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Efficient method for simulating quantum electron dynamics under the time-dependent
Kohn-Sham equation

Naoki Watanabe and Masaru Tsukada
Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, 113-0033 Bunkyo-ku, Tokyo, Japan
(Received 9 April 2001; revised manuscript received 27 August 2001; published 13 Februayy 2002

A numerical scheme for solving the time evolution of wave functions under the time-dependent Kohn-Sham
(TDKS) equation has been developed. Since the effective Hamiltonian depends on the wave functions, the
wave functions and the effective Hamiltonian should evolve consistently with each other. For this purpose, a
self-consistent loop is required at every time step for solving the time evolution numerically, which is com-
putationally expensive. However, in this paper, we develop a different approach, expressing a formal solution
of the TDKS equation, and prove that it is possible to solve the TDKS equation efficiently and accurately by
means of a simple numerical scheme without the use of any self-consistent loops.
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[. INTRODUCTION Here, V[p,t] is an effective potential which represents the
internal mutual interaction¥;,{ p] and the external time-
Since the innovative work on the density functional dependent potentid¥/.,(t). Throughout this paper, we use
theory (DFT) [1] and the Kohn-Sham equatid2], many  atomic unitsz=1, m=1, ande=1 for equations and val-
kinds of static or adiabatic quantum electronic phenomenaes.
have been investigated based on first principles. As an exten- Because of the time dependence of the Hamiltonian, the
sion of the DFT to nonadiabatic dynamical phenomena, thaolution of the TDKS equation can be formally expressed in
time-dependent density functional thed®DDFT) has been terms of a time-ordering exponential operator:
developed3,4]. By using the TDDFT, some excitation phe- t
nomena have been analyzed more accurately than by using _ s / /
the DFT[5]. However, the formulation of the TDDFT is too w”(t)_TeXF{ |f0dt Hip.t']
complicated to solve the wave functions numerically in order
to see electron dynamics directly. So a considerable approxiFhere are many numerical methods for computing €.
mation called the TD Kohn-ShaffDKS) equation has been The simplest method discretizes the elapsed timé small

¢n(0). @

applied for numerical simulatiori$,7]. time slicesAt, and approximates E@2) as
The difficulty in numerically solving the TDKS equation .
is the treatment of the density-dependent Hamiltonian. The Yn(t+ At ~exp( —iAtH[p,t]) (1), )

wave functions and the Hamiltonian should always be self-
consistent with each other. A fourth order self-consistent field. . PR
(SCH iterative scheme was proposed by Sugino and Miya- plit operator technique:
moto[6]. However, the use of a SCF loop at every time step iAt A At iAt A
is computationally expensive. ¢n(t+At)~exr{7 > exr{i—V[p,t] eXI{T ?} Pn(t).

In this paper, we propose a different formalism for the @)
numerical solution of the TDKS equation. Based on it, we
prove that a simple formula without SCF loops can solve thedowever, this is not sufficiently accurate, because it ignores
TDKS equation with sufficient accuracy. We find that com-the time dependence of the Hamiltonian during the small
putational techniqueg9,10] previously developed by us for time slice, while the splitting reduces accuracy to an even
the one-electron TD Schdinger equation in real space and |ower level.
real time are also useful for the TDKS equation. Another well-known computational method for E(®)

uses a Hamiltonian in the middle of the steps,

nd it is computed using the Runge-Kutta method, or by the

Il. CONVENTIONAL METHOD
t+ at
p, 2

The TDKS equation is a mean field approach used for wn(t+At)zexp( —iAtH )wn(t). (5)
describing the time evolution of the electron dengityia

one-electron wave functiong,, under an effective Hamil- Equation (5) is also computed by the split operator tech-

tonianH, nique:
(1) A .
= =Hp.Qun(D),  Hipt]=— 5 +Vpt], (D (e At)wexpﬁ% exp@v{pﬁg})
N .
At A
VIp.t]=Vind p]+ Vex(t), p(t)=n§1|wn(t)|2- Xexr{%g Pn(t). (6)
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Here, V[ p,t+At/2] is estimated from an interpolation be- At
tweenV[p,t] and V[p,t+ At]. Therefore, they have to be z//n(t+At):expi—

o

solved by a SCF loop. This scheme is accurate enough; how- oy*
ever, it is computationally expensive to perform the SCF d
loop at every time step. +i Tt (). 13
[ll. FORMULATION However, this does not describe the algorithm for computa-

