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We revisit the mean-field model of globally and harmonically coupled parametric oscillators subject to
periodic block pulses with initially random phases. The phase diagram of regions of collective parametric
instability is presented, as is a detailed characterization of the motions underlying these instabilities. This
presentation includes regimes not identified in earlier waorlBena and C. Van den Broeck, Europhys. Lett.

48, 498 (1999]. In addition to the familiar parametric instability of individual oscillators, two kinds of
collective instabilities are identified. In one the mean amplitude diverges monotonically while in the other the
divergence is oscillatory. The frequencies of collective oscillatory instabilities in general bear no simple
relation to the eigenfrequencies of the individual oscillators nor to the frequency of the external modulation.
Numerical simulations show that systems with only nearest-neighbor coupling have collective instabilities
similar to those of the mean-field model. Many of the mean-field results are already apparent in a simple dimer
[M. Copelli and K. Lindenberg, Phys. Rev.a3, 036605(2001)].
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[. INTRODUCTION in high dimensions, i.e., as mean-field problems. This often
allows analytic and/or relatively simple numerical solution.
Over the past two decades there has been an increasifigigh dimensionality” is achieved througlylobal coupling
interest in the nonequilibrium behavior of spatially extendedthat is, by assuming that each element in the system is
systems modeled as ensembles of simple dynamical unitoupled to all other elements. Here one hopes that collective
(often taken to be oscillators or penduleoupled to each effects observed in high-dimensional systems mimic those
other. The collective evolution of such discrete coupled sysebserved in extended systems with more realistic short-range
tems often exhibits qualitatively different behavior from thatinteractions (lower-dimensional large systejnsWhile a
of the single units. More specifically, the collective evolution mean-field analysis usually does not capture spatial depen-
may exhibit phase and/or amplitude synchronization effectslencies(although it has recently been pointed out that glo-
that cannot be explained by the behavior of a single unitbally coupled arrays with interactions transmitted at finite
These synchronization effects are of interest in a huge arragpeeds do convey spatial as well as temporal information
of applications far too vast to reference in full generality. [2]), it often does capture the correct time evolution and
The evolution of large coupled systems away from equitransitions to synchronous behavior.
librium is difficult to study either analytically or numerically. Globally coupled systems are certainly not to be viewed
Although a great deal of progress on both fronts has beeonly as approximations to more realistic systems. They are
made as numerical resources and analytical expertise hawdso interesting in their own right because they candral,
evolved, it is still true that “broadly speaking, there are in some cases, have beeaxperimentally realized in a vari-
[only] two ways of mounting an attack on systems consistingety of contexts. Some examples include arrays of mutually
of N oscillators[1].” One is to consider a relatively small coupledp—n diode junctiong 1], globally coupled Joseph-
number of coupled unitsN=2 or 3 a decade ago, perhaps son junctiong 3], two-dimensional arrays of Josephson junc-
one or two orders of magnitude more since theoping that  tions shown to be equivalent to an array of nonidentical,
these smaller systems foreshadow the collective effects thglobally, and nonuniformly coupled oscillatof4], globally
might be seen in a very large system. The other approach oupled laser arrayls], and globally coupled chaotic elec-
to consider the number of unitd to be very large at the trochemical oscillatorg6]. Wanget al.[6] also point out that
outset, but, recognizing that numerical and analytical apthe influence of global coupling on spatiotemporal pattern
proaches are scant in this limit, to analyze such large systenfsrmation may be important in a number of biological and
chemical reacting systems.
There is of course an enormous variety of coupled oscil-
*Present address: Instituto désigm, Universidade Federal Flu- lator systems, the variety arising from the nature of the os-
minense, Av. Litoraea, s/n - Boa Viagem, 24210-340 NiterJ,  cillators, the way in which they are coupled, and the external
Brazil. forces that drive the system out of equilibrium. A specific
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system that has attracted a great deal of attention is a colle¢*quenched” in this context means that the phase of the fre-
tion of a large number of coupled limit-cyclphase oscil-  quency modulation of each oscillator is set at titee0 and
lators with randomly distributed natural frequendi@g This  then remains unchangedn [8] we showed the appearance
system has been invoked as a simple model for coupledf a collective parametric instability: even though each indi-
chemical, biological, or physical oscillators. A most spec-vidual oscillator is in its stable parameter domain, the aver-
tacular collective phenomenon discovered with this model issge amplitude of the coupled system may diverge monotoni-
a synchronization phase transition involving mutual entraincally. This collective instability occurs when the amplitude
ment of the oscillators through frequency and phase lockingof parametric modulation is sufficiently large that the instan-
However, in this model the coupling is assumed to be suffitaneous frequency of the oscillators temporarily becomes
ciently weak that the amplitude is not affected. As a resultjmaginary. The instability is re-entrant with respect to the
the model cannot describe amplitude instabilities. A systenstrength of the coupling of the oscillators and persists in the
that does exhibit a rich variety of amplitude instabilities con-overdamped limit. In the presence of a saturating nonlinear-
sists of coupled parametric oscillators and is the subject oity [33], it generates a pitchfork bifurcation, corresponding to
this paper8,9]. a genuine second-order nonequilibrium phase transiiion
There is an enormous literature on single parametric osplying the spontaneous breaking of spatial symmetry and
cillators with periodically[10] or stochasticallyf11] modu-  ergodicity).
lated frequencies, perhaps also subject to thermal fluctua- The purpose of this paper is to show tiraadditionto the
tions [12]. A wide variety of linear and nonlinear, instability described by monotonic growth of the mean am-
deterministic and stochastic, systems that exhibit energetiplitude, the globally coupled infinite system can also undergo
instabilities can be modeled as simple parametric oscillatortransitions to a collective oscillatory instability with an in-
undergoing the amplitude instability known as “parametrictrinsic frequency that is not connected in a simple way to
resonance.” Examples include mechanical systems whereither the frequencies of the individual oscillators or to the
such resonances were first identifidd,13-15, elementary  frequency of the external modulation. A saturating nonlinear-
particles[16], quantum dotg17], astrophysicg18], fluid ity turns this instability into a Hopf bifurcation generating a
mechanics[19], plasma physicg20], electronic networks limit cycle with the concomitant breaking of temporal sym-
[21], superconducting and laser devi¢2g] and laser beams metry and ergodicity33]. Furthermore, we show that even
in nonlinear waveguidef23], biomechanic§24], and even when the modulation amplitude is very small, monotonic
medicine[25]. Connections with chaotic systems have beergrowth can still occur but via a mechanism entirely different
suggested recently26]. The simplest and perhaps most fa- from that identified previously.
miliar example of parametric resonance occurs in a harmonic In trying to explain these collective behaviors, one is im-
oscillator whose frequency varies periodically with time pressed by the similarities with a simple model introduced
[10,13-15,23 For certain ranges of modulation parametersearlier [9] of two coupled parametric oscillators modulated
(frequency, amplitudethe oscillator is unstable while for periodically with a fixed phase differena@ between their
others it is stable. Even for this seemingly simple system thenodulations. The behavior of this dimer whés 7 is re-
stability boundary diagram is already quite rich and complexmarkably similar to that of the globally coupled infinite sys-
Although the notion of coupling such parametric oscilla-tem, and the roots of the instabilities observed in the latter
tors arises naturally in a number of the contexts in whichare already present in this simple system. At an even more
single parametric oscillators have provided a rich phenomprimary level the seeds of these collective instabilities can be
enology, work on coupled parametric oscillators has beetraced back to behaviors of single oscillators. In general an
hampered by the complexity of the problem. With few ex-individual oscillator tends to synchronize with the external
ceptions[27] work previous to our own seems to have beenmodulation whereas the coupling induces mutual synchroni-
limited to a global parametric modulation that acts on all thezation between oscillators. These two synchronization ten-
oscillators in exactly the same way. Examples include paragencies cannot always be satisfied simultaneously. Coupling
metrically pumped electrons in a Penning tf&8], para- between oscillators can then be seen as leading to a sort of
metrically driven Sine-Gordon systerfi9,30], pattern for-  “selection” among the single oscillator modes, enhancing
mation under global resonant forcii@l], time-periodic some (destabilization and smoothing out otherstabiliza-
loading of an elastic systefii4], and nonlinear parametri- tion). The close relationship between the mean-field model
cally driven latticeq 32]. and the very small systems also lead to the expectation that
In our own work we follow the path described earlier of the mean-field system may also describe certain aspects of
going to the high-dimensioné&nean-field case. Not only do  lower-dimensional large systems such as, for example, a one-
we find that a detailedanalytic theory is feasible in the dimensional chain of nearest-neighbor-coupled parametric
mean-field approximation, but that this analysis is possible iroscillators. We have found that this is indeed the case. For
the presence of phase disorder. To our knowledge this is thexample, in a one-dimensional array of overdamped para-
first model with spatially random phase modulation thatmetric oscillators one finds a nonequilibrium phase transition
leads to collective motion. that is reentrant with respect to spatial coupling, in agree-
In a previous papef8] we introduced the model, which ment with the prediction of the mean-field the84]. These
consists of an infinite set of globally coupled harmonic os-correspondencies lend further credence to the value of the
cillators subject to time-periodic piecewise-constant modulainformation in the mean-field model beyond the constraints
tions with randomly distributed quenched phasesof the specific model.
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In Sec. Il we introduce the globally coupled model. Sec- lll. REVIEW OF THE SINGLE PARAMETRIC
tion Il is a review of the properties of a single linear para- OSCILLATOR
metric oscillator. Section IV establishes the mathematical
setting for the analysis of the globally coupled system as i

