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Computer simulations of a two-dimensional system with competing interactions
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The results and methodology of large scale computer simulations of the two-dimensional dipolar Ising
model with long-range interactions are reported. Systems as large as 117 649 particles were studied to elucidate
the elementary excitations and phase diagram of two-dimensional systems, such as Langmuir monolayers, thin
garnet films, and adsorbed films on solid surfaces, which spontaneously form patterns of stripes, bubbles, and
intermediately shaped domains. The challenging numerical investigations of large scale systems with long-
range interactions at low temperatures were made possible by combining the fast multipole method and a
non-Metropolis Monte Carlo sampling technique. Our simulations provide evidence that, at sufficiently high
ratios of the repulsive to the attractive coupling constant for the model, twofold stripe order in the systems of
interest is lost through a defect-mediated mechanism. Heat capacity data and the excitations observed in our
simulations as the system disorders indicate that it is most likely an instance of a Kosterlitz-Thouless phase
transition. The results from simulations with and without external field are in excellent agreement with the
predictions of an analytic scaling thedi. D. Stoycheva and S. J. Singer, Phys. Re¥4:016118(2001)],
confirming the phase diagram furnished by the analytic model. The scaling theory suggests that, under certain
conditions, defect-mediated stripe melting may be supplanted by Ising like disordering within stripes for small
repulsion strength. A qualitative discussion of a model that supports both disordering mechanisms is presented.
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I. INTRODUCTION exists[5]. With few exceptiong10-14, the experimentally
observed morphologies have been discussed in the zero-
Competing attractive and repulsive interactions generateemperature limit, treating only perfectly straight stripes
spontaneous spatial modulations in a diverse collection df4—9|. The experimentally observed domain structures, when
two- and three-dimensional systems in nafure This paper sufficiently regular, can be quantitatively understood in terms
reports an implementation of large scale computer simulaef the already mentioned balance between short-ranged at-
tions of a fundamental model for modulated materials, suchractions and long-ranged repulsions. The attractions cause
as Langmuir monolayers, thin magnetic films, and adsorbeddditional wall energy at domain borders, and the repulsions
monolayers on solid surfaces. Patterns of stripes, bubblearise among magnetic or electric dipoles. The interplay of
and intermediately shaped domains arise in these systentisese effects determines the preferred modulation corre-
due to the competition between attractions and longer-rangsponding to a free energy minimum.
repulsions. Our numerical investigations of systems with In the last couple of decades, the newly developed tech-
long-range interactions of sizes up @(10°) particles pro- niques of fluorescence and video microscopy have enabled
vide insight into the critical excitations and phase diagram othe visualization and analysis of patterns resulting from
spontaneously modulated phases. They elucidate how thep@ase transitions in thin lipid films at the air/water interface
properties evolve as a function of the relative repulsion15-19, as summarized in recent revielk 19,20. These
strength, defined as the ratio of the repulsive to the attractivetudies have shown that domain structures in surfactant
interaction constant. This work augments an earlier paper omonolayers are amazingly similar in appearance to modula-
large scale simulation$2] and tests an analytic scaling tions in ferromagnetic fluids and thin filnj40]. The domain
theory[3] derived for the dipolar Ising ferromagnet and its shapes have been demonstrated to be once again due to a
lattice gas equivalent. balance between short-ranged attractive interactions, such as
Spontaneous spatial modulations were first observed ithe van der Waals attractions between hydrocarbon chains
magnetic and dielectric systerf$—9]. Experimental studies [21] and long-ranged dipolar repulsions, arising from the in-
of thin magnetic filmg5,9] and fluids with magnetic or elec- teractions between dipolar phospholipid head groups or ef-
tric polarization[7] have revealed the occurrence of modu-fective dipoles formed by the charged heads of the phospho-
lated phases—patterns of stripes, bubbles, or intermediatipids and subphase counteriongl7,19,18. Pressure-
morphologies. In three dimensions, the patterns may be ex16,21,23 and temperature-inducgd?7] phase transitions in
tensions of the two-dimensionéD) morphologies along a thin organic films appear to be reversible, although some
third dimension, such as lamelli or cylinders, or true three-hysteresis is preseht7].
dimensional modulations. It has been demonstrated that Recent experimental studies of adsorbed monolayers on
“stripe” to “bubble” phase transitions in magnetic films may surfaces[23—26 have provided evidence of 2D arrays of
be induced by varying an applied external fietd [5,9]. stripes [23,25,26, bubbles[24], and intermediate “laby-
Stripe to bubble transitions occur when the width of the mi-rinth” structures[24] formed by the adsorbed atoms, analo-
nority stripes falls below a certain thresh¢®l. These trans- gous in appearance to the ones seen in thin ferromagnetic
formations appear to be reversible, although some hysteresiiims and Langmuir monolayers. The spontaneous modula-
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tion phenomena in adsorbed monolayers have been modeledall order parameter values, for a continuum spin model
using zero-temperatur@vith respect to domain shape fluc- with long range repulsions indicated a first-order phase tran-
tuationg elastic theory{27—-29. The similar effect of elastic  sition between isotropic and nonuniform states in the system.
and electrostatic interactions resulting in analogous phasgoner and Nelsoi36] studied the effects of both phonon-
modulations in 2D has been pointed out in REf4] and  |ike fluctuations and Kosterlitz-Thoule$&T)-type unbind-
summarized in Refl30]. As a consequence, a single modeling of topological defects on 2D layered materials. They
incorporating the interplay of short-ranged attractive andyinted out that dislocations, present with a Boltzmann-

long-ranged repulsive interactions, regardless of their origingjstributed density at any finite temperature, are responsible
may be applied to study all of the above-mentioned systemgq the |oss of translational order and the algebraic decay of

Curvature instabilities in biological membranes have alsqyientational correlations in the low temperature phase. Un-

been explained using the same theore_t|cal mEBE} . binding of dislocations into pairs of disclinations at the KT
The reason for the apparently universal domain mor-

phologies in two dimensions and the applicability of a Singlephase transition destroys orientational order, leading to expo-

model is that the forces governing self-organization in thehential decay of orientational correlations. Toner and Nelson

systems of interest act on a larger than molecular Iengtl'ci)md'ct(Ed the phase diagram applicable to 2D layered mate-

scale. The nature of the short-ranged attractive forces varie”saIS in the presence of topological defect unbinding. Garel

between systems. The long-ranged repulsions in experimerﬁl-nd Doniach[37] investigated the phase diagram of a

tal systems studied to date are due to actual or effectivé"ﬁliaxial ferromagnet using a Ginzburg-Landau mean-field
dipoles and decay with distance Bs 3. Magnetostatic spin approach, but also discussed the effects of topological defect

. . ' ; . _.unbinding on the degree of 2D order of the modulated
interactions govern the dipolar repulsion between domains i

thin ferromagnetic filmg4-9]. Surface polarization is the phases. They were unable to determine which mechanism

S ; was responsible for the loss of twofold order. Andelman
source of the repulsion in Langmuir monolaygt6-21,32. : : :
; L . . et al. [32] analyzed insoluble Langmuir monolayers with a
Either surface polarization or accumulation of elastic energ

: . . . yszburg—Landau expansion. Within a mean-field approxi-
from lattice mismatch cause actual or effective dipolar repul-—"_ " . . i

. - , mation they obtained results that are in qualitative agreement
sion within adsorbed monolayers on solid substrates

[30,33,34 with the corresponding analysis of the ferromagnetic system
A simple Hamiltonian captures the essential feature resented in Ref.37]. Our recent wor{2,3] has shed new

needed to describe the behavior of the above mentioned Sy|ght on these issues and has furnished a theoretical explana-

) . . . >Ytion for previously puzzling experimental observations, such
tems (notation appropriate for spin systems will be used in induced stri iting i ) |
this papey, as pressure-induced stripe melting in Langmuir monolayers

