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Improvements on the application of convergence accelerators for the evaluation of some
three-electron atomic integrals
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Convergence accelerator methods are employed to analyze some of the most difficult three-electron integrals
that arise in atomic calculations. These integrals have an explicit dependence on the interelectronic coordinates,
and take the form*r 1

i r 2
j r 3

kr 23
l r 31

mr 12
n exp(2ar12br22gr3)dr1dr2dr3 . The focus of the present investigation are the

most difficult cases of the parameter set$i, j, k, l, m, n%. Several convergence accelerator techniques are studied,
and a comparison presenting the relative effectiveness of each technique is reported. When the convergence
accelerator approach is combined with specialized numerical quadrature methods, we find that the overall
technique yields high-precision results and is fairly efficient in terms of computational resources. Difficulties
associated with the standard numerical precision loss of convergence accelerator techniques are circumvented.

DOI: 10.1103/PhysRevE.65.036707 PACS number~s!: 02.70.2c, 02.60.2x, 31.15.2p
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I. INTRODUCTION

The progress on the calculation of a variety of propert
for three-electron atomic systems has been significant o
the past several years. Both the ground and low-lying exc
states of the lithium atom have been the focus of much of
computational activity. There has also been renewed inte
in high-precision spectroscopy of this system. Much of
recent progress, together with some of the earlier contr
tions, can be found in two recent reviews@1,2#. Hylleraas-
type calculations have played an important role in many
the high-precision calculations. In this approach, the va
tional method is employed using basis sets that depend
plicitly on the interelectronic coordinatesr i j . This choice
has the advantage of reasonably rapid convergence o
energy and a number of other properties, but at the cos
more significant integration problems in comparison to w
is obtained with a basis set of Slater-type orbitals with nor i j
factors present.

For the calculation of the energy and a variety of oth
properties, such as isotope shifts and hyperfine coupling c
stants, the integration problems have been substantially
solved. However, for some important properties, principa
relativistic contributions to the energy or terms that arise
computing lower bounds for energy levels, there is sign
cant opportunity to improve upon the existing results.

Using Hylleraas-type basis functions, the integrati
problem for a calculation of atomic three-electronS states
reduces to the evaluation of integrals that take the form

I ~ i , j ,k,l ,m,n,a,b,g!5E r 1
i r 2

j r 3
kr 23

l r 31
mr 12

n exp~2ar 12br 2

2gr 3!dr1dr2dr3 , ~1!

where r i denotes an electron-nuclear distance andr i j is an
electron-electron separation. It is known that a large clas
integrals arising in the four-electron atomic problem us
Hylleraas expansions can be reduced to the three-elec
case@3#; this provides an added incentive to obtain high
efficient computational algorithms for the three-electron
1063-651X/2002/65~3!/036707~11!/$20.00 65 0367
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tegrals. The integrals in Eq.~1! can be grouped according t
the values taken by the parameter set$l, m, n%. In order of
increasing complexity:~i! those integrals havingl, m, n
>21, ~ii ! those integrals have one of the indices$ l ,m,n%
522, with the other two indices>21, ~iii ! and the most
difficult case, two of the indices522. The indices$i, j, k%
are each>22 ~with some restrictions depending on the s
$l, m, n%! and the orbital exponents$a, b, g% are individually
greater than zero.

An energy evaluation for anS state three-electron system
by the Hylleraas method requires integrals in case~i!. These
have been the most extensively studied@4–15# and we do
not consider this case at all in the present work. Case~ii ! has
received far less attention@16–22#, and case~iii ! has re-
ceived very little study@18,19#. These latter cases are re
quired for energy lower bound calculations@23,24# and for
the calculation of relativistic components of the ener
@25,26#. Cases~ii ! and~iii ! are the focus of the present stud

Progress on improving convergence acceleration te
niques has been a topic of ongoing interest@27–41#. One
objective of the present investigation is to determine, for
numerical problem under investigation, which of the co
mon convergence accelerator techniques is the most rob
The principal deciding factor in determining this is the n
merical precision obtained. A key feature of our compu
tional strategy is a coupling of convergence accelera
methods with specialized numerical quadrature procedur

II. THEORY

In what follows, we will assignn522. For case~ii ! there
are two subcases:l and m not both odd and>21, l and m
both odd. The former has received more attention, and is
far the easier integral to evaluate. Many of the integrals
this case can, in fact, be reduced to a sum of two-elec
integrals@16#. Integrals withl andm bothodd are treated by
breaking the integral down to an infinite sum of contrib
tions. The individual terms in the sum have been evalua
using different approaches@16–22#. There are two principal
issues involved in the numerical computation of one of th
integrals. These are the evaluation speed of the individ
©2002 The American Physical Society07-1
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terms in the sum, and the actual numerical summation p
cess. Both issues are of concern in the present study. C
putational efficiency is an important concern, since the nu
ber of integrals required in a high-precision atom
calculation is enormous, particularly when extensive optim
zation of nonlinear parameters is involved.