] ] _tions. To show the method of computation of Ef3), we
To avoid the use of a SCF loop, we first express the t'm‘%jecompose the exponential operator as

evolution of the wave functions using a Taylor development

in exponential form as At 9
) ¢n(t+At)zexr{? e
Atk gk ]
Un(t+AD =2, T e In(D=exR A Z (D). (D) o™ D
We consider a quantit§({¢},{¢*},t) which depends on
the wave functionsg/ and timet explicitly. The time deriva- At )
tive of this quantity is expanded by the chain rule, X expi- (V[p’t]‘/’)w_(v[p’t]w)* Sy
of  ay of  ay* of of iAt é
- = - X N *
A g SY T sy M. ® expg| (A Sy (Ay) S
Here, we have used the following notation: xexp{% %j Pn(t). (14)
e
N
a4 5_fE > f dra'//m(r) al , (9) Equation(14) is correct up to the second order &f.
gt o m=1 at Ihm(r) To clarify the meaning of the exponential operator that

contains the Laplacian appearing in Etyd), we expand it in
and J/dtey, means an explicite time-derivative operator, a Taylor development as
which operates on only explicitly time-dependent quantities.

By substituting the TDKS equatiofl) into Eq. (8), the iAt S
time differential is generally expressed as exp——| (& 1/1)5—¢—(A¢)* e n
2 (HLptT0) = — (ML p 1) —— i~ (10) L PN PP e
ot oY Sy* e k=0 kl4X oY Sy* "
For example, it operates on a wave functigpas The first term k=1) of the series operates af, as
R S, R 5 . -
T = (Ml 1) 5= (Hlptlu)* 0 i (B 55 =B S o=Dn. (19
=Hlp,tJ¢n, (1) The second termk(=2) operates as
becausey, does not depend o, andt explicitly. 5 2
Another example concerns the density (A lﬂ)gp—(A > v tn
Ip op L op dp 5 5
|E—(H[P:t]'/’)§ﬂ_(7ﬂp,t]¢/) I +|Wex = (Azp)g—l//—(Alﬂ)*% A,
= (Hlp 1) 0= (HLp 1) * Y, (12) _(ap Lt
m 51,0
because also does not depend drexplicitly. _ Oin _
By substituting Eq.(10) into Eg. (7), we can formally A Sy (AP)=Aliy. (17
write the solution without employing the time-ordering op-
erator as Generally,
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k
n= 05 (18)

—(Ap)*

A
(¥ 2 o

Thus, we obtain the following identity:

s
(Ad)

A*
z//("[/)

iAt
exp—-

iAt
x Pn=ex TA 1/
(19

Similarly, we expand the exponential operator that con-

tains the effective potential appearing in Efj4) as

eXp— (V[p, t]l/f —(V[p, t]w)* —|¥n

(Vlp, t]lﬂ) —(V[p,t]p)*

P) 1“
S|

(20

o0
-y &
k=0

klik

The first term k=1) of the series operates, as

(Vip.tl¥) = ¢ —(Vlp,t]p)* =Vlp.tl,.
(21)
The second termk(=2) operates as
V[p,t i—V tly)* 0 V[p,t
(Vlp, ]w)(w (Vip,tly) Py ot
=VIp IVt +| (VIp.t19) [” ])wn
aVlp, ])
(Vp,tlp)* n
(Vlp,t]y v ¥
[p t]
=V[p,tIV[p,tlgn+| (Vip,t]) ¢* n
—(<V[p,t]¢>*¢ e ])¢n
=Vlp,t]Vlp.t]¢,. (22

Thus, we obtain the following identity:

At )
exp—— (V[P,t]llf)g—l/,

~ (VLo 1) — i

(23

At
= eX[{I—V[p,t] n

Substituting Eqs(19) and (23) into Eq. (14), we obtain
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At 9 At A At
Yn(t+At)=ex > o exg—- | ex i—V[p,t]
AtA At 9
Xexn = e 5 7 |Un(D.  (24)

