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Topological solitons in nondegenerate one-component chains
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The possibility of the existence of topological solitons in one-component chains with a nondegenerate
potential of gradient type is proven. The existence and stability of the solitons are ensured by the competing
nonlinear nearest-neighbor potentigl and parabolic second-nearest-neighbor poteXtiaBolitonic solutions
have been found analytically for piecewise-parab®icand numerically for smoothened nearest-neighbor
(NN) potentialV; 5. Numerical results for the soliton velocity and front width are in good agreement with
analytical estimates. The solitons are shown to move at a unique velocity and actually maintain the constant
profile as long as the NN potential is smooth enough. The impact of two solitons of different sign is inelastic
and leads to their recombination. It is argued that the soliton propagation may constitute an elementary event
of structural transformations in the chain.
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I. INTRODUCTION However, a question arises as to whether this is possible
in one-componentatomig chains. For a rather special case

Topological solitons are well known in continuum models of a chain of particles with competing piecewise parabolic
of ordered one-dimensional atomic chains with onsitenearest-neighbor and harmonic next-nearest-neighbor poten-
bistable (or multistable¢ degenerate potentials¢f, sine-  tials (Reichert-Schilling modd]l9,10)), a positive answer was
Gordon models when only homogeneous states with equalobtained in Ref[8]. Unfortunately, topological solitons in
energies can exigtl—5]. Meanwhile, in many systems ex- such a case turned out to be unstable.
hibiting structural transformations up to the appearance of In the present paper, the existence and stability of topo-
random(glasslike atomic configurations anharmonic poten- logical solitons in a nondegenerate one-component system
tials are of gradient type and have energetically nondegenewith more realistic anharmonic potentials of gradient type,

ate equilibrium stateg5—8. which may be obtained by smoothening a piecewise poten-
Until recently it seemed that topological solitons in suchtial, are examined. The paper is organized as follows. In Sec.
situations were forbidden. The reason is ttiatcontrary to  Il, we outline the Reichert-Schilling modéRSM) and study

the onsite potential, the multistable nature of gradient-typghe static features of background and solitonlike configura-
potentials is lost in continuum approximation, afid non-  tions. Section lll is devoted to approximate analytical inves-
degeneracy of the potential wells leads to the releasing aigation of the dynamics of the RSM. In Sec. IV, we propose
absorption of the energy during the transition from one wella numerical approach to the calculation of solitonic solutions
to another, which results in a contradiction with the conditionfor smooth potentials. A description of a transition between
of stationary propagation of topological solitons. alternating and intermediate homogeneous states is given in
It turned out, however, that in multistable two-componentsec. V. Finally, in Sec. VI a molecular dynamics study of the
(moleculay chains both of these difficulties might be over- existence and stability of topological solitons is presented.
come[6,7]. Namely, due to the presence of an optical branch
of the IR spectrum, the gradient potential may be trans- Il. STATIC REICHERT-SCHILLING MODEL
formed under certain conditions to an onsite potential. If this
takes place, topological solitons of a special type may exist
in spite of nondegeneracy of the multistable potential. These The RSM, first introduced in Ref9], is an infinite chain
solitons transfer the initial state into an intermediate onepf identical classical particles withtnharmonicand compet-
which is in the attraction region of the final state, and may beng pair interactions along the chain up to the second neigh-
responsible for structural transitions or chemical reactions ifbor leading to the following expression for the system’s en-

solids[7]. ergy:

A. General theory

E=2, Vi(Upy1—Uy)+Vo(Uyio—U
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wo=roty 2 #lo(wy.y), 0)
where
1+2a—J1+4a
n=———F>——, a=C,/Cy, (5)
2a
(1+ n)%a,—275b 1+7y
Fo= ;o YTaagT - (6)
(1=7n) 7

Sincew,, appears on both sides of E@), this is in fact a
self-consistency equation for the stationary configurations
{w,}. Its solution may be found as follows: Repldeg(w,)}

on the right-hand sidéhs) by a sequenc® ={o,} of Ising-

like variableso,==*=1 and calculate the corresponding .

If for every k the self-consistency is satisfied, i.e., for every
w, calculated according to

Wn=Trg+YyS,, Snzzi 77|i|0'n+ia (7)
0 1 2 3 4 we haveo(w,)=sgnfv,—c)=o,, then this particular se-
X quenceW={w,} is a solution to Eq(4). Thus, every solu-

tion {w,} of the stationary equatioB) is in one-to-one cor-
respondence with a binary Isinglike sequetiog}.

Moreover, it was proven in Refl0] that if a_>0, w,
>0 for all n, and the geometric parameters of the potentials
(a;,a,,b,c,n) lie in the range determined by inequality

FIG. 1. The appearance of the NN interaction potentigi(x):
a=1,a;=1, a,=3; §=0, 0.2, 0.4(curves 1, 2, Bfor (a) c=2
and(b) c=3.5.

where u,, are the particle positions and,=u,.;—u, the
bond lengths. Below we give a sketch of the principal results
by Schilling et al. [9—-11] in a slightly different yet equiva-
lent notation[12].

The piecewise-parabolic nearest-neightidN) potential
is composed of two parabolas of the same curva@irz 0,

(1= n)’c+27b—(1+ n)2a+|<(1+|7l|)(1—3|77|)a—(,8)

theneachsequencéo,} gives a correct self-consistent solu-
tion {w,} of Eq. (3). Every such solution is related to a
1 (locally) stable equilibrium configuration of the chain@f;
vl(x):Ecl{[x—a+—afg(x)]Z—[c—;h—afg(x)]Z}, >0. At C;<0 all the equilibrium configurations are un-
) stable, and aC,=0 the system splits into two independent
harmonic sublattices.
1 Not only bond lengths but also the energy of the system in
a.=-(a,*a;), o(x)=sgnx—c)e{—1+1}, any equilibrium configuration may be expressed through
2 Isinglike variables:

wherea, anda, are positions of minima of the parabolas
andc is the point where they are patched togetfsse Fig.
1(a), curve 1, and Fig. (b), curve 1. The next-nearest-

E(X2)=EW(X))

neighbor(NNN) interaction potential is harmonic, :EOEn: 1—h§n‘4 on— nEm J(n—m)o,om, (9
na’ém
1
Va(X)= 5Ca(x=b)%, C,#0. where
The stationary equations C. |1+ 4
E0=—71 1_77a2_+ 7 Sb?— 7 sba, +c?
JE 7 (1-7) (1-7)
=0, n=0,x1,=2,... (3)

—2ca,+|——| a%t, (10)

have been solved to yield a class of solutions: 1-7
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(1+7)%a, —(1—5)%c—27b o
h=Cja_ *(1_7’)2 , E=-3 [h+23,3 7 |=2 &, a9
C,a? 1+ 7 whereé&, is the per site energy of a static configuration,
I =Jo7", Jo=———7—. (1)
2 1-79 7
egt“}:—h—zaol_ : (17)
All the stationary configurations were found to be metastable n
;g: glz(()) and| »| <1 (what is assumed belgwand unstable (i) oy=—1 for all n (configuration{— — 1),
l .
Schilling et al. were interested primarily in the statistical 7

properties of stationary chaotic configurations of the chain. Eg{’}:h—ZJO ; (18

They studied as well the chaotic chain motions, relaxation
after quench, and dependence of the residual values of th

el . . .
- . i =+1, = —1 (configuration{ + —} or equiva-
modynamic functions on the quench rdte3—17. These i) o2 T2k (config nit—}oreq

lent configuration{ — +}, which is obtained by enumeration

. > . ) Ss'hift); the second sum on the rhs of E§) vanishes, so that
sive localized transformations of the chain. In contrast, we

are going to study the solitonicooperativeé motions in the % 7
RSM and RSM-like systems with smooth potential. This can =gl t=—-23.> (- n)i=2J, . (19
only be done by approximate analytical or numerical tech- i=1 1+

niques. Fortunately, certain limit cases of approximate solu- .
tions may be compared to exact results for the static RSV\%O compare the energies of these states we subtradile.

found on the basis of the general theory given above. For thifoM EQs.(17) and (18) and transform the result with the

purpose it is necessary to calculate the background and soff€/P ©f Eqs.(12) and(14) to obtain

tonlike static states of the system, which is the aim of the rest

of this section. 5{S;r+}_5{st+—}:_h_4‘]o 2=4e0a(1+¢),
-7
B. Background states
- - . . Where
Before we proceed, it is worth listing some useful identi-

ties that follow from Eq.(5): c,a? Jo , 1+4a( )

en= = y = - ro—C).
(Vitda-1)?2 1+7 1 ° 21+4e) |1+4a 20a " °
Similar derivations lead to
Y @ n
- - S P g B _
Aon? Trha 1op Jrraa P E 5T S de0a(ly).