The term r 12
22 may be expanded in terms of Legend

polynomials, and takes the form@16,42,43#

1

r 12
2 5(

l 50

` F2l 11

2 G42 lF lnUr 11r 2

r 12r 2
U(

k50

l

r 1
2k2 l 21r 2

l 22k21

3 (
n50

min@k,l 2k#

~24!nS l
n D S 2l 22n

l D S l 22n
k2n D

22(
k50

l 21

r 1
2 l 12kr 2

l 22k22 (
j 50

min@k,l 2k21#

4 j S l 22 j 21
k2 j D

3 (
n50

j ~21!nS l
n D S 2l 22n

l D
2 j 22n11

GPl~cosu12!, ~2!

where (b
a) denotes a binomial coefficient. The appearance

the logarithm factor gives an indication that the evaluation
the individual contributions to the sum will be far from
trivial, which indeed turns out to be the case, and also gi
some clue that the overall rate of convergence for any se
decomposition is not expected to be high. We will find
useful to utilize an equivalent expansion

r 12
225 (

w50

`
~2w11!

2r 1r 2
QwF r 1

21r 2
2

2r 1r 2
GPw~cosu12!, ~3!

whereQw denotes a Legendre function of the second ki
which leads to some simplifications over Eq.~2!. For the
other two factorsr 23

l andr 31
m in Eq. ~1!, a standard Sack@44#

expansion in terms of Legendre polynomials is employed

r 31
m 5 (

w150

`

Rmw1
~r 3 ,r 1!Pw1

~cosu31!, ~4!

whereRmw1
(r 3 ,r 1) denotes the Sack radial function. A sim

lar expansion is employed forr 23
l .

A. The casenÄÀ2, lÐÀ1, mÐÀ1

Inserting Eq.~3!, the last result and the analogous expa
sion for r 23

l into Eq. ~1!, leads to

I[I ~ i , j ,k,l ,m,22,a,b,g!

5 (
w50

`

(
w150

`

(
w250

`

I R~w,w1 ,w2!I V~w,w1 ,w2!, ~5!
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whereI V denotes the integral over the angular variables, a
I R is an integral over the radial variables. The angular in
gral can be written as

I V~w,w1 ,w2!5E Pw~cosu12!Pw1
~cosu31!Pw2

~cosu23!

3dV1dV2dV3

5
64p3

~2w11!2 dww1
dww2

dw1w2
, ~6!

whered i j denotes a Kronecker delta. Inserting this result in
Eq. ~5! leads to

I ~ i , j ,k,l ,m,22,a,b,g!564p3 (
w50

`
I R~w,w,w!

~2w11!
. ~7!

To evaluate the integral over the radial coordinates,
expansion for the Sack radial function is employed

Rlw~r 2 ,r 3!5 (
p50

`

awlpr 23,
w12pr 23.

l 2w22p , ~8!

where r 23, denotes min(r2,r3) and r 23. designates
max(r2,r3). The coefficientawlp is given by

awlp5
~2 l

2 !w~w2 l
2 !p~2 1

2 2 l
2 !p

~ 1
2 !wp! ~w1 3

2 !p

, ~9!

where (m)n denotes a Pochhammer symbol. On noting
property of the Pochhammer symbol

~2p!q50 for integer p and q.p, ~10!

then thep summation in Eq.~8! terminates atpmax, where

pmax5H l

2
2w, for l even

~ l 11!

2
, for l odd.

~11!

If Eq. ~8! and the analogous result forRmw(r 3 ,r 1) are sub-
stituted into Eq.~7!, then
7-2
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I ~ i , j ,k,l ,m,22,a,b,g!

532p3 (
w50

`
1

~2w11! (
p50

pmax

(
q50

qmax

awlpawmq

3E r 1
i 11r 2

j 11r 3
k12r 23,

w12pr 23.
l 2w22p

3r 31,
w12qr 31.

m2w22qQw@~2r 1r 2!21~r 1
21r 2

2!#

3exp~2ar 12br 22gr 3!dr1dr2dr3 , ~12!
t

is

e

03670
where

qmax5H m

2
2w, for m even

~m11!

2
, for m odd.

~13!

On breaking the integration region appropriately, this l
result simplifies to yield
I ~ i , j ,k,l ,m,22,a,b,g!

