PHYSICAL REVIEW E, VOLUME 65, 036615

Body versus surface forces in continuum mechanics: Is the Maxwell stress tensor
a physically objective Cauchy stress?
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The Maxwell stress tensgMST) TM plays an important role in the dynamics of continua interacting with
external fields, as in the commercially and scientifically important case of “ferrofluids.” As a conceptual entity

in quasistatic systems, the MST derives from the defini%r(:zt V-TM, wherefM(x) is a physically objective
volumetric external body-force density field at a poinbf a continuum, derived from the solution of the
pertinent governing equations. Beginning with the fact th¥t is not uniquely defined via the preceding
relationship from knowledge dM, we point out in this paper that the interpretatioritéf as being a physical

stress is not only conceptually incorrect, but that in commonly occuring situations this interpretation will result
in incorrect predictions of the physical response of the system. In short, by elementary examples, this paper
emphasizes the need to maintain the classical physical distinction between the notions of bod§ doites
stressed . These examples include calculations of the torque on bodies, the work required to deform a fluid
continuum, and the rate of interchange of energy between mechanical and other modes.
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I. BACKGROUND and velocity, whereas that due to a stress is given by the
surface integral of the corresponding traction dotted with the
This paper focuses on the mechanical and dynamical dis«elocity of the moving material surface. That these two cal-
tinction existing between body and surface forces in theculations are not equal for a “Maxwellian” force and its
physical description of continua. This important distinction iscorresponding stress is shown below.
usually introduced in undergraduate courses in fluid mechan- This paper is not intended as a criticisper se of the
ics and/or elasticity, where the material bodies being disMaxwell stress tensor of classical e]ectromagnetlc theory, but
cussed are deformable. For a fortunate handful of student§ather as a caution that tiieathematicabody-force/surface-
the clear-cut conceptual differences existing between thesdeSS duality of electromagnetic field effects on ponderable
two types of forces attains its ultimate degree of transparenc atter is not physically acc_eptab_le In continuum mechamcs.
in a formal course in continuum mechanics, which generally nly on'e .Of these two views IS acceptable on physical
focuses on fundamentals rather than applications. The phy: yrounds; either the electromagnetic effects enter as a body
cal distinction between these two types of forces in classic pree or as a surface stress, bu; not both. Our adherenge to
continuum mechanics is essential in quantifying the behavio, he view that the electromagnetic _eff_ects enter the C'?‘SS'Ca'
of continua. In the case of electromechanical body forces thi heory as long-range bady for(_:es Is in accordance _W'th the
fact has been abandoned by some in favor of the pragmati istorical developr_ne_nt O.f the field of electromagneusn_]. To
mathematical advantages offered by the Maxwell stress terd’ knowledge, this is still the commonly accepted notion.
sor (MST) when calculating the force on a ponderable body
[1]. Such schemes express the foEd% on the body as the A. General equations describing polarized continua

surface ir_ltegral, overMa closed surfade b?unding the bOdB{: The standard equations governing momentum transport in
of a tractionT ;' =n-T™ arising from the “Maxwell stress,”  flyid continua[6] are the respective Cauchy linear momen-

T, rather than as a volume integral, over the voluthef  tum and internal angular momentum equations, valid at each
the body, of the physically objective volumetric body-force point x of the continuun{7,8],

densityf. Though, mathematically, this surface integration

invariably yields the correct force on the ponderable body, Dv

comparable use of the so-called “stress” fid@ltf as being a PDt =V. T+, (1.13
physical rather than a mathematical entity in other contexts

may result in erroneous physical conclusions, as will be Da

demonstrated. =V.-C+Ty+I. (1.1b

Simply stated, and without referring to all the other physi- "Dt
cal arguments presented in what follows, the irreconcilable
difference between representing the electromagnetic effect dsneeds to be emphasized that though the symbols appearing
a volumetric body-force densityersusan electromagnetic in Egs.(1.1) are completely arbitrary, their physical interpre-
stress hinges on the different ways of calculating the rate ofation is not. For exampl€el could be replaced by another
working due to these two physically distinct quantities. symbol, says, provided that the physical definition and,
Namely, the rate of working due to a volumetric body-forcehence, interpretation of remains the same &6. As such,
is given by the volume integral of the dot product of force the symbols appearing in Eg4..1) possess a precise physi-
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cal meaning, whose significance is of signal importance in In Eq. (1.3b), the extensive quantitgFs, which is a sur-
interpreting the behavior of the systems they describe. face force, is a manifestation of the so-called “direct con-
The vector fieldy anda, respectively, represent the linear tact” or “push-pull-shear” forces exerted on a differential
momentum density per unit magssommonly identified as surface elemendS centered at a surface poixtof the body
the mass-average velocity of the continyuand the internal by the “contiguous” surroundings. This serves to define the
angular momentum density per unit mass. The internal angustress vectot,, at the surface point as representing the pro-
lar momentum density is commonly assumed to possess thortionality factor in the linear relatiodFs=t,dS existing
constitutive formx(), with the scala the moment of iner-  between the surface fored-5 and the surface elemedin
tia density, and the pseudovect@r the intrinsic spin field the continuum limit. The stress vector is not itself a field
[8]. The physical interpretation of the other terms in Egs.quantity at a pointx of the continuum since the foradFg
(1.2) derives from the physical arguments underlying thewill generally depend upon the particular orientatiorcho-
analyses whereby these equations are obtained—nameben for the surface element at However, as shown by
through macroscopic linear and angular momentum balCauchy, the stress vectgrat a pointx for a surface element

ances, as indicated in the following paragraphs. possessing an orientationcan be expressed in terms of an
orientation-independent tensor fielll(x) possessing the
1. Forces property thatt,=n-T(x), wheren is drawn normal to the

Explicitly, the fieldsT andf appearing in these equations surface element. Cauchy’s analysis, which usually proceeds

are introduced into continuum mechanics by the fundamentd?y means of the so-called “tetrahedron” argumeno,

representation of the total external forléexerted on a con- amounts to a proof of the existence of the stress tensor field.
def

trol volume (closed with respect to mas¥ bounded by a Thus, upon defining a directed surface elema®t= ndS,

closed surfac@V, and adopting the standard convention for the direction of
upondsS, one has thatlFs=dS:- T, wheredFg is the force
F=Fy+Fs, (1.2 exerted by the material into which is directed upon the
. ) material on the other side.
in which With the above pair of substitutions, Egél.33 and
(1.3b adopt the respective forms:
FVZJ dFv, (133
Y Fy= J fdV, (1.43
\%
v
Fe= ¢ dS-T. (1.40

This separation of the macroscopic for@nd subsequently w

of other macroscopic quantitiemto volumetric and surface
contributions derives from classifying interactions betwee
continuum elements into two typ¢8]: (1) interactions that

These arguments, based upon the clear-cut physical distinc-
"ion existing between “distant” and “direct-contact” effects,

diminish “slowly” with distance, and are therefore sill ef- serve to unequivocally establish the distinct physical signifi-

fective over distances comparable to the macroscopic lengtsiggistear:tsr(l)t;lytelg E?rctggs?gr?gé?r\fvie\?gh:?ee s?g;?%g? dis
scale,L, of the system{?2) interactions that are attenuated continuous oﬁe can invoke the divergence theorem to write
extremely “rapidly” over distances comparable to the char- > 9
R . . . Eq. (1.4b in the form
acteristic linear dimensiorl, of a continuum volume ele-
ment, and whose effect does not penetrate the macroscopic
continuum volume being considered. Thus, the distinction F :f V.TdV
K . S .

