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Body versus surface forces in continuum mechanics: Is the Maxwell stress tensor
a physically objective Cauchy stress?
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The Maxwell stress tensor~MST! TM plays an important role in the dynamics of continua interacting with
external fields, as in the commercially and scientifically important case of ‘‘ferrofluids.’’ As a conceptual entity

in quasistatic systems, the MST derives from the definitionfM 5
def.

“•TM, wherefM(x) is a physically objective
volumetric external body-force density field at a pointx of a continuum, derived from the solution of the
pertinent governing equations. Beginning with the fact thatTM is not uniquely defined via the preceding
relationship from knowledge offM, we point out in this paper that the interpretation ofTM as being a physical
stress is not only conceptually incorrect, but that in commonly occuring situations this interpretation will result
in incorrect predictions of the physical response of the system. In short, by elementary examples, this paper
emphasizes the need to maintain the classical physical distinction between the notions of body forcesf and
stressesT. These examples include calculations of the torque on bodies, the work required to deform a fluid
continuum, and the rate of interchange of energy between mechanical and other modes.

DOI: 10.1103/PhysRevE.65.036615 PACS number~s!: 83.10.Ff, 83.80.Gv, 47.10.1g
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I. BACKGROUND

This paper focuses on the mechanical and dynamical
tinction existing between body and surface forces in
physical description of continua. This important distinction
usually introduced in undergraduate courses in fluid mech
ics and/or elasticity, where the material bodies being d
cussed are deformable. For a fortunate handful of stude
the clear-cut conceptual differences existing between th
two types of forces attains its ultimate degree of transpare
in a formal course in continuum mechanics, which genera
focuses on fundamentals rather than applications. The ph
cal distinction between these two types of forces in class
continuum mechanics is essential in quantifying the beha
of continua. In the case of electromechanical body forces
fact has been abandoned by some in favor of the pragm
mathematical advantages offered by the Maxwell stress
sor ~MST! when calculating the force on a ponderable bo
@1#. Such schemes express the forceFM on the body as the
surface integral, over a closed surface]V bounding the body,
of a tractionTn

M5n•TM arising from the ‘‘Maxwell stress,’’
TM, rather than as a volume integral, over the volumeV of
the body, of the physically objective volumetric body-for
densityfM. Though, mathematically, this surface integrati
invariably yields the correct force on the ponderable bo
comparable use of the so-called ‘‘stress’’ fieldTM as being a
physical rather than a mathematical entity in other conte
may result in erroneous physical conclusions, as will
demonstrated.

Simply stated, and without referring to all the other phy
cal arguments presented in what follows, the irreconcila
difference between representing the electromagnetic effe
a volumetric body-force densityversusan electromagnetic
stress hinges on the different ways of calculating the rate
working due to these two physically distinct quantitie
Namely, the rate of working due to a volumetric body-for
is given by the volume integral of the dot product of for
1063-651X/2002/65~3!/036615~14!/$20.00 65 0366
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and velocity, whereas that due to a stress is given by
surface integral of the corresponding traction dotted with
velocity of the moving material surface. That these two c
culations are not equal for a ‘‘Maxwellian’’ force and it
corresponding stress is shown below.

This paper is not intended as a criticism,per se, of the
Maxwell stress tensor of classical electromagnetic theory,
rather as a caution that themathematicalbody-force/surface-
stress duality of electromagnetic field effects on pondera
matter is not physically acceptable in continuum mechan
Only one of these two views is acceptable on physi
grounds; either the electromagnetic effects enter as a b
force or as a surface stress, but not both. Our adherenc
the view that the electromagnetic effects enter the class
theory as long-range body forces is in accordance with
historical development of the field of electromagnetism.
our knowledge, this is still the commonly accepted notion

A. General equations describing polarized continua

The standard equations governing momentum transpo
fluid continua@6# are the respective Cauchy linear mome
tum and internal angular momentum equations, valid at e
point x of the continuum@7,8#,

r
Dv

Dt
5“•T1f, ~1.1a!

r
Da

Dt
5“•C1T31 l. ~1.1b!

It needs to be emphasized that though the symbols appea
in Eqs.~1.1! are completely arbitrary, their physical interpr
tation is not. For example,T could be replaced by anothe
symbol, sayt, provided that the physical definition and
hence, interpretation oft remains the same asT. As such,
the symbols appearing in Eqs.~1.1! possess a precise phys
©2002 The American Physical Society15-1
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CARLOS RINALDI AND HOWARD BRENNER PHYSICAL REVIEW E65 036615
cal meaning, whose significance is of signal importance
interpreting the behavior of the systems they describe.

The vector fieldsv anda, respectively, represent the line
momentum density per unit mass~commonly identified as
the mass-average velocity of the continuum! and the internal
angular momentum density per unit mass. The internal an
lar momentum density is commonly assumed to possess
constitutive formkV, with the scalark the moment of iner-
tia density, and the pseudovectorV the intrinsic spin field
@8#. The physical interpretation of the other terms in E
~1.1! derives from the physical arguments underlying t
analyses whereby these equations are obtained—nam
through macroscopic linear and angular momentum b
ances, as indicated in the following paragraphs.

1. Forces

Explicitly, the fieldsT and f appearing in these equation
are introduced into continuum mechanics by the fundame
representation of the total external forceF exerted on a con-
trol volume ~closed with respect to mass! V bounded by a
closed surface]V,

F5FV1FS , ~1.2!

in which

FV5E
V
dFV , ~1.3a!

FS5 R
]V

dFS . ~1.3b!

This separation of the macroscopic force~and subsequently
of other macroscopic quantities! into volumetric and surface
contributions derives from classifying interactions betwe
continuum elements into two types@9#: ~1! interactions that
diminish ‘‘slowly’’ with distance, and are therefore still ef
fective over distances comparable to the macroscopic le
scale,L, of the system;~2! interactions that are attenuate
extremely ‘‘rapidly’’ over distances comparable to the ch
acteristic linear dimension,l, of a continuum volume ele
ment, and whose effect does not penetrate the macrosc
continuum volume being considered. Thus, the distinct
between volumetric and surface effects is linked to the c
tinuum assumptions applicable in the asymptotic lim
l /L→0.

In Eq. ~1.3a!, the extensive quantitydFV , termed a
‘‘body’’ or volume force, is a manifestation of so-calle
‘‘action-at-a-distance’’ forces, resulting from the interactio
between the material contents of a differential volume e
ment dV ~or corresponding mass elementdm5rdV) cen-
tered at an interior pointx of the body, and the ‘‘distant’’
surroundings, generally lying outside of the body, althou
not always so, as in the case of self-gravitating bodies. T
serves to define the external volumetric density body-fo
field f(x), representing the proportionality factor in the line
relation dFV5f(x)dV existing between the body forcedFV
and the volume elementdV in the continuum limit.
03661
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In Eq. ~1.3b!, the extensive quantitydFS , which is a sur-
face force, is a manifestation of the so-called ‘‘direct co
tact’’ or ‘‘push-pull-shear’’ forces exerted on a differentia
surface elementdS centered at a surface pointx of the body
by the ‘‘contiguous’’ surroundings. This serves to define t
stress vectortn at the surface point as representing the p
portionality factor in the linear relationdFS5tndS existing
between the surface forcedFS and the surface elementdS in
the continuum limit. The stress vector is not itself a fie
quantity at a pointx of the continuum since the forcedFS
will generally depend upon the particular orientationn cho-
sen for the surface element atx. However, as shown by
Cauchy, the stress vectortn at a pointx for a surface elemen
possessing an orientationn can be expressed in terms of a
orientation-independent tensor fieldT(x) possessing the
property thattn5n•T(x), wheren is drawn normal to the
surface element. Cauchy’s analysis, which usually proce
by means of the so-called ‘‘tetrahedron’’ argument@10#,
amounts to a proof of the existence of the stress tensor fi

Thus, upon defining a directed surface elementdS 5
def.

ndS,
and adopting the standard convention for the direction on
upon dS, one has thatdFS5dS•T, wheredFS is the force
exerted by the material into whichn is directed upon the
material on the other side.

