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Computer simulations of a two-dimensional system with competing interactions
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The results and methodology of large scale computer simulations of the two-dimensional dipolar Ising
model with long-range interactions are reported. Systems as large as 117 649 particles were studied to elucidate
the elementary excitations and phase diagram of two-dimensional systems, such as Langmuir monolayers, thin
garnet films, and adsorbed films on solid surfaces, which spontaneously form patterns of stripes, bubbles, and
intermediately shaped domains. The challenging numerical investigations of large scale systems with long-
range interactions at low temperatures were made possible by combining the fast multipole method and a
non-Metropolis Monte Carlo sampling technique. Our simulations provide evidence that, at sufficiently high
ratios of the repulsive to the attractive coupling constant for the model, twofold stripe order in the systems of
interest is lost through a defect-mediated mechanism. Heat capacity data and the excitations observed in our
simulations as the system disorders indicate that it is most likely an instance of a Kosterlitz-Thouless phase
transition. The results from simulations with and without external field are in excellent agreement with the
predictions of an analytic scaling theory@A. D. Stoycheva and S. J. Singer, Phys. Rev. E64, 016118~2001!#,
confirming the phase diagram furnished by the analytic model. The scaling theory suggests that, under certain
conditions, defect-mediated stripe melting may be supplanted by Ising like disordering within stripes for small
repulsion strength. A qualitative discussion of a model that supports both disordering mechanisms is presented.

DOI: 10.1103/PhysRevE.65.036706 PACS number~s!: 02.60.2x, 05.65.1b, 89.75.Kd, 05.50.1q
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I. INTRODUCTION

Competing attractive and repulsive interactions gene
spontaneous spatial modulations in a diverse collection
two- and three-dimensional systems in nature@1#. This paper
reports an implementation of large scale computer sim
tions of a fundamental model for modulated materials, s
as Langmuir monolayers, thin magnetic films, and adsor
monolayers on solid surfaces. Patterns of stripes, bubb
and intermediately shaped domains arise in these sys
due to the competition between attractions and longer-ra
repulsions. Our numerical investigations of systems w
long-range interactions of sizes up toO(105) particles pro-
vide insight into the critical excitations and phase diagram
spontaneously modulated phases. They elucidate how t
properties evolve as a function of the relative repuls
strength, defined as the ratio of the repulsive to the attrac
interaction constant. This work augments an earlier pape
large scale simulations@2# and tests an analytic scalin
theory @3# derived for the dipolar Ising ferromagnet and
lattice gas equivalent.

Spontaneous spatial modulations were first observed
magnetic and dielectric systems@4–9#. Experimental studies
of thin magnetic films@5,9# and fluids with magnetic or elec
tric polarization@7# have revealed the occurrence of mod
lated phases—patterns of stripes, bubbles, or intermed
morphologies. In three dimensions, the patterns may be
tensions of the two-dimensional~2D! morphologies along a
third dimension, such as lamelli or cylinders, or true thre
dimensional modulations. It has been demonstrated
‘‘stripe’’ to ‘‘bubble’’ phase transitions in magnetic films ma
be induced by varying an applied external fieldH @5,9#.
Stripe to bubble transitions occur when the width of the m
nority stripes falls below a certain threshold@5#. These trans-
formations appear to be reversible, although some hyste
1063-651X/2002/65~3!/036706~15!/$20.00 65 0367
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exists@5#. With few exceptions@10–14#, the experimentally
observed morphologies have been discussed in the z
temperature limit, treating only perfectly straight strip
@4–9#. The experimentally observed domain structures, wh
sufficiently regular, can be quantitatively understood in ter
of the already mentioned balance between short-ranged
tractions and long-ranged repulsions. The attractions ca
additional wall energy at domain borders, and the repulsi
arise among magnetic or electric dipoles. The interplay
these effects determines the preferred modulation co
sponding to a free energy minimum.

In the last couple of decades, the newly developed te
niques of fluorescence and video microscopy have ena
the visualization and analysis of patterns resulting fro
phase transitions in thin lipid films at the air/water interfa
@15–19#, as summarized in recent reviews@1,19,20#. These
studies have shown that domain structures in surfac
monolayers are amazingly similar in appearance to mod
tions in ferromagnetic fluids and thin films@10#. The domain
shapes have been demonstrated to be once again due
balance between short-ranged attractive interactions, suc
the van der Waals attractions between hydrocarbon ch
@21# and long-ranged dipolar repulsions, arising from the
teractions between dipolar phospholipid head groups or
fective dipoles formed by the charged heads of the phosp
lipids and subphase counterions@17,19,18#. Pressure-
@16,21,22# and temperature-induced@17# phase transitions in
thin organic films appear to be reversible, although so
hysteresis is present@17#.

Recent experimental studies of adsorbed monolayers
surfaces@23–26# have provided evidence of 2D arrays
stripes @23,25,26#, bubbles @24#, and intermediate ‘‘laby-
rinth’’ structures@24# formed by the adsorbed atoms, anal
gous in appearance to the ones seen in thin ferromagn
films and Langmuir monolayers. The spontaneous mod
©2002 The American Physical Society06-1
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tion phenomena in adsorbed monolayers have been mod
using zero-temperature~with respect to domain shape fluc
tuations! elastic theory@27–29#. The similar effect of elastic
and electrostatic interactions resulting in analogous ph
modulations in 2D has been pointed out in Ref.@14# and
summarized in Ref.@30#. As a consequence, a single mod
incorporating the interplay of short-ranged attractive a
long-ranged repulsive interactions, regardless of their ori
may be applied to study all of the above-mentioned syste
Curvature instabilities in biological membranes have a
been explained using the same theoretical model@31#.

The reason for the apparently universal domain m
phologies in two dimensions and the applicability of a sin
model is that the forces governing self-organization in
systems of interest act on a larger than molecular len
scale. The nature of the short-ranged attractive forces va
between systems. The long-ranged repulsions in experim
tal systems studied to date are due to actual or effec
dipoles and decay with distance asR23. Magnetostatic spin
interactions govern the dipolar repulsion between domain
thin ferromagnetic films@4–9#. Surface polarization is the
source of the repulsion in Langmuir monolayers@16–21,32#.
Either surface polarization or accumulation of elastic ene
from lattice mismatch cause actual or effective dipolar rep
sion within adsorbed monolayers on solid substra
@30,33,34#.

A simple Hamiltonian captures the essential featu
needed to describe the behavior of the above mentioned
tems ~notation appropriate for spin systems will be used
this paper!,

2H/kBT5J (
^R,R8&

sRsR82
A

2 ( 8
R,R8

sRsR8

uR2R8u3
1h(

R
sR ,

~1!

wheresR andsR8 are uniaxial spin variables for spins at sit
R andR8, J is an attractive coupling constant (J.0), A is a
repulsive coupling constant (A.0), and h is an external
field. The first term in the above equation captures the sh
range nearest-neighbor interactions of a system of Is
spins, the second term mimics the long-range repulsions.
prime indicates thatR5R8 is excluded from the sum. Th
third term takes into account the influence of an exter
magnetic field. The Hamiltonian of Eq.~1! turns into one for
a dipolar lattice gas after the variable substitutionsR52nR
21, wherenR50 or 1 is the lattice gas occupation variab
We also introduce the temperature-independent param
h[A/J, the ratio of the repulsive coupling constantA over
the attractive coupling constantJ in Eq. ~1!, which measures
the relative repulsion strength in the system. Throughout
paper, distances are measured in units of the nearest neig
distance of the lattice, so quantities likeA are dimensionless