One can easily see that- —} is the ground state ifr
>0, || <1. If these conditions are not simultaneously sat-
isfied, then eitherf{++} (h>0, i.e., ay<0) or {——}

With their help, Eqs(6) and(11) may be rewritten as

rO:a++2“b y= a- (13  (ay>0) is the ground state of the system.
1+4a ’ Vi+4a’ It is of fundamental importance that the ground state with
alternating bond lengths arises in the system with no extrin-
C,a? sic difference between these bonds. This is due to the effec-
h=Cja_(ro—c), Jo= . (14)  tive long-range interaction along the chain: although the ex-
2V1+4a plicit pair interaction extends only to the second neighbor of

] ) ) the given particle, it may be seen from E@$) and (9) that
To find the background state we are only interested in th@yery particle “feels” the influence of all other particles in
energy differences rather than their absolute values, so thgte chain, the effective radius of interaction being inversely
we may omit the first sum in Eq9) to obtain proportional to (- In|7]). Such a feature suggests considering
the states{+—} and {—+} as homogeneous states with
double period, orlternating uniform stateAUS’s). In con-
trast, configurationg+ +} and{— —} will be referred to as
simple uniform state§SUS’y. This approach will enable us
Below we drop the prime oR. It is obvious that, depending to reveal cooperative processesatomiccrystals.
on the signs oh and », E(X) can reach its minimum in We will denote by{o,0,} such states that(w,,)= o,
either of the following casedi) o,=+1 for all n (such a o(Wy.1)=0, for all k. The intermolecular distances,
configuration will be denoted below by ={+ +}), for uniform states will be denoted by for {++}, rg for

E'(3)=-2> o, h+Jo_§1 7 (onsitoa_i)|. (15
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{—=1, r} for {+—1, andr, for {—+}. In particular, we
obtain forX ={+ +} with the aid of Eq.(7),

sn=—1+22 7= e 2 ; (21)
1-7 (1tda
therefore
ré=rot+a_/(1+4a). (22
By analogy, we find that
rs=ro—a_/(1+4a), ry=rp*a_ (23

Equations(22) and (23) may be generalized as follows:

r({oio)=rota_[o1+2a(oy—07)]/(1+4a),

(29)

whereo;=*1. It is easy to see that,, , ;=w,, for SUS’s,
while Wy, 1= 2rg—wy for AUS’s.

PHYSICAL REVIEW E 65 036618

all o,— — o, which leads to the change of sign in &|;

(ii) turning the chain around the “block boundaryi—

—(n+1); (iii) shifting the enumeration by h—n=+1.
Particle positions may be found as follows:

n—-1
Un:Un,1+Wn,1:"':U0+l(ZO Wk
n—-1
=u0+nr0+y2 S, n>0, (27
k=0
-1 -1
Un:un+1_Wn:"':UO_k2 Wk:u0+nr0_yk2 Sk
=n =n

n<0. (28

Let us consider the RSM as a “molecular” chain consisting
of diatomic “molecules” o, o+ 1] and introduce molecu-
lar variables, mass center coordingie and deformatiornp,

Thus, in the RSM under certain conditions every bondaccording to
may either be “compressed’a(w;)=sgnfv;—c)=—1] or
“stretched” [ o(w;) = + 1]. The ground-state configuration is Ugi)/ 2= Wy /2.
chosen by the model parameters among uniformly com- (29

pressed {— —}), uniformly stretched{+ +}), and alternat- , ,
ing ({+—1} or{—+}) configurations. The RSM in alternat- With the help of Eqs(26), (27), and (28) we find for %

Xk=(Uggp1tUz)/2, = (Upgiq—

ing configurations may be considered as a uniform chain of Fi=—l++h
diatomic molecules with constant intramolecubar, , and
intermolecularw,, . ;, distances. —Ug+n| ro+sgr(n) 7(1+ 7)(1-7")
C. Solitonlike states
. : 1
Among the whole variety of nonuniform statés,} we XkZUo+(2k+ =l ro+sgn(k)
now choose for further study the simplest block-copolymer- 2 1+4a

like states, i.e., states of which each semi-infinite part of the
chain,{o,|n<0} and{o,|n=0}, is in one of the homoge- —a
nious states described above. We will denote By

={0,0,|030,4} such states in which

n(1+ 7)(2— 72— Hl2krly
(1-n)®

: (30

_1 K a_
¢k—§ ro+sgn )m

n<o,
n=0;

01,

Ok=
03,

n<0, g3,
O2k+1—

25
n=0; oy, @9

1+79
we assume thafo,o,}#{o30,}. Substitution of Eq.(25) —a_sgnk) T plAr U2 (31)
into Eq. (7) for different configurations yields the following (1=m)
results fom=0: for (@) {——|+ +}, (b) {+ —|+ +}, and(c) for anyn, k. Note an identity
{—+|+ -}, respectively, '

|2k|+ \2k+1\_2| ||2k+1/2|g( 77k)

1+ 7] 277n+1
S et ~S,-1. (269
7 7 coshiz In 7), 7>0,
1+ 2" —n 27" 9n0= —sgr(k)sinh(3 In| 7|) <0
it+tn 279 _(- 1)n n, 2n g zInin)), 7<0,
T1-g — 2’ 1+
71w 77 1-7° (26b) which is valid for anyk and »# 0. The appearance of Egs.
(30) and (31) suggests denotinig=2k+ 3. Using the iden-
—p 291 tity sgn(l,)=sgn(k), we obtain the following.
Si=(- 1>n1+77 1, SoSa (260 @For¥={——|++}:

— ||
All other configurations of this kind may be reduced to those  \, =y +1,p®@(I,)— 2a_ 71+ =]y g(n]0]
listed above by the following transformation) changing (1-7)3

’
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(1+ 7]) 7’“k|+1/2
(1-7)?

1
di=5p® () —a_sgnly)

wherep(l,) =ws for the infinite uniform chain of configu-

ration [oyoa:1]: p@ (L) =[ro+sgn(a_(1+4ae) 1]
=rg , depending on the sign of .
(b) ForS={+—|++}:

1_ n
un=u0+nr;—2a_7](—7]3), ,
(1-m)
2(1— ylnhy
un=u0+nr0+a,§n—2a,n(—ns, n<o,
(1-m)
1—|n|g(n,
Xk:uonr;_Zain[ ki 9(377 I o
(1-7)
1 77[1=|7|"¥g(7,1)]
Xk=Ugtl o+ sa_—2a_ , k<O,
2 (1-7)°
[2k|+1

¢k=£p(b’(lk)—sgr(k)af—
2 (1=
where £,=[1—(—1)"1/2; p®()=r! for I,>0 andr]
for 1, <0.
() Fors={—+|+—}

n(1— 7"

u,=Ug+nrp+sgnn)2a_ +2
n=Ug+Nro+sgn(n) {n (1= 7)?

Sy ][
1, |7, 1]

2 (1-n)?

Xk=Uotlro+sgrily)2a-

217 "g(= 7,1
(1—7)?

1
¢k=§P(C)(k)+ngi|k)2a-

wherep©(l,)=r , the sign in the superscript being that of

Iy

It is easy to see that the profiles gf, &, have the soli-
tonlike shape. In the next section we show that this similarit
is not occasional, and that excitations of such a shape thzf\t

behave as solitons can exist in the system.

D. Conditions of the existence and stability of static
configurations of the chain

y
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0<w,<c for everyn such thato,=—1.

Sequences ={o,} obeying (not obeying condition (32)

will be referred to asllowed (forbidden sequences. Let us
find the conditions under which the configurations consid-
ered above are allowed.

It was shown in Ref[10] that all possible configurations
> are allowed ifa;<a,, i.e., a_>0, inequality (8) holds,
and allw,>0. Let us divide both sides of E@8) by a_(1
— 5)? and express; throughea in the left-hand sidglhs) of
Eq. (8) with the help of Eq(12). We easily obtain

~ ~  (1+|7)(1-3[75))
C— Il <

[c=Tol : (33
(1—-7)?
where
~ at+2ab 1y . a, 5 b -
0T340 a2 *Ta PTa “Ta
(34

Parameten_ plays here the role of a scale factor. It can be
seen that the system’s geometry may be exhaustively char-
acterizedapart from the scajeby four dimensionless param-
eters{a,c,rq,a}.

Let us expand the modulus in the rhs of E§3) and
convert againyg to «. Note also that, according to EQL2),
7n>0 impliesa<0, and vice versa. Moreover, the rhs of Eq.
(33) must be positive in order for this inequality to hold.
With this in mind, we find thagll the configurations of the
RSM are allowed if

[c—To|<28—B% 1<pB<2,

o (35)
[c—ro|<2B8—-1, 1l/2<pB<1,
whereB=1/\1+4«. This result has a clear physical sense.
The characteristic period of the chaig has to be close
enough tac, the location of the cusp X4, in order to enable
two equilibrium lengths for every bond, one smaller and one
greater tharc. Otherwise only one of the branches of poten-
tial V; works, and this potential becomes effectively har-
monic. In this case the solution of the equilibrium equation
(3) is unique.
The condition that aliv, must be positive is to be satis-
ied simultaneously with E35). It is easy to see from Eq.
(7) that

(W) =T _y1+—|77|
n/min 0 l—|7]|’

As was shown earligf9,10], everylocal minimum of the . o
system’s potential enerdit) corresponds to a particular state from which we obtain, with help of Eq$12), (13), and(34),
{0} of the Ising model defined according to E48)—(11).

Meanwhile, the opposite isot alwaystrue. A sequencéo} To>1, B<1(a>0), (36)
corresponds to a local minimum of the system’s potential _
energy, with interparticle distancéw/,,} given by Eq.(4) if ro>p% B>1(a<0).

only C;>0 and ] o
While all the states are allowed within the range of pa-

w,>c for everyn such thato,=+1, (32)  rameters given by the overlap of Eq85) and(36), specific
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TABLE |. ParametersQ; from Eq(37) for the simplest uniform and solitonlike configurations of the

chain.

D B Ch_?o Q2_?o qS_?O
{++} any g B
-1 any 8 - p? - p?

