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Collective behavior of parametric oscillators
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We revisit the mean-field model of globally and harmonically coupled parametric oscillators subject to
periodic block pulses with initially random phases. The phase diagram of regions of collective parametric
instability is presented, as is a detailed characterization of the motions underlying these instabilities. This
presentation includes regimes not identified in earlier work@I. Bena and C. Van den Broeck, Europhys. Lett.
48, 498 ~1999!#. In addition to the familiar parametric instability of individual oscillators, two kinds of
collective instabilities are identified. In one the mean amplitude diverges monotonically while in the other the
divergence is oscillatory. The frequencies of collective oscillatory instabilities in general bear no simple
relation to the eigenfrequencies of the individual oscillators nor to the frequency of the external modulation.
Numerical simulations show that systems with only nearest-neighbor coupling have collective instabilities
similar to those of the mean-field model. Many of the mean-field results are already apparent in a simple dimer
@M. Copelli and K. Lindenberg, Phys. Rev. E63, 036605~2001!#.
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I. INTRODUCTION

Over the past two decades there has been an increa
interest in the nonequilibrium behavior of spatially extend
systems modeled as ensembles of simple dynamical u
~often taken to be oscillators or pendula! coupled to each
other. The collective evolution of such discrete coupled s
tems often exhibits qualitatively different behavior from th
of the single units. More specifically, the collective evoluti
may exhibit phase and/or amplitude synchronization effe
that cannot be explained by the behavior of a single u
These synchronization effects are of interest in a huge a
of applications far too vast to reference in full generality.

The evolution of large coupled systems away from eq
librium is difficult to study either analytically or numerically
Although a great deal of progress on both fronts has b
made as numerical resources and analytical expertise
evolved, it is still true that ‘‘broadly speaking, there a
@only# two ways of mounting an attack on systems consist
of N oscillators@1#.’’ One is to consider a relatively sma
number of coupled units (N52 or 3 a decade ago, perhap
one or two orders of magnitude more since then! hoping that
these smaller systems foreshadow the collective effects
might be seen in a very large system. The other approac
to consider the number of unitsN to be very large at the
outset, but, recognizing that numerical and analytical
proaches are scant in this limit, to analyze such large syst

*Present address: Instituto de Fı´sica, Universidade Federal Flu
minense, Av. Litoraˆnea, s/n - Boa Viagem, 24210-340 Nitero´i, RJ,
Brazil.
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in high dimensions, i.e., as mean-field problems. This of
allows analytic and/or relatively simple numerical solutio
‘‘High dimensionality’’ is achieved throughglobal coupling,
that is, by assuming that each element in the system
coupled to all other elements. Here one hopes that collec
effects observed in high-dimensional systems mimic th
observed in extended systems with more realistic short-ra
interactions ~lower-dimensional large systems!. While a
mean-field analysis usually does not capture spatial dep
dencies~although it has recently been pointed out that g
bally coupled arrays with interactions transmitted at fin
speeds do convey spatial as well as temporal informa
@2#!, it often does capture the correct time evolution a
transitions to synchronous behavior.

Globally coupled systems are certainly not to be view
only as approximations to more realistic systems. They
also interesting in their own right because they can be~and,
in some cases, have been! experimentally realized in a vari
ety of contexts. Some examples include arrays of mutu
coupledp2n diode junctions@1#, globally coupled Joseph
son junctions@3#, two-dimensional arrays of Josephson jun
tions shown to be equivalent to an array of nonidentic
globally, and nonuniformly coupled oscillators@4#, globally
coupled laser arrays@5#, and globally coupled chaotic elec
trochemical oscillators@6#. Wanget al. @6# also point out that
the influence of global coupling on spatiotemporal patte
formation may be important in a number of biological a
chemical reacting systems.

There is of course an enormous variety of coupled os
lator systems, the variety arising from the nature of the
cillators, the way in which they are coupled, and the exter
forces that drive the system out of equilibrium. A speci
©2002 The American Physical Society11-1



lle

le
c
l
in
in
ffi
ul
e
n
t

o

tu
,
e
to
ric
e

e
a-
n
e
r

r
th
ex
la-
ic
m

ee
x
en
th
r

-

of

e
t
a

s
la
e

re-

e
di-
er-
oni-
e
n-
es

he
the
ar-
to

nd

m-
rgo
-
to

he
ar-
a
-

n
ic
nt

-
ed
d

s-
tter
ore
be
an
al
ni-

en-
ling
rt of
ng

del
that
ts of
one-
tric
For
ra-

ion
ee-

the
nts

I. BENA et al. PHYSICAL REVIEW E 65 036611
system that has attracted a great deal of attention is a co
tion of a large number of coupled limit-cycle~phase! oscil-
lators with randomly distributed natural frequencies@7#. This
system has been invoked as a simple model for coup
chemical, biological, or physical oscillators. A most spe
tacular collective phenomenon discovered with this mode
a synchronization phase transition involving mutual entra
ment of the oscillators through frequency and phase lock
However, in this model the coupling is assumed to be su
ciently weak that the amplitude is not affected. As a res
the model cannot describe amplitude instabilities. A syst
that does exhibit a rich variety of amplitude instabilities co
sists of coupled parametric oscillators and is the subjec
this paper@8,9#.