mean-field problem, and typical numerical results are preTator subject to the piecewise-constant frequency modulation
sented in Sec. V. In Sec. VI we collect these results in th ) P 9 y

form of a phase diagram that characterizes the behavior g@%‘[}o’m_l‘r"?’s’sb for which the equation of motion is
the coupled system as the modulation parameters are variedmPY

Here we discuss the boundaries between stable and unstable
behavior and also between different instability regimes. Sec-

tion VII of_fers a compar_ison between the mean-field systemrpe arbitrary phase can be set to zero, but is retained
and the dimer. Conclusions and a summary are presented W jicitly in order to make clearer the connection with the

Sec. VL. coupled system. The equation of motion can be solved using
Floquet theory(see the Appendix and the result may be

Further analysis of the coupled system is clarified by first
efly examining the properties of a single parametric oscil-

X+ yX+ wo[ 1+ &.(t)]x=0. (6)

Il. THE BASIC LINEAR MODEL written as
Consider a set dl unit mass linear parametric oscillators X(t) x(0)
with displacement$x;}, each with a periodically modulated
frequency and all harmonically coupled to one another. Here N 4 =G0 . Y ' @)
. . . _ o X(t)+ 5 x(t) X(0)+ 5 x(0)
we restrict our analysis to coupldidear parametric oscilla- 2 2

tors. The nonlinear case will be presented elsewlhags

The equation of motion of thith oscillator is given by where G_(t) is the time-evolution operator, whose explicit

expression is given in the Appendix.

N Floquet theory provides information about the state of the
X+ 75<i+w§[1+§i(t)]xi= _% > (X)), (1) system at the er_wd of each _mo_du_lation perioql, but it doe_s not
j=1 determine the time evolutiowithin each period. If, as in

most of the literature, stability conditions were our only con-

withi=1,... N. cern, finding the Floquet eigenvalues would be sufficient.
Analytic results are possible with a simple piecewise-However, we are interested not only in the conditions giving
constant periodic modulation (peried ), defined as rise to instabilities but also in the types of instabilities. Since
exponential decay or growth of the oscillator amplitude is

&(H=Asgrisinoy(t+1)], (2)  expected in any case, the time evolution may be conve-

niently investigated by Laplace transformation

wherew,=27/T,, and the initial phase; is chosen at ran- 5 w0
dom for each oscillator. We are mainly interested in the mean  x(s)= f e S(t)dt
amplitude 0

=[GA(9)]1:X(0) +[G ()12

’y .
1 XN Ex(0)+x(0)), 8
<x)——21xi (3)

where[ G (s)]; j is a matrix element of the Laplace transform

as a measure of the macroscopic behavior of the system. bf the time-evolution operator. In generalixifs) has poles at
the thermodynamic limitN—c, the site average3) is  s;=A;+i);, the temporal behavior of the amplitude is ex-
equivalent to the average with respect to the random phase pressed as

of the displacement of a single oscillatior

10T x(t)=2 c;elite! ! (9
<X>:T—f0 "xdri, (4) :
p

where thec;’s are constants determined by the inverse

. . Lapl t f the initial iti
which is independent af Equation(1) can then be reduced aplace transform and the initial conditions

to a single mean-field differential equation . .
C;=2mi lim (S_Sj)[[GT(S)]MX(O)*‘[GT(S)]Q
S"Sj

X+ yX+ wg[ 1+ € (1) ]x= —k(x— (X)), (5)

X

%x(0)+5<(0) J (10

where we have dropped the indexand have now indexed
the modulation with the initial phase chosen at random for
each oscillator. Note that the average must be evaluated The Laplace transform of the time-evolution operator is de-
self-consistently using Eq$4) and (5). rived in the Appendix as
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1 0.4 T T T
Ee_ 7Tp/2[e(s+ y)Tpl _G;l(Tp)] o2 | 1
éT(S): y f peistGr(t)dty 2‘1 0.0 I
O . Y {
cosv{ s+ E) Tp} -R o2 / \
(11) -0.4 : : :
20 . .
wherel is the identity matrix and the resonance paramBter —/""’/
is definedas e
1.0 - o lTeemeeeeed
o, T T S
R=c05< 5 p)CO{ 5 p) . —
0.0
2 2 a
it (o Ty (o T, T e——
20)+(U_ Sln( 2 sin 2 (12) B dm—mmmmm——H
with 20 \
2.0 -1.0 0.0 1.0 2.0
y \° R
w+=wg 1iA—(—) ) (13 L
2wq FIG. 1. Reallupper graphand imaginarylower graph parts of
) . the poless; as a function oR with y/w,=0.1. The behavior asso-
The poles of Eq(11) are determined by the condition ciated with these poles is described in detail in the text. Note the
significance of the boundarieR=+*1, and of the boundaries
cosh | s+ Y T l=R=0 (14) R= * R. whe_re oneA becom_es_ p05|t|_\{e. The latter mark the onset
2 of single-oscillator parametric instability.
and their real parts are explicitly given by resonance parameter. Consider first the real pariWhen
, |IR|<1 it is single valuedR independent, and negativen-
Zi_ In[—R+JR?—1] for R=<-1, less there is no damping, in which case it vanishes and the
2T motion is purely oscillatory At the bifurcation points
y R= =1 the real parts beconi®R dependent but remain nega-
A=y — 5 for  |R|<1, tive until |R| reaches the value
Y l 2 _ ’}/T
Ei_lfln[RJr JR?—=1]  for R=1, RCECOSP{TF’), (18)
(15
while the imaginary parts are which is greater than unity unlesg=0. _Beyond|R|=R _
one of the A’s becomes positive, leading to exponential
. growth of the oscillator amplitude. The conditidR|=R
Q Ji- 5 for R<—1, thus corresponds to the onset of parametric resonance or,
w_p_ _ more appropriately, of parametric instability.
J for R=1, Consider next the imaginary pafis , shown in Fig. 1 for
. j=—2,...2 alternately as solid and dashed curves. The
Q5 1 condition|R|=1 here also marks an interesting boundary at
J — —_—
w—p—] 5 -arccosR) for |R|<L1. (18)  \yhich the behavior of the imaginary parts changes from be-