{+-} any B -1 -1 1
{——I++} B>1 - p? -8 B
_ B(36-1) B(3B-1)
A=l p Bl B+1
(+—]++} p>1 -1 3171 1
p=1 -1 A(B-1°-1 WB+1P-1
_ _ _ (B—1)?
{—+|+-} B>1 1 51 -1 1
_ (B—1)?
B<1 1 51 -1 B

configurations may exist in a wider range of parameters. Irmum (the ground stadeof the infinite system cannot be
order to find this range for a particular configuratibnwe  reached within finite time. As a result of relaxation, the sys-

have to estimate three values, tem becomes frozen in a metastable state, the excessive free
. energy of which is determined by the quench rate. Analysis
Qi(X)=a- mE'an for suchn that o= —1, of the relaxation process shows that, at finite times, localized

transformations may only lead to formation of a block-
copolymer-like state, which is still metastable. Further trans-
formation into a uniform ground state may be only brought
about by movement and annihilation of block boundaries, or
topological defects. Therefore, it may be argued that solito-
nic transformations are dominating at late stages of the
quench of initially disordered systems.

and to find conditions under which<0Q;, Q,<c<Qs. Moreover, while| 5| increases from 1/3 to 1, which cor-
Note thatQ;=<Q, by definition (37). Parameter®); for the  responds tax— —1/4 or a— +, the correlation length in
Conﬁguraﬁonsz considered above may be calculated usingthe allowed states increases infinitely. Therefore, most

Q2(2)=a:1m2aan for suchn that o,=—1, (37

Q3(2)=a:1mzinwn for suchn that o,=+1,

Egs.(7), (21), and(26). They are summarized in Table I.  single-spin flips would lead from allowed to forbidden states.
In this case the cooperative dynamic processes may play a
lIl. ANALYTICAL DESCRIPTION OF SOLITONIC major role and influence significantly the kinetic and thermal
TRANSFORMATIONS OF THE RSM properties of a RSM-like system.
While the static RSM can be solved exactly and analyti- A. Exact discrete equations of motion

cally, the dynamic version of the model does not allow an , o .
exhaustive analytical treatment. The dynamic properties o‘,fj1 d;—iggnsgfsttirg iini%?létr?g:an tl:ﬁﬁbtamed from E4) by
the RSM and its modifications have been investigated with 9y '
the help of numerical and analytical methdd8-17. 1 )
On the basis of this research, Schilliegal. argued that, H= > E [muﬁ+vl(un+1—un)+V2(un+2—un)].
for low enough temperatures and smaj|, the dynamics is n
reduced to the vibrations in the vicinity of particular local |, yormg of the molecular variablag., &, introduced in Eq.
minima and 'Fransmons between them. Moreover, the OVerT29) the Hamiltonian takes the form
whelming kind of process {o;}—{o{}, where o;
=a(w(t)), oj’ =o(wj(t+At)), has been found to be single
spin flips, i.e., transitiongsudden changes of;) that o
=—oj, butoy= oy for all j#k. Hence, under these condi-
tions the localized processes play the predominant role in = k1) T Valxx— Sk xk-1F dx—1) + Valxi+ P«
RSM dynamics. ~Xee1— b D]
However, at a quench from high to low temperature the
system generally cannot reach its ground state. Since theet us rewrite Eq.2) for the NN potential to separate the
potential landscape is very complex and every two neighborparabolic part and the piecewise-linear taur{x) that brings
ing local minima are separated by a barrier, the global mini-about the nonlinearity of the system,

H=Ek [M(xZ+ ¢2) +V1(2) + Vi xi— dx— X1
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1 1 2
Vi(x)= 5 Cal(x—a1)?~(c—ay) ]+ C1U (x), 4sZr3X"—4(1+2a)( rox”+ grox+gzrox+ -
_ ’ E 3 m 3 5 (V) —
U(x)=—2a_(x—c)f(x—c), +4|ro¢ +3fo¢> +15r0¢ +--- =0, (40)
where 0(x) =[sgnk)+1]/2 is the step function. Then the 02 L2, 2 W

equations of motion are as follows: A4S —4| Tox"+ gTox" + Tgfox’ '+ | +4(1-2a)

d®xi x| r2gp"+ 1r“¢<'V>+-~)+8¢+2a

ZmF_(C1+2C2)(Xk+1_2Xk+Xk—1)+C1(¢k+1 0 30 -
, : X[y sgn¢—c/2)]=0, (42)

—pr-1) —C1U (6k+1) +C1U' () =0, (38)
wheres=(v/rg) ym/2C, is the dimensionless velocity and

42, the prime denotesl/d¢. Let us note that in generap

2m 5 —C1(Xks1— Xk—1) +8C1+ (C1—2C,) (by1 =0(1), x'=0(1). Since Eq.(40) is linear, we can repre-
dt senty in the form of a series,

= 2¢t 1) = C1U" (6k+1) = C1U" () - _
+2C,U"(2¢0=0, (39 X' =G+go+ 2>, gip"). (42

where 8= (xx— dk— Xk_1— Pr_1) =W, are distances Finding the constant& andg; will solve our problem. Let
between neighboring “atoms” of different “molecules.” us substitute Eq42) into Eq.(40) and note that a0 the
In general, both series of equatiof®8) and(39) are non- coefficients at every derivative ap must vanish indepen-
linear sinceU(x) has a cusp at poink=c. However, dently. Thus, the coefficient at" is equal to
U’ (8= —2a_60(5—c)=const for a special class of solu-
tions. Consider a process where all the intermolecular bonds,
both before and after the transformation, are either com- 1 )
pressed §,<c) or stretched §>c). Then U'(8,,,)  herefore,go=(rop) -, wherep=1+2a—s". By analogy,
—U’(8)=0, and Eq.(38) becomes linear. we obtain
Let us suppose, moreover, that all the intramolecular
bonds have the same “sign” before the transformatiant
— —oo for every fixedk) and change it to the opposite sign
after transformatiorfat t— + o for givenk). Then Eq.(39)
becomes linear in each of these limits. Thus, we restrict the rg
consideration by one particuléout very important class of 94= 3(6p2— 12p0p+5pg), . (43)
process,X—3', where X={o,0,}, 3'={c10,}, where 45p
0'5_: —0y.

4r2go[s?— (1+2a)]+4r,=0;

lo
01=93=0s=---=0, g2=—(2p—po),
3p

where we denoteg,=1+2«. Below we cut the series ex-
pansion(42) on the fourth term. Let us substitute E@-2)
B. Continualized equations of motion with coefficients from Eq(43) (only G is still unknowr) into

Since discrete equation@8) and (39), even upon the Ed. (41). This yields
above simplification, are still intractable, let us continualize " av)
them. We will look for smooth running-wave-type solutions. Bod+Bod" + By - -

One of the configurations and3’ is always an AUS. In the 1
AUS the distance between the centers of neighboring mol- =roG+ Ea,[sgr{¢—c/2)—02], (44)
eculesyy1— xx="r1 +r, =2rq, therefore, it seems natural
to introduce the wave variablg according to 2
Bp=2-p ', B =—r—°<(p—1)2+ﬂ)

xO=x(8), o(t)=¢(§), &=2kro—ut, 0 b p 3p /'
wherev is the wave velocity. As shown above, E¢8) and B _ ﬁ 124 (p—oa| — ot 17p—5po
(39) are linear in the limitt— *=o. We take account of the 47 3p (P=1)"+(P=Po)| =P 15p2 '

fact that U’'(2¢)=—a_(sgn(@—c/2)+1), U'(5)= (45)
—a_(o,+1). After developing the finite differences in Egs.

(38) and (39 into series overy as a small parameter, we To establish the boundary conditions let us note that the con-
obtain in the leading orders: figuration of the part of the chain not yet affected by the
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transformation £é— +«) is merely a certain static configu- As shown in the Appendix, two kinds of solutions may

ration, X ={o0,}. Taking into account Eq$20), (24), and  exist, the first one corresponding to a topological soliton

(29), we find that (kink). An additional condition of its existence is given by
Eq. (A37), which allows one to finds using Eq.(48):

1
¢|§H+w:§r({0102})

oo Bocta_o, (2—p Y)c+o,
a_ 2r0 2?0 '

=5 Ct T7aglort2aloi—o= 9]y,
Now yo= —o1A; /By. Let us substituty, from Eq.(47), A;
¢'|§H+w:¢"|§ﬁ+w: ...=0. (46) from Eq. (48), andB, from Eq. (44), then
Moreover,¢ must be bounded fof— —oo. oa_ a_[oy+2a(0i—0y— )]
Equation (44) with boundary conditiong46) has been = (144
solved in the Appendix. The correspondence between prob- 2(2=p ) ( a)

lems (44),(46) and (A5),(A6) is as follows:
Let us remember thgi=1+ 2a— s?. After simple transfor-

C mations we obtain the unique value of the kink velocity,
y:(b_zi
1 . 1+4a [(1+4a)e|'? 50
r{{oyoo)—c a_[o1+2a(o1— 0= )] @7 P=2 1te ) 7| 1+e ' (50
Yo= 2 2(1+4a) :
where
_a. B Bocta_oy
A1 2 AZ__rOG“LT' (48) e=—4dacq(oyt+ ). (51

Note that sgnyo) = 1. Then the necessary condition of ex- sjncea> — 1/4, kink propagation is only possibledt=0. In
istence of a solution for the problem involved is given by Ed.particular,e=0 corresponds to the stationary kink.

(A8), It is easy to see from Ed44) that the velocity spectrum
of nontopological solitongNTSs is bounded from below by
the kink velocity sy while the upper limit for the NTS ve-
locity, Smax, IS given by condition8,>0, B,<0 [see Eq.
(45)]. Therefore, B< sk <SnTs<Smax,» Where

yo:[roG‘f‘a,(O'l_(Tz)/Z]/BO_C/Z. (49)
Comparison of Eqs(48) and (49) yields

A2: - Boyo+ 0'1a_/2.

