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Real-space renormalization-group approach to field evolution equations
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An operator formalism for the reduction of degrees of freedom in the evolution of discrete partial differential
equations(PDE) via real-space renormalization group is introduced, in which cell overlapping is the key
concept. Applications to (% 1)-dimensional PDEs are presented for linear and quadratic equations that are
first order in time.
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[. INTRODUCTION wherey is any measure oM. Let us, furthermore, consider
the following evolution equation, which we will assume ex-

The use of real-space renormalization gro(RSRQG act[9]:
techniqueg1,2] to analyze questions related to the discreti-
zation of classical evolution field equations has recently ddi=Hij ;. (2
raised a great deal of attention. Promising results have been . i ) i ,
achieved from the concept gerfect action[3] and its ap- Th|s scheme can hold easily any Imear .evolutlon equation,
plication to deterministic partial differential equatiofieDE) ~ With @ great variety of boundary conditions. Equatith
[4,5]. Recently, the group of Hou, Goldenfeld, and McKane™aY result from the discretization of any linear PR even
extended the idea to stochastic PP by using a space- & nonlocal equationwithin any explicit or |m_pI|C|t algo-
time Monte Carlo formalism for classical problerfig. In rithm. The operatoH shall be termed thevolution genera-
this last work, interesting nonlocal effects were discovered. 0" ) , i ,

The present work tries to develop further the line traced in  S°Me nonlinear equations may enter easily this formal-
Ref. [5] generalizing the notion ofoarse graining The ST For example, any quadratic evolution generator might
fields are assumed to be defined on spatial cells and a mech2€ 2dded as
nism to define truncation operators is provided based on the _
overlappingof cells in different partitions of space. Both h$i=Qijcbjdict Hij ;. ®

linear and nonlinear (% 1)-PDE are analyzed. Stochastic rys ajlows study of surface growth phenomena as governed
equations are not dealt with in the present work, but it shoulq)y the Kardar-Parisi-Zhan¢<PZ) equation[10] or the re-

be noticed that the formalism of Ref6] may be easily |5ted one-dimensiondlLD) turbulence described by Burgers
adapted to include the new truncation operators. equation. More complex equations such as Navier-Stokes are

This paper is organized as follows: Sec. Il discusses th%y the moment out of reach of the formalism because the
RSRG operator formalism that shall be applied. Our geometqq 4s under study are not scalar.

ric construction of the truncation operators is explained i The field discretizations as defined by Ea) find their

detail in Sec. Ill. Section IV is devoted to the exposition of o+ | place in a vector spad&. A truncation operator
some numerical results. Some concluding remarks and prgy.eN_,EM defines a subdiscretization within the original

posals for later work are discussed in the Sec. V. vector space. The effective field component indices shall be
denoted with capital letterg| } « EM. The new discretiza-
tion only providesM degrees of freedom and, thus, tRe
operator must have a nontrivial kernel.

Let P be a partition of a given region of a manifolt, The truncation operator shall be chosen to be liiéaf.
composed of the celllC;}.; . Let ¢ be a scalar field on that NS enables us to write its action as

region of space and consider the discretizaf®jrassociated _R (4)
to the partition d1=Rii¢i.

Il. THE FORMALISM

Had theR operator got a trivial kernel, an inverse operator
R~1 might be written, which would be called tiembedding

d’iEJ dud(x), ) operator. In this case the following equation would be exact:
M

dipi=Hi R ). )
*Electronic address: andreasd@icr.ac.uk One might, therefore, evolve the effective discretization with
"Electronic address: javirl@sisifo.imaff.csic.es only M degrees of freedom through equation,
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at¢|':R“Hinj31¢SEHI’J¢3, (6) The schedule for all the simulations that shall be pre-
sented in the rest of this work is as followd:) present a
whereH’ is therenormalized evolution generatohfter the  HamiltonianH (at most quadratjcand an initial field$(0);
evolution of the reduced discretization has been completed?) perform the exact evolution and obtaj(t); (3) propose
the evolution of the original discretization would be found a truncation operatdR and obtain the pseudoinverBg; (4)
calculate the renormalized Hamiltonian and the truncated ini-
Bi(D=R; 1 (1). (7)  tial field: H'=RHRP and ¢'(0)=R¢(0); (5) perform the