There is an enormous literature on single parametric
cillators with periodically@10# or stochastically@11# modu-
lated frequencies, perhaps also subject to thermal fluc
tions @12#. A wide variety of linear and nonlinear
deterministic and stochastic, systems that exhibit energ
instabilities can be modeled as simple parametric oscilla
undergoing the amplitude instability known as ‘‘paramet
resonance.’’ Examples include mechanical systems wh
such resonances were first identified@10,13–15#, elementary
particles @16#, quantum dots@17#, astrophysics@18#, fluid
mechanics@19#, plasma physics@20#, electronic networks
@21#, superconducting and laser devices@22# and laser beams
in nonlinear waveguides@23#, biomechanics@24#, and even
medicine@25#. Connections with chaotic systems have be
suggested recently@26#. The simplest and perhaps most f
miliar example of parametric resonance occurs in a harmo
oscillator whose frequency varies periodically with tim
@10,13–15,23#. For certain ranges of modulation paramete
~frequency, amplitude! the oscillator is unstable while fo
others it is stable. Even for this seemingly simple system
stability boundary diagram is already quite rich and compl

Although the notion of coupling such parametric oscil
tors arises naturally in a number of the contexts in wh
single parametric oscillators have provided a rich pheno
enology, work on coupled parametric oscillators has b
hampered by the complexity of the problem. With few e
ceptions@27# work previous to our own seems to have be
limited to a global parametric modulation that acts on all
oscillators in exactly the same way. Examples include pa
metrically pumped electrons in a Penning trap@28#, para-
metrically driven Sine-Gordon systems@29,30#, pattern for-
mation under global resonant forcing@31#, time-periodic
loading of an elastic system@14#, and nonlinear parametri
cally driven lattices@32#.

In our own work we follow the path described earlier
going to the high-dimensional~mean-field! case. Not only do
we find that a detailedanalytic theory is feasible in the
mean-field approximation, but that this analysis is possibl
the presence of phase disorder. To our knowledge this is
first model with spatially random phase modulation th
leads to collective motion.

In a previous paper@8# we introduced the model, which
consists of an infinite set of globally coupled harmonic o
cillators subject to time-periodic piecewise-constant modu
tions with randomly distributed quenched phas
03661
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~‘‘quenched’’ in this context means that the phase of the f
quency modulation of each oscillator is set at timet50 and
then remains unchanged!. In @8# we showed the appearanc
of a collective parametric instability: even though each in
vidual oscillator is in its stable parameter domain, the av
age amplitude of the coupled system may diverge monot
cally. This collective instability occurs when the amplitud
of parametric modulation is sufficiently large that the insta
taneous frequency of the oscillators temporarily becom
imaginary. The instability is re-entrant with respect to t
strength of the coupling of the oscillators and persists in
overdamped limit. In the presence of a saturating nonline
ity @33#, it generates a pitchfork bifurcation, corresponding
a genuine second-order nonequilibrium phase transition~im-
plying the spontaneous breaking of spatial symmetry a
ergodicity!.

The purpose of this paper is to show thatin additionto the
instability described by monotonic growth of the mean a
plitude, the globally coupled infinite system can also unde
transitions to a collective oscillatory instability with an in
trinsic frequency that is not connected in a simple way
either the frequencies of the individual oscillators or to t
frequency of the external modulation. A saturating nonline
ity turns this instability into a Hopf bifurcation generating
limit cycle with the concomitant breaking of temporal sym
metry and ergodicity@33#. Furthermore, we show that eve
when the modulation amplitude is very small, monoton
growth can still occur but via a mechanism entirely differe
from that identified previously.

In trying to explain these collective behaviors, one is im
pressed by the similarities with a simple model introduc
earlier @9# of two coupled parametric oscillators modulate
periodically with a fixed phase differenceu between their
modulations. The behavior of this dimer whenu5p is re-
markably similar to that of the globally coupled infinite sy
tem, and the roots of the instabilities observed in the la
are already present in this simple system. At an even m
primary level the seeds of these collective instabilities can
traced back to behaviors of single oscillators. In general
individual oscillator tends to synchronize with the extern
modulation whereas the coupling induces mutual synchro
zation between oscillators. These two synchronization t
dencies cannot always be satisfied simultaneously. Coup
between oscillators can then be seen as leading to a so
‘‘selection’’ among the single oscillator modes, enhanci
some ~destabilization! and smoothing out others~stabiliza-
tion!. The close relationship between the mean-field mo
and the very small systems also lead to the expectation
the mean-field system may also describe certain aspec
lower-dimensional large systems such as, for example, a
dimensional chain of nearest-neighbor-coupled parame
oscillators. We have found that this is indeed the case.
example, in a one-dimensional array of overdamped pa
metric oscillators one finds a nonequilibrium phase transit
that is reentrant with respect to spatial coupling, in agr
ment with the prediction of the mean-field theory@34#. These
correspondencies lend further credence to the value of
information in the mean-field model beyond the constrai
of the specific model.
1-2
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COLLECTIVE BEHAVIOR OF PARAMETRIC OSCILLATORS PHYSICAL REVIEW E65 036611
In Sec. II we introduce the globally coupled model. Se
tion III is a review of the properties of a single linear par
metric oscillator. Section IV establishes the mathemat
setting for the analysis of the globally coupled system a
mean-field problem, and typical numerical results are p
sented in Sec. V. In Sec. VI we collect these results in
form of a phase diagram that characterizes the behavio
the coupled system as the modulation parameters are va
Here we discuss the boundaries between stable and uns
behavior and also between different instability regimes. S
tion VII offers a comparison between the mean-field syst
and the dimer. Conclusions and a summary are presente
Sec. VIII.