[22].
A SuSer In this paper, we investigate the mechanisms leading to
—HIkgT=1 2 SRSR’ — > 2’ R R, 3+h2 Sg, the loss of tW(_)fold orde_r o_f the stripe phase in Langmuir
(RR') rRR |R—R’| R monolayers, thin magnetic films, and adsorbed monolayers, a

(1) process we refer to as “stripe melting.” We present evidence,

o _ ) . . based on our computer simulations, for the role of disloca-
wheresg andsg. are uniaxial spin variables for spins at sites tjons and disclinations in the 2D systems of interest. Our
RandR’, Jis an attractive coupling constani}0), Ais@  nymerical results for the heat capacity show smooth behavior
repulsive coupling constantA(-0), andh is an extemnal  of c near the stripe melting temperatuFg,, as predicted
field. The first term in the above equation captures the shortby KT theory. The computer simulation results are in excel-
range nearest-neighbor .int.eractions of a system .of ISingant agreement with an analytic scaling theory for two-
spins, the second term mimics the long-range repulsions. Thgmensional systems with competing interactions presented
prime indicates thaR=R’ is excluded from the sum. The g|sewhere[3]. We compare numerical data to the analytic
third term takes into account the influence of an exteraineory phase diagraf8]. Other possible experimental tests
magnetic field. The Hamiltonian of E{l) turns into one for o, our theoretical findings are suggested.
a dipolar lattice gas after the variable substitutss=2ng This paper is organized as follows: The computer simula-
—1, whereng=0 or 1 is the lattice gas occupation variable. tion techniques we used are introduced in Sec. II. In Sec. Il
We also introduce the temperature-independent paramet@fe discuss our numerical results. The implications of our
n=AlJ, the ratio of the repulsive coupling constahibver  \ork are considered in Sec. IV. The statistical analysis of our

the attractive coupling constadtin Eq. (1), which measures simulation data and details concerning the Monte Carlo al-
the relative repulsion strength in the system. Throughout thigorithm are given in the Appendixes.

paper, distances are measured in units of the nearest neighbor
distance of the lattice, so quantities likeare dimensionless.

The model of Eq.(1) has sparked a lengthy discussion
concerning its phase diagram and the types of elementary
excitations leading to phase transitions. Both order parameter Previous simulations for the dipolar Ising model on trian-
fluctuations and topological defects, such as dislocations anglular[11,13 and squar$38,39 lattices have confirmed that
disclinations, have been considered as factors leading to tithe Hamiltonian of Eq(1) supports the experimentally ob-
destruction of orientational order in modulated phases. Aserved morphologies—stripes, bubbles, and elongated inter-
self-consistent field theory by BrazovsKiB5|, valid for  mediate domains—in the 2D systems of interest.

II. SIMULATION TECHNIQUES
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Several essential problems have to be addressed to simu-
late the model of Eq(1).

(1) Since the dipolar interactions are long ranged and give
rise to long-wavelength modulated structures, simulation

a group of
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systems must be large enough to capture this behavior. This ,‘;p;.;,, Gt (@nrg\‘}n o
requirement can place insurmountable limitations on com- '2;,;;.;‘, 2 Cer e
puter codes relying on explicity summing the interactions = au‘ju‘,"
ey 2
o a S

over all spin pairs[Recall that the Hamiltonian in Ed1)
includes repulsive interactions between all spin pairs, not just S
nearest neighbork.For direct sum approaches, each at- ) & a‘;
tempted spin update requires a number of floating point op- RTINS DRSS ‘:L ae Sk
erations, which grow linearly with system size. Previously -ﬁ.}:‘\g‘?‘.‘@f@fﬁg}“ qt;}“
published results for the dipolar lattice gas on a triangular Y e aaNntnEe e 2o
lattice are available for a periodically replicated unit cell of ‘g“htf u?@;‘@.‘@;
as many as 1577gL1-13, but more typically about 3000 (&@;@a" & E
spins[11,13. For the Ising model on a square lattice, the SRR
largest size of the periodic replicas was 4096 particles
[38,39. In this work, we report simulations of systems as FIG. 1. FMM hierarchy on a two-dimensional triangular lattice.
large as 117 649 spins.

(2) The systems described by Ed) contain large domain
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fruct h Cis slow i ical simulati the building block for the hierarchy into which we partition
structures whose movement is slow in numerical simulationg, . system. At level=1,,,,— 1, the spins are grouped into

and which require long equilibration times. At the low tem- hexagons consisting of a spin and its six nearest neighbors
peratures in consideration, much lower than the critical tem- g0 9 pIn. 9
perature of the Ising model without long-range repulsionson a triangular lattice. The spins are represented by black

Metropolis Monte Carlo(MC) algorithms perform ineffi- dots in Fig. 1, and a hexagon containing seven spins is indi-
ciently. cated. Upon going from level,,x—1 to | .~ 2, seven

In order to accommodate the above-mentioned require?€X@gons, each containing seven spins, are grouped so that

ments, we have employed the fast multipole mettiedM)  their centers form the vertices and center of a larger hexagon.
[40] and a non-Metropolis sampling techniqjd,42. Thus, atlna—2, the hexagonal spin groups contain 49
spins. Subsequently, seven groups of 49 spins are brought
together to form a hexagon containing 343 spins at level
A. The fast multipole method I max— 3 and so on until=0 is reached. The system in Fig. 1

We have implemented the FMM introduced by Greengard1@S I max=4. corresponding to a total of*7or 2401 spins.
and Rokhlin[40]. A recent review summarizes its features in This particular choice of a recursive scheme is the reason
three dimensions and compares it to Ewald sum and particl@hy the sizes of the systems we simulated have been ex-
mesh-based approaches]. The FMM has previously been pressed in powers of the integer 7 throughout the paper. A
used in continuous-model simulations in tj40] and three  very convenient feature of the recursively generated hierar-
[44] dimensions. We have devised a scheme that applies tthy of hexagons is that the constituent elements at each level
simulations on a lattice. A considerable advantage of ouf, blocks of 7max”! spins, are always arranged on a triangular
FMM implementation, discussed in detail in the following lattice whose basis vectors are denotedblfl) andb,(1).
sections, is that transferring quantities needed to calculate thehe basis vectors at the level of the individual spins
interaction potential between levels in the FMM hierarchy—=| - b, (l,1.,) andby(l sy (Fig. 2), connect the center of
involves a set of precomputed matrices that do not depend of group of seven spins with the nearest neighbor at the
the level. “three o’clock” lattice location and to the “one o’clock”

7l3Jsing the FMM circumvents calculating the long-ranged g rest neighbor location, respectively. In Cartesian coordi-
R™" depolarizing interaction potential via CPU-intensive di- 5tes they are given by

rect summation methods, as was done in previous Wtk
13]. The FMM reduces the work required to calculate the
total energy of a system ®f particles fromO(N?) to O(N),
and the amount of work per MC target update fr@tN) to
O(In N) compared to direct-sum methofd3]. For concrete- b2 (Iax )
ness, we illustrate the implementation of the FMM on a 2D
triangular lattice. The FMM can be applied to other lattice b1 (e )
geometries and systems in other dimensions in the manner 13 max
we describe with minor modifications.

The FMM requires a recursive division of the simulation
cell into a hierarchy of levels. We designate the simulation
cell itself as level =0, and the lattice spins ds-|,,,. For FIG. 2. Basis vector®;(l,,.,0 at levell ., and displacements
the case of a triangular lattice in 2D, we choose a hexagon a%(j,) from the center of a group of seven spins.

