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Increased damping of irregular resonators
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It is shown that fractal drums and jagged geometry resonators may be more damped than ordinary Euclidean
systems. Several damping mechanisms are examined and studied by numerical calculations. The results depend
on the dissipation mechanisms but globally they increase with localization, frequency, and the irregularity of
the resonator. The increased dissipation is due to the uneven spatial distribution of the vibrational amplitude in
two different ways. First, it is related to the partial confinement of the vibrational modes. Secondly, increased
dissipation may be due to singularities in the amplitude distribution. This is the case when a few points exist
where the vibration is pinned to zero inducing local logarithmic singularities. This last effect can be spectacu-
lar: a single defect can dominate the surface damping by viscous forces of a square drum.
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[. INTRODUCTION resonators. A good resonator is a resonator that exhibits a
large quality factor. The quality facta®, for the nth reso-
Objects with irregular geometry are ubiquitous in naturenance mode at frequenay;, is the dimensionless ratio of the
and their vibrational properties are of general interest. Howeactive energy, to the loss per cycl®,,
do trees respond to wind? How do sea waves depend on the
topography or geometrical structure of the coasts and break- _ 2mE, 1)
waters? How to explain the vibrational properties of glasses? P,
All these questions remain largely unanswered. On the other
hand, current knowledge of waves and resonators indicates Its value characterizes the ability of the resonator, driven
that even small perturbations of a resonator geometry maly an oscillating force of frequenay,, to accumulate reac-
strongly increase the damping of specific modes. A smaltive energy for a given power inpWR,,. It also determines
change of the boundary is often used in musical instrumerthe lifetime Q,,/ w,, of the oscillation when no power source
manufacturing and microwave technology to prevent the exis present. The general question is: do geometrical irregulari-
istence of spurious modes which are effectively damped byies play a role in the losses and if so, why?
the choice of a suitable defect in the geometry. It has been suggested that there may exist an increase in
This paper deals with the damping properties of resonathe damping of fractal resonators due to the irregular distri-
tors with irregular shapes or resonators with point defectsbution in space of the vibrational amplitufi@]. There exist
Our general goal is to understand which of the vibrationatwo types of fractal resonators. The first are mass fractal
properties influence damping, what are the reasons, and horgsonators[4—6], for which increased damping has been
they are related to the resonator geometries. For this purposghown numerically for the so-called fracton modes in perco-
we examine several representative geometries and sevetation clusterd6]. A second type is surface fractals such as,
damping mechanisms. Between these geometries, special &tg., fractal drums or fractal cavities. To prevent the use of
tention will be given to fractal drums, as the emergence othe term “fractons” in this case, their eigenmodes have been
fractal geometry has been a significant breakthrough in theamed “fractinos” [7]. The system is generally called a
description of strong geometrical irregularitg]. For sim-  “drum” but a real drum is a more complex physical system
plicity we decided to study scalar vibrations instead of vectomwhich possesses two membranes and an air column between
vibrations like in electromagnetic cavities. Fractals permit ushem. Here, we consider a tambourine which is an instrument
in many cases to describe approximately strong statisticakith only one membrane. The increased damping of fractal
irregularity. They also permit the study of physical propertiesacoustical cavities has been predicted by numerical compu-
of deterministic but very irregular objecfg]. In this paper, tations and recently been confirmed by experimdidks
we deal with damping in fractal and nonfractal types of geo-Mathematical aspects of the study of fractal drums have been
metrical irregularities. The principal result is that damping ispreviously reported9—12). To our knowledge, no study has
directly influenced by localization and, if present, by strongbeen made about the comparison of damping between fractal
singularities of the amplitude distribution. and nonfractalbut irregulaj drums. The drum geometries
The three main properties of vibrating systems are theiare shown in Fig. 1. They range from systems with fractal
spectrum, the amplitude distribution of the harmonic excita-and nonfractal boundary roughness to square systems with
tions, and their damping, the damping being related to theoint defects. Fractal drums are created, starting from a
first two quantities. The effect of the resonator geometry orsquare membran@ot shown in the figune By applying the
the damping has been rarely addressed, although there exiftactal generator shown in Fig.(d to each side of the
a wide body of empirical knowledge on how to build “good” square, one obtains the fractal drum of first generation. By
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Il. FUNCTIONAL DEPENDENCE OF DAMPING
— MECHANISMS
a)