By the way, V[ p] does not depend on time explicitly,
because the densify does not depend on time explicitly as
shown in Eq.(12). Meanwhile,V,(t) does depend on time
explicitly,

NVind p] _ IVex(1) £0
ey ’ ey

(25

Therefore, the exponential of the explicit time-derivative op-
erator appearing in Eq24) affects only the external time-
dependent potentidl.,(t) as

At 9 v At ”
ex 2 atex ext(t)_ ex t+ 7 ( )
As a result, we obtain the desired formula:
iAt A At )
Yn(t+ At =exg —- = |ex Vindp']
At iAt A
+Vext t+ ? ex TE lﬂn(t). (27)

Here, Vg, (t + At/2) is the external force in the middle of the
steps. Meanwhilep’ in Vy[p’] is not the density in the
middle of the steps, but the density after the preceding op-
eration, namely,

N

p'(r)=n2

iAt A
= |®F2 2

2

n(r,1) (28)

Therefore, the formulé27) can be explicitly computed with-
out employing any SCF loops.

The present non-self-consistent-figlidon-SCH formula
(27) is quite similar to the conventional non-SCF form(#a
and the conventional SCF formu(6). However, in this pa-
per, we have derived the formula based on the strict solution
(13) by considering the time dependence of the Hamiltonian,
while the conventional non-SCF formula did not consider the
time dependence. We can easily show that the present non-
SCF formula is as accurate as the conventional SCF formula
by associating’ with p(t+At) as

N

At A A
=> |¢n<t>|2+i—(w:—¢n—wn—w: +O(At?)
=1 2 2 2 .
N o, oy
_ 2 n n 2
=2 |un(0]*+ (wn i V) HO)

dp

_ At O(At?) = O(At?). (29
_p(t)+7ﬁt+ (AtY)=p +O0(At%). (29

t+ At
2
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Therefore, both the non-SCF formula and the SCF formula 0.30
are correct up to the second order/af.

0.25

IV. COMPUTATIONAL TECHNIQUE
0.20

Computational techniques previously developed by us for
the one-electron TD Schdinger equation9,10] are also
beneficial for formula27). We discretize the wave functions
in real space, and use the finite element method for spatial
derivatives. The only difference between the schemes for the £
TDKS equation and TD Schdinger equation is the expo- 0.05
nential of the effective potential:

0.15

ty [arbitrary unit]

nsi
©
o
:

At 0 0.05 0.10 0.15 0.20 0.25 0.30
wam:ex;{i—vim[p]} (). (30 Energy [a.u]

By this operation, the phase of the wave functions is altered F|G. 1. Spectrum of the scattered light. The sharp peak found at

at each point, but the densip(r) is not altered. Therefore, 0.125 a.u. corresponds to the Rayleigh scattering. The sharp peak

we take the value o¥ ;[ p](r) as a constant during the com- found at 0.261 a.u. corresponds to the emission from the first ex-

putation; it is calculated just before the computation. cited state to the ground state; this energy includes many-body and
It is quite easy to improve the accuracy of form(®%) to  nonlinear effects.

the fourth order. The fourth order accurate formula is given

by Suzuki’s exponential product theof§] as where« is the coupling constant of the interaction, dfglis
an external electric field to perturb this system.
Po(t+At)=S,(SAt;t+(1—s)At) We suppose tha¥ (x4,X,;t) is expressed by a common

one-electron orbital wave functiopi(x,t) as
X Sy(sAt;t+(1—2s)At)

_ . 1
X S((1-4s)Atit+2sA1) W02 0= Y00 0900 (o x(Lo)

X Sy(sAt;t+sAt)S,(sAt;t) ¢u(t). (31

Here,s and S,(At;t) are given by —x(Lo)x(T.02)]. (39
s=1/(4-3/4), (32)  Thus, the TDKS equation is derived exactly:
iAt A] At iAt A 0 1 _
S,(At;t)=ex ) ex i—V[p 1]|ex > 7 |E¢(x,t)= —§§+ap(x,t)+xEosm(wot) P(X,1),
(33
wherep’ is the density after the preceding operations. p(x,0)=|(x,1)|2 (36)
V. EXAMPLE