ing R independent whehR|>1 to R dependent whefR|
Here arccoR) lies in the rangd 0,77], andj is an integer. <1. On the largdR| side of this boundary the frequencies
Note that the real parts of the poles are in fact independent di; are simply proportional to the frequenay, of the modu-
j,» and therefore one can drop the subsgript A and rewrite  lation. When |R|<1, however, the oscillator frequencies
the amplitude(9) as change continuously witlR and bear no simple relation to
elthera)p or the natural frequency,. In Fig. 2 we present
=e/“2 el 17) the regions in parameter spacA,T,/To) where |R|>1.
~ 7l ' The darker regions correspondRo>1 and the lighter taR
< —1. The stability boundarigR| =R, are also indicated by
Correspondingly, the relative weights of the different modessolid lines, the oscillator being unstable inside these bound-
remain the same for all times; they all dié €0), or they all  aries. Note that thgR|=R; and|R|=1 frontiers almost co-
explode (A\>0), or they all keep their initial amplitudes incide because of the very low damping=£0.01). As is
(A =0). None becomes relatively more dominant with time.well known, for smallA the instability appears in the vicinity
Figure 1 illustrates the dependence of the poles on thef T,~jTy/2 (j integep.
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1.5 LI 2
[ - \/1+A+ LN (21)
-+ wqo - w(z) 2(,00 .
1T The general solution of E419) can be written as
<C
x(t) x(0)
0.5
I . =G (1) -
_ sty+ Zxcty | =" %0y + Zx(0)
I 2 2
°s 10 gy
= +kG(t fGTt’ - L ldt.
o (t) . (t") (X(t)

/To 22)

FIG. 2. Shaded regions indica®>1 (darkey) and R<—1
(lighten. Solid lines delineate the boundarig®=R;. The damp-  Taking the average of Eq22) with respect to the random
ing y=0.01 and the frequency,=0.4. phase, we obtain a self-consistent equation for the mean am-

o . ) plitude,
Although the boundaryR|=R; is important in determin-

ing the transition from stable to unstable behavior for the
single parametric oscillator, it does not play the same role for _ Y :

the coupled system, for which the bound&Ry=1 turns out <X(t)>_<[GT(t)]11>X(O)+<[Gf(t)]12>(ix(o) +X(0))

to acquire further significance. Indeed, as we will see in the t

fpllowmg sectlor), each |nd|V|duaI polsj=A+iQ); gives +kj K(t—t")(x(t"))dt’, (23)
rise to a collective pole in the coupled system, and these 0

collective poles have different’s. Therefore, some modes

may become unstable\(>0), and therefore dominant, even . ,

when |R|<1, while others remain stableA«0). A very ~ Where the kemel is defined by

striking example is that of the single oscillator mode with a

zero imaginary pgrt, ie., thg one witk0 whenR>1. If A ' K(t—t’)=([GT(t)G;1(t’)]12). (24)

is negative, it simply provides a monotonically decaying

contribution to the oscillator displacement, and\ifis posi-

tive it provides a monotonically growing contribution. How- Because of the uniform distribution of the initial phases
ever, its relative weight in the suiil?) is extremely small the kernek24) depends only on the time difference. One can,
and, therefore, this mode is practically not detectable irtherefore, solve the integral equati@®B) by Laplace trans-
simulations of a single oscillator. Its contribution is over- formation. The solution in Laplace space is given by
whelmed by those of the oscillatory modes. However, in the
coupled system this nonoscillatory mode may become domi-

nant because it may become unstable while the oscillatory Ss X(0)+([C (s Zx 0)+x(0
modes are still stable. This will lead to a monotonic explo- (7<(s)>:<[ (81X (G912 2 (0)+x(0)
sion of the mean. 1—k<[(~37(s)]12>
(25
IV. COLLECTIVE INSTABILITIES
The mean-field equatiofb) can be rearranged as Equation(25) has a set of poles determined by the condition
X+ yx+ {1+ £,(1)]+ kI x=k(x), (19 .
G,(5) =1, 26
which describes a single parametric oscillator of frequency ([CA) 1 k (29
_ L which differ from the ones derived for a single parametric
W= 1+ (20
0 wé oscillator. Whenk—0 the right-hand side of Eq26) di-

verges and the poles of the coupled system clearly approach
driven by an “additive force”k(x). Therefore, it can be those of the single oscillator. By explicitly performing the
solved with the time-evolution operat¢A13) of a single time integral in Eq.(11) and taking the average over the
oscillator except that Eq13) must be replaced with the new random phaser, one can obtain a rather complicated but
shifted frequencies explicit expression of Eq26) as

036611-5



I. BENA et al. PHYSICAL REVIEW E 65 036611

~ ~o\ 2 ~o\ 2
YTp B I B
T o COS?’(T)—R w++z a)f—l—z
T2
k wi-i—a)z,—i-%
X = ——1 —kw+(wi EQ
2| w? + 2 w2+7— -
t4 T4
~o ~
o2y 2 Y| ©-Tp 7o
[ (w 2 SIN| 2 Ccos 4

—kw(wi—wz)z( w?— YZ)

0, T,
5( : )
0, T,
2 ) ¢
YT,

—kw+w;(wi—w2)28inf<7

X sin

YT o T, FIG. 3. Contour plots of the left-hand side of EQ9) (solid
oSh =~ —¢08 — lines) and Eq.(30) (broken line$ for wy=0.4, k=1.28, y=0.01,
5 A=1.0, andT,=2T,, which lead toR=1.00617. Poles of a single
’{ 'yTp) oscillator are indicated by solid circles. Thick lines correspond to
2 cos e solutions of Eqs(29) (solid) and(30) (broken. The intersections of
the solid and dotted thick lines, indicated by open circles, are thus
CO{ w+Tp) { w_Tp) } solutions of Eq(26). Although there is a single-oscillator pole with

> > =0, (27) positive A there is no positivet collective mode.

where Im([G,(s)]12)=0, (30)

y=y+2s=y+2A+2iQ. (28)  for A andQ in s=A+iQ. In the next set of figures we
present results for the three cases listed at the end of the last
section. Each case is presented in two or three figures.

