 10X31H
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TABLE Ill. Representative values for the integrais,j,k,|,m,—2,«,8,y) computed using higher pre-
cision arithmetic.

I(,j.kI,m—2a87) Integral value
1(0,0,0,-1,—-1,—2,0.65,2.9,2.7) 1.527 105 947 258 098 329 119 350 984 77102
1(1,1,1-1,-1-2,1,2,3) 1.539 760 693 224 313 153 271 888 635 2308"
1(0,0,0,1,1,-2,0.65,2.9,2.7) 8.010294 020 625 911 698 150 966 02X 125
1(-2,-1,2,1,3-2,1,1,1) 1.009 981 064 833 779 122 292 237 518 0% 1.0°

takes on slightly smaller values than the aforementionedvith
value. Direct summation of Eq14) is inefficient, while
summation of Eq.(28) is not feasible. However, both of m—p, pV=s, (58)
these series may be effectively summed via an appropriately
chosen convergence accelerating transformation.

A number of well-known transformations were applied to
these two series, with varying success. In addition to the

the Weniger(1) formula is

Levin-u [30] and modified Levin-[31,34], which we denote sk o (—i—-1) Sj+1
as Levint’, the Wynnp algorithm[28,29,34 and two trans- 1 j=0%ik k‘lAHl
forms presented by Wenig¢B4] were applied. These con- Wi = 1 (59)

vergence accelerators are given by the following formulas. Efzocjk(—j —1)k,1A_—
The Levinu formula is j+1

Si1 and the Wenige(2) formula is

Sk oci(j+1)k2
j=0 Jk(J Aj+]_

l"lk: ’ (55) ) S'+1
sk CAk(j+1)k—2i E?:ocjk(l+1)k—1%1
j=0Cj A1 W= 11 , (60)

. . PRI § p—
the Levint’ formula is j=0Ci(J+ 1) AL

E whereS; is theith partial sum of a serieg; is theith term
v Az 56 of the series and;=(—1)!(}).
k= ' It is important to note that Eq.28) does not converge
2K oCik( +1)k_lA_ smoothly, due in part to the constraint thvat+w, must be
142 even. In order to achieve adequate performance from conver-
gence acceleration, one must form a new sequence of terms
{Ag+A,A+Agz,...} that exhibits improved characteristics.
A slight increase in precision is also obtained when applying
(57)  this procedure to Eq.14), at the cost of a small increase in
CPU requirements.

ETZOC]k(J‘ + 1)k71

the Wynnp formula is

(k+1)

—
Pki1= Pkt T RID
’ p Y= pl"

TABLE IV. Representative values for the integrd(s,j,k,|,—2,—2,a,8,v).

1(,j,k1,—2,—-2,a,8,v) Integral value
1(0,0,0,4-2,—2,0.65,2.9,2.7) 7.370751 717 424 573 830"
1(0,0,0,6:-2,—2,0.65,2.9,2.7) 4.912 247 149 187 431 8900
1(5,5,0,4-2,—2,6.52,6.52,1.42) 2.648011 637 084 39K3D 2
1(1,7,3,4-2,—2,1.42,6.52,6.52) 1.775 862 983 358 49432
1(0,0,0,4-2,—2,6.52,3.97,3.97) 1.239128 937 797 144 94810 *
1(2,3,1,4-2,—-2,6.52,3.97,3.97) 2.417 774 258 610 491 %39 2
1(3,1,2,4-2,—-2,0.65,2.9,2.7) 3.696 961 214 545 992 G7I0°
1(2,2,2,42,—2,0.65,2.9,2.7) 2.076 347 965 560 003 GO’
1(2,7,3,4-2,—2,0.65,2.9,2.7) 9.284 583074 893 538 10°
1(2,3,1,6:-2,—2,0.65,2.9,2.7) 3.875 442 706 643 972880
1(5,5,5,2-2,—2,0.65,2.9,2.7) 2.340 828 566 557 06 ZUI0°
1(1,1,1,5-2,—2,0.65,2.9,2.7) 7.604 960 853 694 6188RY
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Several representativeintegral values are provided in The precision reported for the results in Table Il has been
Table I, which demonstrate the maximum level of precisionchecked by doing independent calculations using Bailey’'s
obtained by each method. No more than 23 partial s(@fis [51] multiple precisionFORTRAN conversion packages. A
for paired serigswere provided as input to each transforma-small sample of higher-precision values is tabulated in Table
tion. Superior results were obtained using the Lavimans-  |||. These values are extremely useful as reference points to
formation. The maximum level of precision obtained from check the precision of the standard quadruple precision cal-
Eq. (55) increases up to a specific value of the indegfter  culations. Using Bailey’s multiple precision packages to pro-
which it rapidly deteriorates. The optimal value lofvhen  duce a standarsorTrAN add-on module for an atomic code

applying the Levind transformation to Eq(14) ranges be-  would not be a practical consideration, because of the very
tween 18 and 24, and depends on the valudsaoidm. The  slow speed of the multiple precision calculations.

optimal k value for theu transformation applied to E¢28) Table IV presents a sample of values for the céie
remains fixed at 25. integrals. Here the precision is somewhat decreased from the
case(ii) results presented in Table I, with about 17-19 dig-
IV. RESULTS AND DISCUSSION its of precision being obtained. This is a significant improve-

. . . ment over the results obtained in two previous publications
An inspection of the results presented in Table | revealz b P

; : 18,19, where approximately 12—14 digits of precision have
that the Levinu convergence accelerator is the most robus 9 PP y 9 P
. ) ) . een reported.
of the techniques examined. In a practical calculation where
thel integrals are encountered, limited CPU resources can be
efficiently devoted to a determination of the optimal method
to employ for each individual integral. A more effective com- V. CONCLUSION

putational strategy is to group integrals by particular classes, |n summary, a fairly efficient procedure has been pre-
with appropriate ranges of the indicisj, k, I, m, i} speci-  sented for the numerical evaluation of a class of three-
fied, and then use the most robust convergence acceleratfectron atomic integrals, which yields high-precision results
technique for that class of integrals. For the particular caseg,  fairly fast computational scheme. With some additional
examined in the present work, the Leuirtechnique proves tapling of the auxiliary functions, enhancement to the speed
to be superior. For particular cases, all the convergence agf evaluation could be obtained. Convergence accelerators
celerators give reasonably satisfactory agreement with onglay a critical role in evaluating the slowly converging sums
another. that are obtained in the analysis.

In Table Il we tabulate a representative sample of the case Probably a number of the techniques discussed here can
(ii) integrals. For the most slowly convergent cases, thosge applied to some of the much more difficult one-center
with I=—1, m=—1, at least 25 digits of precision have foyr-electron integrals of similar structure to those of the

been obtained. For other entries, as many as 31 digits qresent work. This topic is under investigation.
precision are obtained, which essentially represent the maxi-

mum precision possible working in quadruple precision with
a 32-bit word length. Since results for a wide range of case
(i) integrals with odd andm can be obtained with close to
or at machine precision, further improvements in the numeri- Support from the National Science Foundati@rant No.

cal evaluation of these integrals is most likely to be achievedPHY-9988447 and partial support from American Chemical
by fine tuning the code to obtain small gains in computa-Society Petroleum research Fund grant are greatly appreci-
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