The model of Eq.~1! has sparked a lengthy discussio
concerning its phase diagram and the types of elemen
excitations leading to phase transitions. Both order param
fluctuations and topological defects, such as dislocations
disclinations, have been considered as factors leading to
destruction of orientational order in modulated phases
self-consistent field theory by Brazovskiiˇ @35#, valid for
03670
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small order parameter values, for a continuum spin mo
with long range repulsions indicated a first-order phase tr
sition between isotropic and nonuniform states in the syst
Toner and Nelson@36# studied the effects of both phonon
like fluctuations and Kosterlitz-Thouless~KT!-type unbind-
ing of topological defects on 2D layered materials. Th
pointed out that dislocations, present with a Boltzman
distributed density at any finite temperature, are respons
for the loss of translational order and the algebraic decay
orientational correlations in the low temperature phase. U
binding of dislocations into pairs of disclinations at the K
phase transition destroys orientational order, leading to ex
nential decay of orientational correlations. Toner and Nels
predicted the phase diagram applicable to 2D layered m
rials in the presence of topological defect unbinding. Ga
and Doniach @37# investigated the phase diagram of
uniaxial ferromagnet using a Ginzburg-Landau mean-fi
approach, but also discussed the effects of topological de
unbinding on the degree of 2D order of the modulat
phases. They were unable to determine which mechan
was responsible for the loss of twofold order. Andelm
et al. @32# analyzed insoluble Langmuir monolayers with
Ginzburg-Landau expansion. Within a mean-field appro
mation they obtained results that are in qualitative agreem
with the corresponding analysis of the ferromagnetic sys
presented in Ref.@37#. Our recent work@2,3# has shed new
light on these issues and has furnished a theoretical expl
tion for previously puzzling experimental observations, su
as pressure-induced stripe melting in Langmuir monolay
@22#.

In this paper, we investigate the mechanisms leading
the loss of twofold order of the stripe phase in Langm
monolayers, thin magnetic films, and adsorbed monolaye
process we refer to as ‘‘stripe melting.’’ We present eviden
based on our computer simulations, for the role of dislo
tions and disclinations in the 2D systems of interest. O
numerical results for the heat capacity show smooth beha
of Cv near the stripe melting temperatureTm , as predicted
by KT theory. The computer simulation results are in exc
lent agreement with an analytic scaling theory for tw
dimensional systems with competing interactions presen
elsewhere@3#. We compare numerical data to the analy
theory phase diagram@3#. Other possible experimental tes
for our theoretical findings are suggested.

This paper is organized as follows: The computer simu
tion techniques we used are introduced in Sec. II. In Sec.
we discuss our numerical results. The implications of o
work are considered in Sec. IV. The statistical analysis of
simulation data and details concerning the Monte Carlo
gorithm are given in the Appendixes.

II. SIMULATION TECHNIQUES

Previous simulations for the dipolar Ising model on tria
gular @11,13# and square@38,39# lattices have confirmed tha
the Hamiltonian of Eq.~1! supports the experimentally ob
served morphologies—stripes, bubbles, and elongated in
mediate domains—in the 2D systems of interest.
6-2
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COMPUTER SIMULATIONS OF A TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 65 036706
Several essential problems have to be addressed to s
late the model of Eq.~1!.

~1! Since the dipolar interactions are long ranged and g
rise to long-wavelength modulated structures, simulat
systems must be large enough to capture this behavior.
requirement can place insurmountable limitations on co
puter codes relying on explicitly summing the interactio
over all spin pairs.@Recall that the Hamiltonian in Eq.~1!
includes repulsive interactions between all spin pairs, not
nearest neighbors.# For direct sum approaches, each
tempted spin update requires a number of floating point
erations, which grow linearly with system size. Previou
published results for the dipolar lattice gas on a triangu
lattice are available for a periodically replicated unit cell
as many as 15 776@11–13#, but more typically about 3000
spins @11,13#. For the Ising model on a square lattice, t
largest size of the periodic replicas was 4096 partic
@38,39#. In this work, we report simulations of systems
large as 117 649 spins.

~2! The systems described by Eq.~1! contain large domain
structures whose movement is slow in numerical simulati
and which require long equilibration times. At the low tem
peratures in consideration, much lower than the critical te
perature of the Ising model without long-range repulsio
Metropolis Monte Carlo~MC! algorithms perform ineffi-
ciently.

In order to accommodate the above-mentioned requ
ments, we have employed the fast multipole method~FMM!
@40# and a non-Metropolis sampling technique@41,42#.

A. The fast multipole method

We have implemented the FMM introduced by Greeng
and Rokhlin@40#. A recent review summarizes its features
three dimensions and compares it to Ewald sum and par
mesh-based approaches@43#. The FMM has previously been
used in continuous-model simulations in two@40# and three
@44# dimensions. We have devised a scheme that applie
simulations on a lattice. A considerable advantage of
FMM implementation, discussed in detail in the followin
sections, is that transferring quantities needed to calculate
interaction potential between levels in the FMM hierarc
involves a set of precomputed matrices that do not depen
the level.

Using the FMM circumvents calculating the long-rang
R23 depolarizing interaction potential via CPU-intensive d
rect summation methods, as was done in previous work@11–
13#. The FMM reduces the work required to calculate t
total energy of a system ofN particles fromO(N2) to O(N),
and the amount of work per MC target update fromO(N) to
O(ln N) compared to direct-sum methods@43#. For concrete-
ness, we illustrate the implementation of the FMM on a
triangular lattice. The FMM can be applied to other latti
geometries and systems in other dimensions in the ma
we describe with minor modifications.

The FMM requires a recursive division of the simulatio
cell into a hierarchy of levels. We designate the simulat
cell itself as levell 50, and the lattice spins asl 5 l max. For
the case of a triangular lattice in 2D, we choose a hexago
03670
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the building block for the hierarchy into which we partitio
the system. At levell 5 l max21, the spins are grouped int
hexagons consisting of a spin and its six nearest neigh
on a triangular lattice. The spins are represented by bl
dots in Fig. 1, and a hexagon containing seven spins is i
cated. Upon going from levell max21 to l max22, seven
hexagons, each containing seven spins, are grouped so
their centers form the vertices and center of a larger hexag
Thus, at l max22, the hexagonal spin groups contain 4
spins. Subsequently, seven groups of 49 spins are bro
together to form a hexagon containing 343 spins at le
l max23 and so on untill 50 is reached. The system in Fig.
has l max54, corresponding to a total of 74 or 2401 spins.
This particular choice of a recursive scheme is the rea
why the sizes of the systems we simulated have been
pressed in powers of the integer 7 throughout the pape
very convenient feature of the recursively generated hie
chy of hexagons is that the constituent elements at each l
l, blocks of 7l max2 l spins, are always arranged on a triangu
lattice whose basis vectors are denoted byb1( l ) and b2( l ).
The basis vectors at the level of the individual spinsl
5 l max, b1( l max) andb2( l max) ~Fig. 2!, connect the center o
a group of seven spins with the nearest neighbor at
‘‘three o’clock’’ lattice location and to the ‘‘one o’clock’’
nearest neighbor location, respectively. In Cartesian coo
nates, they are given by

FIG. 1. FMM hierarchy on a two-dimensional triangular lattice

FIG. 2. Basis vectorsbi( l max) at level l max and displacements
d i( j l) from the center of a group of seven spins.
6-3
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b1~ l max!5S 1

0D , b2~ l max!5S 1

2

A3

2

D . ~2!

Basis vectors for subsequent levels of the FMM hierarch
structure are related by the following linear transformatio

S b1~ l !

b2~ l !
D 5

1

7 S 3 21

1 2 D S b1~ l 21!

b2~ l 21!
D[AS b1~ l 21!

b2~ l 21!
D . ~3!

Note that the matrixA remains the same, regardless of t
values ofl and l 21. From the above relations,

ubi~ l 21!u5A7ubi~ l !u. ~4!

The primary simulation cell and its periodic replicas are
level l 50 in the FMM hierarchy, and the basis vectors c
responding tol 50 arebi(0). Thelocations of periodic rep-
lica centers, relative to the center of the primary simulat
cell that is taken as the origin of our coordinate system, m
be expressed asR5qibi(0), whereqi are integers, and the
convention for summation of repeated indices is in force

The location of any pointR at level l within the primary
simulation cell can be uniquely decomposed as

R~ j 1 , . . . ,j l !5 (
l 851

l

d i~ j l 8!bi~ l 8! ~0< j l 8<6!. ~5!

d i( j l) are defined to indicate the displacement~if any! from
the center within a group of seven spins, as illustrated in F
2, and have the following values:

@d1~0!,d2~0!#5~0,0!, ~6!