between volumetric and surface effects is linked to the con- %
tinuum assumptions applicable in the asymptotic limit
I/L—0. _ _ While the latter expresses the surface foFgeas a volume

In Eq. (1.3, the extensive quantitydF,, termed a integral, similar in appearance to E(..4a, it is apparent
“body” or volume force, is a manifestation of so-called def
“action-at-a-distance” forces, resulting from the interaction
between the material contents of a differential volume ele
mentdV (or corresponding mass elemeshin=pdV) cen-
tered at an interior poink of the body, and the "distant” continuous is such that it can be mathematically expressed
surroundings, generally lying outside of the body, although the divergencey -T', of a tensor ' (x Ey (1p43
not always so, as in the case of self-gravitating bodies. Thi€S be %ge 1 th. I,to at'e ?0 . sl (x), Eq. (1.
serves to define the external volumetric density body-forceCan € written In the aiternative form
field f(x), representing the proportionality factor in the linear
relationdF,=f(x)dV existing between the body fora~, F.= 3g ds. T’ (1.5

. . .o \Y . .

and the volume elementV in the continuum limit. Y

that the integran& - T = f’, say, is physically not a body-
force density fieldf’(x) since it does not arise from “dis-
tant” sources. Conversely, in circumstances where the con-
stitutive equation for the body-force field (assumed
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While the latter expresses the volume contributigpnas a  cannot be physically equivalent in all of their consequences.
surface integral, similar in appearance to Efj.4b), it is  While these facts may seem patently obvious, they are nev-
apparent thal’ is physically not a stress field since it does ertheless widely ignored in the case of the Maxwell stress
not arise from “direct-contact” forces. As such, while the tensor, whose ubiquitous use permeates the field of electro-
divergence theorem allows one to define thathematical ~mechanics.

fieldsf’(x) andT’(x) in the limited context of force calcu-

lations, this fact does not allow one to freely utilize these 2. Torques

forces in the absence of evidence of their physical legitimacyhe terms appearing in the internal angular momentum equa-
in these other situations. It is this simple argument, physicgion (1.1. Therein, T, is the pseudovector of the antisym-

vs mathematics, that forms the basis for the discussion thag}atric portion of the physical stress tensby defined as
follows. def.

The total force, Eq(1.2), is given by the expression Tx ~ —&:T, with & the unit pseudoisotropic triad[@quiva-
lent to the permutation symbelj, in Cartesian tensor nota-

tion: (Ty)i=—¢;«Tki]- The remaining terms in Eq1.1b),
F= j\,fd\H ﬁ,vdS'T' (1.9 namely,C andl, (l':\re ijntroduced via a calculation of the total
external torquel (about the arbitrary origir® from which
While the value obtained for this force is formally equivalentthe position vectox is drawr exerted by the surroundings
to that given by the “mathematically equivalent” expression on the body, as follows:

F’=J~de+ f ds- T’
\ N

(that isF=F"), the physical significance of the fields (T")

is vastly different from that of the comparable fieldsT() |—v=j dL, (1.89
from which they derive. Accordingly, while E¢1.13 could v '

be formally rewritten as

L=Ly+Ls, (1.7

in which

v_V g Ls= ivdLs. (1.8b
PtV ’

. . . ) ) i The extensive quantitgiL,, appearing above is a manifes-
't.WOUId be inappropriate to ascribe ITd th‘? p_h_y5|cal SI9-  tation of the so-cacllled “atgti(;/n gtpa distgnce” torques about
nificance of a stress and 6 the physical significance of @ oqiting from the interaction between the material contents
body-force density, given their respective definitions. As WI||0f a differential volumedV (or a corresponding mass ele-
be shown, failure to appreciate this fact will generally lead to,, o1t g m= pdV) centered at an interior pointof the body,

unequivocally incorrect physical results in situations where;,q the gistant surroundings. This serves to define the exter-

global properties of the continuutother than the force on a 5 \olumetric density body-torque pseudovector field, rep-
body), functionally dependent upon the local physical body-yeqenting the proportionality factor in the linear relation

force density and stress distributions, are sought. As suc Ly=(xxf+1)dV existing between the body torqutL,
the issue is not merely one of symbolism, but rather of the‘and the volume elememtV in the continuum limit. In this

physical interpretation ascribed to th_ese_symbo_ls. expression, with the position vectermeasured with respect
. Indeed, even _apar_t from th_e phyS|caI_ ISSUES |nvo|ve_d, Obfo an origin atO, the pseudovectoxxfdV represents the
vious mathematical issues signal the inability to uniquely. orque aboutO arising from the macroscopic body-force
convert volume forces to surface stresses and conversely. Flensityf whereasldV is the intrinsic, origin-independent

this context, the amount of information embodied in each Ofcouple—the latter arising from the interaction of the polar-

these fields is pertinent. Thus, whereas a physical vect ; e P ; . i »
body-force densityf entails but three independent scalaﬁci&:lg ?ﬁélgét;,n‘gg(l? %G;esi'elltjlss polarizeflwith a "distant

components, the derived “stress field”, defined by the
def

expressionf = V-T', g_enerqlly requires nine independent Lv:J (xxf+1)dV. (1.9
scalar components for its unique specification. As such, at a v

minimum, the stress field’ derived fromf in this manner

lacks uniqueness. Conversely, the body-force figldde- Similarly, the extensive quantit§L 5, which is a surface
rived from the physical stress field via the relation torque aboutO, is a manifestation of the so-called “direct
f’=V-T has but three independent scalar components;ontact” torques exerted on a differential surface element
whereas the original field from which it derives possesses dS, centered at a surface poixof the body by the contigu-
nine independent scalar components. As such, relevant infopus surroundings. Proceeding as in the comparable discus-
mation embodying physically pertinent data embedded in sion of the surface forceFg appearing in Eq(1.3b, one

is obviously irrevocably “lost” in effecting the transition, eventually arrives at the expressidh = (xXt,+c,)dS for
T—f’, from dyadic to vector field, whence the two fields the surface torque, where, is the intrinsic, origin-
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independent couple-stress pseudovector, stemming from thghe rateW of working per unit time performed by the sur-
direct contact torques arising from the polarized nature of th‘?oundings on a closed, material fluid control voluMéi.e.,
continuum. Analogous to the Cauchy stress tensor case, thfhe moving with the fluiy results from the translational and
latter serves to define the couple-stress pseudodyadic fielgtientational motions of its generally polarized substructure.
C(x) in the relationc,=n-C, whose existence is demon- Calculation of this global work from knowledge of the
strated via a comparable “tetrahedron argument.” Eventutontinuum-dynamical and kinematical elements that enter
ally, this leads to the fact that E(L.80) can be expressed as nto its formulation will serve to illustrate the signal physical
significance that needs to be unequivocally assigned to the
Ls= § [xX(dS-T)+dS-C]. (1.10  symbols appearing in E¢L.1). As in the preceding force and
N torque calculations, this rate of working is composed of both

- body and surface contributions
Availing ourselves of Eqs(1.9) and (1.10), the total torque,