In one set of figures we plot the left-hand sides of Egs.
29) and (30) as contour lines in the spacé\(w,,/wy)

Finding the complex roots of Eq27) is difficult even nu-

merically. Therefore, we first investigate the collective
modes graphically. Graphical inspection not only provides
qualitative understanding of collective modes but also help%the solid lines for Eq(29), and the broken ones for Eq
to identify suitable numerical algorithms. ' '

; . .&30)]. The parameter&=1.28, wg=0.4, y=0.01, andA
¢ Cour?llng _?Ieiween th_ostclga'toré calusiila frequte_n(_:yl shill 1.0 are used in all the figures. The thick lines indicate zero
oﬁea;cth cis.c' ator a‘:’ |(;1f|cabe 'T Iqi' )- "'S.'S Ia nw?l N contours. Therefore, the solutions we seek are the intersec-
€ ect't' atis aECO;n ed t?]r yﬁasiuf‘.gg a sw;ge ﬁ.sff'da Mions of these two sets of thick lines, indicated by open
quantiies such as and the polesi 132 using theshifted 005 The poles of single oscillators with shifted frequency
frequency. The interesting questions concern the way

) . . s Tre indicated by black solid circles. There is of course an
which t_he couphr_ngs bet_ween the sh|ftec_j OSC'll."’.‘t.OrS affect thefnfinite number of solutions but we only exhibit those that
dynam'cs_’ and, in particular, whether instabilities and SYN%a11 within the scale of our figures. Associated with each case
chronization may be caused or suppressed by. the couplmg. also a figure representing a number of trajectories as a
great_deal can be learned about thes‘? dynamics starting fr.ofUnction of time that characterize the particular situation. For
the single oscillator roots shown in Fig. 1. We thus investi-

te th led svstem in three tvpical reqini&sa sinal some of the examples we also show the associated phase-
gate ne coupled system in three typica reg'?‘ﬁ BA single space trajectories. Note that in this presentation we make a
oscillator with the giver(shifted parameters is unstablé(

<_R) () The sinal i : bl din th Y careful distinction between single oscillator and arindi-
= C).’ (2) The singie oscl atqr Is stable and in the '€JIME iqual oscillator. The former refers to an independent oscil-
where its frequency is determined by the modulation fre

) ! X . . “Tator with parameters, and y, while the latter refers to one
quency (]ER<R;); (3).The smgle.oscnlator IS stable_ and its of the oscillators in a coupled system with parameteysy,
frequency bears no simple relation to the natusdifted

oscillator frequency nor to the modulation frequency

. _ Figure 3 shows the contours and poles for eHere
(JR|=<1). The results are presented in the next section. g P o

wy=wp/2, which corresponds toR=-1.0062. Since
R<—1, the poles of single oscillators appear on the lines
V. RESULTS Q;/w,=(j—73) each as a pair because in this regime there

are two values of\ associated with eacfl. Only the poles

To find the poles associated with collective modes wefor j=1 are shown because the othéesd there are an

need to solve the coupled equations infinite number of themare off the scale of the figure. Since
. for these parametet&|>R.=1.000 77, one of each pair of
kRe([[G(s)]1)—1=0, (290  poles has a positivd. The amplitude of a single oscillator
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16 ' , ; ; ' snapshagtwhich is consistent with the divergent behavior of
‘ ] each oscillator and with the growth of the deviatitr, and
provide confirmation that there is indeed no mutual synchro-
nization nor other kinds of organized collective motion.
However, the persistent separation of solid and open circles
into separate quadrants indicates that individual oscillators
are synchronized with the external modulation. Note that any
0 5 10 15 20 25 30 individual oscillator moves clockwise, switching colors ac-
v, cordingly. However, since the phase of the modulation is
chosen at random for each oscillator, at any time, half of the
FIG. 4. Trajectories associated with Fig. 3. Thick-solid line: gscillators have positive modulation and the other half nega-
me_an(x). Thm-so_lld _I|r_1e: dewat_norAx. The inset also includes the tjye so that the pattern in preserved and an average over the
trajectoryx of an individual oscillatorbroken ling. phase givegx)=0. In this case, the effect of the coupling is
only the frequency shift21). When the coupling strength is
would therefore diverge exponentially. However, as the nuincreased at fixed,/T,, mutual synchronization will even-
merical calculations indicate, all the collective modes havdually be established. Then, the individual oscillators must
A=—1v/2 and thus the mean amplitude decays to zero delose synchronization with the modulation and consequently
spite the instability of single oscillators. parametric instability is suppressed. Therefore, the coupling
Computer simulation results for various trajectories of astabilizes the system in this parameter region.
system of 100000 oscillators with these parameters are Interesting behavior is observed when=w,, that is,
shown in Fig. 4. We see that the mean amplitude is indeethe single oscillator frequency is equal to the modulation
zero, and that the deviatiahx= \/(x?)—(x)? diverges. The frequency. This corresponds to cd&g on our list. The con-
inset shows the same two trajectories as well as the divergin@urs and poles for this case are shown in Fig. 6. SRce
trajectory of an individual oscillator. Phase-space trajectories=1.0001, the single oscillator has poles(d{=jw,. Only
of individual oscillators in the coupled system are shown inthe poles forj =0 are shown. This condition is close to para-
Fig. 5. Each circle indicates a snapshot of an individual osmetric resonance, but sindeis just belowR,=1.0031 all
cillator. Solid circles represent oscillators with positive the single oscillator modes have negativés and therefore
modulation and open circles are ones with negative modulssingle oscillator trajectories decay to the absorbing state
tion at the time of the snapshot. Only 2000 oscillators out of=0. However, one of the collective modes has a pole with
100000 are shown. Q=0 and apositive A. All the other collective modes are
The six snapshots show that with increasing time thedominated by thisj=0 unstable mode and therefore the
phase volume increasdsote the different scales in each mean amplitude diverges monotonically.

<x(t)> and Ax(t)

160

FIG. 5. Phase point snapshots
of 2000 individual oscillators in
the system associated with Figs. 3
and 4. Note the scale changes with
increasing time.

500 1000
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moving away from the origin. In the long-time limit, each
oscillator “forgets” its initial conditions and is driven by the
mean. Therefore, while the phase of each individual oscilla-
tor is determined by the phase of the modulation, the ampli-
tude in phase space is determined by the mean. Correspond-
ingly, the oscillators become “amplitude synchronized”
through the mean. Until the synchronization is well estab-
lished, the individual oscillators decay because the single
oscillator modes have negative.

As in the previous case, the phases of all single-oscillator
modes with(};#0 become synchronized with the external
modulation. The separation of solid and open circles in the
three later-time panels in Fig. 8 indicates this synchroniza-
tion. However, in contrast with the previous case, there is
now a zero-frequency mode which does not have a phase to
be synchronized. This mode is therefore not affected by the
phase of each oscillator nor by the phase of the modulation.
The zero-frequency mode shifts the center of oscillation
away fromx=0 in either the positive or the negative direc-
tion. In the presence of coupling the oscillators tend to fol-
low the mean, and therefore shift in the same direction, thus

FIG. 6. Contour plots of the left-hand side of Eq89) (solid  breaking the system symmetry. Note that the open and solid
lines) and Eq.(30) (broken lineg for wq=0.4, k=1.28, y=0.01,  circles no longer lie entirely in separate quadrants. It is pre-
A=1.0, andT, =T, which lead toR=1.0001. Poles of a single cisely the excess of open circles relative to solid ones in the
oscillator are indicated by solid circles. Thick lines correspond topositive quadrantéand vice versa in the negative quadrants
solutions of Eqs(29) (solid) and(30) (broken. The intersections of  that drives the motion of the mean further to the right. This
the s.olid- and dotted-thick lines, ind.icated by. open circles, are thu?‘node can now dominate the behavior of the system because,
soluthns of Eq(26). Although th? snngle-oscnlatc_)r pOIGS.aH have contrary to the situation of a single oscillator, each mode has
negatlveA.’ the Coue.cuve modes 'ndu.de a p.OIe with pgsm_r\(eand a differentA. In this example the effect of c&)upling is thus
Q) =0. This mode diverges exponentially without oscillation. . .

not only to shift the frequency according to Eg1), but also
e more interesting collective symmetry-breaking mono-
nic divergence of the mean amplitude and the mutual syn-
chronization of the individual oscillator amplitudes.