With the above pair of substitutions, Eqs.~1.3a! and
~1.3b! adopt the respective forms:

FV5E
V
fdV, ~1.4a!

FS5 R
]V

dS•T. ~1.4b!

These arguments, based upon the clear-cut physical dis
tion existing between ‘‘distant’’ and ‘‘direct-contact’’ effects
serve to unequivocally establish the distinct physical sign
cances attributed to the body-force volume densityf and
stress tensorT. In circumstances where the stress field
continuous, one can invoke the divergence theorem to w
Eq. ~1.4b! in the form

FS5E
V
“•TdV.

While the latter expresses the surface forceFS as a volume
integral, similar in appearance to Eq.~1.4a!, it is apparent

that the integrand“•T 5
def.

f8, say, is physically not a body
force density fieldf8(x) since it does not arise from ‘‘dis
tant’’ sources. Conversely, in circumstances where the c
stitutive equation for the body-force fieldf ~assumed
continuous! is such that it can be mathematically express
as the divergence,“•T8, of a tensor, sayT8(x), Eq. ~1.4a!
can be written in the alternative form

FV5 R
]V

dS•T8. ~1.5!
5-2
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BODY VERSUS SURFACE FORCES . . . PHYSICAL REVIEW E 65 036615
While the latter expresses the volume contributionFV as a
surface integral, similar in appearance to Eq.~1.4b!, it is
apparent thatT8 is physically not a stress field since it do
not arise from ‘‘direct-contact’’ forces. As such, while th
divergence theorem allows one to define themathematical
fields f8(x) andT8(x) in the limited context of force calcu
lations, this fact does not allow one to freely utilize the
fields in physical contexts other than that of calculatin
forces in the absence of evidence of their physical legitim
in these other situations. It is this simple argument, phys
vs mathematics, that forms the basis for the discussion
follows.

The total force, Eq.~1.2!, is given by the expression

F5E
V
fdV1 R

]V
dS•T. ~1.6!

While the value obtained for this force is formally equivale
to that given by the ‘‘mathematically equivalent’’ expressi

F85E
V
f8dV1 R

]V
dS•T8

~that isF5F8), the physical significance of the fields (f8,T8)
is vastly different from that of the comparable fields (f,T)
from which they derive. Accordingly, while Eq.~1.1a! could
be formally rewritten as

r
Dv

Dt
5“•T81f8,

it would be inappropriate to ascribe toT8 the physical sig-
nificance of a stress and tof8 the physical significance of a
body-force density, given their respective definitions. As w
be shown, failure to appreciate this fact will generally lead
unequivocally incorrect physical results in situations wh
global properties of the continuum~other than the force on a
body!, functionally dependent upon the local physical bod
force density and stress distributions, are sought. As s
the issue is not merely one of symbolism, but rather of
physical interpretation ascribed to these symbols.

Indeed, even apart from the physical issues involved,
vious mathematical issues signal the inability to uniqu
convert volume forces to surface stresses and converse
this context, the amount of information embodied in each
these fields is pertinent. Thus, whereas a physical ve
body-force densityf entails but three independent sca
components, the derived ‘‘stress field’’T8, defined by the

expressionf 5
def.

“•T8, generally requires nine independe
scalar components for its unique specification. As such,
minimum, the stress fieldT8 derived fromf in this manner
lacks uniqueness. Conversely, the body-force fieldf8, de-
rived from the physical stress fieldT via the relation
f85“•T has but three independent scalar compone
whereas the original fieldT from which it derives possesse
nine independent scalar components. As such, relevant in
mation embodying physically pertinent data embedded iT
is obviously irrevocably ‘‘lost’’ in effecting the transition
T→f8, from dyadic to vector field, whence the two field
03661
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cannot be physically equivalent in all of their consequenc
While these facts may seem patently obvious, they are n
ertheless widely ignored in the case of the Maxwell str
tensor, whose ubiquitous use permeates the field of elec
mechanics.

2. Torques

Analogous issues of symbolism and physicality apply
the terms appearing in the internal angular momentum eq
tion ~1.1b!. Therein,T3 is the pseudovector of the antisym
metric portion of the physical stress tensorT, defined as

T3
5
def.

2«:T, with « the unit pseudoisotropic triadic@equiva-
lent to the permutation symbol« i jk in Cartesian tensor nota
tion: (T3) i52« i jkTk j#. The remaining terms in Eq.~1.1b!,
namely,C and l, are introduced via a calculation of the tot
external torqueL ~about the arbitrary originO from which
the position vectorx is drawn! exerted by the surrounding
on the body, as follows:

L5LV1LS , ~1.7!

in which

LV5E
V
dLV , ~1.8a!

LS5 R
]V

dLS . ~1.8b!

The extensive quantitydLV appearing above is a manifes
tation of the so-called ‘‘action at a distance’’ torques aboutO,
resulting from the interaction between the material conte
of a differential volumedV ~or a corresponding mass ele
mentdm5rdV) centered at an interior pointx of the body,
and the distant surroundings. This serves to define the e
nal volumetric density body-torque pseudovector field, re
resenting the proportionality factor in the linear relatio
dLV5(x3f1 l)dV existing between the body torquedLV
and the volume elementdV in the continuum limit. In this
expression, with the position vectorx measured with respec
to an origin atO, the pseudovectorx3fdV represents the
torque aboutO arising from the macroscopic body-forc
density f, whereasldV is the intrinsic, origin-independen
couple—the latter arising from the interaction of the pola
ized continuum~if, indeed, it is polarized! with a ‘‘distant’’
field. Thereby, Eq.~1.8a! yields

LV5E
V
~x3f1 l!dV. ~1.9!

Similarly, the extensive quantitydLS , which is a surface
torque aboutO, is a manifestation of the so-called ‘‘direc
contact’’ torques exerted on a differential surface elem
dS, centered at a surface pointx of the body by the contigu-
ous surroundings. Proceeding as in the comparable dis
sion of the surface forcedFS appearing in Eq.~1.3b!, one
eventually arrives at the expressiondLS5(x3tn1cn)dS for
the surface torque, wherecn is the intrinsic, origin-
5-3
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CARLOS RINALDI AND HOWARD BRENNER PHYSICAL REVIEW E65 036615
independent couple-stress pseudovector, stemming from
direct contact torques arising from the polarized nature of
continuum. Analogous to the Cauchy stress tensor case
latter serves to define the couple-stress pseudodyadic
C(x) in the relationcn5n•C, whose existence is demon
strated via a comparable ‘‘tetrahedron argument.’’ Even
ally, this leads to the fact that Eq.~1.8b! can be expressed a

LS5 R
]V

@x3~dS•T!1dS•C#. ~1.10!

Availing ourselves of Eqs.~1.9! and ~1.10!, the total torque,
Eq. ~1.7!, is thus given by the expression

L5E
V
~x3f1 l!dV1 R

]V
@x3~dS•T!1dS•C#.

~1.11!

As in the case of the comparable expression for the
face force contributionFS , in circumstances where the field
T andC are continuous, Gauss’ divergence theorem ena
the surface torque contribution~1.10! to be written in the
alternative volumetric form

LS5E
V
@x3~“•T!1T31“•C#dV.

Comparison of the latter equation with Eq.~1.9! shows that,
mathematically, one might be tempted to define, as befor

‘‘body-force’’ field f8 such thatf8 5
def.

“•T and a ‘‘body-

couple’’ field l8 such thatl8 5
def.