Eq. (1.7), is thus given by the expression W=Wy+ W, (1.13

sz (xxf+hHdVv+ 35 [XxX(dS-T)+dS-C]. in which [11]
\% oV
(1.11

As in the case of the comparable expression for the sur-
face force contributiofirg, in circumstances where the fields
T andC are continuous, Gauss’ divergence theorem enables . .
the surface torque contributiofl.10 to be written in the Wg= § dWs. (1.14b
alternative volumetric form N

szf dW,, (1.143
\

In Eq. (1.143, the extensive quantitsW,, represents the
Ls= V[XX(V'T)+TX +V-Cldv. rate of working by the “distant” surroundings on an interior
volume elementdV (or corresponding mass element

Comparison of the latter equation with H4.9) shows that, dm=pdV) centered at an interior point of the continuum

mathematically, one might be tempted to define, as before, @omain, arising from the action of the long-range body
W e , , def. ; forces and body couples. This serves to define the external
body-force” field ' such thatf” = V-T and a *body- olumetric rate of working density, representing the propor-

couple” field I such that’ = T, +V-C, giving the latter  tionality factor appearing in the linear relatiai, = (f-v
equation a symbolic appearance identical to Bg9), but  +].Q)dV existing between the extensive rate of working
with primed symbols replacing unprimed ones. Again, hOW'dWV and the volume elemendV in the continuum limit.
ever, this Would_b_e physically_inappropriate_ because of th"?—|ere,v is, as before, the mass-average velocity, 8nis the
very different origins of the “distant” and “direct-contact” jnterpq| spin-field of the structured continuy®). Equation

contributions. , _ (1.143 can thus be expressed as the volume integral
In any event, the internal angular momentum equation

(1.1b eventually derives from a total angular momentum _
balance using Eq.1.1]) for the total torque on the control szf (f-v+1-Q)dV. (1.1
volume, from which one subtracts the moment of the linear v

momentum equatioiil.13 [7]. . ) . .
This equation serves to focus attention upon the physical

3. Rate of working significance demanded of the symbdlsand I, appearing
therein, through their energetic interpretations, since it will

1 g)] ;nd dd{(t(l)cr)nugltggr ILOelesu;r:]tgilgasntt;‘fg'tngeg;fiJgtf;:ef?;(tzgs be demonstrated that replacement of these symbols by their
' q e q “alternates,” namelyf’ andl’ as defined earlier in connec-

of chang_e of Im_e_ar and angular _momer:tum ?ISO play a PV4ion with our respective classification of forces and torques,

otal role in providing the expression for “work” appearing in _ - ; . :
L ) ; will eventually lead to errors in the extensive rate of working

the principle of energy conservation, namely, the first law of .

thermodynamics. For a closed system contained in a regioW* Eq. (1.13. _ o

V, the first law is represented mathematically by the exten- In Eq.(1.14b, the extensive quantitgWs represents the

sive equation rate of working performed by the “immediate” surroundings

on the continuum domaiW through a surface elemeantS

dE—\N+' centered at a surface point of the body. This serves
dt Q. 1.12 to define the rate of surface working per unit area as
) the proportionality factor in the linear relatiomWs
whereE is the total energy contained withy W is the rate  =(t,-v+c,-Q)dS existing between the rate of working
of working of the surroundings on that region, a@dis the ~ dWs and the surface elementS in the continuum. Upon
rate of heat transfer to the regidhacross its boundariegy.  introducing into the latter expression the prior definitions of
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the Cauchy stress fielfl and couple-stress dyad@, equa-  consisting of translational and rotational contributions, where
tion (1.14b can thereby be expressed as v and() are measured relative to the same reference frame as
they are in Eq(1.17).
. A comment on potential energy is now in order. In writing
Wg= 35 dS-(T-v+C-Q). (1.1 Eqg. (1.18 we have not included potential energy explicitly,
N choosing instead to include it as part of the work expression
(1.17, as in Ref.[18]. This is further discussed in the
As with Eq. (1.15), this latter equation serves to focus upon Appendix.
the physical significance to be attributed to the symijols An equation of change for the total kinetic energy is
and C in the context of their respective usage in energetidound by dot multiplying the mass-average velocityand
calculations. spin field Q by the respective linear and internal angular
In combination, the expression for the total rate of work-momentum equationg$l1.18 and (1.1b, and adding the re-
ing on the bodyV, given by Eq.(1.13, becomeg12] sulting expressions. When integrated over the redichis
results in the following macroscopic equation:

W= [ (f-v+1-Q)dV+ §> dS-(T-v+C-Q). d 1 1
JV( Y ) v (T-v ) af p(zvz‘f‘zKQZ)dV
(1.17 v

The justification for Eq(1.17) resides in the fact that it = jg dS-(T-v+ C'Q)Jrf (f-v+1-Q
constitutes the most general application of the mechanical w v
definition of work[13], based upon classical rigid-body me- —TT:Vv—CT:VQ+T,-Q)dV, (1.20
chanics principles applied to polarized systems. It is com-
posed solely of force-times-displacement and couple-timeswshere the superscript T denotes the transposition operator.
rotation terms. It is important to note that this equation Upon using Eq.(1.17) for the rate of working and sub-
implicitly assumes the subcontinuum structure to be comitracting Eq.(1.20 from Eq.(1.18), the following is obtained
posed of rigid-body elements. This does not represent a furfor the rate of change of the other forms of energy:
ther restriction of the domain of validity of our analysis, as
this assumption had already been implicitly invoked in dEo _y 12
adoptingv and () as the respective linear and internal an- dt +Q, (1.2
gular momentum densities per unit m§8$

This expression for the rate of working on the materialwhere, by definition,
volumeV plays a role in determining the rate of change of
the total energ\e associated withv through the first law of def.
thermodynamics. This energy is frequently assumed to con- ¥V = J
sist of the sum of several contributions, e.g., kinetic, poten- v (1.22
tial, and internal energies. There is still debate over the form ’

of other possible additional contributions, such as “field en-j, \vhich the subscrip8 refers to the symmetric component
ergies,” in the case of systems in electromagnetic figlds- D= 1(D+DT), of a dyadicD. Equation(1.22 is interpreted

17]. Because of this lack of resolution, and to focus on the,g anresenting the rate of transformation of mechanical en-
subject matter of this wor[dhe_physmghty, or lack thgreof, ergy into “other,” nonmechanical forms of energy contained
of the Maxwell stress tensor in continuum mechapiege | fin /.

will merely assume that the total energy may be separated |, the classical description of Newtonian fluids the rate of

into a kinetic energy componeift together with what we  achanical energy exchange with other modes is written as
shall simply term “other” forms of energykEo. Of course, [18,19

the “other” modes of energy may be further separated into

subcategories, the nature of which is immaterial to the sub-

sequent discussion. The first law, equatidn12), thereby WN:] (=pV-v+7:Vv)dV, (1.23
adopts the form v

Ts:(VV)g+Ch:VOQ+T,-

1V Q
E XV—

v

with p the thermodynamic pressure andhe deviatoric vis-
cous stress. For these systems the first term in the integrand
of Eq. (1.23 is identified as the “reversible” rate of change

of the internal energy of the system due to fluid compress-

Next, we assume the following representation for the macrolPility (in such fluid system&,, is solely composed of the
scopic kinetic energy relative to an inertial reference frame ntérnal energy whereas the second term in EG.23 is
identified as the irreversible rate of internal energy increase,