This study is restricted to the limiting situation of weak
losses. In this case the eigenmodes and eigenvalues can be
reasonably approximated by those of the corresponding zero

c) loss system. The time-dependent vibrational elongation of a
given eigenstate ig,(X,y,t) =A,¥,(X,y)cos,t) whereA,
is an arbitrary prefactor of the vibrational amplitude. The
eigenstatel ,(x,y) is the normalized amplitude of the eigen-
mode of frequencyw, which satisfies the Helmholtz eigen-

)

value equation:

gl
g

(
(d) (e

AV . =——V,, (2)

. wherec is the sound velocity of the membrane.
Calling p the surface density of the membrane, the values
of the maximum elastic energy or kinetic enefgy are

2 2 2
w Alw
En=Aﬁfdxdy7”pWﬁ<x,y>= ”2“p. 3

FIG. 1. (a) Generator for the prefractal geometflp) and (c)
Fractal drum of first and second generation. The area is conserveflie use the normalization conditiofidxdy¥ (x,y)?=1.

through the iteration process. The fractal dimension of the perimetefhe |gss per cycle is equal to the wdFig(x,y)dz over one
is D;=In8/In4=3/2. (d) Rough structurgnonscaling surface ir- period of the damping forcE4(x,y)
regularity). (e) Example of the square system with two pinned '

points.
S
period drum

applying the fractal generator again to each straight line of

the boundary structure, one can create fractal drums of arbPifferent situations exist, depending on the nature of the
trary generations. In this paper, fractal drums up to the thirdlamping forces and hence on their spatial distributions. The
generation are considerdthe last one not being shown damping force on an elemexnitxdy will be a function of
Figures 1b) and Xc) show fractal drums of first and second Velocity and shape of the membrane under motion. The
generation. Figure(d) shows a drum with a rough, but non- shape dependence of the damping force can be generally
scaling, boundary. The comparison of this system with theexpressed as a function of various space derivatives of the

fractal drums permits us to understand the respective role dfibrational amplitude:

dz,

EdFd . (4)

mechanical screening in hierarchical and nonhierarchical ge- . dz,

ometries. Figure (&) shows an example of a square mem- |dFd|=dxdy{K1 - +K, V—‘ (5
brane with point defects. In these last systems, the boundary dt dt

is smooth, but the wave amplitude can develop strong singu-

larities. In all cases we apply Dirichlet boundary conditions, 1Kl d ANl PP I ] 6)
which means that the vibrational amplitude is maintained at 3 dx®  dy? '

zero on the perimeter of the drum, as well as on the pinned
points, shown in Fig. (). The first term characterizes a damping force proportional
Several possible damping mechanisms are introduced ito the local velocity of the membrane. It describes an artifi-
Sec. Il. In Sec. lll the vibrational amplitude distribution of cial situation where a massive membrane is linked to many
the fundamental mode and of the fourth excited mode aréndividual dashpots with negligible inertia. Additionally,
described. The damping of uniform membranes is studied isuch a term would participate in radiation damping. A crude
Sec. IV. In Sec. V we investigate the role of the localization(and insufficient approximation for this is acoustic radiation
for the same systems. In Sec. VI we examine the case of im a fluid, where each surface elemaitdy behaves as a
nonuniform membrane for which the damping force existspiston. The problem of acoustic radiation in air is extremely
only at the boundary of the resonator. This can be realized bgomplex for two reasons. First, if the membrane is light, its
using an inhomogeneous membrane which presents large imotion is strongly coupled to the air and the system does not
ternal viscosity only at the drum periphery. Finally, in Sec.obey a simple Helmholtz equatiqd3]. Second, even for a
VI we study the case of a square drum with a few pointmassive membrane, one should consider not only the so-
defects that pin the amplitude. Contrary to the fractal drumsgalled radiation monopole, but also the various multipolar
it is the logarithmic singularity of the amplitude distribution radiations[14]. This is possibly important for this study,
that creates efficient damping in this case. where the amplitudes exhibit singularities on every wedge of
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the boundary. For simplicity we do not consider these com- K AL

plex effects, assuming that they can be neglected as com- QnLn= NU . (11
pared to the other damping mechanisms. Then, the force f de|‘Pn|(V‘1’n)2

on an elementdxdy takes the simple formdF;

=~ dxdyky(dz,/d) and the value of Py is Pip The constant&;, K,, K, andK}, represent damping

=Ar217TK1wn. . o . .
The second term is proportional to the gradient of thefac:tors which depend on the specific system and its material

local membrane velocity. It corresponds, for example taoroperties. For simplicity, they are assumed to be frequency
damping due to the viscosity of an embedding fll&d. If Independent.