532p3 (
w50

`
1

~2w11! (
p50

pmax

(
q50

qmax

awlpawmq$WQ1~w,k1212w12p12q,i 111m2w22q, j 111 l 2w22p,g,a,b!

1WQ1~w,k1212w12p12q, j 111 l 2w22p,i 111m2w22q,g,b,a!

1WQ2~w,i 111w12q, j 111w12p,k121 l 1m22w22p22q,a,b,g!

1WQ2~w, j 111w12p,i 111w12q,k121 l 1m22w22p22q,b,a,g!

1WQ3~w,i 111w12q,k121m12p22q, j 111 l 2w22p,a,g,b!

1WQ3~w, j 111w12p,k121 l 12q22p,i 111m2w22q,b,g,a!%, ~14!

where

WQ1~w,L,M ,N,a,b,c!5E
0

`

xLe2axdxE
x

`

yMe2bydyE
y

`

zNe2czQw@~2yz!21~y21z2!#dz, ~15!

WQ2~w,L,M ,N,a,b,c!5E
0

`

xLe2axdxE
x

`

yMe2byQw@~2xy!21~x21y2!#dyE
y

`

zNe2czdz, ~16!

WQ3~w,L,M ,N,a,b,c!5E
0

`

xLe2axdxE
x

`

yMe2bydyE
y

`

zNe2czQw@~2xz!21~x21z2!#dx. ~17!
We term these last three theWQ integrals.

B. The casenÄÀ2, mÄÀ2

To arrive at a suitable formula for this case, we first no
the use of an alternative expansion forr 31

22 as

r 31
225 (

w250

`

r 31,

w2 r 31.

2w222Cw2

1 ~cosu31!, ~18!

whereCw2

1 (cosu31) denotes a Gegenbauer polynomial. Th

alternative expansion is made for the factorr 31
22 because it

leads to a simpler radial integral, but this is at the expens
e

of

a more complicated angular integral. If we use Eqs.~3!, ~18!,
and the Sack expansion forr 23

l ,

I ~ i , j ,k,l ,22,22,a,b,g!

5
1

2 (
w50

`

(
w150

`

(
w250

`

(
p50

`

~2w11!awlpSR~w,w1 ,w2!

3SV~w,w1 ,w2!, ~19!

where the angular integralSV is
7-3
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SV~w,w1 ,w2!5E Pw~cosu12!Pw1
~cosu23!Cw2

1 ~cosu31!

3dV1dV2dV3 , ~20!

and the integral over the radial coordinatesSR(w,w1 ,w2) is

SR~w,w1 ,w2!5E r 1
i 11r 2

j 11r 3
k12r 23,

w112pr 23.

l 2w122pr 31,

w2 r 31.

2w222

3Qw@~2r 1r 2!21~r 1
21r 2

2!#

3exp~2ar 12br 22gr 3!dr1dr2dr3 . ~21!

To evaluate the integral over angular coordinates, choose
coordinate system such that

dV1dV2dV3

5sinu1du1df1 sinu12du12df12sinu31du31dx ~22!

with

x5f312f12. ~23!

In this coordinate system the addition theorem for Legen
polynomials is

Pw1
~cosu23!5Pw1

~cosu12!Pw1
~cosu31!

1 (
n51

w1 ~w12n!!

~w11n!!
Pw1

n ~cosu12!

3pw1

n ~cosu31!cosnx. ~24!
03670
he

e

Inserting Eq.~24! into Eq.~20! and integrating overu1 , f1 ,
f12, andx, the finite sum of Eq.~24! vanishes and we are
left with

SV~w,w1 ,w2!

516p3E
0

p

Pw~cosu12!Pw1
~cosu12!sinu12du12

3E
0

p

Pw1
~cosu31!Cw2

1 ~cosu31!sinu31du31

5
32p3

2w11
dww1

bw1w2
, w2>w1 , and w11w2 even,

~25!

where the coefficientbw1w2
is given in terms ofg functions

by

bw1w2
5

GS w22w1

2
1

1

2D S w21w1

2 D !

GS w21w1

2
1

3

2D S w22w1

2 D !

. ~26!

If the last two conditions in Eq.~25! are not met, the angula
integral is zero.

Inserting Eq.~26! into Eq. ~19! yields
I ~ i , j ,k,l ,22,22,a,b,g!516p3 (
w250

`

(
w150

w2

~w11w2! even

bw1w2(p50

pmax

aw1lp

3E r 1
i 11r 2

j 11r 3
k12r 23,

w112pr 23.

l 2w122pr 31,

w2 r 31.

2w222Qw1
@~2r 1r 2!21~r 1

21r 2
2!#

3exp~2ar 12br 22gr 3!dr1dr2dr3 , ~27!

andpmax is given by Eq.~11! with w replaced byw1 . If the integration range is appropriately subdivided, then

I ~ i , j ,k,l ,22,22,a,b,g!