1 1 the so-called viscous dissipation r4fie3,19.
Kv:f p(—v2+ —KQZ)dV, (1.19 Various reasons exi;t fqr no'g _effgcting s_imilar steps and
2 2 subsequent interpretative identifications with Ef.21) at

K, 9o _jya¢ 1.1
FTr T Q. (1.18
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this stage. First, we wish to keep our analysis general wittoccurs in the area of magnetic flui@so-called “ferrofluids”
respect to the constitutive forms chosen for the dynamical24]), wherefM obeys the constitutive relatidi25]
quantitiesf, I, T, andC. Second, we do not wish to enter the
dispute][17,20-23 over the exact form of the nonmechanical M= oM-VH, (1.2
energy term when, for example, electromagnetic fields are
present. Finally, in order to be able to ascribe physical sigapplicable to incompressible media, with the magnetiza-
nificance to the terms resulting from Ed..22), one requires tion, H the local magnetic field, ang, the permeability of
knowledge of the reversible thermodynamics of these sysfree space. In the case of a force density described by this
tems (involving second law considerationdn the case of constitutive equation it can easily be shown, using the perti-
Newtonian fluids it is assumed priori that the reversible nent equations describing the magnetostatic field in the ab-
work contributing to the internal energy consists solely of asence of free curren{26], namely,V-B=0 andV XH=0,
—pdV term, whence this term is identified with the together with some elementary vector-dyadic identities, that
—pV-v term appearing in Eq(1.23. We stress that this the corresponding Maxwell stress tensor is
does not imply that the-pV -v term of Eq.(1.23 is to be
regarded as a volumetric “work density” in the irreversible
formulation. Two reasons exist for this: First, in violation of
the mechanical definition of work, it cannot be expressed as
the product of a vector force and a vector displacement ratjth B= uo(M +H), and| the unit tensof27]. This tensor,
without Combining it with other terms. Second, if in fact though Symmetric for linear magnetic medwhere M is
collinear withH) may, in general, be asymmetric, as in the
_J' pV -vdV case of ferrofluid flows.

\% The Maxwell stress tensor is introduced in several differ-

) _ ent ways in standard textbooks on electromagnetism and its
were indeed a work term, the expression for the total workyppications. For example, in Stratton’s treatise on electro-
(1.17) would have been incomplete, and the preceding a”a|ymagnetism[26] it is shown to be a mathematical conse-
sis given for Newtonian fluids would have been incorrect.quence of Maxwell's equations that the body-force density
Historically, the classical thermodynamic interpretation of\ithin a system of charges and currents in vacuum may be
the —pV.v term may be traced to the interpretation of \yritten as the divergence of a tensor field added to the local
Joule’s original experiments, which laid the foundation for¢jme derivative ofc™2E X H (the “electromagnetic momen-
the subject, wherein the termpV - v was identified with the  yym~ of the field at a poini), with E the electric field and
“disappearance” of “external” mechanical energy. ~ the speed of light in vacuum. In quasistatic fields, this latter

Mathematically, Eq(1.22) does not add any new physics term s neglected, whence the force is represented by the
to the total force, torque, and work trio of Ed4.6), (1.10,  gjvergence of the MST. This tensorial representation of the
and (1.17, but serves merely in an interpretative role. It yynamical electrostatic and magnetostatic state of a body is
should be clear from its derivation that any uncertainty i”analogous to that of an elastic body, owing to the existence
any of the latter three entities will manifest itself as a com-of the Cauchy stress tensor for such elastic bodies. Histori-
parable uncertainty in E41.22. The purpose of considering cajly, this analogy was consistent with existing aether theo-
this equation, in addition to this trio, resides in the concepyies of electromagnetism towards the end of the 19th century.
tual and physical interpretation of the consequences of anjjgwever, as Stratton ultimately states: “all that can be
such uncertainties in the total force, torque, and work calCusgiq ... is that mutual forces between elements of charge

lations. Equation(1.22 simply identifies that portion of the ¢4 pe correctly calculated on the assumption that there ex-
work and mechanical energy that is transformed into nonmests afictitious state of stress{emphasis oujs

chanical forms of energy within the system, information that pe Groot and Mazuf28] introduce the MST through a
would be relevant in problems where mechanical dissipatioRatement of conservation of totile., mechanical and elec-
effects were important, or where changes in the thermodygomagnetic momentum. Their continuum formulation is a

M_ _} 2
TM=BH- 5 uoH?, (1.26

namic state of a system were relevant. consequence of Newton’s momentum conservation principle
for discrete point mass systems when applied to charges and
B. “Maxwellian” forces and the Maxwell stress tensor currents in electromagnetic fields, owing to the formal rep-
A volumetric external force-density fiel=fV(x), will ~ résentation of the forces acting upon such systems as con-
be said to be “Maxwellian” if it can be written as the diver- SiSting of the sum of the divergence of the MST and the time
gence of a dyadic fieldM=T"(x), denyaﬂv_e of the electromagnetic momentum. Superficial d|§-
cussion is devoted by these authors to the issue of the reality
M=v.TM, (1.24  of the MST as a “physical stress,” although they point out

that the Maxwell stress tensor is not uniquely defined by Eq.
For a prescribed constitutive equation goverritghis rep-  (1.24), but, rather, is arbitrary to within an additive diver-
resents the constitutive definition, albeit necessarily nonugenceless tensor, as we have remarked above.
nique, of TM. In the electromagnetic theory of charges and In Melcher’s book[29] on continuum electromechanics,
currents in vacuum, the dyadic" is referred to as the Max- on the other hand, the MST is introduced merely as a math-
well stress tensofMST). A particular example of its use ematical artifice for the purpose of calculating the quasistatic
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operation, it is the physical interpretation ascribed to it,
namely application of the term “traction” to the dot product
n-TM that is the issue at dispute. The electromagnetic trac-
tion, upon integration over an open surfaggewill not cor-
rectly furnish the force exerted by the fluid lying on one side
of the surface upon the contiguous fluid immediately oppo-
site.
As pointed out by Strattof26], introduction of the MST
into electromagnetism occurred during the prerelativity era,
at which time the so-called aether was regarded as an elastic
material entity, pervading all of space, and capable of sus-
taining stresses in response to electromagnetic forces. In this
context, Maxwell stresses were regarded as possessing de-
finitive physical existence within the material aether con-
tinuum. This view of the aether was set aside by the work of
Einstein[31]. Despite this, the concept of the Maxwell stress
as an objective physical entity was not abandoned concur-
rently with the discredited aether theory. Indeed, its ubiqui-
tous use in applications has persisted to this day, leading, for
example, to inadequacies in calculations of energy transfer
0 occurring during magnetohydrodynamic floj@5], and con-
ceptually spurious proofs of the inapplicability of the me-
FIG. 1. Classical definition of the tractidp as the force per unit  ~hanical definition of stre§®3] (both discussed in Sec.)]l
area exerted by the fluid on thet-) side of a directed surface gq \well as conceptual inadequacies in formulations of key
e_lementdSz ndS centered at the point, on the fluid in the () equations describing magnetic fluid phenoméaé,32—34
side. (discussed in Sec. )