5(6)

3(5)
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1 1 , B
L 5 V=3 X' ssIR-R+nb(0) % (@)
R,R’,nq,n
bl(lmax):<0>a bo(Imax) = \/§ - i) 1
) which we calculate using the FMM. The index the peri-
odic replicas of the primary ceffor whichn;=n,=0), and
Basis vectors for subsequent levels of the FMM hierarchicaR andR’ are the positions of spirsg andsg:, respectively.
structure are related by the following linear transformation The prime on the sums indicates that self-interactions are
b.(1) excluded. Repeated indices are summed. In a direct-sum ap-
1 1
(mm%7

3 _1)(b1(|_1)>E (bl(l_l)) 3 proach,E,Q,R,’nlynzm—R’+nibi(0)|*3 would be precom-
1 2 /\by(l-1) bo(1—1) puted and stored in an array labeled®yandR’. The FMM

Note that the matriXA remains the same, regardless of the

values ofl andl—1. From the above relations,

calls for a rearrangement of the sum in E@) into intra-
[bi(1 = 1)[=V7|bi(1)]. (4) L

group terms for target groupS (chosen in our case to be
hexagonal groups of seven spimsd intergroup interactions

. . . . . . v==1 > ss,|R—R’|*3+EE > sg®c(R)

The primary simulation cell and its periodic replicas are at 2G 5 TR 24 K TRTGVH
level =0 in the FMM hierarchy, and the basis vectors cor- ’

responding td =0 areb;(0). Thelocations of periodic rep- , . L
lica centers, relative to the center of the primary simulationThe field®g(R) acts as an effective magnetic field on each

cell that is taken as the origin of our coordinate system, ma)9f the spins within a target grou. It is given by

be expressed @&=q;b;(0), whereq; are integers, and the

convention f_or summat|or_1 of repeated |r_1d|.ces is in force. CPG(R):E E E sr|R=R’+n;b;(0)] 73,
The location of any poinR at levell within the primary N G/'(#G if n=0) R’ G’

simulation cell can be uniquely decomposed as

| ReG. (8
R(j1, .. .j)= 2 &(jinbi(l")  (0<j,<6). (5 _ , _ _
I'=1 Since bothG andG’ may belong to the primary simulation

. ' - ) ) cell (n=0), self-interactions must be exclude®(# G, if
4i(j1) are defined to indicate the displaceméheny) from _ ,_ ) \when G’ lies outside the primary cell, it is either

the center within a group of seven spins, as illustrated in Fig,, periodic replica ofG itself interacting withG (G’ =G, n
2, and have the following values: #0), or another periodically replicated group interacting

_ with G (G’ #G, n#0). One key advantage of the FMM is
[21(0),22(0)]=(0.0, © that the initial calculation ofo 5(R) for all groupsG, i.e., the
[84(1),8,(1)]=(1,0), second term in Eq8), requires onlyO(N) operations.

At the beginning of a simulation, the repulsive interaction

[6:(2),8,(2)]=(0,1), field of the entire system is calculated in what is called an

“upward pass.” To achieve that, a multipole expansion is

[5:1(3),85(3)]=(—1,1), initially computed for all groupsG and the hierarchy of

larger groups. Following each MC update, the upward pass is

[51(4),5,(4)]=(—1,0), required to generate new multipole moments only for groups
at each level whose spin configuration has changed. Second,

[6:(5),8,(5)]=(0,—1), the collection of precomputed multipole moments is used to

calculate an effective potential for target spin groups in what

[81(6),8,(6)]=(1,—1). is called a “downward pass.” At the start of program execu-

tion, a complete downward pass for all spin groups is per-

Due to the hierarchical arrangement of hexagons in the sygermed to calculate the total energy of the initial configura-
tem, 8,(j;) also give the location of a group ofiex! spins  tion. Al steps involved requir®(N) operations, compared
at levell in the hierarchy relative to a hexagon center at levelto O(N?) operations in a direct sum calculation.
| —1. Therefore, specifying thig index for levels 1 through Monte Carlo updates of a target gro@consist of three
| is sufficient to locate a target group at levebnd its “ad-  separate steps. First, a calculation of the effective field
dress” is a number in base 7. In our simulations, groups ofb5(R) at that group, based on precomputed multipole mo-
seven spins ak,.x—1 were targeted for Monte Carlo up- ments, is required. This corresponds to a partial downward
dates. The address of the target indicated by the arrow in Fighass. Subsequently, the energy change associated with the
1lis{166. actual spin flip is evaluated. Finally, an update of multipole

Using the above-introduced notation, we develop an exmoments, a partial upward pass, follows. There is a fixed
pression for the long-rang® ™2 repulsive interaction energy operation count at each level of the partial upward and
in the system, downward passes. Since the number of level©{n N),
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FIG. 3. Contribution to the effective field(r) at a test point
arising from a group of seven spins centered at

R(i1ia -+ D1, —1)-

each update of a target group requi@éin N) operations,
and an entire MC pass requir€{N In N) operations.

1. Multipole moment functions and the upward pass

We use a multipole expansion to derive a fornfigf(R), (0 0)
which is particularly useful for efficient calculation of the ’

Interaction pptentlal during 'computer simulations. AS, an X~ kG, 4. Coordinate system for shifting the interaction potential
amP'e’ consider the effective field(r) at_a test pointr d(r) experienced by a particle at positionfrom an interaction
arising from a group of seven spins centered atener at level,,,,—1 to an interaction center at levil,,— 2.

R(1, - i,,,-1) (Fig. 3),

ulkiko|R(j1, ...,j|max_1)] are multipole moment coeffi-

cients appropriate for groups of seven spins at ldygl
—1. They contain the spin configuration dependence of the

o (r)

6 S . . (i .
= > (RO T )+ 0101 )P mad] multipole expansion. If any of the seven spin variables
jlmax=0 |r_[R(j1' e 'jlmax_1)+5i(j|ma>)bi(|ma><)]|3 S[R(jl ----- jlmax—1)+5i(j|max)bi(|max)] In Eq (9) Changed Its
w value, the effect on the multipole moment expansion in
_ ; : the system would be reflected by a different
kl%zo wlkakelR(as -y 0] pulkika|R(j1, - . - i ~1)] coefficient. The multipole func-
o . tions A(k;k,|r) remain the same upon a change of the spin
X 0[k1k2|r R(]]_, e 'llmax_l)]' (9) configuration.

) ) ) Following the concept of the upward pass, consider going
In the above equatiorg(k;ko|r) are multipole functions de- gne step higher in the hierarchy of the system. This corre-
fined as sponds to shifting®(r) to a new expansion center
R(jq, ... ,j|max_2) at levell ,.— 2, illustrated in Fig. 4. The

ky+k
gL (10) new expression for the shifted multipole coefficieptss

O(kiko|r) = ———|r| 3,
( 1 2| ) kllkzl &rlj(-l&r;2| |

plkika|R(a, i —2)]
wherer,; are the components af, so thatr=r;b,. For a

triangular lattice in 2D,

6
= D; kiksy|kiks
|r|‘3=(r§+r§+rlr2)‘3/z. (11) j|m31=0 k%é ]|max*1( 1 2| 1 2)
Note that the multipole decomposition has general validity X ulkiky|R(1y -1~ D] (13

max

and does not depend on the dimension of the vagtor the
type of interaction. For am-dimensional vector and an

. . . . The sum ovef, _, indicates that there are seven groups of
interaction that goes a<¥, the multipole expansion has the iy 1 group

seven spins at levé},,,— 1 that contribute to a single group

form at levell,o— 2. TheDj(k;ky| k1ks) are elements of a matrix
1 gratkat kg that is the same for a §hift from any leveb .IeveII — 1 and
O(Kky- - - kolr)= — —|rP. are calculated by straightforward, but tedious, series expan-
ko'ka!---kal gritorsz. .. or

sion of the multipole functions. Therefore, the above expres-
(12 sion holds for all levels,

n
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ulkiko|RG1, v hji—1)] tribution for| =1; (5) Shift and rotate to interaction center at
6 |=2; (6) Divide | =1 interaction list intol =2 far field and
_ 2 E D (kyko|k!kb) [ K KIR(] in] =2 int_erac_tion Iist;_. o and so oruntil the far field and
_j|:0 ot i (KaKaKi k) LK Ko RU 1, 1) - interaction list contributions dt,,,-1 have been calculated.
172

In order to cast the above steps in mathematical terms,
(14)  considerd(r) arising at a test point from a group of spins
) ) ] centered aR(jq, ...,j;) at levell. Let us first examine the
Several points to note about the multipole moments in thegy field. Usingt; ,i=1,2 to stand for the components of the

=lmax, the only contributing term has; =0 andk,=0. The

multipole moment coefficient isu[00R(j1, - .. .ji__)]
i Ii(I max) |¥2 for a triangular lattice, and we r—R(jq, ....j)=tbi(l), (15)

adopt the convention thab;(l,.0|=1. Higher multipole _ _
moments emerge when Spins are brought together in grou&here repeated indices are SUmmEd, we cast the interaction
and the effective field is expanded about alternative referenciéeld ®(r) as a Taylor expansion,

points, as shown above. During this procedure, old multipole
moments only give rise to new multipole moments of the ) o kek
same or higher order. We checked the convergence of the ‘I’(f)=k kzﬁ() Mkiko|R(j1, .- I (16)
multipole expansion performing calculations wkh andk, v

as large as 20. It was established that results converged fo
maximum power of 2 in thé indices.