516p3 (
w250

`

(
w150

w2

~w11w2! even

bw1w2(p50

pmax

aw1lp$WQ1~w1 ,k121w11w212p,i 212w2 , j 111 l 2w122p,g,a,b!

1WQ1~w1 ,k121w11w212p, j 111 l 2w122p,i 212w2 ,g,b,a!

1WQ2~w1 ,i 111w2 , j 111w112p,k1 l 2w12w222p,a,b,g!

1WQ2~w1 , j 111w112p,i 111w2 ,k1 l 2w12w222p,b,a,g!
7-4
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1WQ3~w1 ,i 111w2 ,k1w12w212p, j 111 l 2w122p,a,g,b!

1WQ3~w1 , j 111w112p,k121 l 1w22w122p,i 212w2 ,b,g,a!%. ~28!
l

s
e-
e

io

r

-

The indexl is >21, subject to the constraint that (i 1 j 1k
1 l 14)>0, with combinations of the indices$i, j, k% satisfy-
ing some additional constraints, in order that the integra
convergent. The barely convergent integrals for case~iii ! do
not arise in any applications with which we are familiar.

C. Simplification of the WQ integrals

To evaluate the two key results obtained so far, Eqs.~14!
and~28!, it is necessary to be able to compute the integral
Eqs. ~15!–~17!. Following an earlier approach for some r
lated integrals@17# we proceed as follows. With the chang
of variablesx5uy, y5zt, we have

WQ1~w,L,M ,N,a,b,c!5L! E
0

1

tL1M11

3Qw@~2t !21~11t2!# f ~ t !dt,

~29!

whereL5L1M1N12, and

f ~ t !5E
0

1 uLdu

~aut1bt1c!L11 . ~30!

With the change of variablesx5yt, y5zu,

WQ2~w,L,M ,N,a,b,c!

5L! E
0

1

tLQw@~2t !21~11t2!#g~ t !dt, ~31!

where

g~ t !5E
0

1 uL1M11du

~aut1bu1c!L11 . ~32!

With the change of variablesx5zt, y5zu, we have

WQ3~w,L,M ,N,a,b,c!5L! E
0

1

tLQw@~2t !21

3~11t2!#h~ t !dt, ~33!

where

h~ t !5E
0

1 uMdu

t~at1bu1c!L11 . ~34!

The key to an efficient evaluation of theWQ integrals lies
in part in setting up a fast and high precision determinat
03670
is

in

n

of the functionsf (t), g(t), andh(t). The functionf (t) can
be written in the following form:

f ~ t !5
1

~L11!~at1bt1c!L11

32F1„L11,1;L12;~at1bt1c!21at…, ~35!

where 2F1 denotes a hypergeometric function. Forg(t) we
have

g~ t !5
1

~L1M12!~at1b1c!L11

32F1„L11,1;L1M13;~at1b1c!21~at1b!…,

~36!

and forh(t)

h~ t !5
1

~L1N12! H tM11

~at1bt1c!L11 2F1„L11,1;

L1N13;~at1c!~at1bt1c!21
…2

1

~at1b1c!L11

32F1„L11,1;L1N13;~at1c!~at1b1c!21
…J .

~37!

Equation~37! can be rewritten in a form more suitable fo
computation in cases involvingM.21 as

h~ t !5
1

~M11! H 1

~at1b1c!L11 2F1„L11,1;M12;

b~at1b1c!21
…2

tM11

~at1bt1c!L11 2F1„L11,1;

M12;bt~at1bt1c!21
…J . ~38!

A problematic case occurs forh(t) whenM521. When this
situation arises, the following alternative formula is em
ployed:
7-5
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h~ t !5
1

~at1c!L1N12 H lnF at1bt1c

t~at1b1c!G
1 (

k50

L1N S L1N11
k D ~2b!L1N112k

@k2~L1N11!#

3F tL1N112k

~at1bt1c!L1N112k2
1

~at1b1c!L1N112kG J .

~39!

In Eq. ~39! the standard summation convention(k50
m $%50

whenm,0 is employed. The last equation has the poten
to lead to significant figure loss, but in practical calculatio
given the likely ranges for the values$ l ,m,n%, this was not
found to be a problem.
n;

s

r

iv

si

03670
l
s

D. Moments of the Legendre functions of the second kind

The last integrals that require discussion are the mom
of the Legendre functions of the second kind. These
needed for the numerical quadratures, which we detail in
following section. The required integrals are

M~m,w!5E
0

1

tm1w21Qw@~2t !21~11t2!#dt for m>0.

~40!