T31“•C, giving the latter
equation a symbolic appearance identical to Eq.~1.9!, but
with primed symbols replacing unprimed ones. Again, ho
ever, this would be physically inappropriate because of
very different origins of the ‘‘distant’’ and ‘‘direct-contact’
contributions.

In any event, the internal angular momentum equat
~1.1b! eventually derives from a total angular momentu
balance using Eq.~1.11! for the total torque on the contro
volume, from which one subtracts the moment of the lin
momentum equation~1.1a! @7#.

3. Rate of working

In addition to their roles in quantifying the total forc
~1.6! and torque~1.11!, the quantities that describe the rat
of change of linear and angular momentum also play a p
otal role in providing the expression for ‘‘work’’ appearing i
the principle of energy conservation, namely, the first law
thermodynamics. For a closed system contained in a re
V, the first law is represented mathematically by the ext
sive equation

dE

dt
5Ẇ1Q̇, ~1.12!

whereE is the total energy contained withinV, Ẇ is the rate
of working of the surroundings on that region, andQ̇ is the
rate of heat transfer to the regionV across its boundaries,]V.
03661
he
e
he
ld

-

r-

es

a

-
e

n

r

-

f
on
-

The rateẆ of working per unit time performed by the su
roundings on a closed, material fluid control volumeV ~i.e.,
one moving with the fluid!, results from the translational an
orientational motions of its generally polarized substructu
Calculation of this global work from knowledge of th
continuum-dynamical and kinematical elements that en
into its formulation will serve to illustrate the signal physic
significance that needs to be unequivocally assigned to
symbols appearing in Eq.~1.1!. As in the preceding force and
torque calculations, this rate of working is composed of b
body and surface contributions

Ẇ5ẆV1ẆS , ~1.13!

in which @11#

ẆV5E
V
dẆV , ~1.14a!

ẆS5 R
]V

dẆS . ~1.14b!

In Eq. ~1.14a!, the extensive quantitydẆV represents the
rate of working by the ‘‘distant’’ surroundings on an interio
volume element dV ~or corresponding mass eleme
dm5rdV) centered at an interior pointx of the continuum
domain, arising from the action of the long-range bo
forces and body couples. This serves to define the exte
volumetric rate of working density, representing the prop
tionality factor appearing in the linear relationdẆV5(f•v
1 l•V)dV existing between the extensive rate of workin
dẆV and the volume elementdV in the continuum limit.
Here,v is, as before, the mass-average velocity, andV is the
internal spin-field of the structured continuum@8#. Equation
~1.14a! can thus be expressed as the volume integral

ẆV5E
V
~ f•v1 l•V!dV. ~1.15!

This equation serves to focus attention upon the phys
significance demanded of the symbolsf and l, appearing
therein, through their energetic interpretations, since it w
be demonstrated that replacement of these symbols by
‘‘alternates,’’ namely,f8 and l8 as defined earlier in connec
tion with our respective classification of forces and torqu
will eventually lead to errors in the extensive rate of worki
Ẇ, Eq. ~1.13!.

In Eq. ~1.14b!, the extensive quantitydẆS represents the
rate of working performed by the ‘‘immediate’’ surrounding
on the continuum domainV through a surface elementdS
centered at a surface pointx of the body. This serves
to define the rate of surface working per unit area
the proportionality factor in the linear relationdẆS
5(tn•v1cn•V)dS existing between the rate of workin
dẆS and the surface elementdS in the continuum. Upon
introducing into the latter expression the prior definitions
5-4
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BODY VERSUS SURFACE FORCES . . . PHYSICAL REVIEW E 65 036615
the Cauchy stress fieldT and couple-stress dyadicC, equa-
tion ~1.14b! can thereby be expressed as

ẆS5 R
]V

dS•~T•v1C•V!. ~1.16!

As with Eq. ~1.15!, this latter equation serves to focus up
the physical significance to be attributed to the symbolsT
and C in the context of their respective usage in energe
calculations.

In combination, the expression for the total rate of wo
ing on the bodyV, given by Eq.~1.13!, becomes@12#

Ẇ5E
V
~ f•v1 l•V!dV1 R

]V
dS•~T•v1C•V!.

~1.17!

The justification for Eq.~1.17! resides in the fact that i
constitutes the most general application of the mechan
definition of work@13#, based upon classical rigid-body m
chanics principles applied to polarized systems. It is co
posed solely of force-times-displacement and couple-tim
rotation terms. It is important to note that this equati
implicitly assumes the subcontinuum structure to be co
posed of rigid-body elements. This does not represent a
ther restriction of the domain of validity of our analysis,
this assumption had already been implicitly invoked
adoptingv andkV as the respective linear and internal a
gular momentum densities per unit mass@8#.

This expression for the rate of working on the mater
volume V plays a role in determining the rate of change
the total energyE associated withV through the first law of
thermodynamics. This energy is frequently assumed to c
sist of the sum of several contributions, e.g., kinetic, pot
tial, and internal energies. There is still debate over the fo
of other possible additional contributions, such as ‘‘field e
ergies,’’ in the case of systems in electromagnetic fields@15–
17#. Because of this lack of resolution, and to focus on
subject matter of this work~the physicality, or lack thereof
of the Maxwell stress tensor in continuum mechanics!, we
will merely assume that the total energy may be separa
into a kinetic energy componentK together with what we
shall simply term ‘‘other’’ forms of energy,EO . Of course,
the ‘‘other’’ modes of energy may be further separated i
subcategories, the nature of which is immaterial to the s
sequent discussion. The first law, equation~1.12!, thereby
adopts the form

dK

dt
1

dEO

dt
5Ẇ1Q̇. ~1.18!

Next, we assume the following representation for the mac
scopic kinetic energy relative to an inertial reference fram

KV5E
V
rS 1

2
v21

1

2
kV2DdV, ~1.19!
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consisting of translational and rotational contributions, wh
v andV are measured relative to the same reference fram
they are in Eq.~1.17!.

A comment on potential energy is now in order. In writin
Eq. ~1.18! we have not included potential energy explicitl
choosing instead to include it as part of the work express
~1.17!, as in Ref. @18#. This is further discussed in th
Appendix.

An equation of change for the total kinetic energy
found by dot multiplying the mass-average velocityv and
spin field V by the respective linear and internal angu
momentum equations,~1.1a! and ~1.1b!, and adding the re-
sulting expressions. When integrated over the regionV this
results in the following macroscopic equation:

d

dtEV
rS 1

2
v21

1

2
kV2DdV

5 R
]V

dS•~T•v1C•V!1E
V
~ f•v1 l•V

2TT:“v2CT:“V1T3•V!dV, ~1.20!

where the superscript T denotes the transposition operat
Upon using Eq.~1.17! for the rate of working and sub

tracting Eq.~1.20! from Eq.~1.18!, the following is obtained
for the rate of change of the other forms of energy:

dEO

dt
5C1Q̇, ~1.21!

where, by definition,

C 5
def. E

V
FTS :~“v!S1CT:“V1T3•S 1

2
“3v2V D GdV,

~1.22!

in which the subscriptS refers to the symmetric componen
DS5 1

2 (D1DT), of a dyadicD. Equation~1.22! is interpreted
as representing the rate of transformation of mechanical
ergy into ‘‘other,’’ nonmechanical forms of energy containe
within V.

In the classical description of Newtonian fluids the rate
mechanical energy exchange with other modes is written
@18,19#

CN5E
V
~2p“•v1t :“v!dV, ~1.23!

with p the thermodynamic pressure andt the deviatoric vis-
cous stress. For these systems the first term in the integ
of Eq. ~1.23! is identified as the ‘‘reversible’’ rate of chang
of the internal energy of the system due to fluid compre
ibility ~in such fluid systemsEO is solely composed of the
internal energy!, whereas the second term in Eq.~1.23! is
identified as the irreversible rate of internal energy increa
the so-called viscous dissipation rate@18,19#.