) _ ) renormalized evolution o’ (0) and obtaing’(t); (6) com-
Equation(6) requires less storage and CPU time than @}. pare (t) andRPa’ (1).

to be simulated on a computer. We may express this situation e distinguish betweenraal-space errorwhich is given

by the commutative diagram by theL? norm of[ ¢(t) —RP¢’(t)] (a vector fromEN) and
EN A EN therenormalized space errgwhich is given by thd.? norm
of [Re(t)— ¢'(1)] (a vector fromEM). Both errors need not
Rl g rR|| rt be equal. It is impossible for the first error to vanish for all
#(0) and all time, although that is possible for the second
EM EM one. In that case, the retained degrees of freedoraetly
H evolvedafter the rest of the information has been removed.

o _ ) ~ Such a situation corresponds tgarfect action
Unfortunately, the situation displayed in the previous

paragraph is impossible: the truncation operator must have a

y . . IIl. GEOMETRIC TRUNCATION OPERATORS
nontrivial kernel. Thus, it lacks a true inverse. Anyway, a

“best possible” pseudoinverse may be found: an opergfor In this section a set of construction rules for R@pera-
that fulfills the Moore-Penrose conditioh$2], tor shall be presented that shall allow for practical computa-
tions.
RRPR=R, RPRRP=RP, Let us consider the 1D interv@d,1] and letP, denote a
regular partition of that interval into equal cells, denoted by
(RPR)T=RPR, (RR’)'=RR’. (8)  CM=[(i—1)/n,i/n]. The truncation operatd®" N shall be
) ) . defined by
These equations are solved onlyRF is the singular values
decomposition(SVD) pseudoinverse oR. RP is an “ex- w(CMNCN)
trapolation” operator, which takes d@" (reduced discreti- R{\{'“NE W , (11
zation and returns an approxima®' (full) one. The only #(C)

important piece of information contained Riis its kernel, whereu(-) denotes the standard measur&irc; is a cell of

\(Nh'Ch rep[rleaﬁ;a nI;SR'ghie tﬂe%eismm fre?dto:n tgﬁt ?]rotleRrpeRr,nove[He source partitiofPy, andC, is part of the destination one
\See, €.9., ) s the identiy operator o™ a Pum - In geometrical terms, thR matrix elements are given
is a projector on theelevant degrees of freedosnbspace of

EN. These degrees of freedom are stored as the column gfy the ratio
the matrixR. It is highly recommended to orthonormalize Overlap between cell<; and C,
these column vectors, becau’® becomes simplR. RYN= (12)

Using the pseudoinverse® instead ofR™! the diagram Measure of cellC,

above does not commute. Thedrvature represents the
error of the procedure. The renormalized evolution generat
is written as

The rationale behind this expression may be expressed with a
Oﬁhysical analogy. Let us consideés as the density of a gas
in theith cell of the source patrtition, limited by impenetrable
9 walls. Now a new set of walls is settled: the ones correspond-

ing to the new(destination partition. The old walls are, after
that, removed. The gas molecules redistribute uniformly in
each new cell. The new densities are the valiethat con-
stitute the transformed field discretization. Figure 1 should

' —=R,;:0::, RP.RP be helpful.
Quarc=Ri QuiiRjaRice- (19 In more mathematical terms, the value #f is a linear

This expression shall be shorthandedds=RQR°. Higher  estimate for
degree operators are possible, of course.
. The election of the&R operator is the key prpblem. Ideall_y ¢|:f B(x)dx (13)
it should depend on the problem at hand, i.e., on the field C
equation and the observables we want to measure. In this
paper a geometrical approach is introduced that is indepersonserving the total mas&, ¢, =%;¢;. Equation(11) may
dent of the physics of the dynamical system, but uses a qualso remind of the definition for conditional probability.
sistatic truncation procedure for a careful selection of the The resultingRM~N operators shall be termesudden
relevant degrees of freedom. truncation operators Compared to standard RSRG integer