[

I . . .
'I%e series are constructed recursively: the expansion for an

interaction center &(j4, - . . ,j|) is obtained from the series
2. Downward pass about an interaction centerB{j 1, ... ,j;_1), which in turn
' are obtained from the series R{j,, ... ,j;_2), and so on.

After an initial upward pass, the total repulsive potential Switching interaction centers from leveto | +1, etc. cor-
field at levell =0 and all sublevels is known. The downward responds to the a|ready mentioned shift and rotate opera-
pass calculates the interaction potential for a group of spinfons. The coefficientsy[kyko|R(j1, . . . ,j1+1)] at levell

at a chosen levdl Depending on their proximity to the tar- 1 are related toy[kyk,|R(j, - . ..j;)] at levell as fol-
get, the other groups of spins in the system give rise to eithggys:

“far field,” or “interaction list” [40] contributions. Multipole

expansions are used to calculate the far field, while contribuzr 1 IR¢i ;

. . T Mkiko|R(j1,s - hji41)]

tions from members of the interaction list are computed ex-

plicitly. In our simulations, the interaction list for a group of _ - e :

7'max’! spins at levell includes its six nearest-neighbor - 2, Ci|+1(k1k2lk1k2)7’[klk2|R(J1’ ] A7)
groups, i.e., a total of 6(#ax"') spins. The interaction list of kika

our targets for spin flips, groups of seven spins at level o o
| max—1, includes the 42 spins that belong to the six nearestCi,.,(Kikz|Kiks) are elements of a matrix independent of
neighbor hexagons of the target. Figure 4 illustrates a targahe levell and evaluate to zero unlekg+k,<k;+k;.
for a MC updatg(central hexagonand its six nearest neigh- The members of the far field and the interaction list
bors containing the interaction list. All other spins in the change from level to level. Some groups of spins that were
system contribute to the interaction potential at the targepart of the interaction list at levdl are treated as far field
through the far field. using the finer degree of detail at levet 1. We describe a
The interaction field is brought froh=0 to =1, 1 procedure for incorporating repulsive energy contributions
through a series of linear transformations, referred to aarising from groups of spins that were part of the interaction
“shift” and “rotate” operations. A shift operation consists of list at levell into the far field for levell + 1. We designate
reexpressing the field from an expansion about an interactiothis “correction” to the far field at level +1 by Ad®g(r).
center at level to an expansion about a center at leVel The multipole moment coefficienis[ kik,|R(j4, ... .j;)] at
+1. The interaction center for a given leveis defined as level |, which can be used to defink®g(r) following Eq.
the midpoint of the central hexagon containingmax ' (9), have already been calculated in an upward pass preced-
spins at that level. For instance, in Fig. 4, the shift bringsing the downward pass. They are related to a correction

the center of the interaction potential expansion fromAy[k;k,|R(j1, ...,j;)] at levell as follows:

RG1, .-, ~2) OR(1, ... Ji__~1). The rotation that

follows is the recalibration of the basis vectdxsaccording . .

to Eq. (3). The downward pass is summarized in the follow- A(I)G(r):R(M’E” i k§<2 ko R(ja, - )]

ing steps:(1) Add far field contribution fol =0, an Ewald

summation of the repulsive field from a lattice of periodi- X O[Kika|r =R(j1, - - j1)]

cally replicated simulation cell$2) Shift and rotate to inter-

action center at=1; (3) Divide =0 interaction list intol = > Ay[Keko|R(jp, ... i) IR, (18
=1 far field andl =1 interaction list;(4) Add far field con- ky.ko
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scale can be quite large. Consequently, the “Monte Carlo
time” required for their equilibration is long, and the same
computational difficulties arise as in critical slowing down
[45—47. Cluster update techniques were developed in con-
nection with the latter problem. They were introduced by
Swendsen and War{g8] and their efficiency was improved
by Wolff [49]. The Wolff algorithm assures that every at-
tempted cluster flip is accepted, leading to efficient sampling.
The cluster update algorithms dramatically enhance the sam-
o . . . pling of spin models, compared to Metropolis MC, regard-
6 8 10 0 5 .. 10 15 less of their dimensionality and degrees of freedd&-50.
InN 105 NInN . . . .
However, no spin models with long-ranged interactions have
FIG. 5. Scaling of CPU timét) per Monte Carlo pass with total been addressed to date. We present our implementation of
number of particlesN). The CPU times were measured on a Cray cluster update techniques with the help of which we have
T90 computer for systems of size$,7p=3,4,5,6. Lines of slope overcome slow dynamics and have achieved high acceptance
equal to 1(dashed lingand 2 (dot-dashed lineare shown in the rates for the dipolar Ising model near criticality.
log-log plot. In the system we study, the Ising spins are organized on a
triangular lattice into groups of seven to facilitate implemen-
The coefficientsA y in the above equation are linear combi- tation of the FMM discussed in Sec. Il A. The groups of

-
T

Int(s)]

nations of u[kiky|R(j1,....,j;)] which belong to the seven spins are also used as the clusters for multispin up-
groups of spins forming the interaction list at level dates.(Due to the long-ranged interactions, cluster selection
i i according to the Wolff algorithm is not possibl&ach group
Aylkika|R(g, - - 0] thus has 2=128 possible spin configurations, labeled by
spin statesk=0 throughk=127. We arrange the cluster
= > > M(Kqky|kikp) states in cyclical order, so that stdte-127 is followed by
RIG1. -0 kpkg statek=0. Traditional Metropolis MC methods only attempt
AP . a trial move to one of the possible 128 states per energy
X plkikalR (Jay - D] (19 calculation, leading to low acceptance probabilities and ex-

M (kyko|kiKy) are elements of a matrix that does not depen&remely long equi!ibration times. To _achieve better perfor-
1K2[K1K) mance, we have implemented a variant of a cluster update

on the levell. At level | =0, the interaction list includes the : S .
. : . . . algorithm proposed by Creuf1,42, which in certain cir-
nearest neighbor replicas of the primary simulation cell. In-

teractions with all other replicas contribute to the far ﬁeld,cumstances reduces to the Wolff algoritii#e], to treat a

. . “'system with long-ranged interactions, such as the dipolar
a_\nd Y(kik;|0) is computed with the help of Ewald summa Ising model. The algorithm was originally introduced in the
tion methods and stored. . ical b diti . lai

The downward pass, associated with Monte Carlo updatem!crocanonlca ensem [é.l ]. and itis convenient to explain

. P s ¥ in that form before its trivial generalization to the canoni-
of target spin groups, requires shifting and rotating(r) to cal ensemble which we used
a new locatiorR and the addition of Ad¢(r) contribution !

f fixed ber of f spins. Si th b A “demon” variable, capable of redistributing energy
rom a fixed number of groups o Spins. since the numboer 0{hroughout the system, is introduced. A well-defined statisti-
levelsl! in the simulated system 9(In N), each update of a

i " e O(N NN i dt cal system must have a ground state. We choose the demon
argez group require ( v in ) operations, compared to ground state to have zero energy, so tBgt=0. In the mi-
O(N?) operations in a direct sum method. Figure 5 illus-

. ) . . . rocanonical version of the algorithm, the total energy of
trates the scaling of CPU time with system size we achleveég g 9y