Various reasons exist for not effecting similar steps a
subsequent interpretative identifications with Eq.~1.21! at
5-5
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CARLOS RINALDI AND HOWARD BRENNER PHYSICAL REVIEW E65 036615
this stage. First, we wish to keep our analysis general w
respect to the constitutive forms chosen for the dynam
quantitiesf, l, T, andC. Second, we do not wish to enter th
dispute@17,20–23# over the exact form of the nonmechanic
energy term when, for example, electromagnetic fields
present. Finally, in order to be able to ascribe physical s
nificance to the terms resulting from Eq.~1.22!, one requires
knowledge of the reversible thermodynamics of these s
tems ~involving second law considerations!. In the case of
Newtonian fluids it is assumeda priori that the reversible
work contributing to the internal energy consists solely o
2pdV term, whence this term is identified with th
2p“•v term appearing in Eq.~1.23!. We stress that this
does not imply that the2p“•v term of Eq.~1.23! is to be
regarded as a volumetric ‘‘work density’’ in the irreversib
formulation. Two reasons exist for this: First, in violation
the mechanical definition of work, it cannot be expressed
the product of a vector force and a vector displacement
without combining it with other terms. Second, if in fact

2E
V
p“•vdV

were indeed a work term, the expression for the total w
~1.17! would have been incomplete, and the preceding an
sis given for Newtonian fluids would have been incorre
Historically, the classical thermodynamic interpretation
the 2p“•v term may be traced to the interpretation
Joule’s original experiments, which laid the foundation f
the subject, wherein the term2p“•v was identified with the
‘‘disappearance’’ of ‘‘external’’ mechanical energy.

Mathematically, Eq.~1.22! does not add any new physic
to the total force, torque, and work trio of Eqs.~1.6!, ~1.11!,
and ~1.17!, but serves merely in an interpretative role.
should be clear from its derivation that any uncertainty
any of the latter three entities will manifest itself as a co
parable uncertainty in Eq.~1.22!. The purpose of considerin
this equation, in addition to this trio, resides in the conc
tual and physical interpretation of the consequences of
such uncertainties in the total force, torque, and work ca
lations. Equation~1.22! simply identifies that portion of the
work and mechanical energy that is transformed into non
chanical forms of energy within the system, information th
would be relevant in problems where mechanical dissipa
effects were important, or where changes in the thermo
namic state of a system were relevant.

B. ‘‘Maxwellian’’ forces and the Maxwell stress tensor

A volumetric external force-density field,fM[fM(x), will
be said to be ‘‘Maxwellian’’ if it can be written as the dive
gence of a dyadic fieldTM[TM(x),

fM5“•TM. ~1.24!

For a prescribed constitutive equation governingfM this rep-
resents the constitutive definition, albeit necessarily no
nique, ofTM. In the electromagnetic theory of charges a
currents in vacuum, the dyadicTM is referred to as the Max
well stress tensor~MST!. A particular example of its use
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occurs in the area of magnetic fluids~so-called ‘‘ferrofluids’’
@24#!, wherefM obeys the constitutive relation@25#

fM5m0M•“H, ~1.25!

applicable to incompressible media, withM the magnetiza-
tion, H the local magnetic field, andm0 the permeability of
free space. In the case of a force density described by
constitutive equation it can easily be shown, using the pe
nent equations describing the magnetostatic field in the
sence of free currents@26#, namely,“•B50 and“3H50,
together with some elementary vector-dyadic identities, t
the corresponding Maxwell stress tensor is

TM5BH2
1

2
m0H2I , ~1.26!

with B5m0(M1H), andI the unit tensor@27#. This tensor,
though symmetric for linear magnetic media~where M is
collinear withH) may, in general, be asymmetric, as in th
case of ferrofluid flows.

The Maxwell stress tensor is introduced in several diff
ent ways in standard textbooks on electromagnetism an
applications. For example, in Stratton’s treatise on elec
magnetism@26# it is shown to be a mathematical cons
quence of Maxwell’s equations that the body-force dens
within a system of charges and currents in vacuum may
written as the divergence of a tensor field added to the lo
time derivative ofc22E3H ~the ‘‘electromagnetic momen
tum’’ of the field at a pointx), with E the electric field andc
the speed of light in vacuum. In quasistatic fields, this lat
term is neglected, whence the force is represented by
divergence of the MST. This tensorial representation of
dynamical electrostatic and magnetostatic state of a bod
analogous to that of an elastic body, owing to the existe
of the Cauchy stress tensor for such elastic bodies. Hist
cally, this analogy was consistent with existing aether th
ries of electromagnetism towards the end of the 19th cent
However, as Stratton ultimately states: ‘‘all that can
said . . . is that mutual forces between elements of cha
can be correctly calculated on the assumption that there
ists afictitious state of stress’’~emphasis ours!.

De Groot and Mazur@28# introduce the MST through a
statement of conservation of total~i.e., mechanical and elec
tromagnetic! momentum. Their continuum formulation is
consequence of Newton’s momentum conservation princ
for discrete point mass systems when applied to charges
currents in electromagnetic fields, owing to the formal re
resentation of the forces acting upon such systems as
sisting of the sum of the divergence of the MST and the ti
derivative of the electromagnetic momentum. Superficial d
cussion is devoted by these authors to the issue of the re
of the MST as a ‘‘physical stress,’’ although they point o
that the Maxwell stress tensor is not uniquely defined by
~1.24!, but, rather, is arbitrary to within an additive dive
genceless tensor, as we have remarked above.

In Melcher’s book@29# on continuum electromechanics
on the other hand, the MST is introduced merely as a ma
ematical artifice for the purpose of calculating the quasist
5-6
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BODY VERSUS SURFACE FORCES . . . PHYSICAL REVIEW E 65 036615
electromagnetic force on a ponderable body. Melcher a
observes that the conceptual replacement offM by an
‘‘equivalent’’ stress fieldTM furnishes the correct torque on
body only for asymmetricMST. By ‘‘conceptual replace-
ment’’ is meant regarding the effects of the Maxwellian for
fM as arising from a stress distributionTM. Melcher’s book
@29# provides an exhaustive compendium of the varied for
adopted by the MST for different electrostatic and magne
static force densities.

Stratton’s and Melcher’s books each emphasize that
‘‘traction’’ due to the MST is devoid of physical significanc
unless it is integrated over aclosedsurface, a consequence
the application of Gauss’ theorem upon converting a volu
integral to a surface integral, such as was done with
~1.5!. Indeed, this definition of the ‘‘electromagnetic tra
tion’’ is reversed from the classical definition in continuu
mechanics. A tractiontn is classically defined, referring to
Fig. 1, as the force exerted by the fluid present on the (1)
side of a surface elementdS, centered at a pointx of the fluid
continuum, upon the fluid lying on the (2) side of the sur-
face. Using Cauchy’s tetrahedron argument, this traction m
be shown to equal the vector dot product of the unit norm
n to the surface elementdSand a dyadicT, called the stress
Thus, the tractiontn has a distinct physical meaning as
vector force per unit area. Upon integration over an op
surfaceS, the tractiontn correctly gives the force exerted b
the fluid on one side of the surface upon the fluid imme
ately proximate on the opposite side.

The definitiontn
M 5

def.
n•TM, of the electromagnetic trac

tion tn
M , proceeds in the opposite direction@30#. First, the

MST is defined via Eq.~1.24!, following which it is dot
multiplied with the unit normal vectorn of the test surface
dS centered atx. Though this is a mathematically acceptab

FIG. 1. Classical definition of the tractiontn as the force per unit
area exerted by the fluid on the (1) side of a directed surface
elementdS5ndS centered at the pointx, on the fluid in the (2)
side.
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operation, it is the physical interpretation ascribed to
namely application of the term ‘‘traction’’ to the dot produ
n•TM, that is the issue at dispute. The electromagnetic tr
tion, upon integration over an open surfaceS, will not cor-
rectly furnish the force exerted by the fluid lying on one si
of the surface upon the contiguous fluid immediately opp
site.