H{;=R;H;R,

where indices are kept for clarity. A quadratic evolution gen-
erator would be transformed in this way,
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/ FIG. 3. Some of the degrees of freedom that are retained by the

guasistatic truncation operator proceeding from-8D sites. Cells

1, 5, 10, 15, and 20 are depicted. Notice that the “cells” are now
FIG. 1. A part of two overlapping partitions is depicted. The OVerlapping and have slightly Gaussian nature.

lines delimiting the “old” partition are thincellsA, B, .. .), while

the thick lines belong to the “new” onél, 2, . ..). For example, Vectors given by the columns oM N,

there shall be n® matrix element between cells 1 afigsince they Each of the discrete functions depicted in Fig. 3 may be
do not overlap. On the other hand, the matrix elenfent must be  considered to represent a relevant degree of freedom when
close to 1. truncating with the matrixqR?%~8% Although the functions

representing the degrees of freedom are now overlapping,

factor blocking techniques], the operator&M N allow for they conserve a true real-space nature. It should be noticed
a greater flexibility. For example, it is possible to remove athat the width of the leftmost and rightmost cells is smaller
single degree of freedofsee Fig. 2 for a 1D exampleThe  than the one at the middle of the interval. A consequence is
sudden truncation operators do not form a closed algebrahe quite exact representation of the boundary conditions.
The composition of sudden truncation operators shall take us It should be remarked that other authors have already in-
to the concept ofjuasistaticor adiabatic truncation opera- troduced overlapping blocks within RSRG applicatiphd].
tors. These are defined by Intercell correlations, which are the key to the most success-
ful RSRG algorithmg15,16], are usually captured more eas-
ily within an overlapping cells approach.

The most usual subdiscretization approach is the decima-

qRMHN:RM%M+1RM+1<—M+2,”RN—1<—N. (l )

Of course,qRM N differs greatly fromRM—N. The term

“quasistatic” is suggested by the thermodynamical analog)} 'gg srigztrgcc)jdr,eﬁr\]/(;rri OﬁﬁsdﬁﬁLizt?;rfffﬁmeorﬁ?fnﬁﬁ rep-
introduced before. The relation between quasistaticity and : y P

evesibity eads s 0 ikt R my be beter |70 TS 4t AT, The ecsen s ot e
suited to our purposes. 9 y

A single step sudden transformation is given analytically

by D=6 a7

N—| | But the R matrix (17) along with its SVD pseudoinverse
R”’l“Nzé,'iTﬂL 3 i-1yy- (15)  yields a trivial dynamics, because the retained degrees of
freedom arenot in contact A possible solution to conserve

lterating this relation it can be proved that the quasistatidin€@rity, though losing the Moore-Penrose conditié8s

operators fulfill the recursion relation, A discrete Fourier Transform along with a cutoff might be
a suitable linear truncation procedure, but we shall not leave
Meny MH1-1 I Male N the RSRG set_ting: our relevant degrees of freedom do have a
ARy =y R VRS LA EETHRE local geometric meaning.
(16)

. . . . . IV. APPLICATIONS AND NUMERICAL RESULTS
This relation allows to calculate the matrices using ho matrix

products. This expression improves greatly the efficiency of This section discusses some numerical applications, both

the numerical applications. to linear and nonlinear examples.
The degrees of freedom that are retained by the quasi-
static truncation matrix are plotted in Fig. 3. They are B\ A. Heat equation

| | | ‘ | The heat equation is defined on any space by stating that
l the evolution operator is given by minus the Laplacian on
such a space. It is known that the Laplacian operator may be
sensibly defined on a great variety of spaf¥g, including
FIG. 2. The lower partition has just a single degree of freedomdiscrete spacefsl8].
less than the one above. A truncation matrix may be written to  Our 1D interval shall always bi@,1]. As it is split intoN
proceed from one to the other. cells, the cells width is alwayax=1/N. The structure is
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0.14 T T T T T T T T T TABLE |. Comparative of errors between different truncation
012 schemes for heat equation on the random-increments initial condi-
tion depicted in Fig. 4.
0.1
0.08 Method Real-space error Renormalized space error
< 0.06 Quasistatic 0.53% 0.29%
0.04 Sudden 20% 19%
Decimation 13% 4.7%