the fluid above and below the membrane is pushed by the

membrane’s displacement, its vertical velocity will depend”" NUMERICAL CALCULATIONS OF THE EIGENMODES

on x andy. There will exist a gradient in the fluid velocity | the following sections we compare the quality factors
and an associated viscous force and dissipation. Here thgy the different geometries of Fig. 1 and for the different
damping is due to a vertical viscous for(;e of the foify  gamping mechanisms from Eq@)—(11). To the latter we

= —dxdyKV(dz,/dt) =dxdyAKow,sin)V¥a(xy).  refer to as “case 1" until “case 4"—damping. For the cal-
The amplitude gradier@ ¥ (x,y) is the strain of the mem-  cylations, it is necessary to know the frequency specsym
brane. The energy loss per cycle in this casePig,  and the spatial distribution of the modes amplitudiss.

= mAFK 0, fdxdy| W,V ,|. The damping depends on the These computations have been performed using the exact
spatial distribution of the vibration and strain and thus on thecorrespondence between the Helmholtz and diffusion equa-
geometry of the drum. tions described if7].

The third term describes damping due to internal viscosity \Wave form singularities are expected to appear at the ir-
if the membrane is viscoelastic. Owing to its finite thickness regular resonator boundary. The singularities create a local
the upper part of the membrane is slightly more stretcheduugmentation of the spatial derivatives and consequently a
than the lower part. In this case the upper layer moves relacorresponding local increase of the energy losses along the
tively to the lower layer. As these layers slide, there exists aoundary{4,13]. Modes may be singular near the wedges of
viscous force which dissipates energy. The relative horizonthe boundary, i.e., their derivatives are infinite at particular
tal displacement is proportional to the curvatigéz,/dx*  points on the surface geometry. Consider, for example, a re-
+d?z,/dy?|=|Az]. It is also proportional to the membrane gion of the membrane around a “salient” corner, i.e., a cor-
and thicknes$15]. The energy loss per cycle in this case is ner with an opening angle of82 [3]. Close to the bound-

) 5 ary, the amplitude of the vibration is very small aA& is
P. —mA2K dxdviw dw, . d=v, close to 0. In this case, using polar coordinatesg] around
3n~ TApR3Wny X n A2 dy2 .

(@)

the corner, the solution of the Laplacian with Dirichlet
boundary conditions is approximately of the form

There is a fourth interesting situation where the damping 23
force is nonlinear. We consider here a damping force propor- | ;
tional to the square of the velocity gradierdFy v (r()) sin(2¢f3), (12
= —dxdyKy (V(dz,/dt))?. In that case the dissipated
power can be written Py, ,=7ANKy 0if fdxdy

X |¥[(V¥,)2. It will be proportional to the third power of .
the amplitude and the quality factor will decrease when theSmall cutoff scale of the fractal. The gradiedtV/or
P quatty ~r 13 tends to infinity wherr tends to O[3]. This corre-

amplitude increases. As shown below, this damping is di- P ,
ponds to a local infinite stress and strain of the membrane.

rectly related to localization as in the case of linear dampin . o
in fractal acoustical cavities uch a property should be true around every salient point in

The quality factors corresponding to these different caseg1e structure. . .
can be written agwith dV=dx dy) Note that real physical objects only present rounded

wedges. Around these wedges, the derivative does not tend
to infinity but to a large finite value proportional to the in-
Quu=——+——, (8)  verse of the curvature radius of the contour.
f f dvp2 Due to the existence of singularities, precise eigenfunc-
n tions are required. The method described7hwas chosen
because it allows for the large spatial resolution required for

wherer is of the order of the local small scale of the irregu-
lar geometry. For a fractal drum, is of the order of the

KiXwy,

KiX wy the study of fractal resonators. The computation is made on a
Q2n= ' ©  discretized square grid with lattice distareeThe 200—300
f f dv|v, V| lower modes have been computed and are studied here. The

states are given by their numerical values at ditgf the

KX o square grid, normalized by the relation

. (10

Q3,n:
ffdv|w1fn||(d2\1fn/dx2+dlefn/dyz)| aziEj Wii,j)=1. (13
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FIG. 2. Fundamental mode=1. Top: Distribution of the am- FIG. 3. Moden=4. Top: amplitude distribution. Bottom: distri-
plitude. Bottom: Distribution of the absolute value of the strain or pution of the absolute value of the strain or amplitude gradient. At
amplitude gradient. One observes strain peaks at the salient edgefigher frequency, because of the smaller wavelength, the modes
but the edges situated in the bays are partially screened and sgenetrate more deeply into the narrower regions close to the bound-
smaller strains. Courtesy of J. F. Colonna. ary and the strain peaks are more uniformly distributed. Courtesy of