As pointed out by Stratton@26#, introduction of the MST
into electromagnetism occurred during the prerelativity e
at which time the so-called aether was regarded as an el
material entity, pervading all of space, and capable of s
taining stresses in response to electromagnetic forces. In
context, Maxwell stresses were regarded as possessing
finitive physical existence within the material aether co
tinuum. This view of the aether was set aside by the work
Einstein@31#. Despite this, the concept of the Maxwell stre
as an objective physical entity was not abandoned con
rently with the discredited aether theory. Indeed, its ubiq
tous use in applications has persisted to this day, leading
example, to inadequacies in calculations of energy tran
occurring during magnetohydrodynamic flows@35#, and con-
ceptually spurious proofs of the inapplicability of the m
chanical definition of stress@23# ~both discussed in Sec. II!,
as well as conceptual inadequacies in formulations of
equations describing magnetic fluid phenomena@24,32–34#
~discussed in Sec. III!.

Moreover, during the prerelativity era, the concept of
separate Cauchy moment-of-momentum equation appea
have been unknown, leading to the erroneous conclusion
all stresses~both electromagnetic and otherwise! were sym-
metric @36,37#. This contributed further to the continue
view of the MST as being a physical entity; for under the
conditions, use of the stress fieldTM as being equipollent in
its consequences to the body-force fieldfM that spawned it,
yields not only the correct force on a body but equally t
correct torque, as is demonstrated below. However, thi
not the case for higher-order moments of the force distri
tion fM, namely, those beyond the zeroth and first, nor
other physical quantities, such as:~i! the work done by the
distant and local surroundings upon a body via the action
forces and couples; and~ii ! the accompanying rate of me
chanical energy conversion into other forms, as discusse
the following section.

II. CONSEQUENCES OF REPLACING THE MAXWELLIAN
FORCE fM BY A MAXWELL STRESS T M

Despite the discredited physical validity of the Maxwe
stress tensor as a physical state of stress existing with
hypothetical elastic continuum, namely, the ‘‘aether,’’ co
temporary advocates of its continued use in electromagn
applications appear willing to set aside this fact in favor
its pragmatic utility when calculating the forces on bodie
However, this success in furnishing the correct force on
body ~and even the correct torque under certain well-defin
circumstances! obscures the fact that the very idea of repla
ing a body-force density fieldfM by an ‘‘equivalent’’ stress
field TM is conceptually flawed on physical grounds and,
such, may lead to invalid conclusions when the MST conc
is indiscriminately used in related physical contexts aris
5-7
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CARLOS RINALDI AND HOWARD BRENNER PHYSICAL REVIEW E65 036615
in mechanics and electrodynamics. Such errors include
correct calculations of the torque on bodies in circumstan
where the MST is asymmetric, as well as incorrect pred
tions of the work done by the surroundings on an elec
magnetic continuum and, hence, of the rate of kinetic ene
exchange with other forms of energy. Even apart from
specifics of these examples is the physical inappropriate
of linearly adding the ‘‘stress’’TM stemming from a Max-
wellian bodyforce fM to the Cauchy stressT existing within
elastic or fluid-mechanical systems so as to obtain a so-ca
‘‘total’’ stress tensor as, for example, is often done in the c
of ferrofluids@24,32–34#. In any given physical problem, fo
example, in fluid mechanics, there exists but asinglestress,
namely, the Cauchy stress resulting solely from the existe
of contiguous matter in all its attributes, thereby render
the concept of a ‘‘total’’ stress an oxymoron.

To establish the circumstances under which the quan
TM defined in Eq.~1.24! might be inappropriately identified
as a stress, add and subtract the vector fieldfM to Eq.~1.1a!,
and use Eq.~1.24! to write the linear momentum equation
the form

r
Dv

Dt
5“•T†1f†, ~2.1!

where, by definition,

T† 5
def.

T1TM, ~2.2!

is the so-called ‘‘total’’ stress@24#, and

f† 5
def.

f2fM ~2.3!

is a ‘‘modified’’ body-force density~representing, in the cas
of magnetic fluids, the effect of other forces besides the m
netic!.

While this total stress is frequently envisione
@3,5,24,32–34# as a physical stress, rather than as a pur
mathematical artifice, this view is physically without mer
Were this view correct, the vector invariant appearing in E
~1.1b! would have to beT3

† 5T31T3
M , rather thanT3 , in

order to be consistent with the interpretation ofT† in Eq.
~2.1! as the ‘‘stress.’’

Were one to calculate the forceF†, torque L†, rate of
working Ẇ†, and rate of mechanical energy exchange w
other formsC† in terms of the fieldsT† and f† appearing in
the linear momentum equation~2.1!, the expressions fo
these four entities would respectively be, by analogy w
Eqs.~1.6!, ~1.11!, ~1.17!, and~1.22!:

F†5E
V
f†dV1 R

]V
dS•T†, ~2.4a!

L†5E
V
x3f†dV1 R

]V
x3~dS•T†!1E

V
ldV1 R

]V
dS•C,

~2.4b!
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Ẇ†5E
V
f†
•vdV1 R

]V
dS•T†

•v1E
V
l•VdV

1 R
]V

dS•C•V, ~2.4c!

C†5E
V
TS

† :~“v!SdV1E
V
CT:“VdV

1E
V
T3

†
•S 1

2
“3v2V DdV. ~2.4d!

Subtract Eqs.~2.4! from their respective counterparts in Eq
~1.6!, ~1.11!, ~1.17!, and ~1.22!, denote the differences a
DF†5F†ÀF, etc., and use Eq.~1.24! together with some
elementary vector-dyadic identities to obtain

DF†50, ~2.5a!

DL†52E
V
T3

MdV, ~2.5b!

DẆ†5E
V
TS

M :~“v!SdV1E
V
T3

M
•

1

2
“3vdV, ~2.5c!

DC†5E
V
~TS

M !T:~“v!SdV1E
V
T3

M
•S 1

2
“3v2V DdV.

~2.5d!

Were the Maxwellian stressTM to be physically equiva-
lent in all respectsto the Maxwellian body-force densityfM

from which it derives, the quantitiesDF†, DL†, DẆ†, and
DC† would then each be identically zero. That, with th
exception of the force, they are not zero confirms that th
can be one, and only one, correct stress tensor in a g
physical situation. Moreover, the disparity existing in the ra
of working and mechanical energy dissipation, namely, E
~2.5c! and ~2.5d!, respectively, reveals that the fundamen
issue arising from use of the Maxwell stress does not dis
pear even when the stress tensor is symmetric (T3

M50). In-
deed, the only general case for which Eq.~2.5c! and Eq.
~2.5d! are both identically zero occurs for a rigid-body m
tion, v5A(t)1x3B(t), together with a symmetric Maxwel
stress,T3

M50, where A(t) and B(t) are, respectively, a
position-independent vector and pseudovector.

The physical interpretation of the results embodied
Eqs.~2.5! is as follows: The forceF† on the fluid domainV
is correctly calculated upon replacing the body force by
‘‘equivalent’’ Maxwell stress tensor, but the torqueL† is not
~compared with the corresponding quantity without the† su-
perscript!. As a consequence, the rate of spin-kinetic ene
change is incorrectly calculated. When combined with
incorrect estimate for the rate of workingẆ†, this leads to a
false estimate for the rate of mechanical energy excha
with other modes,C†, and concomitantly to an incorrec
5-8
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BODY VERSUS SURFACE FORCES . . . PHYSICAL REVIEW E 65 036615
estimate of the thermodynamic state of the fluid regionV
~this being related to the ‘‘other’’ forms of energy by a
equation of state!.