II. THE BASIC LINEAR MODEL

Consider a set ofN unit mass linear parametric oscillato
with displacements$xi%, each with a periodically modulate
frequency and all harmonically coupled to one another. H
we restrict our analysis to coupledlinear parametric oscilla-
tors. The nonlinear case will be presented elsewhere@33#.
The equation of motion of thei th oscillator is given by

ẍi1g ẋi1v0
2@11j i~ t !#xi52

k

N (
j 51

N

~xi2xj !, ~1!

with i 51, . . . ,N.
Analytic results are possible with a simple piecewis

constant periodic modulation (period5Tp), defined as

j i~ t !5A sgn@sinvp~ t1t i !#, ~2!

wherevp52p/Tp , and the initial phaset i is chosen at ran-
dom for each oscillator. We are mainly interested in the m
amplitude

^x&5
1

N (
i 51

N

xi ~3!

as a measure of the macroscopic behavior of the system
the thermodynamic limitN→`, the site average~3! is
equivalent to the average with respect to the random phast i
of the displacement of a single oscillatori,

^x&5
1

Tp
E

0

Tp
xidt i , ~4!

which is independent ofi. Equation~1! can then be reduce
to a single mean-field differential equation

ẍ1g ẋ1v0
2@11jt~ t !#x52k~x2^x&!, ~5!

where we have dropped the indexi and have now indexed
the modulation with the initial phase chosen at random
each oscillator. Note that the average^x& must be evaluated
self-consistently using Eqs.~4! and ~5!.
03661
-

l
a
-
e
of
ed.
ble
c-

in

re

-

n

In

r

III. REVIEW OF THE SINGLE PARAMETRIC
OSCILLATOR

Further analysis of the coupled system is clarified by fi
briefly examining the properties of a single parametric os
lator subject to the piecewise-constant frequency modula
~2! @10,13–15,35,36#, for which the equation of motion is
simply

ẍ1g ẋ1v0@11jt~ t !#x50. ~6!

The arbitrary phaset can be set to zero, but is retaine
explicitly in order to make clearer the connection with t
coupled system. The equation of motion can be solved us
Floquet theory~see the Appendix!, and the result may be
written as

S x~ t !

ẋ~ t !1
g

2
x~ t !D 5Gt~ t !S x~0!

ẋ~0!1
g

2
x~0!D , ~7!

where Gt(t) is the time-evolution operator, whose explic
expression is given in the Appendix.

Floquet theory provides information about the state of
system at the end of each modulation period, but it does
determine the time evolutionwithin each period. If, as in
most of the literature, stability conditions were our only co
cern, finding the Floquet eigenvalues would be sufficie
However, we are interested not only in the conditions givi
rise to instabilities but also in the types of instabilities. Sin
exponential decay or growth of the oscillator amplitude
expected in any case, the time evolution may be con
niently investigated by Laplace transformation

x̃~s!5E
0

`

e2stx~ t !dt

5@G̃t~s!#11x~0!1@G̃t~s!#12S g

2
x~0!1 ẋ~0! D , ~8!

where@G̃t(s)# i j is a matrix element of the Laplace transfor
of the time-evolution operator. In general, ifx̃(s) has poles at
sj5L j1 iV j , the temporal behavior of the amplitude is e
pressed as

x~ t !5(
j

cje
L j teiV j t ~9!

where the cj ’s are constants determined by the inver
Laplace transform and the initial conditions

cj52p i lim
s→sj

~s2sj !H @G̃t~s!#11x~0!1@G̃t~s!#12

3S g

2
x~0!1 ẋ~0! D J . ~10!

The Laplace transform of the time-evolution operator is d
rived in the Appendix as
1-3
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I. BENA et al. PHYSICAL REVIEW E 65 036611
G̃t~s!5

1

2
e2gTp/2@e(s1g)TpI 2Gt

21~Tp!#

coshF S s1
g

2DTpG2R
E

0

Tp
e2stGt~ t !dt,

~11!

whereI is the identity matrix and the resonance parameteR
is defined as

R5cosS v1Tp

2 D cosS v2Tp

2 D
2

v1
2 1v2

2

2v1v2
sinS v1Tp

2 D sinS v2Tp

2 D ~12!

with

v65v0A16A2S g

2v0
D 2

. ~13!

The poles of Eq.~11! are determined by the condition

coshF S s1
g

2DTpG2R50, ~14!

and their real parts are explicitly given by

L j55
2

g

2
6

1

Tp
ln@2R1AR221# for R<21,

2
g

2
for uRu<1,

2
g

2
6

1

Tp
ln@R1AR221# for R>1,

~15!

while the imaginary parts are

V j

vp
5H j 2

1

2
for R<21,

j for R>1,

V j
6

vp
5 j 6

1

2p
arccos~R! for uRu<1. ~16!