J. F. Colonna.

As indicated by Eqs(8)—(11), the Q values depend di-
rectly on the spatial distribution of the eigenfunctions an
their gradients. The vibration distribution is shown for state o
n=1 andn=4 in Figs. 2 and 3. One can observe that theOf the system size, independently Qf structure.
modes are singular near the wedges of the boundary, i.e., For staten_:4 the same properties are found. However,
their derivatives are infinite at particular points on the sur-due to the higher frequency and shorter wavelength, the

face. The fundamental state is localized in the large centrd['0d€ PENetrates into narrower regions, allowing for a better
region of the drum. It decays very rapidly when enteringexploratlon of the geometry. If the damping really depends

narrow regiong7]. Second, the absolute value of the gradi-on wedge singularities, it should increase at high frequency.
ent is smaller in narrower regions. This is caused by t_he IV. UNIFORMLY DISTRIBUTED DAMPING: RESULTS
decrease of the amplitude itself. The decrease of the gradient AND DISCUSSION

corresponds to a screening effect analogous to Laplacian

screening. For Laplacian screening, the region with large La- The quality factors are computed using the discretized
placian fields(hereV¥,) has a dimension equal to 1, inde- expressions of the integra{&1)—(A3) given in the Appen-

grendently of the geometrj16-18. This means that large
Sstrains are distributed over a region of total size on the order
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Q, , . itself. Around a wedge, the Ilosses behave as
W(r,e)VW(r,)~r?% 3= which means that al-
° e though the strain is singular, the losses are not. Therefore, the
14} ] existence of wedges in the structure does not influence the
o quality factors Q, significantly. In order to increase the

o damping it would be useful to prevent screening by keeping
singular wedges exposed to a large strain. It is for that pur-
pose that the rough drum has been stud@gen circles in
Fig. 4). Indeed, one observes that a nonscaliog“regular
irregular”) structure is more efficient in decreasing Qg
factor than the self-similar geometry. The effect, however,
remains small.

Therefore, it is necessary to check the numerical errors of
our calculations. This can be done by comparing the numeri-
cal with the theoreticalQ factor which can be computed
15 analytically for a particular case. The fractal drum of genera-

° tion v is constituted by a collection of joint identical squares

FIG. 4. Q, in arbitrary units for homogenous linear damping of Of size L/4v. Therefore, there exists a number of trivial
type 2 in different geometries plotted versus the normalized fre€igenfunctions of the form W (x,y) =sin(Z'mamx/L)
quenciesw/ w,. The symbols represent, respectively, squares for the<sin(Z'm’zy/L) with mm’=1,23.... For the state
square initiator, empty triangles\() for the fractal drum of first (m,m’)=(1,1) of the first-generation fractal drum, we find
generation, empty triangle§/() for the generation 2, filled triangles the numerical and analytical quality factors to Qgnym,

(A) for generation 3, and circles for the rough structure. There=17.75586 andQanay=17.75697. This corresponds to a
exists an effect of the geometry but this effect is weak and does natumerical error of only 0.006%, far smaller than the effects
change the order of magnitude of tiefactor. discussed here, of the order of tens %. Note that, because of
the finite discretization of the mesh, the wedge strain is fi-
dix. Herein, the numerical results correspond to the samgijte. In first approximation, it corresponds to the real bound-
discretization grid and can thus be compared. Consider gry gradient if the wedges were rounded to the scale of the
square lattice of sidé, with fundamental mode frequency mesh, herd./128, as explained in the preceding discussion.
wo=+2mc/L. The area of the membrane is conserved by The nonlinear viscous dampirigase 4 is computed us-
applying the fractal generator, which allows us to compareng expression$l1) and(A3) (see Appendixand the results
fractal drums of different geometries but with the same surare shown in Fig. 5. The fact@y, is now strongly modified
face L2. In the following, all frequencies are given by the by the contour irregularitynote the logarithmic scale for
size-independent normalized frequencies/w,. This en- Q). Specifically, higher-order drums possess many modes
ables us to discuss the results on a single frequency-scalgith very smallQ,, values. One also observes that modes
The different types of viscous damping behave in the follow-with close frequencies may have very different quality fac-
Ing way. tors spreading over nearly one order of magnitude. The dif-

Q1 is equal tow,pK , independently of the spatial dis- ferences between the second- and third-order drum are not
tribution of the vibration. In this case the quality factors de-significant in the frequency range under study.
pend on the frequency but are independent of the shape. The fact thatQ, and Q,, show very different frequency
Therefore,Q; , is the same for vibrations in Euclidean and dependencies as well as the dispersio®gqf values can be
fractal systemgapart from the fact that the spectrum, is  understood by considering the spatial dependence of the am-
differen. Note that the same result would be obtained forplitude and the effect of mode localization. This is discussed
the quality factor of an irregular superconducting microwavein the next section.
cavity in the case where damping is only due to dielectric
losses in the volume of the cavity.