The Legendre functions of the second kind are expanded
series, and after a little manipulation we obtain
M~m,w!5
1

2w (
k50

bw/2c
~21!k~2w22k!!

k! ~w2k!! ~w22k!!

1

2w22k (
n50

w22k S w22k
n D E

0

1

tm12w22k22n21 lnS 11t

12t Ddt

2 (
k50

b~w21!/2c 2~w22k!21

~2k11!! ~w2k!

1

2w22k21 (
n50

b~w22k21!/2c
~21!n~2w24k2222n!!

n! ~w22k212n!! ~w22k2122n!!

3
1

2w22k2122n (
t50

w22k2122n S w22k2122n
t D 1

~m12w22k22n22t21!
, ~41!
cal
sary
where the notationbxc is used to designate the floor functio
the greatest integer not larger thanx. Methods to deal with
the integrals involving a log factor that occur in the la
equation have been discussed elsewhere@17#. An alternative
approach to the evaluation of the moments employs the
cursive scheme

M~m,w!5
2w21

2w
$M~m,w21!1M~m12,w21!%

2
~w21!

w
M~m12,w22!, ~42!

which can be readily derived using the standard recurs
formula for Legendre functions of the second kind.

The more complicated moments defined by

ML~m,w!5E
0

1

tm1w21Qw@~2t !21~11t2!# ln tdt,

for m>0, ~43!

are also required. They can be calculated by the recur
formula
t

e-

e

ve

ML~m,w!5
2w21

2w
$ML~m,w21!1ML~m12,w21!%

2
~w21!

w
ML~m12,w22! , ~44!

and by taking advantage of the results

ML~0,0!52
7z~3!

4
, ~45!

ML~m,0!5
1

m Fp2

12
~21~21!m!2

@12~21!m#

m
ln 2

2 (
k51

m
~m1k!@12~21!m1k#

k2 G , m>1. ~46!

In Eq. ~45! z(n) denotes the Riemann zeta function.

E. Modified moments involving the Legendre functions
of the second kind

In order to carry out some of the specialized numeri
quadratures discussed in the following section, it is neces
7-6
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to find an efficient scheme to evaluate the following modifi
moments:

Mm~ j ,w!5
~ j ! !2

~2 j !! E0

1

Pj~2t21!tw21Qw@~2t !21~11t2!#dt.

~47!

By expanding the Legendre function of the first kind, t
following result can be obtained:

Mm~ j ,w!5
~ j ! !2

2 j~2 j !! (
k50

b j /2c
ak j (

l 50

j 22k

b lk jM~ j 22k2 l ,w!,

~48!

where

ak j5
~21!k~2 j 22k!!

k! ~ j 2k!! ~ j 22k!!
, ~49!

b lk j5S j 22k
l D ~21! l2 j 22k2 l . ~50!

III. COMPUTATIONAL APPROACH

There have been significant advances in computer te
nology over the past couple of years. One of the princi
advances has been the development of extremely inex
sive memory, relative to what existed just a few years ba
This plays a pivotal role in how one might think about so
ing problems of the type explored in this work. Storing s
nificant amounts of auxiliary functions~when they are not
too costly to compute! is the underlying strategy of the nu
merical approach that we develop.

A. Specialized numerical quadrature

In Sec. II, theWQ integrals were reduced to sets of on
dimensional quadratures. Some closed-form expression
these integrals may be obtained@16#, but their structure is no
well suited to efficient computation. The approach given h
is to employ a specialized Gaussian quadrature techni
which permits the required integrals to be rapidly evalua
to high precision. The essential approach is to approxim
the integral by a compact sum

E
0

1

s~x!V~x!dx'(
i 51

N

s~xi !n i , ~51!

whereV(x) is a given weight function, and$xi ,n i% i 51
N is a

set of function evaluation points and corresponding weig
An effective procedure for choosing the points and weig
involves first finding the set of polynomials that are orthog
nal over the weight functionV. As standard methods fo
performing this calculation are extremely ill conditioned,
alternative approach was employed, which lends itself to
proved numerical stability. Sack and Donovan@45# ~see also
@46#! developed a method for finding the points and weig
via a set ofmodifiedmoments, which are the inner produc
of the weight function with the members of some set
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orthogonal polynomials$p j (x)% j 50
2N21. Wheeler@47# formu-

lated an efficient recursive algorithm for implementing tho
results; the necessary details are concisely presented in@48#.

In order to calculate theWQ integrals to high precision, it
is necessary to compute quadrature points and weights
the weight functions

Vw1~ t !5t21Qw@~2t !21~11t2!# ~52!

and

Vw2~ t !5t21 ln~ t !Qw@~2t !21~11t2!#. ~53!