Here arccos(R) lies in the range@0,p#, and j is an integer.
Note that the real parts of the poles are in fact independen
j, and therefore one can drop the subscriptj on L and rewrite
the amplitude~9! as

x~ t !5eLt(
j

cje
iV j t. ~17!

Correspondingly, the relative weights of the different mod
remain the same for all times; they all die (L,0), or they all
explode (L.0), or they all keep their initial amplitude
(L50). None becomes relatively more dominant with tim

Figure 1 illustrates the dependence of the poles on
03661
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resonance parameter. Consider first the real partL. When
uRu,1 it is single valued,R independent, and negative~un-
less there is no dampingg, in which case it vanishes and th
motion is purely oscillatory!. At the bifurcation points
R561 the real parts becomeR dependent but remain nega
tive until uRu reaches the value

Rc[coshS gTp

2 D , ~18!

which is greater than unity unlessg50. Beyond uRu5Rc
one of the L ’s becomes positive, leading to exponent
growth of the oscillator amplitude. The conditionuRu5Rc
thus corresponds to the onset of parametric resonance
more appropriately, of parametric instability.

Consider next the imaginary partsV j , shown in Fig. 1 for
j 522, . . . 2 alternately as solid and dashed curves. T
condition uRu51 here also marks an interesting boundary
which the behavior of the imaginary parts changes from
ing R independent whenuRu.1 to R dependent whenuRu
,1. On the large-uRu side of this boundary the frequencie
V j are simply proportional to the frequencyvp of the modu-
lation. When uRu,1, however, the oscillator frequencie
change continuously withR and bear no simple relation t
eithervp or the natural frequencyv0. In Fig. 2 we present
the regions in parameter space (A,Tp /T0) where uRu.1.
The darker regions correspond toR.1 and the lighter toR
,21. The stability boundariesuRu5Rc are also indicated by
solid lines, the oscillator being unstable inside these bou
aries. Note that theuRu5Rc and uRu51 frontiers almost co-
incide because of the very low damping (g50.01). As is
well known, for smallA the instability appears in the vicinity
of Tp' jT0/2 ( j integer!.

FIG. 1. Real~upper graph! and imaginary~lower graph! parts of
the polessj as a function ofR with g/vp50.1. The behavior asso
ciated with these poles is described in detail in the text. Note
significance of the boundariesR561, and of the boundaries
R56Rc where oneL becomes positive. The latter mark the ons
of single-oscillator parametric instability.
1-4
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COLLECTIVE BEHAVIOR OF PARAMETRIC OSCILLATORS PHYSICAL REVIEW E65 036611
Although the boundaryuRu5Rc is important in determin-
ing the transition from stable to unstable behavior for
single parametric oscillator, it does not play the same role
the coupled system, for which the boundaryuRu51 turns out
to acquire further significance. Indeed, as we will see in
following section, each individual polesj5L1 iV j gives
rise to a collective pole in the coupled system, and th
collective poles have differentL ’s. Therefore, some mode
may become unstable (L.0), and therefore dominant, eve
when uRu,1, while others remain stable (L,0). A very
striking example is that of the single oscillator mode with
zero imaginary part, i.e., the one withj 50 whenR.1. If L
is negative, it simply provides a monotonically decayi
contribution to the oscillator displacement, and ifL is posi-
tive it provides a monotonically growing contribution. How
ever, its relative weight in the sum~17! is extremely small
and, therefore, this mode is practically not detectable
simulations of a single oscillator. Its contribution is ove
whelmed by those of the oscillatory modes. However, in
coupled system this nonoscillatory mode may become do
nant because it may become unstable while the oscilla
modes are still stable. This will lead to a monotonic exp
sion of the mean.

IV. COLLECTIVE INSTABILITIES

The mean-field equation~5! can be rearranged as

ẍ1g ẋ1$v0
2@11jt~ t !#1k%x5k^x&, ~19!

which describes a single parametric oscillator of frequen

vk5v0A11
k

v0
2

~20!

driven by an ‘‘additive force’’k^x&. Therefore, it can be
solved with the time-evolution operator~A13! of a single
oscillator except that Eq.~13! must be replaced with the new
shifted frequencies

FIG. 2. Shaded regions indicateR.1 ~darker! and R,21
~lighter!. Solid lines delineate the boundariesuRu5Rc . The damp-
ing g50.01 and the frequencyv050.4.
03661
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v0
2

2S g

2v0
D 2

. ~21!

The general solution of Eq.~19! can be written as

S x~ t !

ẋ~ t !1
g

2
x~ t !D 5Gt~ t !S x~0!

ẋ~0!1
g

2
x~0!D

1kGt~ t !E
0

t

Gt~ t8!21S 0

^x~ t8!&
D dt8.

~22!