1, -— %<a< — %6 ,
C. Sound velocity sfnax= 1+6a—3/1+18a 1
a=— &=
The sound velocity is determined by periodic solutions of 3(1+4a) e
Eq. (44) that have infinitely small spatial frequencf
=iN,, where\, is given by Eq.(A2) or, in the limit |q,| _ .
<1, by Eq.(A4). In the latter case, upon substitution of the Note thattsa=]ai2\6 for for |af<1 .
values of coefficient8; from Eg. (45), the condition()=0 _ _
reads a8,/B,=0. SinceB,=0 for p=1/2, we only have to D. Kink energy and profile
ensure thatB,#0 and |q,|<1 for p=1/2. If p=1+2a« The kink profile is given by EqA38) taking into account
—s?=1/2, thenp—po=—s°= —(1+4a)/2 and Eq. (47),
,(1+4a 1) 1§ c r—c
By=2r5| —5— 4| =5 (1+16a)=0, $(£)= 5 +sgn§) ——[Ay(1-e M)+ Ay(1—e )],
(52)
if only «=—1/16, which is outside the range allowed for
Furthermore, fop=1/2, wherer =r ({o0,}) is given by Eq(24) and parameters; ,
4 A; may be calculated with the help of Eqg\2), (A19),
_ 251 144ef 1.4 6— §(1+4a) (A20), (45) and (50). It is easy to see without calculation
4 3 |4 2 215 2 that, while ¢(+%)=r/2, in the opposite limit¢(—=)=c
—r/2.
4rd - i i iniiti i
__ —0(7+33a+80a2)<0. A running soliton transfers the chain from an initial equi

45 librium state to a dynamic intermediate one. The intermedi-
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ate state then relaxes to the a new equilibrium one. The IV. SOLITONIC TRANSFORMATIONS IN A
former differs from the latter by the fact that all particles SMOOTH-POTENTIAL RSM-LIKE MODEL:
have nonzero velocities. NUMERICAL APPROACH

The energy of the final static configurati&j, the initial
static configuratiorg;, and the intermediate dynamic con-
figuration E4 can be found by substitution of interatomic
distances calculated according to EsQ) into Eq.(15). This
yields E;— E;=ey€? for static states, whereis given by Eq.

As shown in the previous section, topological solitons
may exist in the RSM under certain conditions. These soli-
tons, however, turn out to be unstable due to the presence of
a cusp in the NN potential. Our idea is to consider more
! . S i realistic RSM-type models using a smoothening procedure.
(51). This means that, if the kink is possitfiee., €>0), then The potentials of interaction in real molecular and atomic

'_lt_?] ch_)patgatlon IS ar; en?'o}her.rmi:hprp(;ess %?thﬁéieo' . chains are smooth functions of displacement. Besides, non-
i ? ![ne Ic ente:gybo par IE[:I es in Iet mtr?rmel '? e yr;arr:_lc moothness leads to instability of the numerical procedures
state turns out to be exactly equal to the relatve potent f integration. Therefore, let us start by smoothening the NN

energy ed_Ei)' Thus,. the Lagrangians .Of the initial and 0 vial Consider the potential given by the following ex-
intermediate states coincide. Therefore, in this case the L$'ression'

grangian is conserved upon transformation and thus plays the
role of “effective energy.” 1

While continualizing the discrete equations of motion Vi s(X)= Ecl(X—al)er U s(x), (55
(38) and(39) we have neglecteg” and higher-order deriva-

tives. It is Only ]USt|f|6d |f¢ Changes Sllghtly on the scale of where the functiorJ 5(X) is the smooth version dﬂo(x),
several lattice constants. In other words, the continuous

theory is valid if the widthg, of the soliton front is much 1 , 1., )
larger tharr o. Kink front width may be found from Eq45), ~ Us(X)=5k(x=¢)=\/ 6"+ 7k (x—¢)%,  k=-2Ca-,

(56)
£o=V—B,/By

¢ is the smoothening parameter, and only the positive value

Cry(2p—1) 12 (p—1)2+ 1 1 1+2a)|]"? of the square root is considered. A0, the functiong55)
ol<p P 3 and(56) depend smoothly on. At x— o, the potential55)
tends asymptotically td/,(x), and at 5—0 the function
In particular, for a stationary kinksg=0), V1,5(X) tends uniformly toV,(x).
The piecewise-parabolic potential is a two-well potential
2| at a;<c<a, and one-well atc<a; or a,<c. At c=(a;
=T ) (53 +ay,)/2, function (56) becomes a symmetrical two-well po-
Vitda tential; therefore, the smoothened poten(&h) has a sym-

metrical two-well shap@Fig. 1(a)]. Characteristic profiles of
This result is to be compared to the front widths given by the interaction potentials at>a, are drawn in Fig. (b).
exact discrete Reichert-Schilling theory. The latter yields, as

suggested by Eqg4) and(5), A. Uniform stationary states

—1-2a+J1+4«

-1 To find the interparticle distances for a stationary uniform
2a '

state of the chain with smoothened NN potentigls one
should minimize numerically the corresponding energy:

&rs=TolIn[7]|t=rg|In

(54)
_ Est,o= V1,5(X) +V(2X) — miny, (57
To compare Egs(53) and (54) let us consider two asymp-
totic cases. for the simple uniform states and

@ py=(1+4a)—0: .
Esto= 5[ V1s(X1) T V1 5(X2) [+ Va(X1+X) —min, |
Eo=3rour YA 1- 1), Ers= 3roms VAL+ my); 2 "

(58)

(b) po=a '—0: for alternating uniform states. These problems were solved
by the method of steepest descent. Equati®n has two
Eo= Sroms VA1 —3mp),  Ere=stoms YA 1+ uy). solutions,r g 5, while Eq.(58) has one solution,r( ;,r ).
Substitution of these solutions into expressi@sid and(58)

Thus, the prediction of the approximate continuous theoryields the energies of the stationary stafgs ', &5, and

coincides in the leading order with the exact result for theéi{a’}zé‘é{,;}. The uniform states{—-}, {—+}, and
static case. This encourages application of the above conting-+ —} of the chain are schematically represented by Fig. 2.
alization approach to the investigation of the dynamic A natural analogy of the system in question and a polymer
Reichert-Schilling model and structural transformations inchain appears. The system in the alternating uniform state
more general nondegenerate systems. may be considered as a chain of repeating segnierso-
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FIG. 2. Schematic representation @ the uniform stationary
state of the chaifi— —} (x=rg ), (b) the alternating uniform states

{—+} and(©) {+ -} (x1=r, 5, Xzzrz{,,s)-

o ) PResorenss: O
mer9, each of them consisting of two bonds of different ' s ::5:,’;:3,,',
i L, 7
length, one compressed-) and one stretched(). Since ‘ GRS e
the transition )« (+) is reversible, such states may be S e
considered as different conformational states, eig..and

trans Uniform state{— —} is the intermediate point of a
transition between them.

To describe the “conformational” transformatign- +}
—{+ —1}, new coordinates can be introduced:

r=u;, W=uj+u,—I, where I=r] +r ; (59 0272

is the monomer length for the system in the alternating sta- g, 3. potential surfacE(r,w) of the conformational transfor-
tionary state. Here describes the “conformational” state of mation {—+}—{+—} for (8) a;,=1, a,=3, b=6.5, a=1.7, a

the monomer, and is the change of the “molecular chain” -1 s= 0.4 [point 1 corresponds to the stafte +} (r=2.2409,

step. Potential surface of the conformational transition isy=o, E(_.,=2.1811), point 2 is for{——} (r=2.9888,

given by the following expression: W=—01713,E,__,=2.0717)]; and for(b) a,~1, a,~3, b
=6.5, =3, a=1, §=0.4 [point 1 corresponds to the state

L {—+} (r=2.2765,w=0, E;_,,=2.1297), point 2 is fo{——}
E(r.w)=5[Vas(r)+ V(I +w=r)]+Va(l+w). (r=3.0994,w=—0.0967,E, _}=2.1743).
Consider, for example, two sets of chain parameters, For the set of value&61) the NN interaction potential is

the single-well type[see Fig. 1b)]. The ground state is
=1, 8,=3, ¢c=2, b=45, =1, 6=0.4, (60 [ -} for a<a,~1.8668, of —+} for a> ay. Let us con-
sider the potential surface of the structural transign, w)
a;=1, a,=3, ¢=3.5, b=6.5, a=1, 6=0.4, (61) (Fig. 3. At a<a, the conformational transitiof— +}—
{+—} is impossible because the stdte —}, which is the
with C;=1, C,=«. For the set60) the NN potential is a intermediate point of the transition, has lower energy than
symmetrical double-well potentidisee Fig. 1a)]. At any the final state{+ —} [see Fig. 8)]. Therefore, the system
value of the parameter>0 the ground state i5— +]}. The  would be “caught” in the staté— —}. At a= « this cannot
dependence of the value§, r; 5, Eit’,g}, andé’ig; ona  take place because now the st@te—} has higher energy
is demonstrated in Table II. than{— +} and{+ —} [see Fig. 8)]. In this case the exis-

TABLE II. Dependence of the valuesg 5, 5 5, Sg;;}, andsg[(;} on a for model parameter&0).

a Ms.s las ";,5 5{5;,57} s;5+}
0.1 1.3571 1.1660 2.9956 0.0970 —0.0715
1.0 2.0000 1.3033 3.1114 0.0487 —0.0585
2.0 21111 1.3255 3.1281 0.0544 —0.0565
5.0 2.1905 1.3410 3.1394 0.0575 —0.0551
10.0 2.2195 1.3466 3.1434 0.0586 —0.0547
25.0 2.2376 1.3501 3.1459 0.0592 —0.0544
50.0 2.2438 1.3513 3.1467 0.0594 —0.0543
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TABLE IIl. Dependence of the valueg ;, 13 5, 5 ', and&l ;! on a for model parameterés1).