0.02

the dynamical relevance of the removed information. In

renormalized space only the second type of error contributes.
To examine the relevant scaling lajd®], a discretization

of ¢(x)= 6(x—1/2) is defined on the 200 cells partition, and

0.07 is normalized according to
0.06
N
0.05
> Ax¢i=1. (21)
0.04 i=1
<
0.03
Under time evolution, the peak becomes a Gaussian function
0.02 and its widthW follows the law:
0.01
N
0 .
. W(t)=, iAxg~t2 (22)
X i=1

FIG. 4. A random increments function is taken as the initial ] ) )
condition (up) with 200 cells. Below, the continuous line shows the Eduation(22) can be proved to be exact also in the discrete

exact evolution under the heat equation witk &, along 500 ime ~ Case as shown in the Appendix. Using the same constants as
steps withAt=5x10"6. The triangles are given by the quasistatic N the previous calculation, we have performed a quasistatic
approximation with 20 degrees of freedom. The circles represengimulation of the same problem, and depicted in Fig. 5 a
the sudden approximation, and the squares follow the sudden apg-log plot of the width against time: The data from the
proximation, i.e., conventional symmetric coarse graining. quasistatic simulation in Fig. 5 fit, after a transient, to a
straight line with slope 0.49900.0001. The exact field evo-
given by the discrete Laplacian matrix on a linear graph, lution yields exactly the same value, without the transient.
The sudden approximation saturates at long times. Usual

Lij =281 Jji—j| 1, (18  decimation gives a correct result.
with fixed boundary conditiong,;=Nyy=2. The equation 100 [ _ : :
shall be given by :S%ﬁ: 0

[ Exact -
K
hdi=—yzlidi (19

—

The first test shall be a random increments initial condition,
i.e., it fulfills the equation,

10 & o & s ook 4

log(Width

Pir1=itr, (20

with r a random variable with mean zero, equally distributed

in an interval of widthA. Using N=200, M=20, andA

=% (a quite severe reduction of a factor)M@e obtain the

results depicted in Fig. 4. The errors for the results of Fig. 4 1 : :
; . . : 10 100 1000

are summarized in Table |. Errors are noticed to be smaller in log(Time)

renormalized space. The reason is that in real space two

sources of error get mixed: the possibility of representation FIG. 5. Log-log plot of the width of the Gaussian against time.

of the initial data with the restricted degrees of freedom andrhe steady straight line has slop®.5.
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TABLE Il. Low-energy spectrum of a particle in a box split into 100 discrete cells, calculated through exact diagonalization, and two
effective variational RG techniques: sudden and quasistatic transformations.

Method
Exact 0.000967 435 0.003 8688 0.008 701 0.015460 0.024 13
Quasistatic 0.000967 435 0.0038688 0.008 701 0.015463 0.02471
Sudden 0.008 101410 0.0317493 0.069 027 0.116917 0.17153

B. Low energy states in quantum mechanics which is obtained through the centered derivatives approxi-

Researchers in RSRG methods have spent many efforts [Ration to the gradienf21]. Boundary conditions are im-
developing techniques for the approximate obtention of thé0sed for which forward and backward derivatives are em-
low-energy spectrum of quantum mechanical problgnd.  Ployed. The first test evolves an initial condition given by a
The reason was not the difficulty of the problem but of tech-sinusoidal functionp(x) = sin(4mx) with x e [0,1]. The reso-
nical nature. With the development of the density matrix RG Jution change is 48-20 and 2000 time steps witht=5
correlated blocks RG, etd.15,16] in the 90's, the problem X 10 ® were simulated. Figure 6 shows the results ¥or
was considered to be solved. =2 andk=1/2. The errors for such a test are given in Table