The second weight function is necessary because the l
rithmic factor in Eq.~39! is poorly sampled by the quadra
ture sum in Eq.~52! for t near zero; inclusion of this term in
the weight function eliminates the problem. If the orthogon
polynomialsp j are based on the shifted Legendre polynom
als @49#, then the necessary modified moments may be
culated by the formulas given in Sec. II E.

Using quadruple-precision arithmetic~with a 32-bit
word!, calculating the WQ integrals to the maximum-
attainable precision requires quadrature sums as large aN
580, althoughN as small as 30 is sufficient for many of th
integrals. The quadrature size required depends primarily
w; at run time, values ofN may be read from a small looku
table containing empirically determined optimal choices.

While Sack and Donovan’s approach substantially i
proves numerical stability, some precision loss was still o
served. However, the numerical instability can be allevia
by calculating the quadrature points and weights usin
large number of digits inMATHEMATICA @50#. The values of
$xi ,n i% i 51

N , which were stored in a table as a one-time c
culation, were determined for both weight functions withw
ranging between 0 and 53 andN between 30 and 80.

B. Efficient computation of auxiliary functions

A computationally swift implementation of numerica
quadrature techniques for evaluating theWQ integrals re-
quires a rapid method for computing the auxiliary functio
given in Eqs.~30!, ~32!, and ~34!. Such a method, in turn
necessitates an efficient procedure for calculating the hy
geometric function2F1(a,1;g;z) to high precision.

Standard series expansions for the hypergeometric fu
tion converge rather slowly for certain argument values.
avoid use of the standard series expansion, the2F1 function
may be Taylor expanded about a large number of pointsz0
P@0,1) for a wide range of integer-valueda andg. Calcula-
tion of a specific hypergeometric function value can then
performed by summing a Taylor series using the expans
coefficients corresponding to the nearestz0 . Since the power
term (z2z0)n approaches zero very rapidly with increasin
n, only a small number of Taylor series terms need to
summed to achieve full precision. The expansion coe
cients, which may be formulated in terms of specific hyp
geometric function values, can be stored in a substan
lookup table.

As the auxiliary functionsf, g, andh lie at the innermost
loop of the I-integral calculation, the overall speed of th
7-7
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TABLE I. Relative performance of some different convergence accelerator techniques on represenI
integrals.

Convergence accelerator method I ( i , j ,k,l ,m,22,a,b,g)

I (0,0,0,21,21,22,0.65,2.9,2.7)
Levin-u method 15.271 059 472 580 983 291 193
Levin-t8 method 15.271 0
Wynn r method 15.271 059 472 580 983 29
Weniger~method 1! 15.27
Weniger~method 2! 15.271 0

I (1,1,22,1,1,22,2.7,2.7,2.7)
Levin-u method 9.405 035 706 957 597 571 712 81
Levin-t8 method 9.405 035 706 957
Wynn r method 9.405 035 706 957 597 571
Weniger~method 1! 9.405 035 706 9
Weniger~method 2! 9.405 035 706 957 5

I (1,1,2,3,3,22,4.338,4.338,7.384)
Levin-u method 0.499 366 182 632 626 760 958 228 68931022

Levin-t8 method 0.499 366 182 632 626 76031022

Wynn r method 0.499 366 182 632 626 76031022

Weniger~method 1! 0.499 366 182 632 62631022

Weniger~method 2! 0.499 366 182 632 626 760 9531022
a
es
n
r-
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(

f

computation depends heavily on the degree to which they
optimized. Hence it is worthwhile to compute Taylor seri
coefficients for as manyz0 values as resources will allow. I
particular,z.0.95 leads to a very slowly converging hype
geometric series, so tabling many coefficients in this reg
is particularly beneficial.

C. Application of convergence accelerator techniques

For the case wherel and m are not both odd, Eq.~14!
reduces to a finite series. However, whenl and m are both
03670
re

n

odd, Eq.~14! is a logarithmically converging infinite serie
that behaves asymptotically as

I;(
k

ak

kn , ~54!

wheren may be at least as low as 3.5 for the worst casel
521,m521). Furthermore, Eq.~28! is an infinite series
that converges logarithmically regardless of the value ol.
Asymptotically, it also has the behavior of Eq.~54!, wheren
.
TABLE II. Sample values for the integralsI ( i , j ,k,l ,m,22,a,b,g) for l andm taking odd integer values

I ( i , j ,k,l ,m,22,a,b,g) Integral value

I (1,1,1,1,1,22,2.7,2.7,2.7) 7.187 646 245 091 837 752 640 509 647
I (0,0,0,3,1,22,0.65,2.9,2.7) 4.057 986 194 190 158 421 616 751 504 883102