a Mss Fas Fas 5&(;} gg;;r}
1.8668 2.9843 2.2458 3.9332 2.09256 2.09256
2.0 3.0000 2.2500 3.9494 2.10682 2.09899
5.0 3.1429 2.3037 4.0711 2.22882 2.15529

10.0 3.1951 2.3269 4.1094 2.26950 2.17521
25.0 3.2277 2.3420 4.1323 2.29363 2.18750
50.0 3.2388 2.3472 4.1399 2.30161 2.19166

tence of a stable stationary stdte —} is not an obstacle for the defect radius,

the conformational transitio—+}—{+—}. The depen-

dence of the bond lengths and energiesaoffor a system N-2

with parameterg6l) is given in Table III. R= E (P—K)2(Wopo—Won)/S) (66)
k=0

1/2

B. Topological defects of the alternating uniform state
Let us consider now topological solitons that bring abouta!f]d dlqmeter,L=2R+1. All the vaIue_sP, R anq Lare
dimensionless as they are expressed in the chain units. It is

the transition between two alternating states with equal en-: ient o introd iable. the ch in th
ergies{— +} and{+ —}. We will call the defect in the chain convenient 1o Introduce a new variable, the change in the

[—+|+—) positiveand in the chai{+ —|— +} negative ~ Period of the molecular chainz, =wan+ Wan 1= (5 5
Below we show that these defects possess solitonic featured,"a,s)- Then the soliton amplitude may be defined As
i.e., they are actually topological solitons of different signs. =2, Where Ko is determined by the conditiorjz, |
Consider a chain of 8+ 1 particles,u,, being the coor- =max]z|. For a positive defectv,, varies monotonically
dinate of thenth particle,n=0,1, ..., . For the stationary fromr, ;to r;5, and for a negative defect vice vergag.
state {—+} Wy=r, 5, Wy:1=ras, and for the state 4).
{+ =} Wy=ra 5, Wos1=r, 45, N=0,1,... N—1. To find
the stationary topological defect the minimization problem
must be solved:

N-2
P= gl [V1,s(Wai) + V1 s(Wop s 1) + Vo (Wor+Way 1) ]

N-1
+ kZl [Va(Wok—1+Wa) J=ming, w, . .

1<sk=N-2, (62
with boundary conditions

. .t R =
Wo=Tas) W1=Tgs: Won-2TT3 5, W2N—1_ra,5’( )
63 0
2

for positive defect, and

. . I .
Wo=Ta5, W1i=Tlg s, Wan—2TT3 s: W2Nfl_ra,5’( )
64

for negative defect.

The following defect parameters may be defined: the de- —0.2r

fect center position, 5 9.0 160 11.0 o
N-2 n
P= go K(Wan 2= W2n)/S, FIG. 4. Positive(curves 1, 2 and negativécurves 3, 4 station-

ary defects of the chain a&;=1, a,=3, b=6.5, c=3.5, a=5,
6=0.4. The defect parameters dre =5.546, A, = —0.2282;L _
=5.529, A_=0.1242. The energy of the pair formatioAE
=2.1026.

N-2
S= kZO (Wan12—Wapp) =Won_2— Wy, (65
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FIG. 5. The dependence of the formation energy of the defect ]
pair, AE (curve 9, diameterd. .. , and amplituded\.. (curves 3, 4 FIG. 6. The dependence of the formation energy of the defect
onafora;=1, a,=3, b=4.5,c=2, 5= 0.4. pair AE (curve 1, diameterd .., and amplitude#\.. (curves 3, 4
ona fora;=1, a,=3, b=6.5,¢c=3.5, 6= 0.4.

Let us define also the defect energy: P— Py, whereP

is given by Eq.(62) and P, is the energy of the defect-free C. Dynamics of topological defects
chain, Suppose that a topological defect moves as a constant-
profile wave, therjsee Eqs(29) and(59) for definitions of
Po=N[V1s(ra 5)+V1s(la 5]+ (2N=1)Vo(ry 5417 ). the variables involved

Xn=x(nl=vt),  ¢,=¢(nl—vt),
Let us note that only the energy of a pair of defects of dif- " "

ferent sign,AE=E, +E_, has a physical sense, since the

defects may only be formed in pairs from an initially homo- wherev is the defect velocity, ang(£), #(&) are smooth

geneous state. functions of the wave variablé=nl—uvt. Let us replace the
Atypical appearance of stationary defects is shown in Figjme derivativesy,, &, by increments,

4. The defects have the kink-shaped profile characteristics of

topological solitons. In the region of soliton localization, lo-

cal cha_lin compression takes p!ace for positive defe_cts and }(an?X/dt: —vdy/dé=—(v/)dx/dn
stretching takes place for negative defects. A topological de-
fect (soliton) describes the subsequent transformation of the ~—(v/l)(Xns1= Xn)

chain from one AUS to another. In the defect center the chain

is in the nonalternating uniform state. Such a defect may be

stable if only the alternating state has lower energy than the dn~— (VI (bpsr— by).

nonalternating one. Otherwise the whole chain would trans-

fer from two AUS’s to the corresponding SUS. Therefore, for

the set of parameter®0) the defects are stable for any; Here we neglected the higher-order finite increments; there-
and for Eq.(61) only for «=1.8668. The dependence of the fore, this approximation is restricted to the case of smooth
defect pair energAE, diameterL .., and amplitudeA. on  enough solutions. The kinetic energy of the chain may now
«a for these sets of parameters is shown in Figs. 5 and 6. be expressed as
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Let us note that

Xk+1_Xk:§(U2k+3+ Ui+ 2~ Uiy 1= Ugy)

1
= E(W2k+2+ 2Way 41+ Woy),

Prr1— ¢k=§(U2k+3_ Ukt 2— Uz 11+ Ugi)

= E(W2k+2_ W), 0 0.2 0.4 0.6 0.8 1
s

FIG. 7. The dependence of the defect energy relative to the
energy of the stationary defeEt(curve 1, diameter., and ampli-
tudesA. (curves 3, 4onsfor a;=1, a,=3, b=6.5,¢c=3.5,§

then the chain Lagrangian can be written in the form

L=—K+P = 0.4, a=50.
mo? "
=—— D0 LWy 2+ 2Wopes 1+ W) 2+ (Woy s 2 V. TRANSITION BETWEEN ALTERNATING AND
41¢ k=0 INTERMEDIATE HOMOGENEOQOUS STATES
1., N-2 We have considered above the topological defects perti-
_W2k)2]_§mu2N+ Z [V1,s(Wai) + V1 (Wt 1) nent to the AUS. These defects are topological solitons that
k=1 transfer the chain from one stationary state to another state
N-1 with the same energy level. The existence of such solitons is
+Va(Wat Wae 1)1+ 2 [VaWa— 1+ Wa) ], the consequence of the symmetrical bistability of the chain,
k=1

i.e., the availability of two equienergetic stationary states
{+—1} and{—+}. The velocity spectrum of a defect is sub-
To find the dynamic state of a topological defect movingsonic, and the defect’s profile remains constant during mo-
with given velocity,s=v/vo, wherev,=1/C,/m, a minimi-  tion.
zation problem is to be solved: In the system under consideration, in addition to station-
ary AUS's {+ —} and{— +}, stable stationary states ener-
getically nonequivalent to them may be revealed. In this
case, we are dealing with an asymmetric multistable system.
It was shown i 6—8§] that in asymmetric bistableolecular
with boundary condition$63) or (64). systems topological solitons may exist. Such solitons transfer
The problems(63),(67), and (64),(67) have been solved the system from the ground uniform stationary state to a
numerically by conjugated gradient method. The dependenceertain metastable dynamic state. A characteristic feature of
of the defect energE=E_. (s)—E..(0) and its geometrical such solitons is that they only can move with the unique
characteristics on dimensionless velocitys illustrated by  velocity. Let us refer to such topological solitons agta-
Fig. 7. The defect has a continuous subsonic velocity specstablg in contrast to those considered above. In this section
trum. The energy and the absolute value of amplitude monowe demonstrate that in thatomic system in question, in
tonically increase, and the diameter monotonically decreasesddition to conventional topological solitofdefects, meta-
in line with the velocity increase. stable solitons may also exist.

L—min, 1<sksN-2, (67)

2k Wak+1’
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A. Dynamic metastable stationary states At any particular value of velocity the metastable uniform
In the asymmetrical multistable chain under consider-State{y,.¢,} corresponds to the minimum of the function
ation, besides static stationary states, dynamic metastabiél)- This state and corresponding parameters may be found
stationary states may also exist. With the help of moleculaPumerically by solving the minimization problem
variables introduced in Eq29) the system’s Hamiltonian is .
expressed in the form 429 g Fo(0)=FY,, by iv)=MinFly, é;v). (72)
Y, ¢

H= > M2+ ¢2)+ V1 s(2hn) + Vi s(Xns1— Xn— Pt A metastable AUS coincides with the static AUS only for
n =0, wheny=0 and¢=r, 52.
— &)+ Vol Xne1— Xn = Pnr1t dn) FVolXnr1— Xn
+bni1— dn)}- (68)
In the AUS we havep,=r, 52, xp,=nl+r, ;2 (we could

also shift the enumeration so thrat ; would stand instead of
ras, and vice versa Therefore, for characterization of non-