@d1~1!,d2~1!#5~1,0!,

@d1~2!,d2~2!#5~0,1!,

@d1~3!,d2~3!#5~21,1!,

@d1~4!,d2~4!#5~21,0!,

@d1~5!,d2~5!#5~0,21!,

@d1~6!,d2~6!#5~1,21!.

Due to the hierarchical arrangement of hexagons in the
tem,d i( j l) also give the location of a group of 7l max2 l spins
at levell in the hierarchy relative to a hexagon center at le
l 21. Therefore, specifying thej l index for levels 1 through
l is sufficient to locate a target group at levell, and its ‘‘ad-
dress’’ is a number in base 7. In our simulations, groups
seven spins atl max21 were targeted for Monte Carlo up
dates. The address of the target indicated by the arrow in
1 is $166%.

Using the above-introduced notation, we develop an
pression for the long-rangeR23 repulsive interaction energ
in the system,
03670
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1

2 ( 8
R,R8,n1 ,n2

sRsR8uR2R81nibi~0!u23, ~7!

which we calculate using the FMM. Theni index the peri-
odic replicas of the primary cell~for which n15n250), and
R andR8 are the positions of spinssR andsR8 , respectively.
The prime on the sums indicates that self-interactions
excluded. Repeated indices are summed. In a direct-sum
proach, (R,R8,n1 ,n2

8 uR2R81nibi(0)u23 would be precom-

puted and stored in an array labeled byR andR8. The FMM
calls for a rearrangement of the sum in Eq.~7! into intra-
group terms for target groupsG ~chosen in our case to b
hexagonal groups of seven spins! and intergroup interactions

V5
1

2 (
G

( 8
R,R8PG

sRsR8uR2R8u231
1

2 (
G

(
RPG

sRFG~R!.

The fieldFG(R) acts as an effective magnetic field on ea
of the spins within a target groupG. It is given by

FG~R!5(
n

(
G8(ÞG if nÄ0)

(
R8PG8

sR8uR2R81nibi~0!u23,

RPG. ~8!

Since bothG andG8 may belong to the primary simulatio
cell (n50), self-interactions must be excluded (G8ÞG, if
n50). When G8 lies outside the primary cell, it is eithe
a periodic replica ofG itself interacting withG (G85G, n
Þ0), or another periodically replicated group interactin
with G (G8ÞG, nÞ0). One key advantage of the FMM i
that the initial calculation ofFG(R) for all groupsG, i.e., the
second term in Eq.~8!, requires onlyO(N) operations.

At the beginning of a simulation, the repulsive interacti
field of the entire system is calculated in what is called
‘‘upward pass.’’ To achieve that, a multipole expansion
initially computed for all groupsG and the hierarchy of
larger groups. Following each MC update, the upward pas
required to generate new multipole moments only for grou
at each level whose spin configuration has changed. Sec
the collection of precomputed multipole moments is used
calculate an effective potential for target spin groups in w
is called a ‘‘downward pass.’’ At the start of program exec
tion, a complete downward pass for all spin groups is p
formed to calculate the total energy of the initial configur
tion. All steps involved requireO(N) operations, compared
to O(N2) operations in a direct sum calculation.

Monte Carlo updates of a target groupG consist of three
separate steps. First, a calculation of the effective fi
FG(R) at that group, based on precomputed multipole m
ments, is required. This corresponds to a partial downw
pass. Subsequently, the energy change associated with
actual spin flip is evaluated. Finally, an update of multipo
moments, a partial upward pass, follows. There is a fix
operation count at each level of the partial upward a
downward passes. Since the number of levels isO(ln N),
6-4
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COMPUTER SIMULATIONS OF A TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 65 036706
each update of a target group requiresO(ln N) operations,
and an entire MC pass requiresO(N ln N) operations.

1. Multipole moment functions and the upward pass

We use a multipole expansion to derive a form ofFG(R),
which is particularly useful for efficient calculation of th
interaction potential during computer simulations. As an
ample, consider the effective fieldF(r ) at a test pointr
arising from a group of seven spins centered
R( j 1 , . . . ,j l max21) ~Fig. 3!,

F~r !

5 (
j l max

50

6 s[R( j 1 , . . . ,j l max21)1d i ( j l max
)bi ( l max)]

ur2@R~ j 1 , . . . ,j l max21!1d i~ j l max
!bi~ l max!#u3

5 (
k1 ,k250

`

m@k1k2uR~ j 1 , . . . ,j l max21!#

3u@k1k2ur2R~ j 1 , . . . ,j l max21!#. ~9!

In the above equation,u(k1k2ur ) are multipole functions de
fined as

u~k1k2ur ![
1

k1!k2!

]k11k2

]r 1
k1]r 2

k2
ur u23, ~10!

where r i are the components ofr , so thatr5r ibi . For a
triangular lattice in 2D,

ur u235~r 1
21r 2

21r 1r 2!23/2. ~11!

Note that the multipole decomposition has general valid
and does not depend on the dimension of the vectorr , or the
type of interaction. For ann-dimensional vectorr and an
interaction that goes asr p, the multipole expansion has th
form

u~k1k2•••knur ![
1

k1!k2! •••kn!

]k11k21•••kn

]r 1
k1]r 2

k2
•••]r n

kn
ur up.

~12!

FIG. 3. Contribution to the effective fieldF(r ) at a test pointr
arising from a group of seven spins centered
R( j 1 , j 2 , . . . j l max21).
03670
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m@k1k2uR( j 1 , . . . ,j l max21)# are multipole moment coeffi-

cients appropriate for groups of seven spins at levell max
21. They contain the spin configuration dependence of
multipole expansion. If any of the seven spin variab
s@R( j 1 , . . . ,j l max21)1d i ( j l max

)bi ( l max)# in Eq. ~9! changed its

value, the effect on the multipole moment expansion
the system would be reflected by a differe
m@k1k2uR( j 1 , . . . ,j l max21)# coefficient. The multipole func-

tions u(k1k2ur ) remain the same upon a change of the s
configuration.

Following the concept of the upward pass, consider go
one step higher in the hierarchy of the system. This co
sponds to shifting F(r ) to a new expansion cente
R( j 1 , . . . ,j l max22) at levell max22, illustrated in Fig. 4. The

new expression for the shifted multipole coefficientsm is

m@k1k2uR~ j 1 , . . . ,j l max22!#

5 (
j l max2150

6

(
k18 ,k28

D j l max21
~k1k2uk18k28!

3m@k18k28uR~ j 1 , . . . ,j l max21!#. ~13!

The sum overj l max21 indicates that there are seven groups

seven spins at levell max21 that contribute to a single grou
at levell max22. TheD j (k1k2uk18k28) are elements of a matrix
that is the same for a shift from any levell to level l 21, and
are calculated by straightforward, but tedious, series exp
sion of the multipole functions. Therefore, the above expr
sion holds for all levelsl,

t

FIG. 4. Coordinate system for shifting the interaction poten
F(r ) experienced by a particle at positionr from an interaction
center at levell max21 to an interaction center at levell max22.
6-5
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ANTITSA D. STOYCHEVA AND SHERWIN J. SINGER PHYSICAL REVIEW E65 036706
m@k1k2uR~ j 1 , . . . ,j l 21!#

5 (
j l50

6

(
k18 ,k28

D j l
~k1k2uk18k28!m@k18k28uR~ j 1 , . . . ,j l !#.

~14!

Several points to note about the multipole moments in
system are the following. At the level of individual spins,l
5 l max, the only contributing term hask150 andk250. The
multipole moment coefficient ism@00uR( j 1 , . . . ,j l max

)#

5sR( j 1 , . . . ,j l max
)ubi( l max)u3/2 for a triangular lattice, and we

adopt the convention thatubi( l max)u51. Higher multipole
moments emerge when spins are brought together in gro
and the effective field is expanded about alternative refere
points, as shown above. During this procedure, old multip
moments only give rise to new multipole moments of t
same or higher order. We checked the convergence of
multipole expansion performing calculations withk1 andk2
as large as 20. It was established that results converged
maximum power of 2 in thek indices.