I (0,0,0,1,21,22,0.65,2.9,2.7) 1.698 678 160 331 952 701 523 944 3643101

I (0,0,0,21,21,22,0.65,2.9,2.7) 1.527 105 947 258 098 329 119 351 13101

I (2,1,1,3,3,22,4.338,4.338,7.384) 4.993 661 826 326 267 609 582 286 89731023

I (1,1,1,21,21,22,1,2,3) 1.539 760 693 224 313 153 271 887 83101

I (1,2,0,21,21,22,2,1,3) 3.033 016 868 423 766 832 086 4333101

I (2,3,1,3,21,22,4,3,2) 1.231 923 984 891 346 014 701 890 064 53101

I (0,0,0,1,1,22,0.65,2.9,2.7) 8.010 294 020 625 911 698 150 966 029 633101

I (0,0,0,1,1,22,0.6,2.5,2.5) 2.035 406 498 195 068 857 011 288 410 793102

I (21,21,21,1,1,22,0.65,2.9,2.7) 7.290 827 553 016 028 983 342 145 559 483101

I (2,1,0,1,1,22,1,1,1) 9.081 208 531 877 960 030 338 360 040 93105

I (1,1,1,1,1,22,1,1,1) 1.078 827 141 800 904 545 813 023 958 43106

I (0,2,3,3,1,22,1,2,3) 1.215 736 501 201 013 767 334 217 899 173104

I (22,21,2,1,3,22,1,1,1) 1.009 981 064 833 779 122 292 237 518 0283108

I (21,21,0,3,1,22,1,1,1) 8.372 981 669 415 318 211 538 998 165 7393105

I (0,0,0,3,3,22,0.65,2.9,2.7) 7.592 744 871 252 500 069 580 632 976 733103

I (0,0,0,5,3,22,0.65,2.9,2.7) 8.347 041 021 416 493 583 756 762 895 2443104

I (0,0,0,5,5,22,0.65,2.9,2.7) 3.744 463 346 021 418 929 820 423 102 5793106
7-8
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TABLE III. Representative values for the integralsI ( i , j ,k,l ,m,22,a,b,g) computed using higher pre
cision arithmetic.

I ( i , j ,k,l ,m,22,a,b,g) Integral value

I (0,0,0,21,21,22,0.65,2.9,2.7) 1.527 105 947 258 098 329 119 350 984 727 023101

I (1,1,1,21,2122,1,2,3) 1.539 760 693 224 313 153 271 888 635 230 43101

I (0,0,0,1,1,22,0.65,2.9,2.7) 8.010 294 020 625 911 698 150 966 029 1253101

I (22,21,2,1,3,22,1,1,1) 1.009 981 064 833 779 122 292 237 518 017 03108
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takes on slightly smaller values than the aforementio
value. Direct summation of Eq.~14! is inefficient, while
summation of Eq.~28! is not feasible. However, both o
these series may be effectively summed via an appropria
chosen convergence accelerating transformation.

A number of well-known transformations were applied
these two series, with varying success. In addition to
Levin-u @30# and modified Levin-t @31,34#, which we denote
as Levin-t8, the Wynnr algorithm@28,29,34# and two trans-
forms presented by Weniger@34# were applied. These con
vergence accelerators are given by the following formu
The Levin-u formula is

uk5

( j 50
k cjk~ j 11!k22

Sj 11

Aj 11

( j 50
k cjk~ j 11!k22

1

Aj 11

, ~55!

the Levin-t8 formula is

tk85

( j 50
k cjk~ j 11!k21

Sj 11

Aj 12

( j 50
k cjk~ j 11!k21

1

Aj 12

, ~56!

the Wynnr formula is

rk11
~n! 5rk21

~n11!1
~k11!

rk
~n11!2rk

~n! , ~57!
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with

r21
~n!50, r0

~n!5Sn , ~58!

the Weniger~1! formula is

wk
~1!5

( j 50
k cjk~2 j 21!k21

Sj 11

Aj 11

( j 50
k cjk~2 j 21!k21

1

Aj 11

, ~59!

and the Weniger~2! formula is

wk
~2!5

( j 50
k cjk~ j 11!k21

Sj 11

Aj 11

( j 50
k cjk~ j 11!k21

1

Aj 11

, ~60!

whereSi is the i th partial sum of a series,Ai is the i th term
of the series andcjk5(21) j ( j

k).
It is important to note that Eq.~28! does not converge

smoothly, due in part to the constraint thatw11w2 must be
even. In order to achieve adequate performance from con
gence acceleration, one must form a new sequence of te
$A01A1 ,A21A3 ,...% that exhibits improved characteristic
A slight increase in precision is also obtained when apply
this procedure to Eq.~14!, at the cost of a small increase i
CPU requirements.
TABLE IV. Representative values for the integralsI ( i , j ,k,l ,22,22,a,b,g).