In this section, we perform a simple simulation to verify /e use the following parameters for computation:
the efficiency and accuracy of the present method. The

model system we use here is a one-dimensional isolated sys>'2€ Of the system L:_S'o
tem in which two electrons interact by&function interac- ~ Number of grid points Np=64
tion under an oscillating electric field. The two-body wave Mutual interaction a=0.5
function W (x,,X,:t) in this system obeys the following TD ~ External force Eo=1/64
Schralinger equation: Frequency wo=1/8
Small time slice At=1/16
P 1 2 1 Total time steps N,=256x 1024
i—W(Xy, X t)=| —5—— 35— tad(X;—Xp) ) ) )
gt TR 2 9x3 2 9x5 Lo First, we compute the lowest eigenstate of this system
using the time-independent Kohn-Sham equation:
+ (X1 +X2)Eg Sif(wot) [V (X1,X2;1), 5
J
Edo(X)=| = 5 — +ap(X) | #o(X). (37)
(34) ° 2 gx2 °
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FIG. 2. Errors in the density obtained by three methods on some

small time slices. The conventional non-SCF method is accurate up FIG. 3. Errors in the density obtained by the fourth order meth-
to the first order ofAt, while the present non-SCF method and the ods. Both errors are roughly proportionalAe*, and they are much
conventional SCF method are accurate up to the second ordér of |ess than those of the second order methods. In this test case, the

In this test case, the error of the non-SCF method is almost the sam&ror of the non-SCF method is almost the same as that of the SCF
as that of the SCF method. method.

L

We use this state as the initial_ state. _ _ g:f dxX|p(X, T) = pexactX: )|, (39
Second, we compute the time evolution using E). 0

Third, by Fourier transforming the time fluctuation of the

polarization, we obtain the spectrum of the scattered light abere the exact valupq.(x,T) is prepared in advance by

shown in Fig. 1. performing the same simulation on an extremely small time
The peak appearing at energy,=0.125 (a.u) comes slice At=1/256 a.u. _ _ _

from the injected light. The peak appearing at enetgy Figure 2 shows the errors on some time slices obtained by

=0.261 (a.u) is expected to be the excitation energy be-three methods: the present non-SCF mett®d, the con-

tween the first excited state and the ground state. ventional non-SCF methot#), and the conventional SCF
We have calculated the excitation energy by certain othef€thod(6). o

methods: Method A solves the eigenstates by the non-TDKg All methods are accurate enough in this result. However,

equation(37), method B modifies the result of method A by e conventional non-SCF method is stable only within a

- ) - specific short time span, e. =512 a.u. for allAt in this
gf;ngrtlgﬁzr:;?ﬁ? npc?nﬁ%aggﬁgme?t(gzgt'ig:dmiﬂ:gguis test. Meanwhile, the present non-SCF method and the con-

gl' ted bel 9 q ' ventional SCF method are stable even over a long time span,
are listed below. e.g., T=64x1024 a.u.,At=1/16 a.u., in this test. There-

. ) . fore, these methods are suitable for long time span simula-
Excitation energies a.u. calculated by various methods.

tions.
(A) Non-TDKS equation wys=0.199 We have also tested the simulation using the present
(B) Non-TDKS equation with RPA wpen=0.255 fourth order non-SCF methd®1) and the fourth order SCF

method proposed in the literatufé]. Figure 3 shows the

C) Non-TD Schralinger equation =0.260
© inger equatt @seh errors. Both errors are much less than those of the second
TDKS equation »w=0.261 order methods.

We found that the peak obtained by the present method, VI. CONCLUSION

i.e., the TDKS equation, reproduces fairly accurately the ex- We have proved that simulation of the wave function us-
citation energy calculated by means of the exact diagonalizang the TDKS equation can be performed by a simple
tion of the non-TD Schidinger equation. That is, by solving scheme and that there is no need for the use of SCF loops to
the TDKS equation, dynamical phenomena can be describadaintain the self-consistency of the effective Hamiltonian.
more accurately than by using the RPA as long as the effed®@ur proposed non-SCF method is competitive in accuracy
tive Hamiltonian is correct. with the SCF method, and also it is superior in computational

Next, to evaluate the error of the method, we estimateefficiency. We are convinced that our method is helpful for
the error of the& density p(x,T) at a specified timeT investigating nonadiabatic and nonlinear quantum electron
=256 a.u. dynamics.
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