The value€Q; , are obtained from Eq$2), (10), and(13).
One obtains Qz,=K3X c?(w,f [dxdy¥2) " t=K}c% w,,

[arb. units]

V. ROLE OF THE LOCALIZATION AND FREQUENCY
DEPENDENCE OF THE QUALITY FACTOR

also irrespective to the drum shape. The fact Qaf, and Localization has already been found both numerically and
Qz, are independent of the shape has been verified numerexperimentally in fractal acoustical cavities and in fractal
cally. drums[8,18]. The localization of a moda is usually char-

The cases of interest are therefore cag@ere the en- acterized by the value of its localization volume defined by
ergy losses are due to the viscosity of the embedding)fluid

and case 4nonlinear damping Case 2 is computed using 1

expressiong9) and(Al) (see the Appendijx The results are Vy=—"r—, (14)
shown in Fig. 4. One can see that Qe factors are modified J WA(x,y)dxdy

by the irregularity of the drum but the effect remains small. "

This is due to the fact that the local losses are proportional to
the product of the amplitude gradient with the amplitudewhere WV, is normalized in the resonator volume according
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Q. ‘ . indexed by their normalized frequenciedw, and the dif-
ferent symbols refer to different geometries. The cloud of
points in this figure are indicative of the wide dispersion of
the participation ratios, first, between different systems and
second, also for a given system. Only for the square drum,
where the eigenstates are delocalized sine functidpsl,?
=4/9~0.44 for all states. The relative localization volumes
of the second(triangles down and the third-order drum
(filled triangles are distributed between 0.05 and 0.35. These
values reflect a very different behavior of the corresponding
modes. The upper values are not very distinct from the value
of a regular square drum and accordingly, the respective
wave functions are more or less distributed over the whole
system. The modes that are significantly more confined than
V,,/L?~0.3, are called “localized.” Most interesting are the
15 modes with values of less than 0.1. We can see in the figure
that there are several of them that occur in branches around
FIG. 5. Qy in arbitrary units for homogenous nonlinear damp- SPecial frequencies. Examples are the modes araufia
ing in different geometries plotted versus the normalized frequen= 10 and 14 for the second-order drum. It is exactly those
cies w/w,. The symbols represent, respectively, squares for thénodes which show the smalle§ty, factors in Fig. 5. A
square initiator, empty triangles\() for the fractal drum of first  different behavior is found for the rough drugaircles. Its
generation, empty triangles/() for the generation 2, filled triangles localization volumegabove 0.3) indicate that its vibrations
(A) for generation 3, and circles for the rough struct(fée same  are not localized, as expected as this resonator possesses no
symbols as in Fig. 4.There exists a strong effect of the frequency screened regions. The following discussion permits us to re-
and of the geometry. One observes that in the same frequency ranggte in a formal manner the observed dispersion in Fig. 5 to
the fractal drums exhibit a large dispersion of fpdactors. Thisis  the observed dispersion in Fig. 6 linking directly damping
due to very different localization effects, as shown in Sec. IV. and localization.

) o Using V,, one can obtain a rough estimate of the quality
to Eq. (13). The relative localization volum®,/L? (or par-  factors by distinguishing between regions of large and small
ticipation ratig measures the relative “volume” occupied by amplitude. We consider the regions of large amplitude and
this mode. _ o , define an average absolute amplitude bV ,[)

Figure 6 shows the dlfferent cha_hza_tlon volumeés/L EVn_ldedY“I’nL For a localized mode, assuming that the
computed from the amplitude distributions. The states argmjitude is approximately zero outside its localization vol-

ume, one can write the normalization condition (#& ,|)2

[arb. units}

10

03 ' ’ XV,~1 or
v L?

oal ([Waly~ (Vo) "2 (15)
We now consider the different types of damping separately,

03l according to cases 2 and 4. At frequengythe characteris-

‘ tic distance for the amplitude space variation is a half-
wavelength\ /2= mrc/w,,. The order of magnitude of the