B. Metastable topological soliton

Let us consider a topological soliton that describes the
transition from the ground state to a metastable state. Such a
transition can only occur i, for the metastable state equals
the value ofF for the ground state, i.e., if

uniform (defectivg alternating states it is convenient to in- Folv)=TF5(0). (73
troduce the relative displacement of the center of e
molecule Thus, the metastable topological soliton may only have a
discrete spectrum of velocities. The velocity values may be
r=xn—(Nl+r,4 52). found numerically as solutions of EGZ3).
o _ ) Suppose that Eq.73) has a nontrivial solutiom =v>0.
Then the Hamiltoniari68) may be rewritten in the form Then, to find the profile of the metastable soliton, it is suffi-
cient to solve the minimization problem
szn: {M(ra+¢2) + Vi 5(2h0) +Vas(Tns1 =Tt — sy N-1 e
=2 { MY+ (Gne1— n)?1+Vis(2¢0)
_¢n)+V2(rn+l_rn+|_¢n+1+¢n)+v2(rn+l_rn n=1 l

1+ dnr1— b))t (69 FVs(Yntl=dni1—dn) +Vo(Ynt+ = dni1t én)

Let us find the metastabléntermediat¢ dynamic AUS of V(Y + i 1— i)
the chain. Suppose that a constant-profile wave is running 2in n+l ¥n
with velocity v along the chain, then )
—miny, .., YN_1:P2. - N1 (74
ro(t)y=r(nl—=ovt), ¢, (t)=e¢(nl—vt),

with fixed boundary conditions
. v . 1%
rn(t):_l_(rn+1_rn)! ¢n(t):_|_(¢n+1_¢n)- Y1=0, #1=1,42, Yn=Yy, In=én. (7D

The boundary conditions on the left edge of the chain corre-

Thus, the chain Lagrangian has the form spond to the ground uniform stafg,=0,¢,="; 520 =0}

v2 and on th_e right edge to the metastable sfate=y, , o,
=2 [ —M—[ya+(Pnr1— ¢n) 1+ Vs(26n) = ¢, .v=0}.
n | The solution{y,,¢n}n_, of the problem(74),(75 de-
F Ve (Yt = bas 1= bu) +ValYnt | = dos 1+ bu) scribes the soliton profile. The above numerical method of

calculation of the soliton profile is an application of the prin-
ciple of minimal action. It was used earlier in Ref&8,19.
+Vo(YntHl+dpi1— ¢n)] , (70 A necessary condition for this method is the smooth depen-
dence of the soliton profile on the particle numbefFormal
solutions to the problem(74),(75 that do not depend
smoothly onn do not make physical sense.
The problem(74),(75) was solved by a conventional
method of conjugated gradients. The initial approximation
profile was chosen in the form

wherey,=r, 1—rn.
Let y,=Yy, ¢,=¢. Then the Lagrangiaf70) is propor-
tional to the following function:
1)2 2
Fy,¢v)=— ml_zy TVi5(2¢)+Vis(y+1-2¢) bo=A,+Bytant (n—N/2) u],
+2Vo(y+1). (77 Yn=As+Bstanff (n—N/2) ],
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FIG. 8. Profiles of two metastable topological solitons of differ-
ent signs forr=0 (curves 1, 2 and 7=21 698 (curves 3, 4 The
velocity of solitonss=0.4609; chain parameters aeg=1, a,
=3,b=4.899,c=2, a=1, §= 0.4, anda=50.

where A;=(d1+ dn)12, A=(y1tYN)/2, Bi=¢n—Aq,
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FIG. 9. Profiles of two metastable topological solitons of differ-
ent signs forr=0 (curves 1, 2 and 7=12 906 (curves 3, 4.The
velocity of solitonss=0.7748; chain parameters aeg=1, a,
=3, b=6.11,¢=3.5, a=1, 5= 0.4, anda=100.

the half-length of odd bonds. Note that in the metastable
state the lengths of odd and even bonds coincidg: 1

B,=yn—A,. The soliton center’s position and radius are de-—x,,=2¢,=|+Yy,—2¢,=Xon12—Xon+1. Thus, the meta-

fined by analogy with Eqg65) and (66) as

N-1

P= 2 n($ne1=dn)l(y= ),

N—-1

R= nzl (P—M2(Pns1— bl (dn— b1)

1/2

The number of nodell for the solution of the probler(i74)

stable state is topologically equivalent to the uniform state
{ By} analogy, in the chain with parametag=1, a,=3,
c=3.5,6=04,C;=1, a=100,b=6.11 the metastable to-
pological soliton has the velocity=0.7748 and diametdr
=18.21. A graph for a pair of different sign solitons is shown
in Fig. 9. The first and last quarters of the chain are in the
ground uniform statgly,=0,p,=r, 52} (I, s= 2.238r;(s
=3.866|=r, s+, ;=6.104), and the rest of the chain is in
the metastable state{y,=y,=—7.613x10 3 ¢,=¢,

must be taken approximately ten times larger than the solitor= 1.524y =y =0.7748. Here again in the metastable state
diameterL=2R+1. Then it is guaranteed that the boundarythe lengths of odd and even bonds coincides, 21+,

conditions will not influence the soliton shape.

—-2¢,.

Let us consider an example. In the chain with parameters It can be concluded that the metastable topological soli-

a;=1,a,=3,c¢c=2, §=04,Cy=1, «=50, b=4.899 the
metastable topological soliton has dimensionless velaity
=v/vy=0.4609 and diametdr=18.06. A plot for a pair of

ton, the existence of which is connected with asymmetrical
bistability of the molecular system, i.e., the existence of two
stable uniform states— +} and{— —} with different ener-

solitons of different signs is shown in Fig. 8. The first and9ies, describes the system's transformation from the ground
last quarters of the chain are in the ground uniform statéiniform state{—+} to the dynamic metastable uniform

{yn=0,p,=r, 52} (r,s=1.633,1, ;=3.262,1=r, 5+, ;

state, which is topologically equivalent to the uniform state

=4.896), and the rest of the chain is in the metastable state” -

{yn=y,=7.703x10"3, ¢,=¢,=1.226,5=0.4609.

Let us remember that the variablg = (Xon13+Xon42
—Xont1— Xon)/2—1 characterizes the variation of the mo-
lecular chain period, and the variahlg = (Xon4 1= Xon)/2 is

VI. NUMERICAL MODELING OF SOLITON DYNAMICS

To examine the stability of the solitons revealed in Sec.
IV, we have studied their motion by molecular dynamics.

036618-15



MANEVITCH, SIGALOV, AND SAVIN

4

3r !

]
[}
]
]
]
)
1
11
]
1
]
]
I
1
H

4

0 100

200

—4t

_80 100 200 300 400
FIG. 10. Profiles of two topological defects of different signs in
a cyclic chain forr=0 (curves 1, 2 and 7=20 000 upon passing
9963 chain units(curves 3, 4. The initial velocity of defects
=0.5; chain parameters ag=1, a,=3, b=4.5,c=2, §=0.4,

and a=50.

A. Numerical modeling of the dynamics of topological defects

Let us consider first of all the dynamics of topological
solitons describing the transition between alternating states

{+—} and{— +}. Using the system’s Hamiltonian

1 . .
H= ; > M(U3,+ U5, 1)+ Va(Wap) + V(Wi 1)

+Vo(Won+Wani 1) +Vo(Wany 1 +Wopn)

it is easy to derive the equations of motion,
MUz, =V1(Wan) = V(W 1) + V5 (Wan+Woy 1)
—V5(Won—2+Wan_1),
MU+ 1= — V1(Wap) + Vi(Wan s 1) + VA (Won i1+ Wopn i 5)
=V (Won_1+Wpp).
Then

MWy, =M(Ugn 11— Uzp)

==25,1t S 2+ Sy 12T Sh-15~ Szt Sha— Sh-1.4
(76)
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FIG. 11. Profiles of two topological defects of different signs in
a cyclic chain forr=0 (curves 1, 2 and 7=20 000 upon passing
9937 chain units(curves 3, 4The initial velocity of defectss
=0.5; chain parameters asg=1, a,=3, b=6.5,c=3.5, 6= 0.4,
and = 50.

M, =M(Uz, 12— Ugp)

=Shi11 St Sho127 S 2t Shr 13 2S5t S 1 s
(77

where

®R=Won+tWpnyq, Sn,lzvi(WZn)v Sn,zzvi(w2n+1)1

Sha=Va(WantWani1),  Spa=Va(Wani1+Wansia).

In order to simulate the dynamics of topological defects in
an infinite chain, consider the movement of a pair of defects
of different signs in a cyclic chain dfil=400 particles. Im-
pose periodical conditions;=uy.; on Egs.(76) and (77)
and take the initial conditions that correspond to the distance
N/2 between the defectsee Figs. 10 and 11

Won(0)=W3,, on(0)=wl, n=1,...N,

Wn(0) == S1(Wa(n 1 1)~ Wan),  @p(0)=—S1(wp 1~ wp),

n=1,... N/2, (78

Wén(o) == S?_(Wg(n+ l)_Wgn)’ wr;(o) == 52(w2+1_ wg)'

n=N/2+1,... N.
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(a) Figure 12 demonstrates the effect of the impact of two
different-sign defects running in opposite directions; (
=0.5,s,=—0.5). The impact leads to recombination of the
defects. As a result, fast relaxing nonlinear oscillations of the