Taking the average of Eq.~22! with respect to the random
phase, we obtain a self-consistent equation for the mean
plitude,

^x~ t !&5^@Gt~ t !#11&x~0!1^@Gt~ t !#12&S g

2
x~0!1 ẋ~0! D

1kE
0

t

K~ t2t8!^x~ t8!&dt8, ~23!

where the kernel is defined by

K~ t2t8!5^@Gt~ t !Gt
21~ t8!#12&. ~24!

Because of the uniform distribution of the initial phasest,
the kernel~24! depends only on the time difference. One ca
therefore, solve the integral equation~23! by Laplace trans-
formation. The solution in Laplace space is given by

^x̃~s!&5

^@G̃t~s!#11&x~0!1^@G̃t~s!#12&Fg2 x~0!1 ẋ~0!G
12k^@G̃t~s!#12&

.

~25!

Equation~25! has a set of poles determined by the conditi

^@G̃t~s!#12&5
1

k
, ~26!

which differ from the ones derived for a single paramet
oscillator. Whenk→0 the right-hand side of Eq.~26! di-
verges and the poles of the coupled system clearly appro
those of the single oscillator. By explicitly performing th
time integral in Eq.~11! and taking the average over th
random phaset, one can obtain a rather complicated b
explicit expression of Eq.~26! as
1-5
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I. BENA et al. PHYSICAL REVIEW E 65 036611
Tpv1v2FcoshS g̃Tp

2
D 2RG S v1

2 1
g̃2

4
D 2S v2

2 1
g̃2

4
D 2

3F kS v1
2 1v2

2 1
g̃2

2
D

2S v1
2 1

g̃2

4
D S v2

2 1
g̃2

4
D 21G2kv1~v1

2

2v2
2 !2S v2

2 2
g̃2

4
D sinS v2Tp

2 D FcoshS g̃Tp

4
D

2cosS v1Tp

2 D G2kv2~v1
2 2v2

2 !2S v1
2 2

g̃2

4
D

3sinS v1Tp

2 D FcoshS g̃Tp

4
D 2cosS v2Tp

2 D G
2kv1v2g̃~v1

2 2v2
2 !2 sinhS g̃Tp

4
D F2 coshS g̃Tp

4
D

2cosS v1Tp

2 D2cosS v2Tp

2 D G50, ~27!

where

g̃[g12s5g12L12iV. ~28!

Finding the complex roots of Eq.~27! is difficult even nu-
merically. Therefore, we first investigate the collecti
modes graphically. Graphical inspection not only provid
qualitative understanding of collective modes but also he
to identify suitable numerical algorithms.

Coupling between the oscillators causes a frequency s
of each oscillator as indicated in Eq.~21!. This is a trivial
effect that is accounted for by calculating all single oscilla
quantities such asR and the polesL1 iV using theshifted
frequency. The interesting questions concern the way
which the couplings between the shifted oscillators affect
dynamics, and, in particular, whether instabilities and s
chronization may be caused or suppressed by the couplin
great deal can be learned about these dynamics starting
the single oscillator roots shown in Fig. 1. We thus inves
gate the coupled system in three typical regimes:~1! A single
oscillator with the given~shifted! parameters is unstable (R
<2Rc); ~2! The single oscillator is stable and in the regim
where its frequency is determined by the modulation f
quency (1<R<Rc); ~3! The single oscillator is stable and i
frequency bears no simple relation to the natural~shifted!
oscillator frequency nor to the modulation frequen
(uRu<1). The results are presented in the next section.

V. RESULTS

To find the poles associated with collective modes
need to solve the coupled equations

k Rê @G̃t~s!#12&2150, ~29!
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Im^@G̃t~s!#12&50, ~30!

for L and V in s5L1 iV. In the next set of figures we
present results for the three cases listed at the end of the
section. Each case is presented in two or three figures.

In one set of figures we plot the left-hand sides of E
~29! and ~30! as contour lines in the space (L/vp ,V/vp)
@the solid lines for Eq.~29!, and the broken ones for Eq
~30!#. The parametersk51.28, v050.4, g50.01, andA
51.0 are used in all the figures. The thick lines indicate z
contours. Therefore, the solutions we seek are the inter
tions of these two sets of thick lines, indicated by op
circles. The poles of single oscillators with shifted frequen
are indicated by black solid circles. There is of course
infinite number of solutions but we only exhibit those th
fall within the scale of our figures. Associated with each ca
is also a figure representing a number of trajectories a
function of time that characterize the particular situation. F
some of the examples we also show the associated ph
space trajectories. Note that in this presentation we mak
careful distinction between asingle oscillator and anindi-
vidual oscillator. The former refers to an independent osc
lator with parametersvk andg, while the latter refers to one
of the oscillators in a coupled system with parametersvk ,g,
andk.