0z | gradientVW is 2(|W |}/\,=V,, Y20,/ 7c, which leads to a
Q,, factor of

0.1 F d 0 0

Q2,n~wn qu’V\mN(Vn) X(wn) . (16)
0, : m s This semiquantitative prediction means tkgt, is essen-

w/w, tially independent of frequency and localization, which is
) i ) o 5 compatible with the data in Fig. 2 where we found that the
FIG. 6. Dispersion of the relative localization volurdg/L< for effects of geometry are relatively small.

the resonators shown in Fig. 1. The states are indexed by their The situation is very different for the nonlinear damping,

normalized frequencies/w, for all systems. The constant value . : . :
V,,/L2=4/9 for the square drum is indicated by the dashed line. Th%’(vj?r?]re we find by the same estimations tmﬂ"—“‘ is of the

symbols correspond respectively: empty trianglég o the fractal
drum of first generation, empty triangle¥} to the generation 2,
filled triangles (A) to generation 3, and circles to the rough struc-
ture.

QNL,n~1/ AV (V) 2~ (V) 2% (w,) 2. (17)
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200

2 [arb. units]
Q. )

5

10

farb. units}

150 |
10

10° ¢

100 9. %w%y

v
v

v

10' :
50 . ; . 10° 10'

0.2 0.3 0.4 0.5 (vnle)uz
FIG. 8. The quality factoQg in arbitrary units versusd, / w)°®
FIG. 7. QuLe? in arbitrary units versus\(,/L?)Y? for all sys-  for the boundary linear damping of type 3 with the same symbols as
tems, including the square generator. Same symbols as in Fig. 4 Fig. 4. The line of slope-1 is a guide to the eye. For the
Note that the vertical scale is linear whereas the scale on Fig. 5 isecond-order drum, the states with frequencies arauiwl,~ 10
logarithmic. and w/ wg~ 14, showing strong localization and very small quality
factors, are indicated by arrows.

. .
LI (GY0W)

The localization argument indicates th@t,, should be .
markedly smaller for localized states and high frequenuesWhereW“(a) and AW (a) are the respective values of the

This is verified in Fig. 7 where the relatigftl) is compared amplitude and of the Laplacian on mesh sites next to the
to the numerical results. The values Of, «? are plotted boundary, i.e., at a distance of one Iattlce_constant. _The
versus /L2)1/2 The fact that for all drums and all states data corresponding to the fractal drum of third generation are

n . . . ;
the points fall onto the same universal curve illustrates tha] hoet g'r\ilgr&s;; ftc?rttr;]eel23;0222332:1“0rlr?rfetgiif)r:;%l:]ergiltjézﬁ n
damping is directly influenced by localization and that the 9 P y 9

simple semiquantitative reasoning described above applies t 'Bhe other results are shown in Fig. 8, Wh@é is plotted

3
irregular drums, independent of their shape. Note the lineaYe"SUs @/ o)”. One observes) a strong decrease with fre-
scale in the figure. quency following a power law with exponent -3ii) a

For all these cases, the divergences of the strain at salieffadual decrease of the quality factors as one moves from

points do not contribute significantly to the dissipation. Even'€gular to more and more irregular drums, diid a strong
for the nonlinear case, the local strain divergessds/or  €hect of the localization. So, the quality factors for the
~r~13 and the integrand is of the formt which is regular square and the rough drums, which show no localization, lie

Again, damping due to uniformly distributed mechanisms isclearlly above those Of .the fractal drums, which have many
not dominated by strain divergences. localized statqs. Addltlona!ly, for the second generation,
those states with frequencies arouadwy,~10 and w/wq
~14, showing strong localization, have the smallest quality
V1. BOUNDARY DAMPING factors(indicated by arrows in Fig.)8
The general behavior of the results may be understood as
In the last two sections we study cases where the dissipdellows: with |AW .|~ w?|¥,|, one expects that
tion mechanism is not distributed uniformly over the mem-
brane. In the first case of practical interest, only the periphery b
of the drum presents internal viscosifyase 3. The mem- Q3~
brane is purely elastic in the drum interior and viscoelastic
along the boundary of the resonator. This situation is of pracwhere the sum runs over all boundary sites. The value of the
tical interest when one wishes to dampen spurious high fresum in Eq.(19) depends on the amplitude distribution and
guency resonances of membranes. It is linear damping déhe localization close to the boundafiNote that the square
scribed by Eq(A2) but the integration has to be performed and the rough generator show no localizatidhthe ampli-
only over a small layer along the boundary. We call the qualtudes behave approximately as sine waves, the amplitude

o, > Va)|,

boundary

(19

ity factor Q5. value next to the boundary is proportional @) and thus
The powerP3,, dissipated along the boundary can beto w,. It is also proportional to the amplitude factor
written from Eq.(7) as (W)~ (V,) Y2 of Eq. (15) Whlch depends on localization.