. X : system+ demon is conserved. The simulation progresses
T o tons. oty & o e meaom a it sate e (e cemon s eney an
' She target cluster selected for update is in skgteThe sys-
tem initially possesses ener@y. Moves to trial final states
are attempted in some regular order. For our clusters of 7
Simulations of the Ising model without long-range inter- spins, states are chosen by advancing through the 128 pos-
actions at either low temperatures or near the critical poinsible configurationgrandomly in ascending or descending
are characterized by numerical difficulties that have differenprdes, using the cyclical condition when state 0 or 127 is
origins. Both types of hindrances occur simultaneously in theencountered. The first trial state for which energy conserva-
pattern forming systems of interest and are addressed hergon results inE}*"=0 is accepted. In the illustration of Fig.
Phase transitions associated with domain morphologies aa), k—ky,=6 is the first accessible cluster state. Here, the
typically located at roughly 1/10 of the bare Ising modelfirst accessible transition happens to result in a decrease of
critical temperature, so spin flips needed to move domairsystem energy(In general, the system energy could either
boundaries can involve extremely small Boltzmann factordncrease or decrease. Any trial state whose energy lies below
and, as a result, low acceptance rates. Complicating theske dashed line in Fig.(6) is energetically accessibjefter
“low temperature” difficulties is the fact that thermal fluc- the move is taken in our example, the system energy drops
tuations involve motion of domain structures whose lengthand the demon energy rises—Figbp A reverse move from

B. A cluster Monte Carlo algorithm
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(a) E-E, were considered for an acceptable energy-conserving move.
2 This brings the acceptance rates to a typical value 80%

for the dipolar Ising model, much higher than Metropolis

MC at low temperature.

We achieved an additional speed-up by explicitly dis-
abling attempts for spin updates for those randomly picked
targets that werenot situated along stripe interfaces. The
probability of flipping a spin in the interior of a domain is
proportional toe™'? times a correction for the long-range
dipolar interaction. At typicall and A values used in this
work, the probability of flipping interior spins is astronomi-
cally low and the system evolves exclusively by movement
of the domain interfaces. Targets were classified as “interfa-
cial” or “interior” to a stripe in the following manner.

If a target for an update was determined to have either
“all up” or “all down” spins, the spin configuration of its six
nearest-neighbor groups of seven spins was also checked. If
all six nearest neighbors to the target had the same spin con-
figuration as the target itself, then the target was determined
to be interior to a stripe and no CPU time was spent on an
attempt to update it, since the probability for an accepted
move would be very small. If any of the nearest neighbors
4 K-k, had a spin configuration different than that of the target, the

target was considered for an update. By running the “full”
FIG. 6. Cluster updates in the microcanonical ensemble.  version(i.e., without skipping any updatesf our computer
code for a test case for each value of the relative repulsion

the final state depicted in Fig.(§ in the direction of de- strengthn=A/J and system size, we checked that this fea-
creasing index will bring the system right back to its initial ture did not alter the statistical sampling of targets. In gen-
state, because it is the first state encountered to which eral, this approach should be used with cauteamd we did,
transition is energetically allowed. The probabilities of at-especially for systems with low values whose stripe melt-
tempting moves to states in ascending or descending order Ing temperature lies highest among the systems we
the indexk are both 1/2. Therefore, the probabilities of the examined.
forward and reverse moves are equal and microcanonical de- To test the cluster update algorithm, we calculated the
tailed balance is satisfied. average magnetization per sgim) with no long-ranged re-

We work in the canonical, rather than the microcanonicapulsive interactions, so the numerical results could be com-
ensemble. This is achieved by drawing the demon’s energpared with the exact solution for the Ising modBL]. (Of
from a Boltzmann distributiofP(Ep) > e #Ep] before each course, we did not skip “interior” spin updates in the ab-
update. Physically, this corresponds to placing the system igence of repulsive interactions and domaingnder these
contact with a heat bath whose relaxation time is muctcircumstances, we recover the expected value$ngf=0
shorter than that of the system. A formal proof that thisabove the critical temperature agchy=+1 at T<T'"9.
scheme enforces canonical detailed balance is given in Ag=or temperatures between these two limits, we compared the
pendix A. Targets were picked at random. At each visit to aresults obtained with our variant of the Creutz algorithm to
cluster, which entails a single calculation of the long-ranggm) from ordinary Metropolis MC and analytic values for
dipolar field via the FMM, up to 127 new configurations the magnetizatio52]. The data are presented in Table I.

A 4

TABLE |. Average magnetization per spin obtained from the Creutz algorithm, Metropolis MC, and
analytic theory. For each temperature, the systems were equilibrated for 20 000 passes and simulation data
were collected for 180 000 MC passes. Simulations were performed for systemis-@#@1 spins for the
Creutz algorithm and 2688 spins for the Metropolis algorithm. Acceptance rates are indicated in parentheses.

J <m>Creutz <m>MetropoIis <m>analytic
0.285 0.796:0.005 (43.6%) 0.7880.003 (16.1%) 0.789 644
0.300 0.87@0.001 (33.4%) 0.86950.0004 (11.4%) 0.869 596
0.310 0.8975:0.0005 (28.5%) 0.89770.0004 (9.4%) 0.897 662
0.350 0.9525:0.0005 (15.7%) 0.95250.0001 (4.6%) 0.952501
1.000 0.999 986 0.000 003 (0.0057%) 0.999 9870.0000005 (0.123%) 0.999 988
2.500 1.0:2.4x 10710 (0.00%) 0.32:0.05 (3.41%) 1.000000
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The analytic critical temperature for the bare Ising model on
a triangular lattice corresponds dg=0.274 65352]. Simu-
lations for either algorithm were started from random spin
configurations.

For all temperatures presented in Table |, the average
magnetization per spin obtained through the Creutz algo-
rithm is in excellent agreement with the analytic results. The
Creutz algorithm yields about three times higher acceptance
rates compared to Metropolis MC at low temperatures, as
shown in Table I. At extremely low temperaturess 1.000
and J=2.500, both the Creutz and Metropolis algorithms
show very low acceptance rates since virtually all the spins
have the same orientation. Once the system approaches the
Ising model ground state, departures from perfectly aligned
spins are rare. However, even in this limit the Creutz algo-
rithm is superior to Metropolis sampling. At=2.500, the
Metropolis algorithm fails to equilibrate to a configuration
whose magnetization has the expected value of 1.0 and in-
stead reportgm)=0.32+0.05 for this temperature. At very
low temperature, the system, starting from a random initial
configuration, initially formed two large domains. Even after

400000 Monte_ Carlo passes, the system was not able 10 a6 ordered and disordered phapg3| was studied. The vi-
proach the uniform ground state with Metroplis Samp“ng'cinity of T,,, the temperature at which twofold order was

The rele_ltively large acceptance rate for th? Metropolislost in the system, was determined for allFigures Ta) and
method is purely an artifact of the two-phase interface that7(b) show typical configurations from the ordered and
this method could not relax. We emphasize that the accep

. o . . melted” stripe phases for a system of Bpins aty=0.27,
':a_nce ratgslln Tgble | are f}pﬁ.c'zc to t5|trrr]1ulat|ons tOf the b?r e lowest value accessible to our simulations, corresponding
Sing Model, and areé much nigner at the same emperatugg o largest stripe period and the largest number of par-
for a system of domains stabilized by long-ranged repul-ticles
sions. In our numerical investigations of the dipolar Ising :

. A twofold order parameter introduced in R¢fL3] was
quel, the lowest StUd'ed. temperature .\M&SZA (ordered used as a quantitative measure of the existing degree of order
stripe phase for=0.43) with corresponding acceptance rate

in simulated systems,
of 28.4%. 4

FIG. 7. Typical snapshots from computer simulatiof®: or-
Pered stripe phaséh) isotropic phase: “melted” stripe<c) isotro-
pic phase: elongated bubbldsg) isotropic phase: bubble domains.