electromagnetic force on a ponderable body. Melcher also Moreover, during the prerelativity era, the concept of a
observes that the conceptual replacementf'8f by an Separate Cauchy momen'g-of-momentum equation appears to
“equivalent” stress fieldT furnishes the correct torque on a have been unknown, leading to the erroneous conclusion that
body only for asymmetricMST. By “conceptual replace- all st_resseiboth el_ectromagnetlc and otherwjisgere sym-
ment” is meant regarding the effects of the Maxwellian forceMetric [36,37. This contributed further to the continued
fM as arising from a stress distributid!. Melcher’s book ~ View of the MST as being a physical entity; for under these
[29] provides an exhaustive compendium of the varied form&onditions, use of the stress fierd as being equipollent in
adopted by the MST for different electrostatic and magnetoltS consequences to the body-force fieltithat spawned it,
static force densities. yields not only the correct force on a body but equally the
Stratton’s and Melcher’s books each emphasize that th€0rTect torque, as is demonstrated below. However, th!s is
“traction” due to the MST is devoid of physical significance MOt thMe case for higher-order moments of the force distribu-
unless it is integrated overdosedsurface, a consequence of tion £, namely, those beyond the zeroth and first, nor for
the application of Gauss’ theorem upon converting a volum&@ther physical quantities, such ds: the work done by the
integral to a surface integral, such as was done with ch_jlstant and local surrour)dlngs upon a body via the action of
(1.5). Indeed, this definition of the “electromagnetic trac- forces and couples; an@) the accompanying rate of me-
tion” is reversed from the classical definition in continuum chanical energy conversion into other forms, as discussed in
mechanics. A traction, is classically defined, referring to the following section.
Fig. 1, as the force exerted by the fluid present on the (
side of a surface elemedS, centered at a point of the fluid
continuum, upon the fluid lying on the~() side of the sur-
face. Using Cauchy’s tetrahedron argument, this traction may . . . . -
be shown to equal the vector dot product of the unit normal Despite the d|scred|tgd physical validity of t.he_ 'V'aX.We.”
n to the surface elemenitSand a dyadid, called the stress stress tensor as a physical state of stress existing within a
Thus, the tractiort,, has a distinct physical meaning as ahypothencal elastic cont_muum,_namely, the “aether,” con-
vector force per unit area. Upon integration over an Opeﬁemporgry advocates qf. Its contmuec_:l use In elec_tromagnetlc
surfaces, the tractiort,, correctly gives the force exerted by applications appear willing to set aside this fact in favor of

the fluid on one side of the surface upon the fluid immedi-its pragmati(; utility Whe_n caICL_IIat_ing the forces on bodies.
ately proximate on the opposite side However, this success in furnishing the correct force on a
d

ef, body (and even the correct torque under certain well-defined
The definitiont = n-TM, of the electromagnetic trac- circumstancesobscures the fact that the very idea of replac-
tion t¥, proceeds in the opposite directi80]. First, the ing a body-force density fielé™ by an “equivalent” stress

MST is defined via Eq(1.24), following which it is dot field TV is conceptually flawed on physical grounds and, as
multiplied with the unit normal vecton of the test surface such, may lead to invalid conclusions when the MST concept
dS centered ak. Though this is a mathematically acceptableis indiscriminately used in related physical contexts arising

Il. CONSEQUENCES OF REPLACING THE MAXWELLIAN
FORCE fM BY A MAXWELL STRESS T M
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in mechanics and electrodynamics. Such errors include in- .

correct calculations of the torque on bodies in circumstances WTZJ ffvdVv+ % dS'TT'VJFJ l-QdV

where the MST is asymmetric, as well as incorrect predic- v N v

tions of the work done by the surroundings on an electro-

magnetic continuum and, hence, of the rate of kinetic energy + ¢ dS-C-Q, (2.49
exchange with other forms of energy. Even apart from the N

specifics of these examples is t'\r/|1e physical inappropriateness

of linearly adding the “stressT" stemming from a Max- t_ T, T.

wellian bodyforce fV to the Cauchy stresE existing within V= JVTS'(VV)SdV+ LC vaav

elastic or fluid-mechanical systems so as to obtain a so-called

“total” stress tensor as, for example, is often done in the case f Tt
of ferrofluids[24,32—34. In any given physical problem, for x
example, in fluid mechanics, there exists budiagle stress,

namely, the Cauchy stress resulting solely from the existencgpiract Eqs(2.4) from their respective counterparts in Egs.
of contiguous matter in all its attributes, thereby rendering(l_G) (1.11), (1.17), and (1.22, denote the differences as

the concept_of a “totgl” stress an oxymoron. _AF'=F'—F, etc., and use Eq1.24 together with some
To establish the circumstances under which the qua”t'%lementary vector-dyadic identities to obtain

T™ defined in Eq(1.24 might be inappropriately identified

1
. EVXV—Q)dV. (2.40

as a stress, add and subtract the vector fféltb Eq. (1.1, AET=0 (2.53
and use Eq(1.24) to write the linear momentum equation in ' '
the form
y ALT=—f T™™dvV, (2.5
Y v rtast v
P Dt V-TM+f, (2.2
. 1
where, by definition, Aw‘f:fng":(vV)sdw JVT’\X"-EVdeV, (2.50
Tdef. v
T=T+TY, 2.2 1
@2 Aqﬁzf (TQ)T:(Vv)SdVJrf ™. —VXV—Q)dV.
. v v 2
is the so-called “total” stres$24], and (2.50

def.

=t _ M 2.3 Were the Maxwellian stres§™ to be physically equiva-

lentin all respectsto the Maxwellian body-force densify

is a *modified” body-force densityrepresenting, in the case from which it derives, the quantitiesF', ALY, AW', and

of magnetic fluids, the effect of other forces besides the magd ¥ would then each be identically zero. That, with the
netio. exception of the force, they are not zero confirms that there

While this total stress is frequently envisioned ca@n be one, and only one, correct stress tensor in a given
[3,5,24,32—3# as a physical stress, rather than as a purelyphysical situation. Moreover, the disparity existing in the rate
mathematical artifice, this view is physically without merit. of working and mechanical energy dissipation, namely, Egs.
Were this view correct, the vector invariant appearing in Eq(2-50 and(2.5d, respectively, reveals that the fundamental
(1.1b would have to beTT =T, +TY, rather tharT,, in  ISSue arising from use of the Maxwell stress does not disap-

order to be consistent with the interpretationf in Eq.  Pear even when the stress tensor is symmeFlt£0). In-
(2.1) as the “stress.” deed, the only general case for which Eg8.5¢9 and Eq.