This  means  that Q3~(wn(=)p|¥al)?) 1~(Vy)
X ((1)32n »1) "1, where the prime denotes the “active bound-
P3,n:7TA§K3(Un E 1P, (a)||[AV ()], (18) ary” and the sumE np funs over all boundary sites in the
oun localization regions of moda.
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bp
Q,

s
[arb. units] 0.005
YoM, ..

(b)

FIG. 9. Fundamental modes of square systems (itlone, (b)
two, and(c) 20 pinned points. The amplitudes are indicated by
different gray levels. The white regions stand for very large ampli-
tudes. The darker tone stands for nearly zero amplit(iiede lines
do not exist in the fundamental mogle.

10t}

This argument, which is valid for all the structures, ex- 10°
plains the frequency power law. The interpretation of the
dependence oQg on the localization, on the other hand, is

b,p . . . . £
difficult, becausng depends both on the localization vol- FIG. 10. Q3" in arbitrary units for square membranes with dif

. . . w .. . ferent numbers of pinned points, plotted versus the normalized fre-
ume and_ on_the set of perimeter sites W.h|Ch are active InquencieSwlwo. The different symbols represent the normal square
the localization volume. AIS(_), the chal |rregula_r|ty around ivnout pinned pointgopen squarésand the systems of Fig. 108)
wedges could play a role as its relative contribution to dampy squares,(b) diamonds, andc) open circles. Inset: The wave
ing effects could be larger than in the case of homogeneougnction y(r) is plotted against the horizontal distancérom a
damping. To disentangle these various factors would requirginned point(filled circles and from the boundaryopen circles
generations with sufficient resolution. This is currently noty 0 around the pinned point ani{r) ~sinr~r at small distances
possible. from the boundary.

In any case, if one wishes to increase the damping by the

singular behavior of the strain, one should search for astron—hich is also a symmetrv axis. Eigenstates must be either
ger divergence around salient points. This is found aroun M y - =9

needles wherd behaves as2 andVW therefore as -~ Y2 symmetric or antisymmetric under reflexion on the diagonal.

Even in that extreme case the integrands for the various inThe antisymmetric modes of the square have a zero value on

tegrals mentioned above are regular and the singularities df€ diagonal. These modes are unperturbed by the existence
the geometry play only a small role. In contrast, the exis-Of @ Pinned point on this diagonal. In order to suppress any
tence of pinned points inside a regular drum will create logaSymmetry in caseb) two pinned points were introduced at
rithmic singularities which might dominate the damping.the positions X,y)=(L/RL—L/R) and (y)=(L/4
This is shown in the next section. +L/(2R),L—L/(2R)). In case(c) 20 randomly chosen
points are pinned.
Now the stronger singularities in the amplitudes do
VII. DAMPING AROUND PINNED POINTS modify the damping. Very close to a fixed point, the solution

We discuss here the damping of a regular square drum off the Laplace equation shows Iogari-thm-ic singularitigs,
which a certain number of inner points are pinned. One ex¥(r)~logr, and one expects large contributions to damping
ample is shown in Fig. (®). The vibrational amplitude van- at smallr. In that case the sum in E419) contains large
ishes at these points and the membrane is viscoelastic alofi{pg@)” terms at the denominator. The numerical results are
the boundary as well as around the pinned points. We corshown in Fig. 10. The figure contains the data for the normal
sider three different cases, whose fundamental modes agguare without pinned points and for the systems of Figs.
shown in Figs. g8)—9(c). It can be seen that around pinned 9(a8)—9(c). In the inset, the behavior of the vibrationonal am-
points, there are large gradients of the vibrational amplitudesplitudes (r) are shown along the horizontal distanaes
The choice of the positions for the pinned points was guidedrom the pinned point of system@& and from the boundary.
by the effort to avoid the natural nodelines caused by thélhe singularity around the pinned point is observed. Close to
symmetry of the square. the regular boundary, on the other hand, the amplitude be-