Figure 3 shows the contours and poles for case~1!. Here
vk5vp/2, which corresponds toR521.0062. Since
R,21, the poles of single oscillators appear on the lin
V j /vp5( j 2 1

2 ) each as a pair because in this regime th
are two values ofL associated with eachV. Only the poles
for j 51 are shown because the others~and there are an
infinite number of them! are off the scale of the figure. Sinc
for these parametersuRu.Rc51.000 77, one of each pair o
poles has a positiveL. The amplitude of a single oscillato

FIG. 3. Contour plots of the left-hand side of Eq.~29! ~solid
lines! and Eq.~30! ~broken lines! for v050.4, k51.28, g50.01,
A51.0, andTk52Tp , which lead toR51.00617. Poles of a single
oscillator are indicated by solid circles. Thick lines correspond
solutions of Eqs.~29! ~solid! and~30! ~broken!. The intersections of
the solid and dotted thick lines, indicated by open circles, are t
solutions of Eq.~26!. Although there is a single-oscillator pole wit
positiveL there is no positive-L collective mode.
1-6
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COLLECTIVE BEHAVIOR OF PARAMETRIC OSCILLATORS PHYSICAL REVIEW E65 036611
would therefore diverge exponentially. However, as the
merical calculations indicate, all the collective modes ha
L52g/2 and thus the mean amplitude decays to zero
spite the instability of single oscillators.

Computer simulation results for various trajectories o
system of 100 000 oscillators with these parameters
shown in Fig. 4. We see that the mean amplitude is ind
zero, and that the deviationDx5A^x2&2^x&2 diverges. The
inset shows the same two trajectories as well as the diver
trajectory of an individual oscillator. Phase-space trajecto
of individual oscillators in the coupled system are shown
Fig. 5. Each circle indicates a snapshot of an individual
cillator. Solid circles represent oscillators with positiv
modulation and open circles are ones with negative mod
tion at the time of the snapshot. Only 2000 oscillators ou
100 000 are shown.

The six snapshots show that with increasing time
phase volume increases~note the different scales in eac

FIG. 4. Trajectories associated with Fig. 3. Thick-solid lin
mean^x&. Thin-solid line: deviationDx. The inset also includes th
trajectoryx of an individual oscillator~broken line!.
03661
-
e
e-

re
d

ng
s

-

a-
f

e

snapshot! which is consistent with the divergent behavior
each oscillator and with the growth of the deviationDx, and
provide confirmation that there is indeed no mutual synch
nization nor other kinds of organized collective motio
However, the persistent separation of solid and open cir
into separate quadrants indicates that individual oscilla
are synchronized with the external modulation. Note that a
individual oscillator moves clockwise, switching colors a
cordingly. However, since the phase of the modulation
chosen at random for each oscillator, at any time, half of
oscillators have positive modulation and the other half ne
tive, so that the pattern in preserved and an average ove
phase giveŝx&50. In this case, the effect of the coupling
only the frequency shift~21!. When the coupling strength i
increased at fixedTp /Tk , mutual synchronization will even
tually be established. Then, the individual oscillators m
lose synchronization with the modulation and conseque
parametric instability is suppressed. Therefore, the coup
stabilizes the system in this parameter region.

Interesting behavior is observed whenvk5vp , that is,
the single oscillator frequency is equal to the modulat
frequency. This corresponds to case~2! on our list. The con-
tours and poles for this case are shown in Fig. 6. SinceR
51.0001, the single oscillator has poles atV j5 j vp . Only
the poles forj 50 are shown. This condition is close to par
metric resonance, but sinceR is just belowRc51.0031 all
the single oscillator modes have negativeL ’s and therefore
single oscillator trajectories decay to the absorbing statx
50. However, one of the collective modes has a pole w
V50 and apositiveL. All the other collective modes are
dominated by thisj 50 unstable mode and therefore th
mean amplitude diverges monotonically.
ts

3
th
FIG. 5. Phase point snapsho
of 2000 individual oscillators in
the system associated with Figs.
and 4. Note the scale changes wi
increasing time.
1-7
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Computer simulation results for the associated trajecto
are shown in Fig. 7. The mean decays slowly at the be
ning and then diverges monotonically. The deviation
verges as well, and does so more rapidly. The individ
oscillator trajectory also diverges; in this example, althou
each single oscillator would be stable, the coupling cau
individual oscillators in the system to become unstable.
other words, each oscillator is driven by the diverging me
on the right-hand side of Eq.~19!. The phase-space trajecto
ries in Fig. 8 show that after an initial transient~first three
panels, where open circles are hiding most of the so
circles! individual oscillators in the coupled system oscilla
with increasing amplitude about^x&, while the mean̂ x& is

FIG. 6. Contour plots of the left-hand side of Eqs.~29! ~solid
lines! and Eq.~30! ~broken lines! for v050.4, k51.28, g50.01,
A51.0, andTk5Tp , which lead toR51.0001. Poles of a single
oscillator are indicated by solid circles. Thick lines correspond
solutions of Eqs.~29! ~solid! and~30! ~broken!. The intersections of
the solid- and dotted-thick lines, indicated by open circles, are t
solutions of Eq.~26!. Although the single-oscillator poles all hav
negativeL, the collective modes include a pole with positiveL and
V50. This mode diverges exponentially without oscillation.

FIG. 7. Trajectories associated with Fig. 6. Thick-solid lin
mean^x&. Thin-solid line: deviationDx. The inset also includes th
trajectoryx of an individual oscillator~broken line!.
03661
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moving away from the origin. In the long-time limit, eac
oscillator ‘‘forgets’’ its initial conditions and is driven by the
mean. Therefore, while the phase of each individual osci
tor is determined by the phase of the modulation, the am
tude in phase space is determined by the mean. Corresp
ingly, the oscillators become ‘‘amplitude synchronize
through the mean. Until the synchronization is well esta
lished, the individual oscillators decay because the sin
oscillator modes have negativeL.