1 .
— 2i0g '
[ll. COMPUTER SIMULATION RESULTS 92=< N (REI‘;W 5SR,*SR,e 1ORR" ) | (20

We report our results from very large scale computer . ] ] )
simulations at finite temperatures for a 2D Ising ferromagnetvhereN is the number of spinsjs_ s, picks out pairs of
described by Eq.1). The inverse of the dimensionless attrac- spins at an interface, anég g/ is the angle that a vector
tive coupling constani is used as a measure of temperature:
T=1/J. Implementing a combination of the FMM and non-

. . . . . - =74
Metropolls MC s_amplmg, the S|mu_lat|0n of systems contain- 44 . ﬂ;gjgg: E;;s
ing up to 7 particles, roughly 40 times larger than was pre- A 1=0.325 N=7°
viously [11-13 attainable, has been made possible. Being & v N

£

able to handle very large systems allowed the study of ag o4
range of relative repulsion strengtlys For comparison, our
previous investigationg11-13 were limited to »=0.43,
since system size increases faster than exponentiallyias
lowered[3]. In order to test our analytic theory predictions
for the phase behavior of the dipolar ferromagrdtand the
capabilities of the combined FMM and non-Metropolis sam-
pling techniques, we have investigated systems with relative

repulsion strengths varying from=0.43 to»=0.27 in zero i .
and finite external fields. FIG. 8. The twofold order parametgs is plotted as a function

of temperatureT for several values ofp=A/J. With decreasing
repulsion strength, stripes widen and the stripe melting temperature
shifts upward. The solid lines are drawn as a guide to the eye. In the
plot, g, is multiplied by the low-temperature value of the stripe

Systems withy varying from 0.27 to 0.43 were investi- width for eachs, so all the curves approach unity at low tempera-
gated. For eacly, a range of temperatures corresponding toture and are on the same scale.

(stripe w

0.2

A. Simulations in zero external field
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FIG. 10. Fit of simulation data for the stripe melting temperature

FIG. 9. Fit of stripe width simulation data, measured by theTm 0 Eq. (23).

scaling paramete, to Eq.(21).

a linear relation confirms thdt is constant for the range of
probed here. The value df extracted from the fit, 0.86
'+0.03, is somewhat less than the zero-temperature limit of
the surface tension]'=1 (T—0). As temperature in-
hcreasesl“ should decrease from 1 at=0 to O at the point
where domain structure is destroyed by fluctuations.

The scaling theonf3] also predicts how the zero-field
8stripe melting temperature depends on

joining sitesR and R’ makes with a reference directiog,
= (1/stripe width) for a system of perfectly straight stripes
andg,=0 for systems in which no stripe order exists,
was determined tracking, as a function of temperature,
shown in Fig. 8, each time checking for convergence wit
system size, except for the largest systems f 717 649
spins. Our method of extracting the order paramggeirom
simulation data is discussed in detail in Appendix B. Figure
shows a trend of increasing,, with decreasingy, which is 7 1 1
In(—Tm) =INnTpat F02<—— —). (23)
71 nom

in excellent agreement with our analytic scaling thel@y

Our scaling theory3] matches points on a phase diagram
parametrized byl, A, andh to other points that exhibit the
same pattern morphologiéise., stripes, bubbles, or interme-
diately shaped domainsonly scaled by a factds. It predicts
how the domain length scaledepends on the relative repul-
sion strengthy [3],

A plot of In(5T,/7) againsta?(n *—75;*) should yield

another straight line with slopE. This is done in Fig. 10,
and the extracted slope is 0:80.02, in agreement with the
domain length relation of Fig. 9 within statistical error.

In order to identify the nature of the phase transition lead-
ing to loss of twofold order in the studied systems, a plot of
. (21)  the dimensionless heat capacity per partid /Nkg
=(1N)#(E)/ a(kgT)=(N) L(keT) X(E—(E))?) as a
function of (T—T,) was generated and is shown in Fig. 11.

1 1
In bzfaz(—— —
n m

In the above expressiolh, is the surface tension of the do- There i ingularity in the behavi for t t
mains,o is the area per spiny3/2 for the triangular lattice, ere is no singularity in the behavior Gf, for temperatures

recalling that distances are measured in units of the Iattic@e"’lltr.-rmfalt afyg \ggeoo;gb Thed \(/)alsuzess ova"nea_\tr stlnpe ¢
nearest neighbor distance sois dimensionless and », is meiting for »=0.27U, 9.5U9, and 0. are all quite close 1o

the value ofn at whichb is assigned to be 1. In the stripe \?va(ih c\)/thl?c;’ a_l:c,hworlfld tbe expeifte(f:i Irf ?#r slc?llngt h\)/plothes]!s
phaseb is measured by the stripe width, ere vaid. € heat capacity 1o € largest value o

—o0— 1=0.270, N=7°
—k— 1)=0.300, N=7°
—o0— 1=0.325, N=7°
—o— 1=0.430, N=7°
—eo— 1=0.430, N=74

_ (average stripe width aty) 22 07
~ (average stripe width aty;) ° 22

06

Equation (21) is valid when magnetization fluctuations
within domains can be neglected and the surface tersiisn @
essentially constant. We observed that magnetization fluctua-Z
tions within domains were extremely rare and took advan- 5>
tage of this fact to omit attempted Monte Carlo moves in the
interior of domains, as described in Sec. Il B. We would have
preferred to access smaller valuespfwhere intradomain 03
fluctuations are significant at the stripe melting temperature.
This would have allowed us to test a phenomenological ex-
tension of the scaling theofy8] applicable to regions where
I' and the average magnetization within domains vary with
temperature. Unfortungtely, QOmains become_so large in thiS £1G 11, The dimensionless heat capacity per partiSigNks ,
interesting case that simulations are not feasible. is shown as a function of temperature difference from the stripe

According to Eq.(21), a plot of Inb vs ¢?(5~ >~ ;") melting temperature for several values g&A/J. In agreement
should yield a straight line whose slopdisThis is done for  with the Kosterlitz-Thouless mechanism, there is no heat capacity
the stripe phase at zero field in Fig. 9. The excellent match tanomaly at the transition temperatufB~T,,=0 in these plots

T-Tm
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7 (0.43), which corresponds to the thinnest stripes, does no(a) (b) o
lie close to the others, although no heat capacity singularity qg| 06l 2 N
is observed here either. This “anomalous” case is likely the o
result of the stripes not being thick enougle., large enough o5 b
stripe width, compared to the lattice spagirfgr the con-  , o4f 0.4 )

L . . . . IS &
tinuum approximation used to derive the scaling theory to%

hold.

<m>

—*—n=0370 § o qoan
. . . —2— n=0.350 A i
The results for the heat capacity, together with the visual 02 —a— 0| 02] . oo
evidence of Figs. (8 and 7b), are consistent with stripe _°_2:g§gg 3 m=0300
melting mediated by topological defect unbinding, as dis- —+—n=0.270 o n0270
cussed by KT theory. However, the scaling theory of R&f. %% 02 04 06 08 0 o1 oz o3
predicts that the possibility exists for an Isinglike disordering h b b?

due to overturned spins to supplant the KT type stripe melt-
ing at very lows. These low \{alues of .the relative r.epuIS|.on field (a) and average magnetization per spin vs scaled external mag-
strength have proven to be inaccessible to our S|mulat|on§,|.etic field (b for a range ofy values
Equation (21) shows that the domain length grows faster '
than exponentially withz 1. Approximately 10 spins
would be needed to_simulate a §ystem f"‘t the valuey of states scaling theory we have deri&d predicts that, for a
where, according to Eq23), the stripe melting temperature ystem scaled by a factdr from a reference system &t
aplp:r_of';':che_s the cl_ritical te;mperat#_reh(;]f thg bar% Isingf mot(:]e.: 1, the fieldh required to observe the same domain mor-
inite-size scaling analysis, which has been done for othe ;

systemg54-56, cogld have provided yet another piece of ;5ho|ogy as the reference system is
evidence for a KT type phase transition in the studied sys- h=b"2h,, (24)
tems. Our attempt at collecting sufficient data for it proved to
be computationally infeasible, due to the large number ofyhereh, is the field value in the reference system. At points
particles per topological defect. in parameter space for which is related toy; by Eq.(21),

the temperatur@ is related to that of the reference systém

by

FIG. 12. Average magnetization per spin vs external magnetic

our simulations is shown in Fig. 1@. The corresponding

B. Simulations in external fields

. . ] 11
Hurley and Singer have previously observed that an ex In(lT) :InT1+F02( ) 25

ternal field causes a transition from the stripe phase to a P
bubble phase, both at zefdl] and finite[13] temperature.