Were one to calculate the forde', torqueLT, rate of (2.50 are both identically zero occurs for a rigid-body mo-

. : . tion, v=A(t) +xXB(t), together with a symmetric Maxwell
orking W', and rate of mechanical energy exchange with .
Working ! gy ex ge wi stress, TM=0, where A(t) and B(t) are, respectively, a

other forms¥ ' in terms of the fieldd' ™ andf' appearing in Honaad ) d d

the linear momentum equatiof®.1), the expressions for poﬁ_'ﬂon"p] e_pe?_ent VeCtOT an fpsr?u ove(ftor. bodied i

these four entities would respectively be, by analogy with e physical interpretation of the results embodied in
Egs.(2.5 is as follows: The forcé" on the fluid domairVv

Eqs.(1.6), (11D, (1.17, and(1.22: is correctly calculated upon replacing the body force by an
“equivalent” Maxwell stress tensor, but the torqué is not
FT=J fldv+ é ds-TT, (2.43 (compared with the corresponding quantity without theu-
v N perscripj. As a consequence, the rate of spin-kinetic energy
change is incorrectly calculated. When combined with the
LTZJ xX frdV+ 3[; x><(dS~TT)+J IdV+ ds.c, incorrect estimate for the rate of working", this leads to a
v N v Y false estimate for the rate of mechanical energy exchange
(2.4b with other modes ¥, and concomitantly to an incorrect
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estimate of the thermodynamic state of the fluid regiobn As noted above, the MST, defined by E.24), is arbi-

(this being related to the “other” forms of energy by an trary to within an additive divergenceless ten§28]. How-

equation of state ever, the relations outlined above necessarily apply for any
The conclusion emanating from E@.5b agrees with MST, no specific form of the MSTsuch as the constitutive

Melcher's[29] comment regarding the required symmetry of form (1.26] having been assumeal priori. This precludes

the Maxwell stress tensor, although this caution is widelythe possibility of adding a solenoidal “correction tensor” to

ignored in the literature. It is also important to note that the2ny form of the MST in order to nullify the errors displayed

MST must be symmetric throughout teatire domainV in N EQ. (2.5).

order for the correct torque to resllilte., for Eq.(2.5b to be

identically zerq. This contrasts with statements in the litera- IIl. THE “MAXWELL STRESS” IN FERROFLUIDS

ture [38—47 to the effect that, when calculating the torque

on a system using the MST, it suffices for the latter to be ,Tsubtle ::-xc;eptll\ﬁn to Iﬁ_c{Z.Sbb)aor]le expémnlytln\t/)olwn'\g/;l
symmetriconly over the domain of integratipmamely, the replacement ot a Maxwetlian body-force density by a Viax-

bounding surfaceV. In fact, a survey of the current litera- well stress tensor, and the concomitant lack of objectivity

ture bearing on use of the Maxwell stress concept to calcué-“luol.ed,,to above, oceurs in the case of magnetic fldites- .
fluids”). These materials provide commercially and scien-

late torques reveals basically thr f comments on the. ™ ">, . . :
ate torques reveals basically three types of comments on t ifically important examples of fluids characterized rheologi-

issue:(1) those in which no mention is made of the required ; .
symmetry of the MST for torque calculation88—44; (2) cally by' asymmetric states_ of_stress. The description of the
' éheologlcal state of ferrofluids in terms of a “total” stress, as

those that claim that the MST need only be symmetric on the, . i - L .

surfacedV of the body, thus ignoring the possibility of ef- df;'::li 3\,%?\;& was, in fact, the initial motivation behind the

fects arising from the existence of stress asymmetry withir? F h f‘l ids. th | tric bodv-f fielM E

the body itself45,46]; (3) those that actually use the MST to or such Tluids, the volumetric body-torce neld, £q.
gl.ZS), arising from magnetic forces acting on the ferrofluid,

calculate the torque on a body in circumstances wherein thls sometimes replaced by the magnetic Maxwell stress tensor
MST is asymmetric47]. Judging from Eq.(2.5, these T™ [24,32-34, Eq. (1.26), following which the linear and

views all lack validity, and Melcher's comment is correct. internal anaular momentum tions ar b ntly 1
However, certain subtleties exist in magnetostatic and elec- ernal angular mo e“ u ”equa ons are subsequently re-
rmulated using the “total” stress in place of the true

trostatic cases that must be further addressed before rend hy st For th Hined ab this “equi
ing an unequivocal judgement regarding the accuracy o au“c y SUress. or e reasons outiined above, this “equiva-
ent” substitution is, in general, physically invalid, in the

torque calculations based on the Maxwell stress concept. that it lead to di ies in th licati
These are discussed in the next section. sense that it may lead o discrepancies in those applications
involving calculations other than that of determining the

A specific example drawn from the recent Iiterature,f d ibly the t body. H
wherein the MST is inappropriately used to calculate work!°'¢€ (and possibly the torquen a body. However, a seem-

— leading thereby to an incorrect result for the work — ismgly_fort_uitous relation existipg bgtweMen the body-couple
found in Ref.[35]. These authors analyze instabilities in so-4€Nsity fieldl and the vector invariant,c of the Maxwell
lar convective flow in the context of an analysis of energyStress confounds the iss{i49]. In the ferrofluid case, the
conversion mechanisms. In calculating the conversion oPCdy-couple density field, sdff', due to magnetic forces is
“magnetic energy” into kinetic energy, the MST is used as adiVen constitutively a$24]
physical stress in performing a surface integration, identical
in spirit to that used to calculate the work arising from the
classical Reynolds fluid-mechanical stress. The “magneti
energy” used in Ref[35] would be part of what is here
classified as “other” energies. The conclusion derived from
Eq. (2.50 suggests that this approach is without merit.
Another example involving use of the Maxwell stress in
calculations of work is found in Ref23], where the authors This makes it possible to rewrite the linear and angular mo-

examine the thermodynamic consistency of the continuum: : - -
mechanical definition of stress. The authors analyze thEznentum equationél.13 and(1.1b) in the respective forms

change in Helmholtz free energy for two processes possess-

M= oM XH. (3.1

Gt is then a simple matter to verify, using E(..26), that for
ferrofluids the following relation holds:

TM=IM, (3.2

ing the same initial and final states, from which they deter- ngV-Tiﬁ-fi, (3.39
mine that one of the components of their “mechanical” Dt

stress is object-shape dependent, a contradiction of their defi-

nition of stress. However, in their analysis they treat electro- %=V-C+T* It (3.3
magnetic interactions through the corresponding Maxwell P bt oo ’

stress tensor, thereby invalidating their analysis on the basis

of the arguments alluded to above. We refrain from presentHere, as employed in the ferrofluids literaty@2—-34, the

ing a more detailed analysis of the specifics of their problempew symbolIT* corresponds to the so-called “total stress” at
as surfaces of discontinuity exist in some of their materiala pointx of the ferrofluid, whereas® and |*, respectively,
properties, thereby raising questions as to the correct form aforrespond to force and couple densities arising from “dis-
the corresponding surface-excess forc&s. tant” sources(not including magnetic forces and couples

036615-9



CARLOS RINALDI AND HOWARD BRENNER

These symbols are related to the comparable quantities a
pearing in Egs(1.1) and(1.24) by the respective expressions
[50]

def.

TH=T+TM, (3.9
def.
= f—M, (3.5
def.
== M=|-TY. (3.6

In a manner analogous to that of the previous section, th

apparent forcé*, torqueL*, rate W* of working, and rate
¥* of mechanical energy interchange with other modes ex

PHYSICAL REVIEW E65 036615

paxwell stress descriptions of magnetic effects are to be

physically equivalent. The fact that the differenced/* and
AW* are not identically zero in general further supports the
contention that there exists but a single physically meaning-
ful stress tensor in magnetic fluids, namely, the classical
Cauchy stress tensdar.