As in the previous case, the phases of all single-oscilla
modes withV jÞ0 become synchronized with the extern
modulation. The separation of solid and open circles in
three later-time panels in Fig. 8 indicates this synchroni
tion. However, in contrast with the previous case, there
now a zero-frequency mode which does not have a phas
be synchronized. This mode is therefore not affected by
phase of each oscillator nor by the phase of the modulat
The zero-frequency mode shifts the center of oscillat
away fromx50 in either the positive or the negative dire
tion. In the presence of coupling the oscillators tend to f
low the mean, and therefore shift in the same direction, t
breaking the system symmetry. Note that the open and s
circles no longer lie entirely in separate quadrants. It is p
cisely the excess of open circles relative to solid ones in
positive quadrants~and vice versa in the negative quadran!
that drives the motion of the mean further to the right. Th
mode can now dominate the behavior of the system beca
contrary to the situation of a single oscillator, each mode
a differentL. In this example the effect of coupling is thu
not only to shift the frequency according to Eq.~21!, but also
the more interesting collective symmetry-breaking mon
tonic divergence of the mean amplitude and the mutual s
chronization of the individual oscillator amplitudes.

Since the role of the coupling in this case is to suppr
the single-oscillator modes withV jÞ0 and to allow the
mode withV j50 to grow, this instability persists even fo
very largek. It should be noted that this collective instabilit
is a different phenomenon from the monotonic growth
ported previously@8#. That instability occurs only for largeA
and disappears when the coupling strengthk is increased
~re-entrant transition!.

Finally, case~3! occurs whenvk is between the two pre
vious cases, so thatuRu,1 and single oscillators are not i
parametric resonance condition. However, Fig. 9 indica
that at least one of the collective modes has a positiveL as
well as nonzeroV. Therefore, the mean̂x& oscillates with
diverging amplitude. Recall that whenuRu,1 the eigenfre-
quencies of single oscillators vary continuously withR but
do not match the frequency of the modulation nor the natu
frequency of the oscillator. Therefore, the individual sy
chronization to the external modulation plays no role and
phases of the oscillators are free to synchronize to one
other through a synchronization to the phase of the me
Computer simulations shown in Fig. 10 confirm the oscil
tory instability, and the phase-space points of individual
cillators shown in Fig. 11 testify to this phase synchroniz
tion. Although solid and open circles again form separ
groups, the entire ring of open and solid circles alterna

o

s
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FIG. 8. Phase point snapsho
of 2000 individual oscillators in
the system associated with Figs.
and 7. Note the scale changes wi
increasing time.
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between the positive quadrants and the negative quadr
Therefore, all oscillators are mutually synchronized.

In the next section we collect the results for the coup
system into a phase diagram indicating regions of stab
and instability of different types.

VI. PHASE DIAGRAM

A convenient way to summarize observations and cha
terize the instabilities systematically is in the form of app
priate ‘‘phase diagrams’’ in which the stability boundari
are presented as a function of the system parameters. S
there are many parameters in this model the full diagr
would involve a many-dimensional representation. Inste
we present the diagram in the two-dimensional sp
(A,Tp /Tk) that characterizes the external modulation fo
given set of oscillator parametersvk , k, andg.

Figure 12 shows the phase diagram for the system par
eters indicated in the caption. The colored regions den
unstable regimes, each color coding a particular type of
stability. The yellow region denotes parameter ranges wh
the individual oscillators are unstable but the mean am
tude for the coupled system is zero~‘‘incoherent unstable
oscillations’’!. This region is associated with divergencies
the first term in Eq. ~22! but not of the second term. In this
case the distinction between ‘‘single oscillators’’ and ‘‘ind
vidual oscillators’’ becomes moot, since the right-hand s
of Eq. ~19! plays no role. Oscillatory instabilities of the mea
with positive L and nonzeroV are denoted in pink~‘‘un-
stable spirals’’!. Blue regions ~‘‘saddle nodes’’! denote
monotonic divergence of the mean with one positiveL and
zero V. Green regions~‘‘unstable nodes’’! also denote
03661
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FIG. 9. Contour plots of the left-hand side of Eqs.~29! ~solid
lines! and Eq.~30! ~broken lines! for v050.4, k51.28, g50.01,
A51.0, andTk54Tp/3, which lead toR520.010 37. Poles of a
single oscillator are indicated by solid circles. Thick lines cor
spond to solutions of Eqs.~29! ~solid! and~30! ~broken!. The inter-
sections of the solid- and dotted-thick lines, indicated by op
circles, are thus solutions of Eq.~26!. Although the single-oscillator
poles all have negativeL, the collective modes include a pole wit
positive L and nonzero. This mode diverges exponentially w
oscillation.
1-9



th
l,
e
a
r
d

rm
he

p
m
o
o

nc
o

m
on

a-
e
n
nt-

-
-
iral

ble

t

e
ity

s
-
ode

ral

e
e

I. BENA et al. PHYSICAL REVIEW E 65 036611
monotonic instabilities but with two positiveL ’s and zeroV.
These latter three instabilities involve divergencies of
second termin Eq. ~22!. The first term may diverge as wel
i.e., the L ’s of the single-oscillator and of the collectiv
mode may be simultaneously positive. When this is the c
we always observe theL of the collective mode to be large
than that of the single-oscillator modes; the collective mo
therefore dominates the dynamics. In establishing the te
nology for various instabilities we have loosely followed t
usual conventions of nonlinear dynamics.