The quasistatic approach allows a very accurate approxHl. A different test was carried out with a random increments
mation to the lowest energies of many quantum mechanicdlinction, as for the heat equation. The rest of the parameters
1D systems. The transformatish—H’=RHR' may yield are the same as in the previous simulation. The results of this
an effective transformation of a Hamiltonian matrix, pro- simulation are displayed in Fig. 7 and the numerical errors
vided that the transformatioR is orthogonal. In this case, are provided in Table IV.
the diagonalization oH’ yields avariational ansatzap- Some more nonlinear equations have been tried, such as
proach to the real spectrum. The ansatz is of the form Burgers[22] and others, with comparable results. We encour-

age the reader to experiment.

M
v)=2 alé), (23
i=1 0.6
where|¢;) are the rows offRM N after an orthonormaliza- 0.4 - 1
tion procedure, and the are the variational parameters. The 0z

diagonalization of the quasistatically truncated Laplacian
yields very precise values. For example Nf= 100 andM
=10, we obtain the values for the spectrum-of exposed

in Table I1. 02

The bad results for the sudden approximation are a bit
misleading[20]. For example, the real-space error measured 0.4 |
according to the_? norm for the ground state is only around
11%. The source of error is the lost of smoothness. The res 06
of the eigenvaluegup to 10 do not fit as well as the first
ones.

The method has also been tested with the harmonic oscil
lator and other potentials with equally good results, as long
as the wave functions are smooth. In case of a potential givel
by Vi=V(x;), the Hamiltonian operator is just-L;

C. Kardar-Parisi-Zhang equation <

The Kardar-Parisi-Zhang equation is widely used as a
model of stochastic and deterministic surface groyta].
Here we use the deterministic form defined as

§t¢:x|v¢|2+’<v2¢ (24) 0.2 1 1 1 1 1 1 1 1 1

representing a surface in which absorption/desorption phe-
nomena take place. The squared gradient term shall be FIG. 6. A sinusoidal surface profile evolved by the KPZ dynam-

implemented through the quadratic operator ics with the parameters explicitly given in the text. Notice that a
slight asymmetry in the initial functioa lattice artifack develops a
Kijk= + 8ji+1—0),i—1)(Oit1— Oi-1), (25 high asymmetry in the exact and quasistatic approximations.
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TABLE lll. Errors in the evolution of a sinusoidal initial condi- TABLE IV. Errors corresponding to the field evolution of a
tion under KPZ equation, corresponding to the results of Fig. 6. Theéandom-increments initial condition, shown in Fig. 7.
parameters are explicitly given in the text.

Method Real-space error Renormalized space error
Method Real-space error Renormalized space error —

Quasistatic 0.23% 0.23%
Quasistatic 0.5% 0.2% Sudden 12% 11%
Sudden 39% 38% Decimation 9.4% 6.5%

Decimation 15% 8%

(2) Availability and stability of local explicit method#f
D. Efficiency issues implicit methods must be used, or the equation has nonlocal
nature, then the original equation is already long ranged and

A problem which must be remarked is that the approxi- o ) |
mation renders new evolution generators which may have gg;gﬁé;g efficiency comes from applying the RSRG recipe

greater number of nonnull entries than the originals. The

elements typically decrease in magnitude as a power of their

distance to the diagonal, albeit they often alternate signs. V. CONCLUSIONS AND FUTURE PROSPECTIVES

This corresponds to the nonlocal space-time effects remarked A formalism has been provided to deal with the reduction

by Hou, Goldenfeld, and McKané]. ~ of degrees of freedom for a wide set of field evolution equa-

This fact forces the practitioner to make computationakjons. The basis of the formalism is tivgegral specification
complexity estimates before trying this method. Various facf the field values(i.e., it is related to finite volume meth-
tors should be pondered: . _ ods. The key concept to find the transformation between a

(1) Reduction factor attainable for a given equatid®PZ  partition of space and another is theerlappingof cells.
stands more than 50% reduction for a wide set of initial gy specific recipe stands removal of 90% of the degrees
conditions. The heat equations stands more than 90%.  of freedom without distortion for linear PDE such as the heat

equation, and 50% reduction without appreciable loss of ac-

0.7 . . . . . . . . . curacy for KPZ and related nonlinearities.