The physical interpretation of the results embodied in
Egs. (3.9 is as follows: conceptual replacement of a body-
force and body-couple field by their corresponding Maxwell
stress counterparts will give correct estimates for the total
force F* and torque. * acting on a fluid domaiiv; hence, the
rate of kinetic energy change will be correctly calculated
using the MST, through an analog of Ed..20. However,
ﬁwe rate of working/V* on the fluid domain and the concomi-
tant rate of mechanical energy exchange with other forms,
P+, will be incorrect(as compared with the quantities with-

perienced by a body, corresponding to the physical interpreg ¢ the superscripf), with the additional work going di-

tation assigned to the symbols appearing in Egs3), are
respectively given by the expressions

F*=f fFdV+ 3@ ds - T#,
\Y IV

L*zf xX ffdV+ 3@ x><(dS~T¢)+f
\% Vv \%

(3.79

FdV+ § ds.C,
v

(3.7b
w*:ffi-vdw § ds-Ti-v+f I*.QdVv
\% Vv \%
+ 3§ ds-c-Q, (3.79
Vv
\If*=j T@:(Vv)sdv+J c:vQdv
\% \%
. (1
+f TX-(EVXV—Q>dV. (3.70
\%

As before, sequentially subtract these equations from the
respective counterparts, Edq4.6), (1.11), (1.17) and(1.22),
denote the differences bF*=F*—F, etc., and use Egs.
(1.24 and (3.2 together with some elementary vector-
dyadic identities to eventually obtain the expressions

AF¥=0, (3.8a
AL*=0, (3.8b
- " w (1
AW*= | Tg :(Vv)gdV+ | T- EVXV—Q dv,
\% \%
(3.80
t M M 1
AWF= | T:(V)sdV+ | T[SV XV=0]dV.
\% \%
(3.80

Again, the disparities\ represented by Eq$3.8) must be
identically zero if the body-force/body-couple density and

rectly into the “other” energies through E@1.21).

As discussed in the previous sections of this paper, and as
shown by Egs(3.8), the analysis of magnetic fluid motion
presented in Ref$24,32-34, together with the correspond-
ing physical description of the state of stress in ferrofluids, is
questionable in the sense that it replaces the Maxwellian
magnetic force densityl.25 with the corresponding Max-
well stress tensor, Eq1.26. This is not to say that the
fundamental equations used in ferrohydrodynamics are
mathematicallywrong, but rather that their physical interpre-
tation is based on an invalid conceptual framework. Failure
to recognize this fact may result in incorrect physical
predictions.

The analysis of this section can be trivially extended to
more general circumstances, involving magnetoquasistatic
and electroquasistatic systems described by Kelvin-type
force and couple densiti¢29], where it can be shown that a
condition equivalent to Eq3.2) applies. In the light of these
results, specifically that for the torque differen@8hb), we
concur with Melcher'd29] assertion that the MST will give
the correct torque on a body only for a symmetric MST,
albeit subject to the following caveat: When a relation exists
Petween the body-couple densityand vector invarianﬁ"\x’I
of the Maxwell stress, such as is embodied in Eg}2),
replacement of the body-force density and body-couple
densityI™ by the equivalent Maxwell stress tensbt" will
yield the correct torque on a body. Failure to do so would
result in double counting the magnetic couple effect in
torque calculations. Referring to the three classes of com-
mentary regarding the symmetry issue alluded to in the pre-
vious section, we find that the conclusion of the first group is
correct. Explicitly, it is unnecessary for the constitutive re-
sponse of the material to be linear along the path of integra-
tion (or indeed anywhere in the bodin order for the MST
to give the correct torque in thgpecial caseof materials
described by Kelvin-type forces and couples.

IV. EXAMPLE—FLOW OF A FERROFLUID IN A
CYLINDRICAL CONTAINER SUBJECTED TO A UNIFORM
ROTATING MAGNETIC FIELD

Consider a ferrofluid contained in an infinitely long circu-
lar cylinder of radiusR whose walls are held stationalry1].
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a4 In circular cylindrical coordinates r(6,z), the fluid
streamlines lie in concentric circles about the axis of rota-
& tion, and are given by

r li(kr)

R 1,(xR)

@ V(X)=vy(r)ig, ve(r)=vg ) (4.9

x whereas the spin-velocity fiel@ is axially directed:

Io(Kr)
lo(xR)
(4.9

FIG. 2. Ferrofluid contained in a fixed cylinder and subjected toHere, | ,(x) is the modified Bessel function of the first kind
a rotating magnetic fielth. The field rotates at an angular rotation of ordern, and (, ,i,,i,) are unit vectors in the indicated
rate ¢, relative to the fixed container walls. The ferrofluid consists directions. The parameters appearing in these equations are
of a subcontinuum suspension of permanently magnetized particleglated to the physical and geometrical properties character-
with particle magnetizatiom,. The resulting suspension-scale izing the problem as follows:
magnetization field is uniform and lags the magnetic field by an

moMH 1
4 sina

Q) =y, Qz<r>=ﬁ(
7R

anglea<ml2. bom e (oMH sina) 2 (4.6)
2KknR lo(kR)

The ferrofluid is subjected to a magnetic field that is uniform

throughout the fluid volume and which rotates steaghiga- 21,(kR)

tive to the cylinder wallsat a specified angular velocity. nr=n+{l1- *RIg(xR) | (4.7

This can be achieved by placing the cylindrical ferrofluid 0

container in the gap of a two-pole magnetic induction ma- 4

chine. The solution for the flow equations used here is that pra i3 (4.9

presented in Ref.24], and is consistent with the linear and 7]87;"
internal angular momentum equations for an incompressible

ferrofluid whose rheological behavior is described by a Newdn these equationsy,{, 7", and .= 5+ { are, respectively,
tonian constitutive relation for the symmetric portion of the the shear, vortex, spin-shear, and effective viscosities of the
stress together with an antisymmetric strd&®]. The ferrofiuid.

couple-stress dyadic is given a Newtonian-like constitutive To calculate the rate of working on the ferrofluid volume
equation[52], whereas the body-force and body-couple den-V, we apply Eq.(1.17), to obtain
sities are given by Eq41.25 and (3.1), respectively, with

the corresponding Maxwell stress given by E#.26). The W= (oMH sina)2< e ) _ l1(xR)

resulting solution is also consistent with the magnetization 0 49l kRlg(«R) |’
equation for ferrofluidg24], provided that the spin time (4.9
scale, )1, is much larger than the ferrofluid relaxation time . . . . .