0.01

Q/mp
o

-0.01

. . . . _th
Computer simulation results for the associated trajectorieg,
are shown in Fig. 7. The mean decays slowly at the begin

hing and then diverges monotonically. .The dewgtpq di- Since the role of the coupling in this case is to suppress
verges as well, and does so more rapidly. The IndlV'dua{he single-oscillator modes wit);#0 and to allow the

oscillat_or traject(_)ry also diverges; in this example_, althoug'}node withQ);=0 to grow, this instability persists even for
each single oscillator would be stable, the coupling causes, J '

individual oscillators in the system to become unstable. Ir]Sery Ia}rgek. It should be noted that this collective instability
other words, each oscillator is driven by the diverging mea
on the right-hand side of E19). The phase-space trajecto-
ries in Fig. 8 show that after an initial transieffirst three

panels, where open circles are hiding most of the soli
circles individual oscillators in the coupled system oscillate

with increasing amplitude abogk), while the mean(x) is

and disappears when the coupling strengtis increased
re-entrant transition
Finally, case(3) occurs whenw, is between the two pre-
vious cases, so thaR|<1 and single oscillators are not in
parametric resonance condition. However, Fig. 9 indicates
that at least one of the collective modes has a positives
well as nonzerd). Therefore, the meafx) oscillates with
diverging amplitude. Recall that whdR|<1 the eigenfre-
quencies of single oscillators vary continuously wirhbout
do not match the frequency of the modulation nor the natural
frequency of the oscillator. Therefore, the individual syn-
chronization to the external modulation plays no role and the
phases of the oscillators are free to synchronize to one an-
0 20 40 80 80 100 120 other through a synchronization to the phase of the mean.
YT Computer simulations shown in Fig. 10 confirm the oscilla-
P tory instability, and the phase-space points of individual os-
FIG. 7. Trajectories associated with Fig. 6. Thick-solid line: Cillators shown in Fig. 11 testify to this phase synchroniza-
mean(x). Thin-solid line: deviatiomAx. The inset also includes the tion. Although solid and open circles again form separate
trajectoryx of an individual oscillatobroken line. groups, the entire ring of open and solid circles alternates

16

—_
n
T

IS

<x(t)> and Ax(t)
o

o
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between the positive quadrants and the negative quadrants
Therefore, all oscillators are mutually synchronized.

In the next section we collect the results for the coupled
system into a phase diagram indicating regions of stability g2
and instability of different types.

VI. PHASE DIAGRAM

A convenient way to summarize observations and charac:
terize the instabilities systematically is in the form of appro- iﬂo
priate “phase diagrams” in which the stability boundaries &
are presented as a function of the system parameters. Sinc
there are many parameters in this model the full diagram
would involve a many-dimensional representation. Instead,
we present the diagram in the two-dimensional space
(A, T,/Ty) that characterizes the external modulation for a
given set of oscillator parametess, k, andy.

Figure 12 shows the phase diagram for the system param
eters indicated in the caption. The colored regions denote
unstable regimes, each color coding a particular type of in-
stability. The yellow region denotes parameter ranges where
the individual oscillators are unstable but the mean ampli-
tude for the coupled system is zettincoherent unstable
oscillations”). This region is associated with divergencies of
the first termin Eq. (22) but not of the second term. In this
case the distinction between “single oscillators” and “indi-

-0.2

6
] FIG. 8. Phase point snapshots
of 2000 individual oscillators in
. the system associated with Figs. 6
. and 7. Note the scale changes with
] increasing time.
40
300

FIG. 9. Contour plots of the left-hand side of E¢29) (solid
lines) and Eq.(30) (broken lines for wy=0.4, k=1.28, y=0.01,
A=1.0, andT,=4T,/3, which lead toR=—0.01037. Poles of a
single oscillator are indicated by solid circles. Thick lines corre-

vidual oscillators” becomes moot, since the right-hand sidespong to solutions of Eq$29) (solid) and (30) (broken. The inter-

of Eg. (19) plays no role. Oscillatory instabilities of the mean gections of the solid- and dotted-thick lines, indicated by open
with positive A and nonzerd} are denoted in pink*un-  circles, are thus solutions of E6). Although the single-oscillator
stable spiralsj. Blue regions (*saddle nodes] denote poles all have negativa, the collective modes include a pole with
monotonic divergence of the mean with one positiveind  positive A and nonzero. This mode diverges exponentially with

zero (). Green regions(“unstable nodesj also denote oscillation.
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. BENA et al.

<x(t)> and Ax(t)

-10 . '
0 15 20 25 30

FIG. 10. Trajectories associated with Fig. 9. Thick-solid line:
mean(x). Thin-solid line: deviatiomAx. The inset also includes the
trajectoryx of an individual oscillatorbroken ling.

monotonic instabilities but with two positive’s and zerd}. ° '
These latter three instabilities involve divergencies of theAc=3.51, whereA bifurcates to two positive valuggn un-
second ternin Eq. (22). The first term may diverge as well, stable node, green regipwia a saddle-node bifurcation. The
i.e., the A’s of the single-oscillator and of the collective oscillatory instability thus switches to a monotonic instability
mode may be simultaneously positive. When this is the cas@t this point.
we always observe th& of the collective mode to be larger
than that of the single-oscillator modes; the collective modeshown in pane{c). It begins with a stable spiral and switches
therefore dominates the dynamics. In establishing the termi0 @ stable node a&.=2.91. With a further increase in am-
nology for various instabilities we have loosely followed the Plitude the system undergoes a transition to a saddle node
usual conventions of nonlinear dynamics.
We can associate each specific case discussed in the pre-A more complex transition pattern is shown in patal
vious section with a location on this sort of phase diagramin which the character of the instability changes several
Thus the trajectories in Fig. 4 are in a yellow regime oftimes along thel ,=3.9T line. As usual, at low amplitudes
incoherent oscillatory divergence of each oscillator. Those ofhere is a stable spiral. At the poikt,=2.99 the system
Fig. 7 are in a blue or green regime of monotonic divergencénoves into an unstable spirgbink region. The unstable
of the mean, and those of Fig. 10 are in the pink regime ofpiral becomes an unstable nagery small green region in
unstable spirals.
It is helpful to follow the behavior of the oscillator system = 3.30. A further transition to a saddle no@i@ue) occurs at
across the various collective instability boundaries by conA!=3.4.
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sidering the signs of) and A as one increases the modula-
tion amplitudeA (thus moving upward vertically along the
phase diagrainfor different fixed values of the modulation
periodT,. Various associated bifurcation diagrams present-
ing A (solid lineg and() (dotted line$ as a function ofA are
shown in Fig. 13. Consider first the periog,=0.75T,
shown in panela). As A increases\ changes sign, becom-
ing positive atA.=1.14 whileQ) remains positive. This rep-
resents a transition from a stable spiral to an unstable spiral
(pink region in Fig. 12

Consider next the periofi,=2.04T,, shown in pane(b).
Here A becomes positive a.=3.06 while{) remains posi-
tive. This, therefore, again marks a transition from a stable
spiral to an unstable spirdpink region. However, with a
further increase in amplitud€) eventually goes to zero at

A different transition pattern is seen whén,=3.0T,

(blue region at A, =3.04.

the phase diagramvia a saddle-node bifurcation &

;

-200 -100 O

' I
50T,

FIG. 11. Phase point snapshots
of 2000 individual oscillators in

the system associated with Figs. 9
and 10. Note the scale changes
with increasing time.
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FIG. 12. (Color) Phase diagram for the mean-field model with
oscillator parameters,= 0.4, k=1.28, andy=0.16. White regions
denote stable regimes. The various instability regimes are coIoE

-]

i Saddle points
| . Unstable nodes

Incoherent oscillation

| Unstable spirals
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We note that the phase diagram just described is quite rich
and intricate. Instabilities cover even larger regions in pa-
rameter space, and do so with increasing intricacy, as the
dampingy decreases. A typical phase diagram for low damp-
ing is shown in Fig. 14.