06 The main handicap of the technique is shared by all
known strategies to the reduction of degrees of freedom: the
appearance of nonlocal effects that may spoil the efficiency
[6]. Future works on this algorithm should try to find suitable
short-ranged approximations to the renormalized evolution
generators. Also the extension to stochastic PDE makes non-
local effects appear: a spatially white noise shall develop a
nontrivial covariance matrix. The eigenfunctions of this ma-
trix would be the appropriate basis.

It is easy to generalize the formalism to higher dimen-
sions, but the algorithms to find cell overlappings is trickier.
Nevertheless, fields of vectorial nature do not fit well in this
formalism. The authors are developing a “difference forms”
theoretical frame to deal with them, in the line traced by

0.5

0.4

< 03
0.2

0.1

o]

-0.1

022 Katz and Wiesd4].
04 _ But_the main interest of the_: authors at t_he present moment
) is a different extension: to find an algorithm in which the
0.35 degrees of freedom are not of geometric nature, buthoe
03 senby the equation itself.
© 025
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APPENDIX: SCALING OF THE DISCRETE HEAT
FIG. 7. Random increments functigabove built in the same EQUATION

way as that of Fig. 4. Below, the exact evolution is displayed by the

continuous line. Squares mark the quasistatic truncation approxima- In this appendix the exactness of relati@®) subject to
tion, while the dashed lines follow the sudden and the decimatiorany coarse-graining procedure keeping the normalization
truncations. condition(13) is proved.
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We generalize the definition in E€R2) to the expectation The evolution equation uses a discrete Laplaif) and
value for any observabl® on a one-dimensional lattice a forward time Euler schem@1]. Some algebra and index
composed of sites according to shifting, along with the supposition of either free or periodic

N boundary conditions lead to
(O)=2, Ouidxdy, (A1)
= N
2 — 2
with the total timet=nAt andn the number of discrete time (x >t+1_2KAti21 {AXy i} + (Xt (A4)
evolutions.

Relation (22) also describes Brownian motion on a 1D

lattice. According to Wick’s theorerf23], it is sufficient to The equation is rewritten, taking into account that Eq.

prove the linear dependence of the second mor(ne%)ton (21) is valid for all time, as
time for any discretization scale, as the following proposition
states:
Proposition The second momerik?) as defined by defi- (X?) 1 1=2KAt+(x?),. (A5)
nition (22) for the diffusion field¢ is given by (supposing
free or periodic boundary conditions

5 Iterating the procedura times yields the final result,
(X)=2kt+C o), (A2)

subject to the normalization constraif®1). Here,C(¢;-o) ()1 1= 2k(t+ 1) +(x2)_. (A6)
is a constant that depends on the initial field configuration

and, for aé initial condition, C(¢;-g)=0. In Eq.(A2), tis

the time, « is the diffusion constant, and no dependence orpefining c(¢t=0)z<x2)t=0 and changing the index- 1 tot

the discretization scalax is involved. , we get the result stated in the above proposition. If the initial
Using definition(Al) to define the second mome(t®)  field configurationg,_, is provided by thes peak that was
we have used to generate Fig. 5, EGA6) simplifies to
N
2 _ H 2
OP)eea= 2, AX(IAX)2 ey (x)=2xt. (A7)
N
5 5 Atk ) _ ) )
221 i“(AXx) W(ﬁbt,ifl_z' drit i) di|-  Equation(A7) is equivalent to the calculation of the mean

squared distance of a random walker after the tirarting
(A3) at the center position, i.e., the location of thg@eak.
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