7 (Q7<1). g in which all of the work is effected via the action of the

Because the magnetic field is uniform throughout the ferYolumetric body-couple and spin-velocity terms. This is a

rofluid, no body forces influence the motion, whereas thefonsequence of the assumed no-slip boundary condiéh
body couple density is given by applied to both the translational and spin velocities at the

cylinder wall.
I(X)=1,(r)i,, 1,r)=ueMH sine, (4.1 Had we considered the effect of magnetic interactions as
resulting from an electromagnetic stress, we would have re-
with o the lag angle between the magnetic field and theplaced the effects of both the magnetic force and couple
magnetization vector, as in Fig. 2. The magnitude of thedensities by the corresponding Maxwell stress, given by Eq.
magnetization vector and its lag angle with respect to thé1.26), and used Eq(3.79 to obtain the rate of working on
magnetic field are related to the magnetic field rotation ratéhe cylinder contents. By replacing the body force and
o and the Brownian relaxation time constanof the ferrof-  couple densities by their corresponding Maxwell stress ten-
luid through the magnetization equatig@4]. Explicitly,  sor, we find that the first two terms on the right-hand side of

these dependencies are Eq.(3.79 are now zero becaugé=0 andl*=0, whereas the

last two terms are zero owing to the no-slip conditions
M=M[1+(w7)?] 12 (42 =0 and Q=0 prevailing at the cylinder walls. Equation
(3.70 then yields
a=arctafwr), (4.3 _
WH=0, (4.10
where M, is the magnitude of the magnetization when in
equilibrium with the magnetic fieldH. according to which no work is done on the ferrofluid.
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Note that the difference\W* between Eqs(4.9) and their unambiguousphysical meaning should not be con-

(4.10 could have been obtained directly from E8.80. founded througtpurely mathematicamanipulations.
As stated earlier, there are no magnetic body forces in this
example. The effects arise solely through magnetic body ACKNOWLEDGMENTS

couples acting on the magnetically polarized suspension. The aythors are indebted to Professor Markus Zahn of the
However, if we consider the same physical situation, buipepartment of Electrical Engineering and Computer Science
allow the fields to vary in the radial and azimuthal directionsat MIT and Dr. Ronald E. Rosensweig for engaging discus-
(such as would occur if the cylinder of ferrofluid were placedsjons and suggestions. C.R. would like to thank NSF for
in the gap of a four-pole magnetic induction machjrezi-  support.
muthal body forces would arise. In that case it is clear that
these body forces would do additional work on the flowing  APPENDIX: A COMMENT ON POTENTIAL ENERGY
ferrofluid, above and beyond the work done by the action of
the body couples, as in Eq4.9). However, should these  The potential energ assigned to a material volunieis
body forces and couples be replaced by their correspondingypically said to consist of that energy which is a conse-
Maxwell stress representations, the same arguments woufilence of its position, shape, or stétecluding gravitational
apply as were used in obtaining H¢.10, whence the Max- energy, electrical energy, nuclear energy, and chemical en-
well stress viewpoint would still indicate that no work was €rgy). Here we restrict our comments to potential energies
being done on the flowing ferrofluid. associated with action-at-a-distance interacti@mueh as the
gravitational and electrical potential energies., to poten-
tial energy as a consequence of the position of the material

V. CONCLUDING REMARKS volumeV in a body-force field.
: def.
. it mags= o 1f i -
While the Maxwell stress tensor possesses pragmatic When the body-force per unit masss= pf, is express

computational utility in simplifying the algebraic manipula- ible in terms of the gradient of a scalar functigix,t), as in
tions required to calculate the force exerted on bodies in - -
electromagnetic and related fields, its ubiquitous use in this f=-V¢, (A1)
single phy3|ca_l context assigns to it an apparent r_ole as fhe volumetric work associated with this force can eventually
stress that belies the fact that this tensor is not equivalent iBe manipulated into the form
all of its physical consequences to the body-force density
field from which it derives. Lacking such equivalent objec- 9b D
tivity, its unquestioned use as a true Cauchy stress in con- f pf-vdv=f p(__ _)d\/, (A2)
texts other than that of calculating the force on a body, can v v \adt Dt
lead to both conceptual errors and consequent incorrect . .
physical predictions. As such, use of the apparent bodyWIth D ¢/Dt the material derivative of the scalar. Com-
force/Maxwell-stress duality of the electromagnetic effect, sd?ining this expression with Eq¢1.13 and(1.18 yields
fruitful in classical electromagnetic theory, cannot be un- - -
equivocally accepted when such effects are considered in &E_f ( I %H )
continuum-mechanical context involving the interaction of dt )y P 5t P Dt ’
electromagnetic fields with matter. .

Closely related to this observation is the fact that the con- +Q. (A3)
cept of a “total stress” as consisting constitutively of a sum R
of separate stresses, each existing in the absence of the other,|f the scalar functione is restricted to be a function of
is an oxymoron. There is only one stress. In contrast, on@osition only, i.e., independent of time, then the teﬂaﬂat

could, without ambiguity, refer to a “total body-force den- | 5nishes. whereas the g?:/Dt term may be moved to the

sity,” consisting constitutively of separate body-force densi-|aft-hand side, and the Reynolds transport theof&8} ap-
ties, when the distant sources giving rise to the contributingb”ed to obtain

forces do not physically interact with one another, and hence
possess separate and distinct existerless for example, d .
with forces arising from classical gravitational and electro- g7 (E+®)= fv|'QdV+ 3€{7Vd5~(T~v+C-Q)+Q,
magnetic interactions Should the distant sources of these (Ad)
forces interact in any significant way, the separateness of
these forces would be loéivhence the magnetic and electric where the potential energp assigned to the material vol-
forces are not constitutively “separate” in this sense, as thaimeV is defined as
electric and magnetic fields interact through Maxwell’s equa-
tions, even in classical systems _ "

Most importantly, we have illustrated through physical ar- o= fvp(x,t)qb(x)dv, (AS)
guments, mathematical manipulations, and simple examples .
the fundamental distinction existing between surface andvith the time-independent scalar functigh interpreted as
body forces in continuum mechanics, and have shown théahe potential energy density per unit mass.

dv+ fﬁ dS (T-v+C-Q)
Vv
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Equation(A4) represents an equation of change for thethe case in electromechanical systems, where mechanical
def. displacements and deformations of the system under study

. t= . « »
quantityE™ = E+®, which may be called the *total energy” i affect the sourcesof the electromagnetic field and hence
of the system. However, we note that this identification ancigad to time-dependent electric and magnetic fields

physical interpretation is clear only when the body forces |, effect, potential energy is sharedproperty of a system
considered are conservative body-force fielddependent of  anq jits “surroundings” as, for example, in the case of the
time[and hence derivable from a scalar functip(x)]. Had  gravitational potential energy shared by a system interacting

this not been the case, a term of the foxma,/m would With Earth (the latter constituting the “primary” field
remain in the volume integral of the right-hand side of Eq.Source. In particular, the potential energy does not belong to
(A4) Such a term lacks physica' interpretation as a “Workthesystenaloln.e, but rather to the Earth'system combination.
term,” in contrast with the other terms on the right-hand sideAccordingly, it is only when the Earth undergoes no changes
of Eq. (A4), because it does not conform to the mechanicain state as a result of the changes of state occurring in the
definition of work as the scalar product of a vector force andSystem that the changg® in potential energy can be as-
a vector displacement. signed to the system alone. It is this fact which demands that
These arguments and mathematical manipulations shovi/at vanish in order for the work term arising from the
how potential energies derivable from conservative, time in“distant” body-force source(Earth to be identified with a
dependent, body-force fields may be included unambiguehange in potential energy of the system alone. Were Earth to
ously in the work term of Eq(1.17). Examples of such po- undergo a change in state simultaneous with that of the sys-
tential energies are those arising in time independent externggm as a result of their mutual interactions, the rate of work-
gravitational fields. Furthermore, we have illustrated howing on the system, namely,pf-vdV, with f= —V ¢(x,t),
these “potential energies” cease to possess their usual physjyould continue to give the correct work rate, but the integral
cal interpretations when the scalar potential fiettlSrom  would no longer be interpretable as a rate of chadg®/dt,
which they derive are time dependdas will in general be  of the energy of the system.
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