2. Downward pass

After an initial upward pass, the total repulsive potent
field at levell 50 and all sublevels is known. The downwa
pass calculates the interaction potential for a group of sp
at a chosen levell. Depending on their proximity to the tar
get, the other groups of spins in the system give rise to ei
‘‘far field,’’ or ‘‘interaction list’’ @40# contributions. Multipole
expansions are used to calculate the far field, while contr
tions from members of the interaction list are computed
plicitly. In our simulations, the interaction list for a group o
7l max2 l spins at level l includes its six nearest-neighbo
groups, i.e., a total of 6(7l max2 l) spins. The interaction list o
our targets for spin flips, groups of seven spins at le
l max21, includes the 42 spins that belong to the six near
neighbor hexagons of the target. Figure 4 illustrates a ta
for a MC update~central hexagon! and its six nearest neigh
bors containing the interaction list. All other spins in th
system contribute to the interaction potential at the tar
through the far field.

The interaction field is brought froml 50 to l 5 l max21
through a series of linear transformations, referred to
‘‘shift’’ and ‘‘rotate’’ operations. A shift operation consists o
reexpressing the field from an expansion about an interac
center at levell to an expansion about a center at level
11. The interaction center for a given levell is defined as
the midpoint of the central hexagon containing 7l max2 l

spins at that level. For instance, in Fig. 4, the shift brin
the center of the interaction potential expansion fro
R( j 1 , . . . ,j l max22) to R( j 1 , . . . ,j l max21). The rotation that

follows is the recalibration of the basis vectorsbi according
to Eq. ~3!. The downward pass is summarized in the follo
ing steps:~1! Add far field contribution forl 50, an Ewald
summation of the repulsive field from a lattice of period
cally replicated simulation cells;~2! Shift and rotate to inter-
action center atl 51; ~3! Divide l 50 interaction list intol
51 far field andl 51 interaction list;~4! Add far field con-
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tribution for l 51; ~5! Shift and rotate to interaction center
l 52; ~6! Divide l 51 interaction list intol 52 far field and
l 52 interaction list; . . . , and so onuntil the far field and
interaction list contributions atl max21 have been calculated

In order to cast the above steps in mathematical ter
considerF„r … arising at a test pointr from a group of spins
centered atR( j 1 , . . . ,j l) at level l. Let us first examine the
far field. Usingt i ,i 51,2 to stand for the components of th
vector from the spin group atR( j 1 , . . . ,j l) to the field point
r ,

r2R~ j 1 , . . . ,j l !5t ibi~ l !, ~15!

where repeated indices are summed, we cast the intera
field F(r ) as a Taylor expansion,

F~r !5 (
k1 ,k250

`

g@k1k2uR~ j 1 , . . . ,j l !#t1
k1t2

k2 . ~16!

The series are constructed recursively: the expansion fo
interaction center atR( j 1 , . . . ,j l) is obtained from the serie
about an interaction center atR( j 1 , . . . ,j l 21), which in turn
are obtained from the series atR( j 1 , . . . ,j l 22), and so on.
Switching interaction centers from levell to l 11, etc. cor-
responds to the already mentioned shift and rotate op
tions. The coefficientsg@k1k2uR( j 1 , . . . ,j l 11)# at level l
11 are related tog@k1k2uR( j 1 , . . . ,j l)# at level l as fol-
lows:

g@k1k2uR~ j 1 , . . . ,j l 11!#

5 (
k18 ,k28

Cj l 11
~k1k2uk18k28!g@k18k28uR~ j 1 , . . . ,j l !#. ~17!

Cj l 11
(k1k2uk18k28) are elements of a matrix independent

the levell and evaluate to zero unlessk11k2<k181k28 .
The members of the far field and the interaction l

change from level to level. Some groups of spins that w
part of the interaction list at levell are treated as far field
using the finer degree of detail at levell 11. We describe a
procedure for incorporating repulsive energy contributio
arising from groups of spins that were part of the interact
list at level l into the far field for levell 11. We designate
this ‘‘correction’’ to the far field at levell 11 by DFG(r ).
The multipole moment coefficientsm@k1k2uR( j 1 , . . . ,j l)# at
level l, which can be used to defineDFG(r ) following Eq.
~9!, have already been calculated in an upward pass pre
ing the downward pass. They are related to a correc
Dg@k1k2uR( j 1 , . . . ,j l)# at level l as follows:

DFG~r !5 (
R( j 1 , . . . ,j l )

(
k1 ,k2

m@k1k2uR~ j 1 , . . . ,j l !#

3u@k1k2ur2R~ j 1 , . . . ,j l !#

5 (
k1 ,k2

Dg@k1k2uR~ j 1 , . . . ,j l !#t1
k1t2

k2 . ~18!
6-6
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COMPUTER SIMULATIONS OF A TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 65 036706
The coefficientsDg in the above equation are linear comb
nations of m@k1k2uR( j 1 , . . . ,j l)# which belong to the
groups of spins forming the interaction list at levell,

Dg@k1k2uR~ j 1 , . . . ,j l !#

5 (
R8( j 1 , . . . ,j l )

(
k18 ,k28

M ~k1k2uk18k28!

3m@k18k28uR8~ j 1 , . . . ,j l !#. ~19!

M (k1k2uk18k28) are elements of a matrix that does not depe
on the levell. At level l 50, the interaction list includes th
nearest neighbor replicas of the primary simulation cell.
teractions with all other replicas contribute to the far fie
andg(k1k2u0) is computed with the help of Ewald summ
tion methods and stored.

The downward pass, associated with Monte Carlo upd
of target spin groups, requires shifting and rotatingFG(r ) to
a new locationR and the addition of aDFG(r ) contribution
from a fixed number of groups of spins. Since the numbe
levels l in the simulated system isO(ln N), each update of a
target group requiresO(N ln N) operations, compared t
O(N2) operations in a direct sum method. Figure 5 illu
trates the scaling of CPU time with system size we achie
performing simulations on a Cray T90 System. The adv
tage of the FMM is obvious, especially at large system siz

B. A cluster Monte Carlo algorithm

Simulations of the Ising model without long-range inte
actions at either low temperatures or near the critical po
are characterized by numerical difficulties that have differ
origins. Both types of hindrances occur simultaneously in
pattern forming systems of interest and are addressed h
Phase transitions associated with domain morphologies
typically located at roughly 1/10 of the bare Ising mod
critical temperature, so spin flips needed to move dom
boundaries can involve extremely small Boltzmann fact
and, as a result, low acceptance rates. Complicating th
‘‘low temperature’’ difficulties is the fact that thermal fluc
tuations involve motion of domain structures whose len

FIG. 5. Scaling of CPU time~t! per Monte Carlo pass with tota
number of particles (N). The CPU times were measured on a Cr
T90 computer for systems of sizes 7p, p53,4,5,6. Lines of slope
equal to 1~dashed line! and 2 ~dot-dashed line! are shown in the
log-log plot.
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scale can be quite large. Consequently, the ‘‘Monte Ca
time’’ required for their equilibration is long, and the sam
computational difficulties arise as in critical slowing dow
@45–47#. Cluster update techniques were developed in c
nection with the latter problem. They were introduced
Swendsen and Wang@48# and their efficiency was improved
by Wolff @49#. The Wolff algorithm assures that every a
tempted cluster flip is accepted, leading to efficient sampli
The cluster update algorithms dramatically enhance the s
pling of spin models, compared to Metropolis MC, regar
less of their dimensionality and degrees of freedom@45–50#.
However, no spin models with long-ranged interactions ha
been addressed to date. We present our implementatio
cluster update techniques with the help of which we ha
overcome slow dynamics and have achieved high accept
rates for the dipolar Ising model near criticality.