R RS T breather type occur. The oscillations are accompanied by
& sl ekt phonon radiation.
N ‘ v ‘,'
3 259 iimlk.*:& 7 B. Numerical modeling of the dynamics of metastable
Y GRS :

topological solitons

ol
154 Iﬁﬂﬂﬁ[lﬁl/ : Consider now the dynamics of metastable topological
600 \/400 solitons. The Hamiltoniar{69) yields the system of equa-
400 1 200
200

tions of motion

0o 0
T n

ngbn= - 281,n+ Sz,n+ Sz,nfl_ Ss,n+ S3,n71+ S4,n_ S4,n71v

2m.I:n:Sz,n_Sz,nfldl'SS,n_SB,nfldl'S4,n_S4,nfli
n=0,+1,+2,..., (80

where

Sl,nzvi(zd’n)’ Sz,n:Vi(Yn"H_(ﬁnJrl_d’n)’
Ss,n:Vé(yn+ | = bni1— Pn)s

S4,n:V£(yn+|+ bni1— Pdn)-

Using relative displacemenys,=r,.1—r,, Eq.(80) may be
rewritten as

FIG. 12. Appearance of a breatherlike nonlinear vibration at the
impact of two topological defects of different signs. The boundary2Me,=—2S; 1, + S0+ Son—1—Ssn+Ssp—1+ San—Sapn-1.
condition corresponds to phonon absorption at the chain edges. The

initial velocity of defectss;=—s,=0.5; chain parameters asg 2m'yn: Soni1— 250+ Son-1+S3ns1— 2S5+ San-1
=1, a,=3, b=6.5,¢c=3.5, §=0.4, anda=50. ' ' ' ' ’ ’

+S4n+17 2840t San-1,
Here {w3,,»°} is the defect profile calculated by solving
problem(67); s; ands, are dimensionless velocities of the n=0+1%*2,....
first and second defects. To simplify the derivations, dimen-
sionless timer=tuvgy/l is introduced; the prime denotes the
derivatived/d .
Thus, one should solve a system of equations

Introduce again the dimensionless timand consider the
dynamics of a kink-antikink pair in a finite chain with peri-
odic boundary conditions. Then the following system of
equations must be integrated numerically:

CaWs,=—2S,1F Sh2t Sh-12t Sh-15~ Shst Sha—Sh-1.4s Capp=—2S10+Sont+Son-1—Ssnt Ssn-1+San—Sap-1.

C30n=Sn111~ Sh1tSn-12~ Sh2t Sn+1,3~ 253 Ca¥n=Son+1— 20+ Son-11Ssn+1— 2830+ Sp-1
+SH*1,3' n:1,2, P N (79) +S4,n+1_284,n+84,n71’ (81)
with initial conditions(78), wherecg=mu3/I2. n=12,...N,

The system(79) was solved by the conventional Runge-

Kutta method of fourth order accuracy. It was found that thewherec4=2mv§/I2.

topological defects exhibit solitonic dynamics, i.e., they Equation(81) was integrated by the conventional Runge-
move with constant velocity and profile. For example, forKutta method of fourth order accuracy. In the chain with
a=50, s;=5,=0.5, 7=20000 the defects passed 9963 parameters;=1, a,=3, c=2, §=0.4, «=50, b=4.899
chain units(computeds= 0.498; see Fig. 10for the set(60)  the soliton had the dimensionless veloaty 0.4609. At this

of chain parameters, and 9937 chain unit®omputeds  velocity the kink-antikink pair must pas¥,= 10000 chain
=0.497; see Fig. 11for the set(61). The profiles of the units for7=N,/s=21698. Figure 8 presents the soliton pro-
defects in the initial and final moments perfectly coincide. files at7=0 andr=21698. In the numerical experiment the
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0 100 200 300 400

0 100 200 300 400

FIG. 14. Dynamics of two metastable topological solitons of
different signs in a chain with parameteess=1, a,=3, b
=6.008,c=3.5, §=0.01, ande=100. Curves 1, 2 give the soliton

FIG. 13. Impact of two metastable topological solitons of dif- profiles for 7=0; curves 3, 4 correspond to=250.
ferent signs in a chain with parametas=1, a,=3, b=6.11, ¢
=3.5, 6=0.4, anda=100. The boundary condition corresponds to VIl. CONCLUSIONS
phonon absorption on the chain edges.

It was shown that stable topological solitons may exist in
a wide class ofone-componenfatomig chains with both
= degenerate and everondegeneratgradient-type potentials.
sponds tos=0.4604. As is seen, the final profiles perfectly sych solitons may correspond to movement of localized
coincide with the initial ones. structural defects in the chain or to transition of the entire

Now take the parametees, =1, a,=3, ¢=3.5, 6=0.4,  chain to a metastable dynamic state. The motion of a defect
=100, b=6.11, thens=0.7749, 7=100006=12906. may be considered as an elementary event of structural tran-
The soliton profiles are plotted for=0 and 7=12906 in  sijtions or chemical reactions in one-dimensional atomic crys-
Fig. 9. In reality, the solitons passeﬁp=9993 chain units tals or conformational transitions in linear macromolecules.

during this time, moving with constant veloc@z 0.7743. In systems with nondegenerate potential, the solitons that
The picture of impact of two different-sign solitons in a transfer the system to a metastable dynamic state can move

L . . ; with the only possible value of velocity, which is found to be
chain with phonon absorption on its edges is presented I}é\’ubsonic. For both types of solitons, their profile remains

Fig. 13. The impact is inelastic and leads to phonon irradia: : . L

tion. Recombination of topological solitons takes place, an onstant during motion and phonon _rad|at|on 1 Qbsent as

th .th i hain t fers to th d unif t i ong as the nearest-neighbor interaction potential is smooth
en the entire chain transters 1o the ground unitorm state. enough. The interaction between solitons turns out to be in-

At weak enough smoothening of the piecewise-paraboliGyastic, and the collision of two solitons of different signs
NN potential(small 6) the topological solitons are no longer |o44s to their recombination.

dynamically stable. Thus, atd;=1, a,=3, ¢=3.5, §
=0.01, =100, b=6.008 we obtairs=0.3844,L =14.08.
Figure 14 shows the kink-antikink pair profiles fer=0
(dashed ling and 7=251 (solid line). The solitons have
passed 40 chain units and stopped. Their movement was ac- The authors(L.l.M. and A.V.S) are grateful to RFBR
companied by intense phonon irradiation. Therefore, th€Grant No. 01-03-33122for partial support of the research.
smoothness of the particle interaction potential is a necessa@ne of the author§G.M.S) is indebted to Professor A.V.
condition for the dynamic stability of topological solitons. Kazhikhov for fruitful discussion.

solitons have passeﬁp=9990 chain units, which corre-
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APPENDIX conditions fory(x) coincide with Eq.(A6), andy,=—Y,

(1) Consider an algebraic equation with constant real co= Yo- Therefore,Y may be expressed as a function of argu-

efficients, mentx, the limit valuey,, and coefficienii,:
Bs\*+B,A2+Bo=0. (A1) Y(X; Yo, = A2) = —Y(X;Y0,Az).
Provided thaB,#0 andB,#0, its roots are given by In general, for arbitrary,, A,

1 Y(X;¥0,A2) =sgn(yo)y(X;|Yol,SAMYo)Az).  (A9)
Ny o= \/_ E‘h(li V1—44;), Nz3=—N1, A=~y

(3) Suppose tha; (x) is a solution to Eq(A5) such that

(A2) Y10X)=0 for x=—d; andy; o(x)>0 for —d;<x<e, d;
where being a constant. The general formyafy(x) is as follows:
01=B,/By4, 0,=BoB,/B3. (A3)  Yidx)=clgtciije v +chle 2+ chjer+cljer,

If |g,/<1, then the following asymptotic estimate is Wherec(l) are some constants. Make a shift of the variable
valid: X1=X+ dl, then the functiony; o(x) is transformed into
y11(X1) that may be written down as

1
AN2=— qu{li[1—2q2—2q§+ 0(g3)1}, Y1,1(X1)ZCE)%fJFC(fl)e_MX“rC(z?l)e_)‘leﬂLC(g?feMxl
+cBerax, (A10)
N~V=0102(1+02),  Np~V—di(1-0y). (A4) ot

If |B4/—0 with B, and B, fixed, then|x, J— and|x, 4 according to the following rules:
— = a10,= V=B, /B,. - _ cM=cy, cH=c{HeMh c=ciherad,

(2) Consider an ordinary fourth-order differential equation ' ' ’ ’ ‘ ’
with constant real coefficients and a nonlinear term, = card1 (D)= c(Dgrzdy

317 €30 v €417 Ca0

(V) ” =
By +Boy"+ Boy + Aisary) +A,=0,  (AS) o0 o).

with boundary conditions Let us find such functioty, ;(x;) satisfying Eq.(A5),
im y(x)=yo, |yol<®; |y(x)|<e, x——oo. Yau(x1) =cA+cPe M+ e+ cPerra
X— + oo
(A6) +ciletx

The coefficientsB; are assumed to be such thag+#0, B,  that it is defined within a certain regiond,<x;<0, d,
#0, q;<0, and 0<q,<1/4, whereq, , are defined by Eq. >0; y,(—d;)=Y,1(0)=0, y,(X;)<0 for —d,<x;<0,
(A3). The characteristic equation for the linear part of Eqg.and the first three derivatives p$ ; for x;— —0 are equal to
(AS5) is Eq.(Al), its roots being given by EqA2). Itis easy  corresponding derivatives of;; for x;—+0. The latter
to see that all the roots of E¢A1) are real, and the positive conditions may be expressed in the following form:
roots\; , may be chosen so that
a2 o ool h o — -+ B+ =il
0<Ai<\s,. (A7) ’ ' ’ ’ ’ ’ ' ’
=0, (A11)
The problem is to find such functiongx) satisfying Egs.
(A5) and (A6) thaty(x) is at least three times continuously \2(c{3)+c@—c{Y)—cit) +13(cH+cH—cH—ci)) =0,
differentiable andy(V)(x) is bounded for anyxe (—<, ' ' " (A12)
+0),
The problem(A5),(A6) is overdefined, and a necessary \3(—c3+c3+c—ci) +A3(—cA+cE+cf—c)
condition for a solution to exist is

Yo=—[SgnYo)A;+A;]/Byg. (A8) _ _ _
Equations(A1l) and (A13) may be considered as a linear
It is noteworthy that it is sufficient to solve the problem system of equations respective to the sums in parentheses.
for yo>0. Indeed, let us find the solutiovf for Yo=—a  For A;#\, the only solution is
<0, provided that the solutiopfor yo=a>0 is known as a

=0. (A13)

function of argumenk and parametera; , B;, y,. We intro- c3-cA=cf-c, (Al4)
duce an auxiliary functiony=—y. This function satisfies @) (2 (1) (1)
Eqg. (A5) with the only changeA,— —A,. The boundary €317 Cai=C31i—Cy1- (A15)
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Now we can substitute EqéA14) and(A15) into Eq.(A12)
to obtain

)\2
cB—cl=——(c@A-ciH). (A16)
2

Sincey, 4(X1) =0 andy; 4(X;) <0 within their range of defi-
nition, it is easy to see from E@A5) that

§H=—(A1+A2)IBy, cH=(A1—A)IBy. (A7)
Moreover,y, 1(0)=y,,(0)=0, therefore,
4 4
2, cfi=2 ci?=o. (A18)

With the help of Eqs(A14)—(A18) we perform the follow-
ing transformations:

)|+ 1o

N
e e Moo
)\2
z2 2
2+ 2ot 1——2) b3 o
)\2 i=1
2
1
=2<c‘121>—c&1%)(1 2)+<c<2> cf=0.
2
This leads to

c@—c=—A1A,/By, A=(1-NI\H?