Increasing coupling or damping also leads to greater sta-
bility; the stability boundaries move “up” in the phase dia-
gram wheny and/ork are increased, indicating that a stron-
ger modulation is needed to cause unstable behavior.
Furthermore, the oscillatory instabilities eventually disappear
with increasing modulation period,, leaving only the
monotonic collective instabilities. However, it should be
noted that the monotonic instabilities for sufficiently large
modulation period are simply due to an inversion of the ef-
fective harmonic potential and hence not due to any collec-
tive effects. That there is an inversion can already be sus-
pected from the fact that at least one of the shifted
frequencies in Eq(21) becomes imaginary.

An analysis of the system for lardg, is fairly simple and
instructive in elucidating the source of instabilities more ex-
plicitly. In the adiabatic limitT,—c the single oscillator
equencies are frozen in time, half of them at frequency

coded as indicated. The characteristic behavior in each instabilitw . , and the other half at frequenay_ , where
regime is described in the text.

A
T T T
T=075T, . ......
0.8 bowvemeeaaa i Kevonn |
[
o2t i
o
<
O /
0.5 1 15 2 25
A
C

A and Q

B
0.3 — .
0.2
a0 | .
2
o .-
< * /
or : FIG. 13. Bifurcation diagrams
L . / L . showing A (solid lineg and Q
2 3 4 5 (dotted line$ with changing
A modulation amplitude for various
values of the modulation period.
Panel (@ T,/T,=0.75 (b
D o1 T,/T=2.04,(c) T,/T,=3.0, and
e R ' (d) Tp/T¢=3.9. The behavior im-
T=3.9T, plied by thesg .diagrams is dis-
cussed in detail in the text.
0.1 | -
c
2 005 | -
o
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o
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~ k . k :
wi=wo\/1+—*A. (31) X2=—w3[1+§2(t)]xz—§(xz—xl)—yxz. (34)
- ZwS
The mean-field equations of motion then are The piecewise-constant periodic modulations of the two os-

cillators differ by a constant phagg so that we can write
. . ~ k Eq. (2) for thi
30+ 7R+ D204 =5 (0 9 (2)forhis case as
&1 () =Asgrisin(wpt)],

. ey Kk
(- ¥ - T 0 () -=5(x)+, (32) £(1)=Asgrisin(wyt+6)]. (35)

where(- - -). indicates an average over the oscillators with\ya \want to investigate whether the mean positioa(x;

the frequencyw.., respectively. This system can be diago- +x,)/2 reproduces the macroscopic behavior of the mean in
nalized analytically in full generality. The eigenmodes of thethe globally coupled model.

coupled system are characterized by the complex frequencies |n the absence of parametric modulations, a dimer has two
eigenmodes: symmetrifor mutually synchronizedx,(t)

)2 =X,(t)] and antisymmetridor mutually antisynchronized

X1(t)=—x,(t)] with the former having a lower energy.

0 0 2mg When the parametric modulations are applied, these modes
are in general no longer the eigenmodes of the dif@ecept
y K 52 2 for 6=0). However, the motions can be expressed as linear
Q=i -ty \[/1+—— ———\/AZ+| — combinations of these modes and, in particular, the behavior
- 2 205 4w 208 of the mean of interest is reflected in the excitation of the

(33 symmetric mode by the parametric modulations.

In previous work[9] we focused on the behavior of the
ystem as a function of the paramet&sT ,=27/w,, g,
A 3 v,k, and 6. Among our conclusions is the fact that the re-
bilities.” The former refer to the frgquencgs;) while the gions of parametric instability are sensitively dependent on
latter refer to Eq.(33). While the single oscnlatols would the phase differenc@. Of particular interest for the analysis
remain stable untilA=1+k/2w§ (at which pointw_ be- in this paper is the behavior of the antiphased dimer (
comes imaginarythe chain becomes destabilized wh&n = 7). This particular dimer captures many of the features of
reaches the valug/1+ k/woz, where the imaginary part of the mean-field coupled system with unexpected accuracy.
0? becomes negativmote that the transition point is inde- This assertion, which was originally based on our previous
pendent ofy). Beyond that the system is in a saddle-point/comparison of the regions of parametric resonaf®e is
unstable-node instability region of nonoscillatory exponen+einforced when the dimer bifurcation diagrams are further
tial growth due to potential inversion, which was the primaryrefined to take into account details of qualitatively different
reason of instability in the previous woflg]. In the phase trajectories, as we shall see below.
diagrams Figs. 12 and 14 this translates to a stability bound- For the piecewise constant parametric modulat&® the
ary that settles ah=3 asT,—o. Note that in particular the ~solution of the dimer problem is formally simple. The stabil-
boundaryA=\/1+k/w? remains valid in the overdamped ity analysis is based on the eigenvalugs;} (|\,]
limit y— o0, consistent with our early worf37]. =|\o|=|\3|=|N\y4|) of the Floquet operatdi9]; parametric

The origin of the instabilities presented as narrow blueinstability occurs wher|\;|>1. To characterize different
and pink tongues in the lowregion of Fig. 14 is entirely types of parametric instability we present bifurcation dia-
different from the mechanism based on the temporarily ingrams using the same color conventions as in the phase dia-
verted potential and unique to the underdamped case. In tf#ams of the mean-field modéFigs. 12 and 14 If Im\,
following sections we will explain the cause of these insta-# 0, then clearly one has an oscillatory instabiligink re-

This case clearly illustrates the distinction between what we;
have called “single oscillator instabilities” and “chain insta-

bilities using a dimer of parametric oscillators. gions. If Im\;=0, the instability can be either oscillatory
or monotonic. Using the eigenvector corresponding tas
VIl. COMPARISON WITH PARAMETRIC OSCILLATOR an initial condition, we have determined whether or rot
DIMER crosses zero during one period of the modulation. If it does,

the point is assigned to a pink region. If it does not, the
In a recent papef9] we reported results for a model of second largest eigenvalue, will determine whether the
two coupled oscillators subject to parametric modulationsyoint belongs to a blue|X,|=<1) or green [\,|>1) region.
with a phase differencé. The equations of motion for this The pink, blue, and green regions are all caused by the in-

system are just thdl=2 version of Eq(1): stability of the symmetric mode. The yellow region, on the
other hand, requires the instability of the antisymmetric
o k modeandthe decay of the symmetric mode. However, such

X1 == ogl 1+ &0 =5 (a=X0) = yxy, a purely antisynchronous solution is forbidden in the
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R - | —— P B E——

case[9], which means that yellow regions cannot appear at 2 3 4 5 6
all in the antiphased dim¢B8]. TT

Results for relatively large damping/{w,=0.4) are pre- Pk
sented in the bifurcation diagram of Fig. 15, which should be , , ) )
compared to Fig. 12. The Si?nilarity begtween the two figures FIG. 16. (Color) Phase_ dlggram for the antiphased dimer with
is remarkable. Despite some extra green regions and the a@—e same parameters as in Fig. 14.
sence of the yellow tongue, one notices that the principal
resonance regions of the dimer bifurcation diagram (1/

=T,/T,=3/2) fits the same region in the mean-field model

TE"'; Tk

FIG. 14. (Color) Phase diagram for the mean-field model with
oscillator parameterey=0.4, k=1.28, andy=0.01.