In the system we study, the Ising spins are organized o
triangular lattice into groups of seven to facilitate impleme
tation of the FMM discussed in Sec. II A. The groups
seven spins are also used as the clusters for multispin
dates.~Due to the long-ranged interactions, cluster select
according to the Wolff algorithm is not possible.! Each group
thus has 275128 possible spin configurations, labeled
spin statesk50 through k5127. We arrange the cluste
states in cyclical order, so that statek5127 is followed by
statek50. Traditional Metropolis MC methods only attemp
a trial move to one of the possible 128 states per ene
calculation, leading to low acceptance probabilities and
tremely long equilibration times. To achieve better perf
mance, we have implemented a variant of a cluster upd
algorithm proposed by Creutz@41,42#, which in certain cir-
cumstances reduces to the Wolff algorithm@42#, to treat a
system with long-ranged interactions, such as the dipo
Ising model. The algorithm was originally introduced in th
microcanonical ensemble@41# and it is convenient to explain
it in that form before its trivial generalization to the canon
cal ensemble which we used.

A ‘‘demon’’ variable, capable of redistributing energ
throughout the system, is introduced. A well-defined stati
cal system must have a ground state. We choose the de
ground state to have zero energy, so thatED>0. In the mi-
crocanonical version of the algorithm, the total energy
~system1 demon! is conserved. The simulation progress
from an initial state where the demon has energyED , and
the target cluster selected for update is in statek0. The sys-
tem initially possesses energyE0. Moves to trial final states
are attempted in some regular order. For our clusters o
spins, states are chosen by advancing through the 128
sible configurations~randomly in ascending or descendin
order!, using the cyclical condition when state 0 or 127
encountered. The first trial state for which energy conser
tion results inED

new>0 is accepted. In the illustration of Fig
6~a!, k2k056 is the first accessible cluster state. Here,
first accessible transition happens to result in a decreas
system energy.~In general, the system energy could eith
increase or decrease. Any trial state whose energy lies be
the dashed line in Fig. 6~a! is energetically accessible.! After
the move is taken in our example, the system energy dr
and the demon energy rises—Fig. 6~b!. A reverse move from
6-7
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ANTITSA D. STOYCHEVA AND SHERWIN J. SINGER PHYSICAL REVIEW E65 036706
the final state depicted in Fig. 6~b! in the direction of de-
creasing indexk will bring the system right back to its initia
state, because it is the first state encountered to whic
transition is energetically allowed. The probabilities of a
tempting moves to states in ascending or descending ord
the indexk are both 1/2. Therefore, the probabilities of t
forward and reverse moves are equal and microcanonica
tailed balance is satisfied.

We work in the canonical, rather than the microcanoni
ensemble. This is achieved by drawing the demon’s ene
from a Boltzmann distribution@P(ED)}e2bED# before each
update. Physically, this corresponds to placing the system
contact with a heat bath whose relaxation time is mu
shorter than that of the system. A formal proof that th
scheme enforces canonical detailed balance is given in
pendix A. Targets were picked at random. At each visit t
cluster, which entails a single calculation of the long-ran
dipolar field via the FMM, up to 127 new configuration

FIG. 6. Cluster updates in the microcanonical ensemble.
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were considered for an acceptable energy-conserving m
This brings the acceptance rates to a typical value of;30%
for the dipolar Ising model, much higher than Metropo
MC at low temperature.

We achieved an additional speed-up by explicitly d
abling attempts for spin updates for those randomly pick
targets that werenot situated along stripe interfaces. Th
probability of flipping a spin in the interior of a domain i
proportional toe212J times a correction for the long-rang
dipolar interaction. At typicalJ and A values used in this
work, the probability of flipping interior spins is astronom
cally low and the system evolves exclusively by movem
of the domain interfaces. Targets were classified as ‘‘inte
cial’’ or ‘‘interior’’ to a stripe in the following manner.

If a target for an update was determined to have eit
‘‘all up’’ or ‘‘all down’’ spins, the spin configuration of its six
nearest-neighbor groups of seven spins was also checke
all six nearest neighbors to the target had the same spin
figuration as the target itself, then the target was determi
to be interior to a stripe and no CPU time was spent on
attempt to update it, since the probability for an accep
move would be very small. If any of the nearest neighb
had a spin configuration different than that of the target,
target was considered for an update. By running the ‘‘fu
version~i.e., without skipping any updates! of our computer
code for a test case for each value of the relative repuls
strengthh[A/J and system size, we checked that this fe
ture did not alter the statistical sampling of targets. In ge
eral, this approach should be used with caution~and we did!,
especially for systems with lowh values whose stripe melt
ing temperature lies highest among the systems
examined.

To test the cluster update algorithm, we calculated
average magnetization per spin^m& with no long-ranged re-
pulsive interactions, so the numerical results could be co
pared with the exact solution for the Ising model@51#. ~Of
course, we did not skip ‘‘interior’’ spin updates in the a
sence of repulsive interactions and domains.! Under these
circumstances, we recover the expected values of^m&50
above the critical temperature and^m&561 at T!Tc

Ising .
For temperatures between these two limits, we compared
results obtained with our variant of the Creutz algorithm
^m& from ordinary Metropolis MC and analytic values fo
the magnetization@52#. The data are presented in Table
and
tion data

theses.
TABLE I. Average magnetization per spin obtained from the Creutz algorithm, Metropolis MC,
analytic theory. For each temperature, the systems were equilibrated for 20 000 passes and simula
were collected for 180 000 MC passes. Simulations were performed for systems of 7452401 spins for the
Creutz algorithm and 2688 spins for the Metropolis algorithm. Acceptance rates are indicated in paren

J ^m&Creutz ^m&Metropolis ^m&analytic

0.285 0.79060.005 (43.6%) 0.78860.003 (16.1%) 0.789 644
0.300 0.87060.001 (33.4%) 0.869560.0004 (11.4%) 0.869 596
0.310 0.897560.0005 (28.5%) 0.897760.0004 (9.4%) 0.897 662
0.350 0.952560.0005 (15.7%) 0.952560.0001 (4.6%) 0.952 501
1.000 0.999 98660.000 003 (0.0057%) 0.999 987 760.000 000 5 (0.123%) 0.999 988
2.500 1.062.4310216 (0.00%) 0.3260.05 (3.41%) 1.000000
6-8
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COMPUTER SIMULATIONS OF A TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 65 036706
The analytic critical temperature for the bare Ising model
a triangular lattice corresponds toJc50.274 653@52#. Simu-
lations for either algorithm were started from random s
configurations.

For all temperatures presented in Table I, the aver
magnetization per spin obtained through the Creutz a
rithm is in excellent agreement with the analytic results. T
Creutz algorithm yields about three times higher accepta
rates compared to Metropolis MC at low temperatures,
shown in Table I. At extremely low temperatures,J51.000
and J52.500, both the Creutz and Metropolis algorithm
show very low acceptance rates since virtually all the sp
have the same orientation. Once the system approache
Ising model ground state, departures from perfectly align
spins are rare. However, even in this limit the Creutz al
rithm is superior to Metropolis sampling. AtJ52.500, the
Metropolis algorithm fails to equilibrate to a configuratio
whose magnetization has the expected value of 1.0 and
stead reportŝm&50.3260.05 for this temperature. At ver
low temperature, the system, starting from a random ini
configuration, initially formed two large domains. Even aft
400 000 Monte Carlo passes, the system was not able to
proach the uniform ground state with Metroplis samplin
The relatively large acceptance rate for the Metropo
method is purely an artifact of the two-phase interface t
this method could not relax. We emphasize that the acc
tance rates in Table I are specific to simulations of the b
Ising model, and are much higher at the same tempera
for a system of domains stabilized by long-ranged rep
sions. In our numerical investigations of the dipolar Isi
model, the lowest studied temperature wasJ52.4 ~ordered
stripe phase forh50.43) with corresponding acceptance ra
of 28.4%.