In simulationg[13], the field at which twofold stripe order is [Eq. (23) is just Eq.(25) applied to a system at the point
lost decreases with increasing temperature, permitting th@here stripes disordgrandh=b"~2h; will exhibit the same
construction of a tentative phase diagram at the valug of domain configurations apart from the change of scale. Prop-
for which simulations were performed. Unlike mean-field erties such as the magnetization are not affected by the
predictions[32,37], the stripe phase in the presence of anchange in length scale. Scaled systems with the same value
external field gives way at elevated temperature to an isotrosf b%h should, according to Eq24), have the same magne-
pic phase of elongated bubbles, and not to an ordered lattiagzation as the reference system with fiéld This prediction

of bubbles(The elongated bubble phase is not truly isotropicis tested in Fig. 1®) and is seen to hold remarkably well.
since the bubbles tend to align along preferred lattice direcwhen plotted againsh?h, the data of Fig. 1@) collapse
tions) At still higher field values the bubbles loose their onto a single curve. Note that the temperature for each value
elongation and approach a faceted polygonal ordered bubbtg ; was chosen according to E@®5).

lattice.

Our previous simulationgl3] were performed for a par-
ticular value of# that produced domains that were compat-
ible with the system size we were capable of simulating at Numerical simulations of the Ising model with long-range
the time. The FMM and non-Metropolis sampling introducedrepulsions can access only a limited range of system param-
in this work greatly extend the range of system sizes and eters. However, they provide valuable insights regarding the
values accessible to numerical investigation. We have stugshase diagram of the model. The significance of computer
ied systems with relative repulsion strengthspanning the simulations increases further having in mind that, to date,
range 0.27 to 0.43. For eacp temperatures corresponding analytic theory treatments have not been able to describe all
to the ordered and melted stripe phases in zero field weraspects of the rich phase behavior supported by the model.
chosen. At each of these temperatures, the system was equilihe purpose of this work is twofold. We test our analytic
brated in gradually increasing external fields. Typical snapscaling theory[3] against computer simulation results and
shots from simulations showing elongated bubbles andhereby establish the phase behavior of the dipolar Ising
bubbles are shown in Figs(cf and 7d). At sufficiently high  model within the scaling theory’s range of validity. We also
fields, a uniform spin-ujor, equivalently, spin-downphase establish the mechanism of stripe melting in the range of
is reached. Magnetization as a function of external field fromparameters accessible to simulations.

71

IV. DISCUSSION
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The simplest version of our scaling thed$] is valid  become a relevant perturbation unfib>Tyt. In order to
only when domain boundaries in the system are sharp. Thimake our results more applicable to continuum systems, we
is also the only region of the phase diagram probed by simuchose to work on a triangulapé& 6), rather than a square
lations so far. As demonstrated in this wofkgs. 9 and 1§  (p=4) lattice. The work of Kashuba and Pokrovdl9,60
there is quantitative agreement between numerical data arahd Abanovet al. [61] explores the effect of a fourfold an-
analytic predictions concerning the stripe melting temperaisotropy on the stripe phase. Our choice of a triangular lattice
ture as a function of the relative repulsion strengtrand  could explain the discrepancy of our heat capacity data with
magnetization as a function of external fidid The stripe  results obtained for a dipolar Ising model on a square lattice
phase region of the phase diagram is now firmly establishetB9] according to whiclC, peaks at the melting phase tran-
to extend higher in temperature and contract with respect tsition. As discussed above, we find 89 anomalies near the
h as » decreases. defect-unbinding temperature. The difference in the observed

A phenomenological extension to the scaling thef8) heat capacity behavior could also be due to the very small
predicts that magnetization/density fluctuations curb the insystem sizes of Ref39].
crease inT,, with decreasing relative repulsion strength. While our work settles several important issues regarding
They also hinder stripe growth with increasing temperaturéhe mechanism through which stripe order is lost in the di-
at constanty. Unfortunately, observation of these effects is polar Ising model, new questions arise concerning regions of
not accessible to simulations at present, due to the large sy#he phase diagram corresponding tp—0. Our scaling
tem sized O(10") particled needed to probe the phase dia- theory predicts that as the relative repulsion strength is de-
gram regions in question. creased, the stripe melting temperature will rise toward the

For the values of the relative repulsion strength that areritical temperature of the bare Ising modgl. If the stripe
accessible to simulatiory=0.27 to 0.43), we obsenf€igs.  width happens to diverge less rapidly than the correlation
7(a) and 7b)] that the loss of twofold order in these systemslength asT,— T, it would be possible to observe a cross-
is mediated by thermally induced defects in the stripe strucover from defect unbinding to Isinglike spin disordering
ture. The process occurs without any significant locawithin stripes for very small values of. Even though this
magnetization/density fluctuations. The appearance of disclregion of the phase diagram was not amenable to simula-
nations abovd ,, and the absence of a heat capacity anomalyions, we present a qualitative discussion illustrating that a
at the melting temperature point to a KT defect unbindingsingle model could support both types of disordering mecha-
mechanism, although further evidence in the form of ordemisms.
parameter scalinh4 —56 would be valuable. Unfortunately, Consider a coarse-grained version of a system of stripes
extensive simulations up to our largest systéti7649 described by the Hamiltonian
sping could not provide the desired scaling information, in-
dicating that numerical investigations of even larger systems

are needed. H

Another point of significance concerns our choice of a - —=K, E URUR,JR.JR,+K1 2 OROR' -
triangular underlying lattice. In many experimental systems, keT (RR) (R,R")
like Langmuir monolayers, stripes have continuous overall (26)

rotational symmetrye.g., Ref[22]). Magnetic films have an

underlying lattice, but the anisotropy is often small, as onewe interpret theog as coarse-grained variables measuring
might conclude based on visual evidence from experimentahe degree of uniformity of spins within the stripes of the
observationge.g., Ref[9]). Therefore, models with continu- dipolar Ising model neaR. A region of perfectly homoge-
ous, isotropic orientational degrees of freedom, such as thgeous stripe domains, containing an alternating series, of
planarXY model, are appropriate for describing topological =1 and sg=—1 stripes, would be represented by either
defect unbinding in these systems. Unlike the experimental;=1 everywhere in that region, arg=—1 everywhere.
systems or models such as t& model, stripes in the di- Hence thery are not directly interpretable as block averages

polar Ising model prefer to be aligned along certain lattice ¢ iq sr. The JR are interpreted as vectors along the aver-

directi.ons.. This may pe viewed as an add?tional symmetryaged normal to the stripe interfaces for coarse-grained blocks
breaking field that spoils the rotational invariance of the Sping stripes centered &, andK, andK, are dimensionless

mo_del. The gymmetry brgaking field i.S fourfold for a Squarecoupling constants proportional toTl/The coupling con-

lattice and sixfold for a ”'angu'af Iattl_ce. . .stantK, reflects how ordered the spins are within the stripes.
The efiect of symmetry breaking f|_e|d§ has been InVeSt"Large K, implies almost no overturned spins within the

gated'57] for the Villain model[58], which is closely related stripes. The effective coupling between the stripe orientation

to the planarXY model. An exact duality relation for the . - - .
Villain model shows that @-fold symmetry-breaking field is variablesugy andug: is controlled by the coupling constant
> and by the alignment of the spin variableg and o, .