(A19)
Substitution of Eq(A16) into Eq. (A19) yields

e cfd=~AAi /By, Ap=(1-AIN))

(A20)

Now we shift thex variable once again according %5
=X;+d,, thus we transforny, 4(x;) into y, 5(x,), and then

repeat the steps starting with Eg\10). It is easy to define

the functionsy; A(X), Ya.3(X3), - - - Yn+10(Xn) andyss(X,),

PHYSICAL REVIEW E 65 036618

wherek>0 andd;>0 for j>1. Let us introduce new vari-
ables

wl:_AlAl/BOI 0)2:_A2A1/Bo, (AZl)
then the relationships for the coefficie , k>0, may be
obtained by analogy with Eq§A19) and(AZO) and with the
aid of Egs.(A14) and(A15) in the following form:

c)=[(—D*A;—A,l/B, forany j,  (A22)
e —cl)=cliV—c=(-1* " t0,, (A23
e —cl)=cliiV—cl=(-1* tw,, (A24)
c&?:cglz eMdk=¢ (k) e”l(dk"'dk 1=
k
=C(1k%exp( N2 d,), (A25)
=1
k
Cgkz:cgklz_lekzdk— - =c(2k()) ex[{ )\2121 d ) , (A26)
et e 0ee = e 1,3, o]
(A27)
k
c{)=cl)_jerek=...=c{ exp( —)\2;1 d;|.
(A28)

Note thatk>0 throughout Eqs(A22)—(A28).
Let us express(lk through c(l) with the help of Egs.
(A23) and (A25). We subsequently obtain

cfi V=(- D) oy e = (- D oy +eMdel) =

= o {(— D) M (- 1)K+ .. +errd2(l

+ehdiy el ) (A29)
An analogous relationship fou:(k”) is obtained from Eq.
(A29) by replacementsdf;— w5, Ala)\z) for c("”) by re-
placement X;— —\;), and forc("”) by replacementsQ(l
—w2,M——\p).

Suppose now that the solution, .1 ,(X,) is valid up to
Xp— —o° (this corresponds tad,,;—). According to

Yaa(Xs), - .. Ynn(Xn) such that every such function satisfies boundary conditiongA6), lyn+ln(xn) must be limited, there-
Eq. (A5) and fore, the coefficiente!} V'=cY} '=0. Using this consid-

Yicr 1k — k1) =Yk 1x(0) =0,

SOk 1x(X))=(—1)F  for —dy,1<%<0,

Yict 1k 1%k 1) = Yier 16(Xi) s

k
Xk=dk+xk,1= . ':2 dj"’X,
=1

eration and Eq(A29), we are able to expres$!} as follows:
C(l%()):wle*)\ldl(_1+e*>\1d2{1+ .. Mn-q[(— 1)1

D

The equation forc(l) is obtained by the aformentioned re-
placements. In partlcular for=1

+e”

+e Min(— (A30)

cf=—we ™M, cH=—we MM (A31)
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Substitution of Eq(A30) into (A29) and use of Eq(A25)
yield
cff=wi(- Dt Mierf(- Kt e N
X[(=D)"" e Min(—1)M. .- }). (A32)
By analogy,
ohi=wa(— 1)+ e e tf(— K ie et
X[(=1)" e e(—1)"- - }). (A33)

Boundary conditiongA6) with account of Eq.(A7) re-

quire thatc§=c{}=0; therefore, we can obtain similar ex-

pressions focly, ¢ by analogy with Eq(A29):

cl)=wie MI{(— 1) +e Ml (1) 14

+e—)\1d3(_1+e_)‘1d2). . ]}’ (A34)
cip=we U (— 1)k +e M (k4
+e—)\2d3(_1+e_)\2d2). . ]} (A35)

Note that Eqs.(A32), (A33), (A34), and (A35) do not

PHYSICAL REVIEW E 65 036618

y110)=—(A1+A,)/Bp+ w,(—1+ e_)‘ldz)

+wy(—1+e r2%2)=0,

Therefore, for arbitrary, we obtain, using Eq(A9),
A —\d —Nod
rE—sgr(yo)A—=A1e 1%+ A,e 2%, (A39)
1

Note that, by definitiond,>0. Then, taking into account
Egs.(A7) and(A36), we can see that a solution of the given
type exists if only
o<r<1. (A40)

If Eq. (A40) holds and|A,|<|A;| and/or\;<\,, thend,
~(Nq1) " HNn|ALA /A

If yo>0, the solutiong/; 1(X1), Y2,AX2), Y3.2(X2) may be
obtained in the form(A10) and unified to be presented in a
symmetrical form,

A A
V2=~

2
— 2 AjeMicoshn,2)
Bo

included;. This is a consequence of the translational invari- +Aye *9coshin,2)], |z]=d, (A41)
ance of Eq(A5). In fact,d; is an arbitrary variable that may
be chosen to be zero or some other value dictated by consid- Al+A, 2A; _
erations of convenience. y@)=-—Fp—+ B—[A1S|m(7\1d)t'-l_”1‘Z|
(4) Consider some particular types of solutions to the 0 0
problem(A5),(A6). +A,sinh(n,d)e 4], |z|=d, (A42)

(i) Let us find solutions withn=1, i.e., such that the
function y changes its sign only once. We have from Egs.whered=d,/2 andz=x,;+d=x,—d. With the help of iden-

(A10), (A25), (A26) and (A31):
y11(0)= Cg):!-]).+ C(1%2+ C(2%1): —(A1+A3)/By— w1~ w,=0.

Substitutingw; from Eqg. (A21) and noting an identity

A1+A2=1, (A36)
we find that the following identity must hold:
A,=0. (A37)

Therefore, a such solution may exist if only E¢a8) and
(A37) are true. Then it follows from Eq(A8) that y,=

—A,/By. If this is the case then the solution fgg>0 has
the form

Y11(X1) =Yo[A(1—e M)+ Ay(1—e *21)],  x;=0,

Y21(X1)=—Yo[ A1(1— M)+ A,(1-eM)],  x;<0,

or, in a more general form, an antisymmetric solution is fi-

nally obtained:

y(X)=yosgrix)[A(1—e M)+ A (1—e 2],
(A38)

(i) Let functiony(x) haven=2 zeros. We express the

coeﬁicientscfa) with help of Eqgs.(A32) and (A33) to write
down foryy,>0,

tity (A36) and Eq.(A39) it can be easily shown that both
Egs.(A41) and(A42) yield y(*d)=0.

Upon simple transformations Eq&41) and (A42) may
be generalized to cover the cagg<0 as well:

2 —\qd
Y(2)==Yoj 1= g [~r+Ase  1%o0sh\,2)

+A2e"‘2dcosr()\zz)]), |z|=<d,

2
y(2) ZYO{ 1- E[Alsinf()\ld)e_)‘l\d

+ Azsinr()\zd)e”ﬂ']] , |z|=d.

This solution is symmetric. Note that the expressions in curly
brackets, as shown above, are always positive.

(iii ) Let functiony(x) haven>2 zeros. We substitute the
values ofci(’ll) into expressiory; 1(0)=0 and take into ac-
count Eqs(Al17) and (A21) to obtain

r=Ae M%2(1+e Mbl—1+e Md[1+...
+(—1)"e M. )+ Ao red2(1+e M2l — 1

+e 14 4 (—1)Ne Netn]. . 1), (A43)
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On the other hand, the same way we find from condition Ft)=AFi(t)+ AL F(t). (A45)
y2’2(0)=0 that
Then the result of comparison of Eq#43) and(A44) after

— —N\1d —ANd —Nd . . .
r=Aj(e"1%2+e M%B{—1+e MM[1+. .. simple transformations may be written down as follows:

+(=1)"e M) D)+ A (e M2+ e Ml 1

+e—>\2d4[1+ . +(—1)”e_)‘2dn]- - 1. (A44)

The functionF(t) monotonically decreases frof{(0)<1 to
Let us introduce the functions zero fort— +o, Itis easy to see therefore that £E446) can
Lt —ad only hold if d,=0 and/ord;— . Both of these possibilities
Fi()=—e M{—1+e N1+ contradict our assumption<0d, < for 1<k<n, n>2.
+(—1)""eNidn].. =12, Thus, the problen@A5),(A6) has a unique solution forlthe
number of zeromi=1 orn=2 and does not have solutions
and for n>2.
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