III. COMPUTER SIMULATION RESULTS

We report our results from very large scale compu
simulations at finite temperatures for a 2D Ising ferromag
described by Eq.~1!. The inverse of the dimensionless attra
tive coupling constantJ is used as a measure of temperatu
T51/J. Implementing a combination of the FMM and no
Metropolis MC sampling, the simulation of systems conta
ing up to 76 particles, roughly 40 times larger than was pr
viously @11–13# attainable, has been made possible. Be
able to handle very large systems allowed the study o
range of relative repulsion strengthsh. For comparison, our
previous investigations@11–13# were limited to h50.43,
since system size increases faster than exponentially ash is
lowered@3#. In order to test our analytic theory prediction
for the phase behavior of the dipolar ferromagnet@3# and the
capabilities of the combined FMM and non-Metropolis sa
pling techniques, we have investigated systems with rela
repulsion strengths varying fromh50.43 toh50.27 in zero
and finite external fieldsh.

A. Simulations in zero external field

Systems withh varying from 0.27 to 0.43 were invest
gated. For eachh, a range of temperatures corresponding
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the ordered and disordered phases@53# was studied. The vi-
cinity of Tm , the temperature at which twofold order wa
lost in the system, was determined for allh. Figures 7~a! and
7~b! show typical configurations from the ordered a
‘‘melted’’ stripe phases for a system of 76 spins ath50.27,
the lowest value accessible to our simulations, correspond
to the largest stripe period and the largest number of p
ticles.

A twofold order parameter introduced in Ref.@13# was
used as a quantitative measure of the existing degree of o
in simulated systems,

g2[K 1

N (
^R,R8&

dsR ,2sR8
e2iuR,R8L , ~20!

whereN is the number of spins,dsR ,2sR8
picks out pairs of

spins at an interface, anduR,R8 is the angle that a vecto

FIG. 7. Typical snapshots from computer simulations:~a! or-
dered stripe phase,~b! isotropic phase: ‘‘melted’’ stripes,~c! isotro-
pic phase: elongated bubbles,~d! isotropic phase: bubble domains

FIG. 8. The twofold order parameterg2 is plotted as a function
of temperatureT for several values ofh[A/J. With decreasing
repulsion strength, stripes widen and the stripe melting tempera
shifts upward. The solid lines are drawn as a guide to the eye. In
plot, g2 is multiplied by the low-temperature value of the strip
width for eachh, so all the curves approach unity at low temper
ture and are on the same scale.
6-9
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ANTITSA D. STOYCHEVA AND SHERWIN J. SINGER PHYSICAL REVIEW E65 036706
joining sitesR andR8 makes with a reference direction.g2
5(1/stripe width) for a system of perfectly straight stripe
and g250 for systems in which no stripe order exists.Tm
was determined trackingg2 as a function of temperature
shown in Fig. 8, each time checking for convergence w
system size, except for the largest systems of 765117 649
spins. Our method of extracting the order parameterg2 from
simulation data is discussed in detail in Appendix B. Figur
shows a trend of increasingTm with decreasingh, which is
in excellent agreement with our analytic scaling theory@3#.

Our scaling theory@3# matches points on a phase diagra
parametrized byJ, A, andh to other points that exhibit the
same pattern morphologies~i.e., stripes, bubbles, or interme
diately shaped domains!, only scaled by a factorb. It predicts
how the domain length scaleb depends on the relative repu
sion strengthh @3#,

ln b5Gs2S 1

h
2

1

h1
D . ~21!

In the above expression,G is the surface tension of the do
mains,s is the area per spin (A3/2 for the triangular lattice,
recalling that distances are measured in units of the lat
nearest neighbor distance sos is dimensionless!, andh1 is
the value ofh at whichb is assigned to be 1. In the strip
phase,b is measured by the stripe width,

b5
~average stripe width ath!

~average stripe width ath1!
. ~22!

Equation ~21! is valid when magnetization fluctuation
within domains can be neglected and the surface tensionG is
essentially constant. We observed that magnetization fluc
tions within domains were extremely rare and took adv
tage of this fact to omit attempted Monte Carlo moves in
interior of domains, as described in Sec. II B. We would ha
preferred to access smaller values ofh where intradomain
fluctuations are significant at the stripe melting temperatu
This would have allowed us to test a phenomenological
tension of the scaling theory@3# applicable to regions wher
G and the average magnetization within domains vary w
temperature. Unfortunately, domains become so large in
interesting case that simulations are not feasible.

According to Eq.~21!, a plot of lnb vs s2(h212h1
21)

should yield a straight line whose slope isG. This is done for
the stripe phase at zero field in Fig. 9. The excellent matc

FIG. 9. Fit of stripe width simulation data, measured by t
scaling parameterb, to Eq. ~21!.
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a linear relation confirms thatG is constant for the range ofh
probed here. The value ofG extracted from the fit, 0.86
60.03, is somewhat less than the zero-temperature limi
the surface tension,G51 (T→0). As temperature in-
creases,G should decrease from 1 atT50 to 0 at the point
where domain structure is destroyed by fluctuations.

The scaling theory@3# also predicts how the zero-fiel
stripe melting temperature depends onh,

lnS h

h1
TmD5 ln Tm,11Gs2S 1

h
2

1

h1
D . ~23!

A plot of ln(hTm/h1) againsts2(h212h1
21) should yield

another straight line with slopeG. This is done in Fig. 10,
and the extracted slope is 0.9060.02, in agreement with the
domain length relation of Fig. 9 within statistical error.

In order to identify the nature of the phase transition lea
ing to loss of twofold order in the studied systems, a plot
the dimensionless heat capacity per particleCv /NkB
[(1/N)]^E&/](kBT)5(N)21(kBT)22^(E2^E&)2& as a
function of (T2Tm) was generated and is shown in Fig. 1
There is no singularity in the behavior ofCv for temperatures
near Tm at any value ofh. The values ofCv near stripe
melting forh50.270, 0.300, and 0.325 are all quite close
each other, as would be expected if our scaling hypoth
were valid. The heat capacity for the largest value

FIG. 10. Fit of simulation data for the stripe melting temperatu
Tm to Eq. ~23!.

FIG. 11. The dimensionless heat capacity per particle,CV /NkB ,
is shown as a function of temperature difference from the str
melting temperature for several values ofh[A/J. In agreement
with the Kosterlitz-Thouless mechanism, there is no heat capa
anomaly at the transition temperature (T2Tm50 in these plots!.
6-10



n
ri
h

t

ua

is

ng
el
n
n

te

f
e
de
th
of
ys
t
o

ex
o

s
th
f
ld
an
tr
tti
pic
e
ir
bb

-
at

a
ed
d
tu

g
e

qu
ap
an

om

or-

ts

t

op-
the
alue
-

l.

lue

e
am-
the
ter
te,

e all
del.

tic
d
ing
o
of

etic
ag-

COMPUTER SIMULATIONS OF A TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 65 036706
h (0.43), which corresponds to the thinnest stripes, does
lie close to the others, although no heat capacity singula
is observed here either. This ‘‘anomalous’’ case is likely t
result of the stripes not being thick enough~i.e., large enough
stripe width, compared to the lattice spacing! for the con-
tinuum approximation used to derive the scaling theory
hold.

The results for the heat capacity, together with the vis
evidence of Figs. 7~a! and 7~b!, are consistent with stripe
melting mediated by topological defect unbinding, as d
cussed by KT theory. However, the scaling theory of Ref.@3#
predicts that the possibility exists for an Isinglike disorderi
due to overturned spins to supplant the KT type stripe m
ing at very lowh. These low values of the relative repulsio
strength have proven to be inaccessible to our simulatio
Equation ~21! shows that the domain length grows fas
than exponentially withh21. Approximately 107 spins
would be needed to simulate a system at the value oh
where, according to Eq.~23!, the stripe melting temperatur
approaches the critical temperature of the bare Ising mo

Finite-size scaling analysis, which has been done for o
systems@54–56#, could have provided yet another piece
evidence for a KT type phase transition in the studied s
tems. Our attempt at collecting sufficient data for it proved
be computationally infeasible, due to the large number
particles per topological defect.