In case(a), only one point is kept fixed at a position close haves linearly as sim~r. The value ofy(r) at a distance of
to (x,y)=(L/R,L—L/R), whereR is the golden mean. The one lattice constant from a pinned point is about 20—30 times
use of the golden mean is in order to place the pinned poinarger than at the same distance from the boundary. Conse-
at the most “antiharmonic” location with regard to the hori- quently, in a square lattice of side length=256a, one
zontal and the vertical symmetry axes of the membr&is.  single pinned point is about five times more efficient for the
most distant from a rational number and so no nodelines olamping than all the approximately 1000 boundary points
the sine functions singrx/L) can occur close tx=RL or  altogether(This estimation contains the differenceyd and
x=(1—R)L. However, this point lies close to a diagonal the number of neighbors around the pinned point and would
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be even larger if we considered viscoelasticity up to secondiogarithmic singularities in the viscoelastic behavior around
nearest neighbors. pinned points. For example, it has been found that only 2
As one observes in Fig. 10, the quality factors decreaspinned points suitably placed are significantly more efficient
drastically due to the existence of pinned points. As exdin damping than some 1000 points along the smooth bound-
pected, for one pinned point on the diagoffaly. Aa)] the  ary. This last damping phenomena is not related to localiza-
quality factor for the fundamental is decreased by a factor ofion, but to the strong singularity of the vibrational ampli-
about 5. It is a most remarkable result that a single pointude. This is the first quantitative explanation of why point
defect can dramatically increase the damping. It has to be putefects, such as those used in radar technology, really permit
in relation with a common technique in radar technology,the “kill” of unwanted spurious modes.
where a small wire is introduced into a microwave cavity at

a maximum of the electric field of an eigenmode in order to ACKNOWLEDGMENTS
“kill” that mode. Note that damping in microwave cavities is _ . _
also a surface damping due to the classical skin effect. We would like to thank Jean-Francois Colonna for provid-

However, the modes that are antisymmetric with respectng us with Figs. 2 and 3 and Markus Dejmek and Armin
to the diagonal are unperturbed and show the same qualifgunde for a careful reading of the manuscript and for inter-
factors as the square. The symmetry effect is suppressed @sting remarks. One of ugS.R) has benefited from the
the systems with several pinned points. In célseor (c)  E.E.C. program “Human Capital and Mobility.” The compu-
there are always several pinned points close to amplitude@tion was performed at the “Institut du Developpement et
maxima—at least at low frequencigsf. Fig. 10c)]. There-  des Ressources en Informatique ScientifiqU®RIS) in Or-
fore, in the entire low-frequency regime, the quality factorssay, France. CNRS is unite mixte du CNRS No. 1254.

Q5P are strongly diminished as compared to the boundary

damping in the normal square. With increasing frequency, APPENDIX

the relative effect becomes smaller, because modes become
more and more confined between defects. At the same time
the frequency spectrum shifts to higher values. Contrary &9
the results of the fractal drums, the states of these mem-
branes are not strongly localized. The participation ratios of J J' dxdy| W, V|
these modes are found to Mg /L2=0.3, much larger than

for the fractal drums. Therefore the observed damping is, in

With the notations of the discretized lattice the integrals in
(9) are substituted by the expression

this case, a direct consequence of the singular behavior of the =(@%2) >, |V (L, DI Wi +1)—¥.i,))]
vibration amplitudes. Not shown here, we have computed the b

damping of the fundamental state fqr one singlt_a pinned point WL (= 1) =)+ P+ 1)

with coordinates X,L/2) as a function ofx. A first order

perturbation theory correction would predict that the losses — WL+, — 1) =P, )] (A1)
go with sirf(mx/L) attached to the unperturbed state. This is

approximately found. In the same way the integrals in Eq40) and (11) are ex-

pressed on the discretization grid as
VIIl. CONCLUSION

In summary it has been shown that irregular shapes notJ f dxdyw | (d*W, /dx?) + (d*¥ , /dy?)|
only drastically alter the spatial character of drum vibrations
but may also increase their damping. This has been investi-
gated for several geometrigwith scaling and nonscaling
surface roughness and with pinned point defeetsd for
different damping mechanisms. The general conclusion is ~ +W(i,j+1)+W¥(i,j—1)—2%(i,j)[], (A2)
that irregularity increases the effective damping of the vibra-
tion. It has been found that there are two different reasons for ) ) o ) )
these effects: localization and the existence of algebraic sin)” dxdy|W,|(V¥,)*=(a /Z)Z [Wa(i DI WA +1)
gularities of the spatial distribution of the modes amplitudes. !

For drums without point defects the damping is related =W (i,)]2+ W (i—1,)
directly to localization as a localized vibration presents larger o o
amplitude and velocity gradients and therefore increased dis- =W P+ Wi+ 1)

=a2i2j O (DI i+ 1) + P (i = 1,) — 2% (i)

sipative viscous forces. On the other hand, the existence of a — W (D)2 PG - 1)
few pinned points on an otherwise regular drum can increase " "
the damping dramatically. This is due to the existence of =W (i,j)]1% (A3)
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