The conclusion emanating from Eq.~2.5b! agrees with
Melcher’s@29# comment regarding the required symmetry
the Maxwell stress tensor, although this caution is wid
ignored in the literature. It is also important to note that t
MST must be symmetric throughout theentire domainV in
order for the correct torque to result@i.e., for Eq.~2.5b! to be
identically zero#. This contrasts with statements in the liter
ture @38–47# to the effect that, when calculating the torqu
on a system using the MST, it suffices for the latter to
symmetriconly over the domain of integration, namely, the
bounding surface]V. In fact, a survey of the current litera
ture bearing on use of the Maxwell stress concept to ca
late torques reveals basically three types of comments on
issue:~1! those in which no mention is made of the requir
symmetry of the MST for torque calculations@38–44#; ~2!
those that claim that the MST need only be symmetric on
surface]V of the body, thus ignoring the possibility of e
fects arising from the existence of stress asymmetry wit
the body itself@45,46#; ~3! those that actually use the MST t
calculate the torque on a body in circumstances wherein
MST is asymmetric@47#. Judging from Eq.~2.5b!, these
views all lack validity, and Melcher’s comment is correc
However, certain subtleties exist in magnetostatic and e
trostatic cases that must be further addressed before re
ing an unequivocal judgement regarding the accuracy
torque calculations based on the Maxwell stress conc
These are discussed in the next section.

A specific example drawn from the recent literatu
wherein the MST is inappropriately used to calculate wo
— leading thereby to an incorrect result for the work —
found in Ref.@35#. These authors analyze instabilities in s
lar convective flow in the context of an analysis of ener
conversion mechanisms. In calculating the conversion
‘‘magnetic energy’’ into kinetic energy, the MST is used as
physical stress in performing a surface integration, ident
in spirit to that used to calculate the work arising from t
classical Reynolds fluid-mechanical stress. The ‘‘magn
energy’’ used in Ref.@35# would be part of what is here
classified as ‘‘other’’ energies. The conclusion derived fro
Eq. ~2.5d! suggests that this approach is without merit.

Another example involving use of the Maxwell stress
calculations of work is found in Ref.@23#, where the authors
examine the thermodynamic consistency of the continuu
mechanical definition of stress. The authors analyze
change in Helmholtz free energy for two processes poss
ing the same initial and final states, from which they det
mine that one of the components of their ‘‘mechanica
stress is object-shape dependent, a contradiction of their
nition of stress. However, in their analysis they treat elec
magnetic interactions through the corresponding Maxw
stress tensor, thereby invalidating their analysis on the b
of the arguments alluded to above. We refrain from prese
ing a more detailed analysis of the specifics of their proble
as surfaces of discontinuity exist in some of their mate
properties, thereby raising questions as to the correct form
the corresponding surface-excess forces@48#.
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As noted above, the MST, defined by Eq.~1.24!, is arbi-
trary to within an additive divergenceless tensor@28#. How-
ever, the relations outlined above necessarily apply for
MST, no specific form of the MST@such as the constitutive
form ~1.26!# having been assumeda priori. This precludes
the possibility of adding a solenoidal ‘‘correction tensor’’
any form of the MST in order to nullify the errors displaye
in Eq. ~2.5!.

III. THE ‘‘MAXWELL STRESS’’ IN FERROFLUIDS

A subtle exception to Eq.~2.5b!, one explicitly involving
replacement of a Maxwellian body-force density by a Ma
well stress tensor, and the concomitant lack of objectiv
alluded to above, occurs in the case of magnetic fluids~‘‘fer-
rofluids’’!. These materials provide commercially and scie
tifically important examples of fluids characterized rheolo
cally by asymmetric states of stress. The description of
rheological state of ferrofluids in terms of a ‘‘total’’ stress,
defined above, was, in fact, the initial motivation behind t
present work.

For such fluids, the volumetric body-force fieldfM, Eq.
~1.25!, arising from magnetic forces acting on the ferroflu
is sometimes replaced by the magnetic Maxwell stress te
TM @24,32–34#, Eq. ~1.26!, following which the linear and
internal angular momentum equations are subsequently
formulated using the ‘‘total’’ stress in place of the tru
Cauchy stress. For the reasons outlined above, this ‘‘equ
lent’’ substitution is, in general, physically invalid, in th
sense that it may lead to discrepancies in those applicat
involving calculations other than that of determining t
force ~and possibly the torque! on a body. However, a seem
ingly fortuitous relation existing between the body-coup
density fieldl and the vector invariantT3

M of the Maxwell
stress confounds the issue@49#. In the ferrofluid case, the
body-couple density field, saylM, due to magnetic forces is
given constitutively as@24#

lM5m0M3H. ~3.1!

It is then a simple matter to verify, using Eq.~1.26!, that for
ferrofluids the following relation holds:

T3
M5 lM. ~3.2!

This makes it possible to rewrite the linear and angular m
mentum equations~1.1a! and ~1.1b! in the respective forms

r
Dv

Dt
5“•T‡1f‡, ~3.3a!

r
Da

Dt
5“•C1T3

‡ 1 l‡. ~3.3b!

Here, as employed in the ferrofluids literature@32–34#, the
new symbolT‡ corresponds to the so-called ‘‘total stress’’
a point x of the ferrofluid, whereasf‡ and l‡, respectively,
correspond to force and couple densities arising from ‘‘d
tant’’ sources~not including magnetic forces and couples!.
5-9
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These symbols are related to the comparable quantities
pearing in Eqs.~1.1! and~1.24! by the respective expression
@50#

T‡ 5
def.

T1TM, ~3.4!

f‡ 5
def.

f2fM, ~3.5!

l‡ 5
def.

l2 lM[ l2T3
M . ~3.6!

In a manner analogous to that of the previous section,
apparent forceF‡, torqueL‡, rateẆ‡ of working, and rate
C‡ of mechanical energy interchange with other modes
perienced by a body, corresponding to the physical interp
tation assigned to the symbols appearing in Eqs.~3.3!, are
respectively given by the expressions

F‡5E
V
f‡dV1 R

]V
dS•T‡, ~3.7a!

L‡5E
V
x3f‡dV1 R

]V
x3~dS•T‡!1E

V
l‡dV1 R

]V
dS•C,

~3.7b!

Ẇ‡5E
V
f‡
•vdV1 R

]V
dS•T‡

•v1E
V
l‡•VdV

1 R
]V

dS•C•V, ~3.7c!

C‡5E
V
TS

‡ :~“v!SdV1E
V
CT:“VdV

1E
V
T3

‡
•S 1

2
“3v2V DdV. ~3.7d!

As before, sequentially subtract these equations from t
respective counterparts, Eqs.~1.6!, ~1.11!, ~1.17! and ~1.22!,
denote the differences byDF‡5F‡2F, etc., and use Eqs
~1.24! and ~3.2! together with some elementary vecto
dyadic identities to eventually obtain the expressions

DF‡50, ~3.8a!

DL‡50, ~3.8b!

DẆ‡5E
V
TS

M :~“v!SdV1E
V
T3

M
•S 1

2
“3v2V DdV,

~3.8c!

DC‡5E
V
TS

M :~“v!SdV1E
V
T3

M
•S 1

2
“3v2V DdV.

~3.8d!

Again, the disparitiesD represented by Eqs.~3.8! must be
identically zero if the body-force/body-couple density a
03661
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Maxwell stress descriptions of magnetic effects are to
physically equivalent. The fact that the differencesDẆ‡ and
DC‡ are not identically zero in general further supports t
contention that there exists but a single physically meani
ful stress tensor in magnetic fluids, namely, the class
Cauchy stress tensorT.