Imost exactly. The green regions connected to pink regions
in the mean-field model are also well mimicked by the dimer.

Figure 16 illustrates the bifurcation diagram for a small
value of damping {/wy=0.01). Comparison with Fig. 14
shows that although the agreement between the two models
is not as good as for higher values gfw, the basic struc-
ture and similarities of the phase diagram and the bifurcation
diagram are nonetheless preserved. The main differences are
the complex pink patterns in regiof,/T,= 3 of the dimer.
Also, as in the high-gamma case, the dimer has larger green
regions than the mean-field model, suggesting that the cou-
pling in the latter plays a stronger role in stabilizing the
system. But in spite of these differences and most impor-
tantly, the principal resonance region (#Z,/T,=<3/2)
again shows an almost perfect match.

In the dimer, competition between two kinds of synchro-
nization plays a key role in the destabilization of the system:
on the one hand, synchronization between each oscillator and
its modulation, on the other hand, synchronization between
the two oscillators. This competition is essentially governed
by the values oA andk. Larger values oA favor the former,
while larger values ok favor the latter. When the coupling is
weak, the energy difference between symmetric and antisym-
I metric modes is small and both can be excited. In this case,
0 : s SR S s e the individual oscillators are nearly independent and the sta-

bility diagram of the dimer is similar to that of a single
0 1 2 3 4 5 6 . ; .
oscillator. As the coupling strength increases, the energy of
T,Jf"T k antisymmetric oscillations increases until eventually only in-
phase oscillations are energetically accessible. This mutually

FIG. 15. (Color) Bifurcation diagram for the antiphased dimer synchronized motion brings the system out of synchroniza-

with the same parameters as in Fig. 12. tion with the modulation.

=
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20 : ' frequency mode of the two oscillators can be mutually syn-
chronized, which produces a monotonic growth of the mean.
Again, this instability does not have strong dependence on
the coupling strength and persists even for latge

The good agreement between the dimer and mean-field
models is not merely a coincidence. Consider one particular
test oscillator in the globally coupled system. Now define the
group of its “friends” as the set of all oscillators whose
modulation phase lies within an interval af#/2 around its
phase. The group of its “enemies” comprises the set of all
other oscillators, whose average modulation phase is oppo-
site to that of the test oscillator. When the oscillators are
synchronized to the modulations, “friends” are also mutually
synchronized to one another, regardless of the coupling.
When the coupling increases, there is a competition between
two kinds of synchronization: synchronization between the
enemies and friends, and synchronization with their own
modulations. This situation is similar to the antiphased

dimer, which helps explain the remarkable similarity be-
tween the instability diagrams of the dimer and mean-field
/ models. Notice that this description beconm®sactin the

ﬁ quenched limit, where the friends and enemies can be repre-

sented, respectively, bix) . and(x)_. From this perspec-

e tive, the choiced= = for the dimer appears as a natural one,
' being not only a particularly symmetric case in the general
dimer problem[9] but also the effective phase difference
between the two groups.

VIIl. DISCUSSION AND CONCLUSION

We have investigated collective instabilities of an infinite

FIG. 17. (Colon Upper panel: bifurcation diagram for the an- set of globally coupled linear oscillators driven by time-
tiphased dimer in theT(,/Ty,k) plane forA=0.9, y=0.01, and  periodic piecewise linear modulations with random initial
wo=0.4, using the same color convention as in Fig. 12. Lowerphases. These instabilities occur in certain parameter regimes
panel:R[Eq. (12)] as a function ofl, /T, ; light gray areas denote (and not in others and we have produced phase diagrams as
R<—1 and dark gray area®>1. a function of system parameters indicating detailed stability

boundaries and types of instabilities.

The stability diagram of the antiphased dimer in the Instabilities arise from phase synchronizatiGithough
(Tp/Ty,k) plane shown in Fig. 17 illustrates the above story.not all phase synchronization leads to instabjliayd there
First, consideiT,/T,~0.5, where a single oscillator is in the are two possible competing synchronization mechanisms:
main parametric instability regionR<—1, the first light synchronization of individual oscillators with the external
gray region in the lower panel of Fig. L7For smallk, the = modulation(“modulation synchronizationf and mutual syn-
dimer is also unstable and still dominated by the antisymmetehronization between oscillatorg“mutual synchroniza-
ric mode (even though the symmetric moadannotdisap- tion”). In the absence of the external modulation, only mu-
pear, as mentioned abgvéHowever, ak increases, excita- tual synchronization is possible. On the other hand, when the
tion of the antisymmetric mode becomes more difficult andcoupling is absent, a single oscillator in parametric resonance
the symmetric mode becomes dominant, which stabilizes theondition (R|>1) synchronizes with the external modula-
system. When 05T,/T,=1 a single oscillator is stable tion. Note that parametric instability of a single oscillator
(|R|<1, between the dark and light gray regipng this  requires modulation synchronization, and in genera}in-
parameter region, individual oscillators do not have to bestability requires an external modulation to pump energy into
synchronous to the modulatideee Fig. 1L They are free to the system.
become mutually synchronized and the system becomes un- In the presence of external modulation with random
stable above a certain coupling strength. Since the symmetrjghasesand coupling, even in a parameter regime where ei-
mode dominates, this instability persists even for lakge ther alone would lead to synchronization, it is not possible
Finally, whenT,/T,~1, the single oscillator is again in an for both types of synchronization to occur simultaneously.
unstable regionR>1, the dark gray regiognAlthough the Intuition might lead to the conclusion that sufficiently strong
situation is similar to the first case, the individual oscillatorscoupling would favor mutual synchronization thereby de-
now have a zero-frequency mode, which is not subject tstroying modulation synchronizatiofand hence stabilizing
synchronization with the modulation. Therefore, the zerothe system Intuition might also lead one to conclude that