B. Simulations in external fields

Hurley and Singer have previously observed that an
ternal field causes a transition from the stripe phase t
bubble phase, both at zero@11# and finite@13# temperature.
In simulations@13#, the field at which twofold stripe order i
lost decreases with increasing temperature, permitting
construction of a tentative phase diagram at the value oh
for which simulations were performed. Unlike mean-fie
predictions@32,37#, the stripe phase in the presence of
external field gives way at elevated temperature to an iso
pic phase of elongated bubbles, and not to an ordered la
of bubbles.~The elongated bubble phase is not truly isotro
since the bubbles tend to align along preferred lattice dir
tions.! At still higher field values the bubbles loose the
elongation and approach a faceted polygonal ordered bu
lattice.

Our previous simulations@13# were performed for a par
ticular value ofh that produced domains that were comp
ible with the system size we were capable of simulating
the time. The FMM and non-Metropolis sampling introduc
in this work greatly extend the range of system sizes anh
values accessible to numerical investigation. We have s
ied systems with relative repulsion strengthsh spanning the
range 0.27 to 0.43. For eachh, temperatures correspondin
to the ordered and melted stripe phases in zero field w
chosen. At each of these temperatures, the system was e
brated in gradually increasing external fields. Typical sn
shots from simulations showing elongated bubbles
bubbles are shown in Figs. 7~c! and 7~d!. At sufficiently high
fields, a uniform spin-up~or, equivalently, spin-down! phase
is reached. Magnetization as a function of external field fr
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our simulations is shown in Fig. 12~a!. The corresponding
states scaling theory we have derived@3# predicts that, for a
system scaled by a factorb from a reference system atb
51, the fieldh required to observe the same domain m
phology as the reference system is

h5b22h1 , ~24!

whereh1 is the field value in the reference system. At poin
in parameter space for whichh is related toh1 by Eq. ~21!,
the temperatureT is related to that of the reference systemT1
by

lnS h

h1
TD5 ln T11Gs2S 1

h
2

1

h1
D ~25!

@Eq. ~23! is just Eq. ~25! applied to a system at the poin
where stripes disorder#, andh5b22h1 will exhibit the same
domain configurations apart from the change of scale. Pr
erties such as the magnetization are not affected by
change in length scale. Scaled systems with the same v
of b2h should, according to Eq.~24!, have the same magne
tization as the reference system with fieldh1. This prediction
is tested in Fig. 12~b! and is seen to hold remarkably wel
When plotted againstb2h, the data of Fig. 12~a! collapse
onto a single curve. Note that the temperature for each va
of h was chosen according to Eq.~25!.

IV. DISCUSSION

Numerical simulations of the Ising model with long-rang
repulsions can access only a limited range of system par
eters. However, they provide valuable insights regarding
phase diagram of the model. The significance of compu
simulations increases further having in mind that, to da
analytic theory treatments have not been able to describ
aspects of the rich phase behavior supported by the mo
The purpose of this work is twofold. We test our analy
scaling theory@3# against computer simulation results an
thereby establish the phase behavior of the dipolar Is
model within the scaling theory’s range of validity. We als
establish the mechanism of stripe melting in the range
parameters accessible to simulations.

FIG. 12. Average magnetization per spin vs external magn
field ~a! and average magnetization per spin vs scaled external m
netic field ~b! for a range ofh values.
6-11
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The simplest version of our scaling theory@3# is valid
only when domain boundaries in the system are sharp. T
is also the only region of the phase diagram probed by si
lations so far. As demonstrated in this work@Figs. 9 and 10#,
there is quantitative agreement between numerical data
analytic predictions concerning the stripe melting tempe
ture as a function of the relative repulsion strengthh and
magnetization as a function of external fieldh. The stripe
phase region of the phase diagram is now firmly establis
to extend higher in temperature and contract with respec
h ash decreases.

A phenomenological extension to the scaling theory@3#
predicts that magnetization/density fluctuations curb the
crease inTm with decreasing relative repulsion strengt
They also hinder stripe growth with increasing temperat
at constanth. Unfortunately, observation of these effects
not accessible to simulations at present, due to the large
tem sizes@O(107) particles# needed to probe the phase di
gram regions in question.

For the values of the relative repulsion strength that
accessible to simulation (h50.27 to 0.43), we observe@Figs.
7~a! and 7~b!# that the loss of twofold order in these system
is mediated by thermally induced defects in the stripe str
ture. The process occurs without any significant lo
magnetization/density fluctuations. The appearance of dis
nations aboveTm and the absence of a heat capacity anom
at the melting temperature point to a KT defect unbind
mechanism, although further evidence in the form of or
parameter scaling@54–56# would be valuable. Unfortunately
extensive simulations up to our largest system~117 649
spins! could not provide the desired scaling information, i
dicating that numerical investigations of even larger syste
are needed.

Another point of significance concerns our choice o
triangular underlying lattice. In many experimental system
like Langmuir monolayers, stripes have continuous ove
rotational symmetry~e.g., Ref.@22#!. Magnetic films have an
underlying lattice, but the anisotropy is often small, as o
might conclude based on visual evidence from experime
observations~e.g., Ref.@9#!. Therefore, models with continu
ous, isotropic orientational degrees of freedom, such as
planarXY model, are appropriate for describing topologic
defect unbinding in these systems. Unlike the experime
systems or models such as theXY model, stripes in the di-
polar Ising model prefer to be aligned along certain latt
directions. This may be viewed as an additional symme
breaking field that spoils the rotational invariance of the s
model. The symmetry breaking field is fourfold for a squa
lattice and sixfold for a triangular lattice.

The effect of symmetry breaking fields has been inve
gated@57# for the Villain model@58#, which is closely related
to the planarXY model. An exact duality relation for the
Villain model shows that ap-fold symmetry-breaking field is
always a relevant perturbation at high temperatures. At
temperatures, in particular, in the vicinity of the KT pha
transition~occurring atTKT), the relevance of the symmetry
breaking field depends onp. For p54 ~square lattice!, the
spin lattice becomes a relevant perturbation below the
transition. Forp56 ~triangular lattice!, however, it does no
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become a relevant perturbation untilT.TKT . In order to
make our results more applicable to continuum systems,
chose to work on a triangular (p56), rather than a squar
(p54) lattice. The work of Kashuba and Pokrovsky@59,60#
and Abanovet al. @61# explores the effect of a fourfold an
isotropy on the stripe phase. Our choice of a triangular lat
could explain the discrepancy of our heat capacity data w
results obtained for a dipolar Ising model on a square lat
@39# according to whichCv peaks at the melting phase tra
sition. As discussed above, we find noCv anomalies near the
defect-unbinding temperature. The difference in the obser
heat capacity behavior could also be due to the very sm
system sizes of Ref.@39#.

While our work settles several important issues regard
the mechanism through which stripe order is lost in the
polar Ising model, new questions arise concerning region
the phase diagram corresponding toh→0. Our scaling
theory predicts that as the relative repulsion strength is
creased, the stripe melting temperature will rise toward
critical temperature of the bare Ising modelTc . If the stripe
width happens to diverge less rapidly than the correlat
length asTm→Tc , it would be possible to observe a cros
over from defect unbinding to Isinglike spin disorderin
within stripes for very small values ofh. Even though this
region of the phase diagram was not amenable to sim
tions, we present a qualitative discussion illustrating tha
single model could support both types of disordering mec
nisms.

Consider a coarse-grained version of a system of str
described by the Hamiltonian

2
H

kBT
5K2 (

^R,R8&

sRsR8u
W

R•uW R81K1 (
^R,R8&

sRsR8 .

~26!

We interpret thesR as coarse-grained variables measur
the degree of uniformity of spins within the stripes of th
dipolar Ising model nearR. A region of perfectly homoge-
neous stripe domains, containing an alternating series osR
51 and sR521 stripes, would be represented by eith
sR51 everywhere in that region, orsR521 everywhere.
Hence thesR are not directly interpretable as block averag
of the sR . The uW R are interpreted as vectors along the av
aged normal to the stripe interfaces for coarse-grained blo
of stripes centered atR, and K1 and K2 are dimensionless
coupling constants proportional to 1/T. The coupling con-
stantK1 reflects how ordered the spins are within the strip
Large K1 implies almost no overturned spins within th
stripes. The effective coupling between the stripe orientat
variablesuW R and uW R8 is controlled by the coupling constan
K2 and by the alignment of the spin variablessR andsR8 .
The correlation functionG(R,R8)5^sRsR8e

2i (QR2QR8)&,
whereQR is the angle betweenuW R and a reference direction
measures the long-range stripe order. Long-range order
be destroyed either by topological defects in the stripes
which case the average of thee2i (QR2QR8) component
6-12
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switches from algebraic to exponential decay, or by Isingl
spin fluctuations which make the average ofsRsR8 vanish at
large separation.