The physical interpretation of the results embodied
Eqs. ~3.8! is as follows: conceptual replacement of a bod
force and body-couple field by their corresponding Maxw
stress counterparts will give correct estimates for the to
forceF‡ and torqueL‡ acting on a fluid domainV; hence, the
rate of kinetic energy change will be correctly calculat
using the MST, through an analog of Eq.~1.20!. However,
the rate of workingẆ‡ on the fluid domain and the concom
tant rate of mechanical energy exchange with other for
C‡, will be incorrect~as compared with the quantities with
out the superscript‡), with the additional work going di-
rectly into the ‘‘other’’ energies through Eq.~1.21!.

As discussed in the previous sections of this paper, an
shown by Eqs.~3.8!, the analysis of magnetic fluid motio
presented in Refs.@24,32–34#, together with the correspond
ing physical description of the state of stress in ferrofluids
questionable in the sense that it replaces the Maxwel
magnetic force density~1.25! with the corresponding Max-
well stress tensor, Eq.~1.26!. This is not to say that the
fundamental equations used in ferrohydrodynamics
mathematicallywrong, but rather that their physical interpre
tation is based on an invalid conceptual framework. Fail
to recognize this fact may result in incorrect physic
predictions.

The analysis of this section can be trivially extended
more general circumstances, involving magnetoquasist
and electroquasistatic systems described by Kelvin-t
force and couple densities@29#, where it can be shown that
condition equivalent to Eq.~3.2! applies. In the light of these
results, specifically that for the torque difference~3.8b!, we
concur with Melcher’s@29# assertion that the MST will give
the correct torque on a body only for a symmetric MS
albeit subject to the following caveat: When a relation exi
between the body-couple densityl and vector invariantT3

M

of the Maxwell stress, such as is embodied in Eq.~3.2!,
replacement of the body-force densityfM and body-couple
density lM by the equivalent Maxwell stress tensorTM will
yield the correct torque on a body. Failure to do so wou
result in double counting the magnetic couple effect
torque calculations. Referring to the three classes of co
mentary regarding the symmetry issue alluded to in the p
vious section, we find that the conclusion of the first group
correct. Explicitly, it is unnecessary for the constitutive r
sponse of the material to be linear along the path of integ
tion ~or indeed anywhere in the body! in order for the MST
to give the correct torque in thespecial caseof materials
described by Kelvin-type forces and couples.

IV. EXAMPLE—FLOW OF A FERROFLUID IN A
CYLINDRICAL CONTAINER SUBJECTED TO A UNIFORM

ROTATING MAGNETIC FIELD

Consider a ferrofluid contained in an infinitely long circ
lar cylinder of radiusR whose walls are held stationary@51#.
5-10
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The ferrofluid is subjected to a magnetic field that is unifo
throughout the fluid volume and which rotates steadily~rela-
tive to the cylinder walls! at a specified angular velocityv.
This can be achieved by placing the cylindrical ferroflu
container in the gap of a two-pole magnetic induction m
chine. The solution for the flow equations used here is t
presented in Ref.@24#, and is consistent with the linear an
internal angular momentum equations for an incompress
ferrofluid whose rheological behavior is described by a Ne
tonian constitutive relation for the symmetric portion of t
stress together with an antisymmetric stress@52#. The
couple-stress dyadic is given a Newtonian-like constitut
equation@52#, whereas the body-force and body-couple de
sities are given by Eqs.~1.25! and ~3.1!, respectively, with
the corresponding Maxwell stress given by Eq.~1.26!. The
resulting solution is also consistent with the magnetizat
equation for ferrofluids@24#, provided that the spin time
scale,V21, is much larger than the ferrofluid relaxation tim
t (Vt!1).

Because the magnetic field is uniform throughout the f
rofluid, no body forces influence the motion, whereas
body couple density is given by

l~x!5 l z~r !iz , l z~r !5m0MH sina, ~4.1!

with a the lag angle between the magnetic field and
magnetization vector, as in Fig. 2. The magnitude of
magnetization vector and its lag angle with respect to
magnetic field are related to the magnetic field rotation r
v and the Brownian relaxation time constantt of the ferrof-
luid through the magnetization equation@24#. Explicitly,
these dependencies are

M5M0@11~vt!2#21/2, ~4.2!

a5arctan~vt!, ~4.3!

where M0 is the magnitude of the magnetization when
equilibrium with the magnetic fieldH.

FIG. 2. Ferrofluid contained in a fixed cylinder and subjected
a rotating magnetic fieldH. The field rotates at an angular rotatio

rate ḟ, relative to the fixed container walls. The ferrofluid consi
of a subcontinuum suspension of permanently magnetized part
with particle magnetizationmp . The resulting suspension-sca
magnetization field is uniform and lags the magnetic field by
anglea,p/2.
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In circular cylindrical coordinates (r ,u,z), the fluid
streamlines lie in concentric circles about the axis of ro
tion, and are given by

v~x!5vu~r !iu , vu~r !5v0F r

R
2

I 1~kr !

I 1~kR!G , ~4.4!

whereas the spin-velocity fieldV is axially directed:

V~x!5Vz~r !iz , Vz~r !5
he

hR
S m0MH

4z
sina D F12

I 0~kr !

I 0~kR!G .
~4.5!

Here, I n(x) is the modified Bessel function of the first kin
of order n, and (ir ,iu ,iz) are unit vectors in the indicate
directions. The parameters appearing in these equations
related to the physical and geometrical properties charac
izing the problem as follows:

v05
1

2khR
~m0MH sina!

I 1~kR!

I 0~kR!
, ~4.6!

hR5h1zF12
2I 1~kR!

kRI0~kR!G , ~4.7!

k25
4hz

heh8
. ~4.8!

In these equations,h,z,h8, andhe5h1z are, respectively,
the shear, vortex, spin-shear, and effective viscosities of
ferrofluid.

To calculate the rate of working on the ferrofluid volum
V, we apply Eq.~1.17!, to obtain

Ẇ5~m0MH sina!2S he

4hRz D F122
I 1~kR!

kRI0~kR!GV,

~4.9!

in which all of the work is effected via the action of th
volumetric body-couple and spin-velocity terms. This is
consequence of the assumed no-slip boundary condition@24#
applied to both the translational and spin velocities at
cylinder wall.

Had we considered the effect of magnetic interactions
resulting from an electromagnetic stress, we would have
placed the effects of both the magnetic force and cou
densities by the corresponding Maxwell stress, given by
~1.26!, and used Eq.~3.7c! to obtain the rate of working on
the cylinder contents. By replacing the body force a
couple densities by their corresponding Maxwell stress t
sor, we find that the first two terms on the right-hand side
Eq. ~3.7c! are now zero becausef‡50 andl‡50, whereas the
last two terms are zero owing to the no-slip conditionsv
50 and V50 prevailing at the cylinder walls. Equatio
~3.7c! then yields

Ẇ‡50, ~4.10!

according to which no work is done on the ferrofluid.
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Note that the differenceDẆ‡ between Eqs.~4.9! and
~4.10! could have been obtained directly from Eq.~3.8c!.

As stated earlier, there are no magnetic body forces in
example. The effects arise solely through magnetic b
couples acting on the magnetically polarized suspens
However, if we consider the same physical situation,
allow the fields to vary in the radial and azimuthal directio
~such as would occur if the cylinder of ferrofluid were plac
in the gap of a four-pole magnetic induction machine!, azi-
muthal body forces would arise. In that case it is clear t
these body forces would do additional work on the flowi
ferrofluid, above and beyond the work done by the action
the body couples, as in Eq.~4.9!. However, should these
body forces and couples be replaced by their correspon
Maxwell stress representations, the same arguments w
apply as were used in obtaining Eq.~4.10!, whence the Max-
well stress viewpoint would still indicate that no work wa
being done on the flowing ferrofluid.