I ( i , j ,k,l ,22,22,a,b,g) Integral value

I (0,0,0,4,22,22,0.65,2.9,2.7) 7.370 751 717 424 573 8373101

I (0,0,0,6,22,22,0.65,2.9,2.7) 4.912 247 149 187 431 8903102

I (5,5,0,4,22,22,6.52,6.52,1.42) 2.648 011 637 084 397 3431022

I (1,7,3,4,22,22,1.42,6.52,6.52) 1.775 862 983 358 494 3831022

I (0,0,0,4,22,22,6.52,3.97,3.97) 1.239 128 937 797 144 948 131021

I (2,3,1,4,22,22,6.52,3.97,3.97) 2.417 774 258 610 491 43931022

I (3,1,2,4,22,22,0.65,2.9,2.7) 3.696 961 214 545 992 6773103

I (2,2,2,4,22,22,0.65,2.9,2.7) 2.076 347 965 560 003 0993103

I (2,7,3,4,22,22,0.65,2.9,2.7) 9.284 583 074 893 533 13105

I (2,3,1,6,22,22,0.65,2.9,2.7) 3.875 442 706 643 971 863104

I (5,5,5,2,22,22,0.65,2.9,2.7) 2.340 828 566 557 067 173106

I (1,1,1,5,22,22,0.65,2.9,2.7) 7.604 960 853 694 618 833102
7-9
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Several representativeI-integral values are provided i
Table I, which demonstrate the maximum level of precis
obtained by each method. No more than 23 partial sums~21
for paired series! were provided as input to each transform
tion. Superior results were obtained using the Levin-u trans-
formation. The maximum level of precision obtained fro
Eq. ~55! increases up to a specific value of the indexk, after
which it rapidly deteriorates. The optimal value ofk when
applying the Levin-u transformation to Eq.~14! ranges be-
tween 18 and 24, and depends on the values ofl andm. The
optimal k value for theu transformation applied to Eq.~28!
remains fixed at 25.

IV. RESULTS AND DISCUSSION

An inspection of the results presented in Table I reve
that the Levin-u convergence accelerator is the most rob
of the techniques examined. In a practical calculation wh
the I integrals are encountered, limited CPU resources ca
efficiently devoted to a determination of the optimal meth
to employ for each individual integral. A more effective com
putational strategy is to group integrals by particular class
with appropriate ranges of the indices$i, j, k, l, m, n% speci-
fied, and then use the most robust convergence accele
technique for that class of integrals. For the particular ca
examined in the present work, the Levin-u technique proves
to be superior. For particular cases, all the convergence
celerators give reasonably satisfactory agreement with
another.

In Table II we tabulate a representative sample of the c
~ii ! integrals. For the most slowly convergent cases, th
with l 521, m521, at least 25 digits of precision hav
been obtained. For other entries, as many as 31 digit
precision are obtained, which essentially represent the m
mum precision possible working in quadruple precision w
a 32-bit word length. Since results for a wide range of c
~ii ! integrals with oddl andm can be obtained with close t
or at machine precision, further improvements in the num
cal evaluation of these integrals is most likely to be achie
by fine tuning the code to obtain small gains in compu
tional speed.
v.
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The precision reported for the results in Table II has be
checked by doing independent calculations using Baile
@51# multiple precisionFORTRAN conversion packages. A
small sample of higher-precision values is tabulated in Ta
III. These values are extremely useful as reference point
check the precision of the standard quadruple precision
culations. Using Bailey’s multiple precision packages to p
duce a standardFORTRAN add-on module for an atomic cod
would not be a practical consideration, because of the v
slow speed of the multiple precision calculations.

Table IV presents a sample of values for the case~iii !
integrals. Here the precision is somewhat decreased from
case~ii ! results presented in Table II, with about 17–19 d
its of precision being obtained. This is a significant improv
ment over the results obtained in two previous publicatio
@18,19#, where approximately 12–14 digits of precision ha
been reported.

V. CONCLUSION

In summary, a fairly efficient procedure has been p
sented for the numerical evaluation of a class of thr
electron atomic integrals, which yields high-precision resu
in a fairly fast computational scheme. With some addition
tabling of the auxiliary functions, enhancement to the spe
of evaluation could be obtained. Convergence accelera
play a critical role in evaluating the slowly converging sum
that are obtained in the analysis.

Probably a number of the techniques discussed here
be applied to some of the much more difficult one-cen
four-electron integrals of similar structure to those of t
present work. This topic is under investigation.
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