036611-14



COLLECTIVE BEHAVIOR OF PARAMETRIC OSCILLATORS PHYSICAL REVIEW B5 036611

weak coupling necessarily results in a dominance of modueigenmodes: symmetric or mutually synchronizledver en-
lation synchronization and hence to instabilities of individualergy), and antisymmetric or mutually antisynchronized
oscillators not related to one another. However, we havéhigher energy In the presence of time-periodic piecewise
shown that this intuitive picture would be incomplete be-linear modulations, which are exactly out of phase on the
cause it does not account for the existencealfectivepara-  two coupled oscillators{= ), a competition between these
metric instabilities due to the coupling and entirely absent inwo modes(which are no longer eigenmodesnsues. This
a single parametric oscillator. Here we discuss our results igompetition is in many ways similar to the competition be-
terms of the two competing synchronization mechanisms. tween modulation synchronization and mutual synchroniza-
In a globally coupled model, the individual oscillators aretion described for the globally coupled system, and here
coupled to the meakx), and thus mutual synchronization again it determines the stability of a dimer. When the cou-
can be thought of as synchronization between the individualgling is weak, the energy difference between symmetric and
and the mean. Note that there is no mutual synchronizatiogntisymmetric modes is small and both can be excited. In
when(x)=0 (because if there were, the mean would not bethis case, the individual oscillators are nearly independent
zero. and the stability diagram of the dimer is similar to that of a
Now suppose we are in the parameter regiRe —1  single oscillator. The synchronization of each oscillator with
where individual uncoupled oscillators are parametricallyits modulation dominates the behavior, and instabilities thus
unstable. When these oscillators are coupled, one can imagepresent boundless excitation of the antisymmetric mode.
ine one of two possible scenarios. If the coupling leads tawith increasing coupling the energy of the antisymmetric
mutual synchronization, the individual oscillators can nomode increases until it is too high to be excited. Only the
longer be synchronous with the external modulation andymmetric mode can be excited, i.e., the oscillators become
therefore the coupled system has been stabilized by the corhutually synchronized. The synchronization with the modu-
pling. On the other hand, if the coupling does not lead toation is thus destroyed and the associated parametric insta-
mutual synchronization but instead there is modulation synbility is suppressed.
chronization, then the oscillators may be individually un-  Although the similarity between the dimer and globally
stable but with(x)=0. Our results show that the second coupled models is remarkable, they also exhibit various im-
scenario is the correct one for sufficiently small value,of portant differences. In the dimer model, mutual synchroniza-
as shown in the yellow regions of incoherent instability intion involves only two oscillators. On the other hand, in the
Fig. 14. Modulation synchronization has “won.” On the global coupling model an oscillator must be synchronous
other hand, there is a coupling energy cost to the lack ofvith essentially all others to create collective motion. There-
mutual synchronization, which slows down the instability of fore, in the thermodynamic limil—«, the collective insta-
individual oscillators relative to their uncoupled amplitude bility in the globally coupled system is a genuine phase tran-
growth. For largerk the first scenario takes over, and the sition, whereas the instabilities in the dimer are simple
yellow region disappears above a certain value of the coubifurcations. Nevertheless, the stability boundaries and dy-
pling. namics of the mean amplitudes in both cases show impres-
Next suppose that we are in the other parametric rescsive similarities.
nance regimék>1. The situation is in some ways similarto  An interesting case that is in some sense “in between”
the previous case but there is a major difference: there is nothese two and that promises interesting new features is that
a mode, thg =0 mode, whose frequency is zero and there-of a one-dimensional chain of oscillators with nearest-
fore (contrary to the other modesieed not(indeed canndgt  neighbor coupling. When the phase of the modulations of the
synchronize to the modulation. The amplitude of this modeoscillators in the chain is chosen at random, there is a sig-
can grow monotonically in either direction, and the couplingnificant chance that both neighbors of any given oscillator
among oscillators leads to a tendency for the zero-frequencyave a phase “similar{suitably defined within some range
mode of all the individual oscillators to move in the sameto its phase. In this case, the middle oscillator can easily
direction. Thus while the growth rate of the*0 modes is establish simultaneously both mutual synchronization with
reduced by coupling due to the lack of mutual synchronizaits neighbors and synchronization with the modulation.
tion, that of thej =0 mode is enhanced because the couplingrherefore, locally this oscillator could become unstable. On
fosters mutual synchronization of this mode. the other hand, if the neighbors of a given oscillator are
If the individual oscillators are not in regimes of paramet- modulated with phases opposite to its own modulation phase,
ric instability (|R|<1), there is no synchronization to the that oscillator may be stabilized. Therefore, the spatial pat-
modulation and the oscillators are free to synchronize withtern of the modulation phase is expected to play an important
one another. Mutual synchronization is thus established anmle and instability may become wavelength dependent, sug-
the mean(x) becomes oscillatory with the same frequency aggesting spatial pattern formation. Such patterns can of course
that of individual oscillators in the coupled system. The os-not be observed in either a dimer or a globally coupled
cillatory mean drives the system into unstable states via thenodel. A detailed analysis of such systems will be presented
mean-field coupling. elsewherd 33].
We have found that the instability bifurcation diagram for  Note added in proofRecently, we have completed an ana-
a simple antiphased dimer model reproduces the phase dibgic solution of the antiphased dimer with which we are able
gram for the mean-field system with surprising accuracy. to adjust some of the features of the numerically computed
In the absence of external modulation, a dimer has twdifurcation diagram$39].
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(A5)

T
APPENDIX: TIME-EVOLUTION OPERATOR OF A o, for te 0,5— T).
SINGLE PARAMETRIC OSCILLATOR
: . . w(t)= (A6)
We solve the equation of motiof6) using a standard w_ for te E—T,T_T ;
Floquet method. The damping term can be eliminated by
introducing a new variablg defined as w, for te[T—7T],
x(t)=e" "?y(t). (A1)  while for 7e[T/2,T],
Equation(6) becomes w_ for te[0,T—17),
- 3T
j+ w2y =0 (A2) w. for te T—T,——T),
w(t)= 2 (A7)
with the time-dependent frequency 3T
2 2 2 w_ for te 7_T1T,
w*()=wg[1+£,(1)]— /4. (A3)

The solution of the undamped frequency-modulated oscillawhere thew. are defined in Eq(13). During each constant

tor (A2) can be expressed in terms of the time-evolutionfrequency time window the system evolves according to the

operator fromt=0 tot,g,(t), as propagator of a simple harmonic oscillator of the appropriate
frequency. This propagator is well known:

y(t) y(0) , 1
= o (t—t —_— wi(t—t’
(- )—gf(t)< ) (M) )= cogw.(t—t")] o, S (t=t")]

y(t) y(0)
. . . —ow.sifo.(t-t")] codw.(t—t')]
For a piecewise constant modulation such as @g. the (A8)
explicit form of the time-evolution operator is known. Using

its periodicity and composition property we note thattif The full operatorg,(t) can be expressed as products of the

=nT+u then g- . For the casé€A6),

( T

g, (1,0 for te O,E—r),
B T T ¢ T
g,(t)=¢ g_ t,E—T O+ E—T,O or te E—T,T—T , (A9)
T T

g+(t,T—7')g(T—T,E—T)ng(E—T,O) for te[T—7,T],

\

and for the cas€A7),

g_(t,0 for te[0,T—17),
(t,T—7g_(T—70) for te|T— 3T—)
RO A A (A10

3T 3T
7—7‘,T—7’)g_(T—7',0) for te 7—7‘,T

3T
g- tv7_7 g+
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These expressions can be further simplifed by using time-

translation symmetry, g-(t+u,t’+u)=g(t,t')=g(t
—1’/,0). We can thus simplify our notation and gpt(t,0)
=g (t) with no loss of information.

In particular, fort=T

9.(T)=S,0¢(T)S;* (A11)
where
B T T B T
gO(T)=g_(§ g+ 5), S.=g.(7), for re O’E
T T
go(T)Eg+(§>g_<§),
_ T T
ST=g_(T— E)' for e E’T . (A12)

Since onlyS, depends orr, the trace, determinant, and ei-
genvalues ofy,(T) do not depend on the random phase.

Transforming back to the original variables, we finally
obtain the time-evolution operator faft) andx(t)

GAt)=e "7g(1). (A13)

Next we derive an explicit expresion for the Laplace

transform of the evolution operator with the help of Eg.
(A5):

PHYSICAL REVIEW B5 036611

G,(s)= f:e_s‘GT(t)dt

-3 (e 6, m" | e *6 wat
m=0 0
.

:[I—e’STGT(T)]’lf e SIG (t)dt
0

1 T
Ee*VT’Z[e<S+V>T| —GT(T)]f e S'G(t)dt
0

Y
cosr{ s+§ T}—R
(A14)
wherel is an identity matrix and
1
R=5e""2Tr Go(T)
1
=5Trgo(T)
- o, T w_T w2++w2 o, T
TN T2 20k SN 2
[T
X sin T) (A15)

The geometric series in EGA14) converges only when

e STGy(T)|<1. (A16)
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