V. CONCLUDING REMARKS

While the Maxwell stress tensor possesses pragm
computational utility in simplifying the algebraic manipula
tions required to calculate the force exerted on bodies
electromagnetic and related fields, its ubiquitous use in
single physical context assigns to it an apparent role a
stress that belies the fact that this tensor is not equivalen
all of its physical consequences to the body-force den
field from which it derives. Lacking such equivalent obje
tivity, its unquestioned use as a true Cauchy stress in c
texts other than that of calculating the force on a body,
lead to both conceptual errors and consequent incor
physical predictions. As such, use of the apparent bo
force/Maxwell-stress duality of the electromagnetic effect,
fruitful in classical electromagnetic theory, cannot be u
equivocally accepted when such effects are considered
continuum-mechanical context involving the interaction
electromagnetic fields with matter.

Closely related to this observation is the fact that the c
cept of a ‘‘total stress’’ as consisting constitutively of a su
of separate stresses, each existing in the absence of the
is an oxymoron. There is only one stress. In contrast,
could, without ambiguity, refer to a ‘‘total body-force den
sity,’’ consisting constitutively of separate body-force den
ties, when the distant sources giving rise to the contribut
forces do not physically interact with one another, and he
possess separate and distinct existences~as, for example,
with forces arising from classical gravitational and elect
magnetic interactions!. Should the distant sources of the
forces interact in any significant way, the separatenes
these forces would be lost~whence the magnetic and electr
forces are not constitutively ‘‘separate’’ in this sense, as
electric and magnetic fields interact through Maxwell’s eq
tions, even in classical systems!.

Most importantly, we have illustrated through physical
guments, mathematical manipulations, and simple exam
the fundamental distinction existing between surface
body forces in continuum mechanics, and have shown
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founded throughpurely mathematicalmanipulations.
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APPENDIX: A COMMENT ON POTENTIAL ENERGY

The potential energyF assigned to a material volumeV is
typically said to consist of that energy which is a cons
quence of its position, shape, or state~including gravitational
energy, electrical energy, nuclear energy, and chemical
ergy!. Here we restrict our comments to potential energ
associated with action-at-a-distance interactions~such as the
gravitational and electrical potential energies!, i.e., to poten-
tial energy as a consequence of the position of the mate
volumeV in a body-force fieldf.

When the body-force per unit mass,f̂ 5
def.

r21f, is express-
ible in terms of the gradient of a scalar functionf̂(x,t), as in

f̂52“f̂, ~A1!

the volumetric work associated with this force can eventua
be manipulated into the form

E
V
r f̂•vdV5E

V
rS ]f̂

]t
2

Df̂

Dt
D dV, ~A2!

with Df̂/Dt the material derivative of the scalarf̂. Com-
bining this expression with Eqs.~1.13! and ~1.18! yields

dE

dt
5E

V
S r

]f̂

]t
2r

Df̂

Dt
1 l•V D dV1 R

]V
dS•~T•v1C•V!

1Q̇. ~A3!

If the scalar functionf̂ is restricted to be a function o
position only, i.e., independent of time, then the term]f̂/]t

vanishes, whereas theDf̂/Dt term may be moved to the
left-hand side, and the Reynolds transport theorem@18# ap-
plied, to obtain

d

dt
~E1F!5E

V
l•VdV1 R

]V
dS•~T•v1C•V!1Q̇,

~A4!

where the potential energyF assigned to the material vol
umeV is defined as

F~ t !5E
V
r~x,t !f̂~x!dV, ~A5!

with the time-independent scalar functionf̂ interpreted as
the potential energy density per unit mass.
5-12
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Equation~A4! represents an equation of change for t

quantityE† 5
def.

E1F, which may be called the ‘‘total energy
of the system. However, we note that this identification a
physical interpretation is clear only when the body forc
considered are conservative body-force fields,independent of

time @and hence derivable from a scalar functionf̂(x)#. Had
this not been the case, a term of the formr]f̂/]t would
remain in the volume integral of the right-hand side of E
~A4!. Such a term lacks physical interpretation as a ‘‘wo
term,’’ in contrast with the other terms on the right-hand s
of Eq. ~A4!, because it does not conform to the mechani
definition of work as the scalar product of a vector force a
a vector displacement.

These arguments and mathematical manipulations s
how potential energies derivable from conservative, time
dependent, body-force fields may be included unambi
ously in the work term of Eq.~1.17!. Examples of such po
tential energies are those arising in time independent exte
gravitational fields. Furthermore, we have illustrated h
these ‘‘potential energies’’ cease to possess their usual ph
cal interpretations when the scalar potential fieldsf̂ from
which they derive are time dependent~as will in general be
bi
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the case in electromechanical systems, where mecha
displacements and deformations of the system under s
will affect thesourcesof the electromagnetic field and henc
lead to time-dependent electric and magnetic fields!.

In effect, potential energy is asharedproperty of a system
and its ‘‘surroundings’’ as, for example, in the case of t
gravitational potential energy shared by a system interac
with Earth ~the latter constituting the ‘‘primary’’ field
source!. In particular, the potential energy does not belong
thesystemalone, but rather to the Earth-system combinati
Accordingly, it is only when the Earth undergoes no chang
in state as a result of the changes of state occurring in
system that the changedF in potential energy can be as
signed to the system alone. It is this fact which demands
]f̂/]t vanish in order for the work term arising from th
‘‘distant’’ body-force source~Earth! to be identified with a
change in potential energy of the system alone. Were Eart
undergo a change in state simultaneous with that of the
tem as a result of their mutual interactions, the rate of wo
ing on the system, namely,*Vr f̂•vdV, with f̂52“f̂(x,t),
would continue to give the correct work rate, but the integ
would no longer be interpretable as a rate of change,dF/dt,
of the energy of the system.
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~A. Herman et Fils, Paris, 1909!.

@38# N. Bamps, A. Genon, H. Hedia, W. Legros, and A. Nicol
03661
.

t

ss

IEEE Trans. Magn.27, 4987~1991!.
@39# T.W. Nehl and D.A. Field, IEEE Trans. Magn.27, 4250

~1991!.
@40# A. Hamler, B. Kreca, and B. Hribernik, IEEE Trans. Magn.28,

2271 ~1992!.
@41# D. Howe and Z.Q. Zhu, IEEE Trans. Magn.28, 1080~1992!.
@42# N. Sadowski, Y. Lefevre, M. Lajoiemazenc, and J. Cros, IE

Trans. Magn.28, 1410~1992!.
@43# R. Paul and K. Kaler, Phys. Rev. E48, 1491~1993!.
@44# V. Giner, M. Sancho, and G. Martinez, Am. J. Phys.63, 749

~1995!.
@45# K. Komeza, A. Pelikant, J. Tegopoulos, and S. Wiak, IEE

Trans. Magn.30, 3475~1994!.
@46# J.M. Biedinger and D. Lemoine, IEEE Trans. Magn.33, 2309

~1997!.
@47# I. Nishiguchi, A. Kameari, and K. Haseyama, IEEE Tran

Magn.35, 1650~1999!.
@48# D.A. Edwards, H. Brenner, and D.T. Wasan,Interfacial Trans-

port Processes and Rheology~Butterworth-Heinemann, Bos
ton, MA, 1991!.

@49# The question of the applicability of the relation~3.2!, existing
between the body-couple density and the pseudovector of
Maxwell stress for other types of force densities in electrom
netism, is irrelevant to the conclusion that there exists a d
tinction between body and surface forces that is violated by
apparentbody-force/Maxwell-stress duality of the electroma
netic effect. Considerations deriving from the theory of stru
tured continua@8# indicate that under certain conditions th
relation in Eq.~3.2! may indeed be valid in general.

@50# Note that the ‘‘Maxwell stress’’ of this section possesses
stricter definition. That is, we require it to satisfyboth Eq.
~1.24! and Eq.~3.2!.

@51# This is an example problem suggested by Dr. Ronald
Rosensweig.

@52# D. Condiff and J.S. Dahler, Phys. Fluids7, 842 ~1964!.
5-14