The partition function for this model is given by

Z~K1 ,K2!5Tr$sR ,uW R% expS K2 (
^R,R8&

sRsR8u
W

R•uW R8

1K1 (
^R,R8&

sRsR8D . ~27!

After the substitutionuW R85sRuW R , the partition function
factors into an Ising-model part and anXY-model part,

Z~K1 ,K2!5Tr$sR%FeK1 (
^R,R8&

sRsR8GTr$uW R8 %FeK2 (
^R,R8&

uW R8 •uW
R8
8 G

5ZIsing~K1!ZXY~K2!. ~28!

When K1 and K2 are both larger than their critical value
K1,c andK2,c , a system of coarse-grained blocks of order
stripes with sharp interfaces is observed~Fig. 13!. If K2 is
maintained larger thanK2,c , the system loses orientation
order in an Isinglike manner asK1 falls belowK1,c . In the
opposite case ofK1.K1,c , the system loses orientation
order in a KT type phase transition whenK2 falls below
K2,c .

The uW R degrees of freedom are disordered, as measu
by G(R,R8), except at highK1 and K2. In this trivially
solved model, the system may leave the ordered region
an Isinglike disordering of thesR variables, or a KT disor-
dering of theuW R85sRuW R , which are effectively the same a

the uW R when thesR variables are strongly aligned. The d
polar Ising model may also have two mechanisms by wh
it can lose twofold stripe order, a defect-mediated transit
at largeh and an Isinglike disordering at smallh. This is
suggested by the phenomenological extension of our sca
theory to smallh @3#. However, further analytical and nu
merical work is needed to confirm the crossover of the m
ing mechanism.

A systematic investigation of the relation between melt
temperature and relative repulsion strength@Eq. ~23!# that

FIG. 13. Phase diagram for a qualitative model that supp
both the defect unbinding and Isinglike disordering mechanism
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would test our predictions awaits experimental realizati
We have previously suggested@2,3# that compression-
induced melting observed in Langmuir monolayers provid
indirect confirmation of the inverse correlation betweenTm
andh. We have argued that compression leads to an effec
increase inh, causingTm to fall, thereby moving the system
into a disordered region of the phase diagram. This argum
is bolstered by the experimental observation that upon c
pression, stripes become thinner@22#, as would be predicted
for an increase inh by the scaling relation of Eq.~21!. More
direct evidence for the inverse relation betweenTm and h
would be welcome.

Another feature of the dipolar Ising model and its latti
gas equivalent, which we believe would be amenable to
perimental observation is a search for the crossover reg
between defect unbinding and Isinglike disordering of t
stripe phase. Tracking the number of topological defects
the system, the magnetization/density in the stripe phase
the heat capacity could corroborate, which disorder
mechanism is in effect. In order to identify the crossov
itself, a system with a ‘‘tunable’’ relative repulsion streng
h would be needed. Tuningh could be achieved in differen
ways, depending on the experimental system. In the cas
Langmuir monolayers, varying pH or adding co-surfacta
could bring the desired effect. Variableh values in thin mag-
netic films could be induced by changing the properties
the magnetic material.
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APPENDIX A: PROOF OF DETAILED BALANCE

Consider the microcanonical transition probabili
W̄(CDuC8D8) from ~system, demon! state (C8,D8) to state
(C,D). As discussed in Sec. II B, the transition is allowe
only if the demon energyED8 is greater than the difference i
system energiesEC2EC8 . The microcanonical probability
is, therefore, a step function

W̄~CDuC8D8!5Q~EC81ED82EC!. ~A1!

To compute the overall transition rateW(CuC8) from state
C8 to stateC, integrateW̄(CDuC8D8) over all possible de-
mon energies in the initial system stateC8

W~CuC8!5E
0

`

dED8W̄~CDuC8D8!P~ED8!, ~A2!

whereP(ED)5be2bED is a normalized Boltzmann distribu
tion function. Now consider the ratio of forward to rever
moves,

ts
6-13
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W~CuC8!

W~C8uC!
5

E
0

`

dED8Q~EC81ED82EC!be2bED8

E
0

`

dEDQ~EC1ED2EC8!be2bED

.

~A3!

Since the integral in the numerator~denominator! in the
above equation evaluates to 1, ifEC8>EC(EC>EC8), and to
e2b(EC2EC8), if EC>EC8 (e2b(EC82EC), if EC8>EC), the
ratio of canonical transition probabilities becomes

W~CuC8!

W~C8uC!
5

e2bEC

e2bEC8
. ~A4!

Therefore, detailed balance is satisfied.

APPENDIX B: STATISTICAL ANALYSIS
OF SIMULATION DATA

The magnitude of the order parameterg2[^ĝ2&
5^(1/N)(^R,R8&dsR ,2sR8

e2iuR,R8& measures the degree o
twofold orientational order, which is an indicator of th
stripe phase. There is a technical problem associated
accumulatingg2. Since the orientation of the stripes is arb
trary, exhaustive averaging of the quantityĝ2 in a finite sys-
tem will eventually drive the average to zero after all stri
orientations are sampled. This is a generic problem ass
ated with accumulating an order parameter in the absenc
a symmetry breaking field. Alternatively, one might gener
the average ofuĝ2u, which would be immune to trivial van
ishing of the order parameter via rotational invariance. Ho
ever, the positive definite quantityuĝ2u yields a nonvanishing
average proportional toN21/2 in the disordered phase.

We avoid the undesirable features of the averages^ĝ2&
and^uĝ2u& by analyzing the distribution ofĝ2 in the complex
plane. In the ordered phase, the distribution peaks atuĝ2u
.0 @Fig. 14~a!#, while in the disordered phase the distrib
tion is centered arounduĝ2u50 @Fig. 14~b!#. The order pa-
rameter values shown in Fig. 8 are extracted from simu
tions by fitting the distribution to an analytic ansa
described below.

Since the underlying triangular lattice introduces a thr
gn
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fold symmetry breaking field leading to three preferred str
orientations in the system, we find that the probability de
sity of ĝ2 peaks at three locations, separated by 2p/3, lying
at anglesu5p and6p/3 with respect to the abscissa in th
complex plane. ~These preferred stripe orientations a
equivalent tou50,p/3, and 2p/3. The angle assignment is
matter of convention.! Even though the stripe orientatio
tends to fall along these three directions, the system is
susceptible to averaginĝĝ2& to zero when more than one o
the three preferred directions are sampled, as frequently
curs in the computer simulations@Fig. 14~a!#.

We estimated the degree of orientational order by fitt
the radial distribution ofĝ2 data from each simulation to
Gaussian form using a probability distribution function
the form

P~ uĝ2u!5E df̂P~ ĝ2!}uĝ2ue2(1/2s2)(uĝ2u2^ĝ2&)2
, ~B1!

wheref̂ is the phase angle ofĝ2. The value of̂ ĝ2& obtained
by a nonlinear least squares fit of Eq.~B1! to numerical data
is what is reported in Fig. 8. In some cases,uĝ2u exhibited
bimodal behavior, as the system made infrequent cross
between ordered and disordered configurations. To ana
the order parameter for these simulations, we used the
of two weighted Gaussians for the radial distribution fun
tion, one of which was centered around the origin:P(uĝ2u)
5(12a)e2(1/2s0

2)uĝ2u21ae2(1/2s2)(uĝ2u2^ĝ0&)2
. The parameter

a was optimized during the fitting anda^ĝ2& is reported in
Fig. 8.

FIG. 14. Sample distributions of the order parameterg2 in the
complex plane for~a! ordered stripes and~b! melted stripes.
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