always a relevant perturbation at high temperatures. At low ,

temperatures, in particular, in the vicinity of the KT phaseThe correlation functionG(R,R’)= (oo e?(?rR™Or)),
transition(occurring afT«1), the relevance of the symmetry- where®g is the angle betweeny and a reference direction,
breaking field depends om For p=4 (square latticg the  measures the long-range stripe order. Long-range order may
spin lattice becomes a relevant perturbation below the KTbe destroyed either by topological defects in the stripes, in
transition. Forp=6 (triangular latticé, however, it does not which case the average of the?(®r=9r) component
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-1 would test our predictions awaits experimental realization.
2 4 We have previously suggeste?,3] that compression-
induced melting observed in Langmuir monolayers provides
indirect confirmation of the inverse correlation betwéep

fopological defect o ordered and 7. We have argued that compression leads to an effective

!
1
1
1
1
. . . !
medialed disordering
1
1

K1 increase iny, causingT, to fall, thereby moving the system
2,c e into a disordered region of the phase diagram. This argument
Ising disordering . . .
ordered stripes = is bolstered by the experimental observation that upon com-
. pression, stripes become thinrj@2], as would be predicted
1 T ro—1 for an increase im by the scaling relation of Eq21). More
1_,6 1 direct evidence for the inverse relation betwegp and %

would be welcome.
FIG. 13. Phase diagram for a qualitative model that supports Another feature of the dipolar Ising model and its lattice
both the defect unbinding and Isinglike disordering mechanisms. gas equivalent, which we believe would be amenable to ex-
perimental observation is a search for the crossover region
between defect unbinding and lIsinglike disordering of the
switches from algebraic to exponential decay, or by Isinglikestripe phase. Tracking the number of topological defects in
spin fluctuations which make the averagesgfog: vanish at  the system, the magnetization/density in the stripe phase, or

large separation. the heat capacity could corroborate, which disordering
The partition function for this model is given by mechanism is in effect. In order to identify the crossover
itself, a system with a “tunable” relative repulsion strength
_ ) - - n would be needed. Tuning could be achieved in different
Z(K1,K2) =Triop i} exp( K2<R2F:’,> TRIRUR" UR’ ways, depending on the experimental system. In the case of

Langmuir monolayers, varying pH or adding co-surfactants
could bring the desired effect. Variabigvalues in thin mag-
+Ky E, ‘TR‘TR/)' (27 netic films could be induced by changing the properties of
(RRD the magnetic material.

After the substitutionu,=orUg, the partition function
factors into an Ising-model part and XriY-model part, ACKNOWLEDGMENTS
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— K z OTROR/
Z(Kl,Kz) Tr{UR}[e 1<RYR,> ROR

Tr{dé}[eKz E GIIR'J;e'

(RR")

WhenK; and K, are both larger than their critical values
Kic andK,., a system of coarse-grained blocks of ordered

stripes with sharp interfaces is observédg. 13. If K, is Consider the microcanonical transition probability

maintained larger thai,., the system loses orientational V_V(CD|C’D’) from (system, demonstate C’,D’) to state
order in an Isinglike manner &, falls belowK,. Inthe (¢ p). As discussed in Sec. Il B, the transition is allowed
opposite case oK;>K;¢, the system loses orientational oy if the demon energigp. is greater than the difference in
order in a KT type phase transition whé®, falls below  gystem energie§.—Ec,. The microcanonical probability
Kae- . is, therefore, a step function

The ug degrees of freedom are disordered, as measured
by G(R,R’), except at highk; and K,. In this trivially — L,
solved model, the system may leave the ordered region via W(CD[C'D")=6(Ec +Ep/—Ec). (A1)
an Isinglike disordering of thery variables, or a KT disor-
dering of theu,,=orUg, Which are effectively the same as To compute the overall transition raw(C|C') from state

the Ug when theoy variables are strongly aligned. The di- C' to stateC, integrateW(CD|C'D") over all possible de-

polar Ising model may also have two mechanisms by whichnon energies in the initial system state

it can lose twofold stripe order, a defect-mediated transition

at large» and an Isinglike disordering at smajl. This is % _

suggested by the phenomenological extension of our scaling W(CIC’)=f dEpW(CD|C'D')P(Ep/), (A2)

theory to smally [3]. However, further analytical and nu- 0

merical work is needed to confirm the crossover of the melt-

ing mechanism. whereP(Ep) = Be PEp is a normalized Boltzmann distribu-
A systematic investigation of the relation between meltingtion function. Now consider the ratio of forward to reverse

temperature and relative repulsion strenffty. (23)] that  moves,

APPENDIX A: PROOF OF DETAILED BALANCE
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de /O (Eq +Ep, —Eg)Be FED’
W(C|C’)_Jo o' O(Ec D c)B

w(c’lc)

f dEp®(Ec+Ep—Ec/)Be AFo
0
(A3)

Since the integral in the numeratédenominator in the
above equation evaluates to 1Ei§, =E-(Ec=Ec/), and to
e PEc Ec) if Ec=Eq (e AEc'~Ed if Ec,=E), the
ratio of canonical transition probabilities becomes

W(C|C") e FEc
W(C'[C) e FEer

(A4)

Therefore, detailed balance is satisfied.

APPENDIX B: STATISTICAL ANALYSIS
OF SIMULATION DATA

The magnitude of the order parametay,=(g,)

PHYSICAL REVIEW B5 036706

V@ s

0.15
Re(8,)

FIG. 14. Sample distributions of the order parametgin the
complex plane fofa) ordered stripes antb) melted stripes.

fold symmetry breaking field leading to three preferred stripe
orientations in the system, we find that the probability den-

sity of @2 peaks at three locations, separated by2, lying

at anglesd= 7 and = 7/3 with respect to the abscissa in the
complex plane.(These preferred stripe orientations are
equivalent tod=0,7/3, and 27/3. The angle assignment is a
matter of convention. Even though the stripe orientation
tends to fall along these three directions, the system is still

=((1/N)E<R,R,>5SR,_SR,eZ‘GRVR’) measures the degree of
twofold orientational order, which is an indicator of the
stripe phase. There is a technical problem associated wit

accumulatmggz. Since the orientation oith.e stn.pgs is arbi- We estimated the degree of orientational order by fitting
trary, exhaustive averaging of the quantgyin a finite sys- the radial distribution oijz data from each simulation to a

tem Wi”. eventually drive the average to Zero after all StripeGau:ssir:m form using a probability distribution function of
orientations are sampled. This is a generic problem assoCihq form

ated with accumulating an order parameter in the absence o
a symmetry breaking field. Alternatively, one might generate
the average ofg,|, which would be immune to trivial van-

ishing of the order parameter via rotational invariance. How-

ever, the positive definite quantity,| yields a nonvanishing whereg is the phase angle @f,. The value of g,) obtained
average proportional thi~ 2 in the disordered phase. by a nonlinear least squares fit of E§1) to numerical data

We avoid the undesirable features of the avera@e$  is what is reported in Fig. 8. In some cashg,| exhibited

and<|§2|> by analyzing the distribution Cﬁz in the complex bimodal behavior, as the system made infrequent crossings
o A between ordered and disordered configurations. To analyze
plane. In the ordered phase, the distribution peakiygt . .
. L . > the order parameter for these simulations, we used the sum
>0 [Fig. 14@)], while in the disordered phase the distribu- ! . L Y
S . i of two weighted Gaussians for the radial distribution func-
tion is centered arounfly,|=0 [Fig. 14b)]. The order pa-

rameter values shown in Fig. 8 are extracted from simulayon’ one of which was centered around the origf|ga|)

_ 2712 _ 02 Sl_ia 2
tions by fiting the distribution to an analytic ansatz =(1—a)e (*9I%2"+ ae”(¥27)(92~(@0)". The parameter
described below. a was optimized during the fitting and(g,) is reported in
Since the underlying triangular lattice introduces a three¥ig. 8.

susceptible to averaging),) to zero when more than one of
he three preferred directions are sampled, as frequently oc-
rs in the computer simulatioffig. 14a)].

P(3al) = f PP (8,) ol e~ W2 5a-@)7, (B1)
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