We can associate each specific case discussed in the
vious section with a location on this sort of phase diagra
Thus the trajectories in Fig. 4 are in a yellow regime
incoherent oscillatory divergence of each oscillator. Those
Fig. 7 are in a blue or green regime of monotonic diverge
of the mean, and those of Fig. 10 are in the pink regime
unstable spirals.

It is helpful to follow the behavior of the oscillator syste
across the various collective instability boundaries by c

FIG. 10. Trajectories associated with Fig. 9. Thick-solid lin
mean^x&. Thin-solid line: deviationDx. The inset also includes th
trajectoryx of an individual oscillator~broken line!.
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sidering the signs ofV andL as one increases the modul
tion amplitudeA ~thus moving upward vertically along th
phase diagram! for different fixed values of the modulatio
periodTp . Various associated bifurcation diagrams prese
ing L ~solid lines! andV ~dotted lines! as a function ofA are
shown in Fig. 13. Consider first the periodTp50.75Tk ,
shown in panel~a!. As A increases,L changes sign, becom
ing positive atAc51.14 whileV remains positive. This rep
resents a transition from a stable spiral to an unstable sp
~pink region in Fig. 12!.

Consider next the periodTp52.04Tk , shown in panel~b!.
HereL becomes positive atAc53.06 whileV remains posi-
tive. This, therefore, again marks a transition from a sta
spiral to an unstable spiral~pink region!. However, with a
further increase in amplitude,V eventually goes to zero a
Ac853.51, whereL bifurcates to two positive values~an un-
stable node, green region! via a saddle-node bifurcation. Th
oscillatory instability thus switches to a monotonic instabil
at this point.

A different transition pattern is seen whenTp53.0Tk ,
shown in panel~c!. It begins with a stable spiral and switche
to a stable node atAc52.91. With a further increase in am
plitude the system undergoes a transition to a saddle n
~blue region! at Ac853.04.

A more complex transition pattern is shown in panel~d!,
in which the character of the instability changes seve
times along theTp53.9Tk line. As usual, at low amplitudes
there is a stable spiral. At the pointAc52.99 the system
moves into an unstable spiral~pink region!. The unstable
spiral becomes an unstable node~very small green region in
the phase diagram! via a saddle-node bifurcation atAc8
53.30. A further transition to a saddle node~blue! occurs at
Ac953.4.

:

ts

9
s

FIG. 11. Phase point snapsho
of 2000 individual oscillators in
the system associated with Figs.
and 10. Note the scale change
with increasing time.
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COLLECTIVE BEHAVIOR OF PARAMETRIC OSCILLATORS PHYSICAL REVIEW E65 036611
FIG. 12. ~Color! Phase diagram for the mean-field model w
oscillator parametersv050.4, k51.28, andg50.16. White regions
denote stable regimes. The various instability regimes are c
coded as indicated. The characteristic behavior in each instab
regime is described in the text.
03661
We note that the phase diagram just described is quite
and intricate. Instabilities cover even larger regions in p
rameter space, and do so with increasing intricacy, as
dampingg decreases. A typical phase diagram for low dam
ing is shown in Fig. 14.

Increasing coupling or damping also leads to greater
bility; the stability boundaries move ‘‘up’’ in the phase dia
gram wheng and/ork are increased, indicating that a stro
ger modulation is needed to cause unstable behav
Furthermore, the oscillatory instabilities eventually disapp
with increasing modulation periodTp , leaving only the
monotonic collective instabilities. However, it should b
noted that the monotonic instabilities for sufficiently larg
modulation period are simply due to an inversion of the
fective harmonic potential and hence not due to any coll
tive effects. That there is an inversion can already be s
pected from the fact that at least one of the shift
frequencies in Eq.~21! becomes imaginary.

An analysis of the system for largeTp is fairly simple and
instructive in elucidating the source of instabilities more e
plicitly. In the adiabatic limitTp→` the single oscillator
frequencies are frozen in time, half of them at frequen

ṽ1 , and the other half at frequencyṽ2 , where
or
ty
.

-

FIG. 13. Bifurcation diagrams
showing L ~solid lines! and V
~dotted lines! with changing
modulation amplitude for various
values of the modulation period
Panel ~a! Tp /Tk50.75, ~b!
Tp /Tk52.04,~c! Tp /Tk53.0, and
~d! Tp /Tk53.9. The behavior im-
plied by these diagrams is dis
cussed in detail in the text.
1-11
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ṽ65v0A11
k

2v0
2

6A. ~31!

The mean-field equations of motion then are

^ẍ&11g^ẋ&11ṽ1
2 ^x&15

k

2
^x&2 ,

^ẍ&21g^ẋ&21ṽ2
2 ^x&25

k

2
^x&1 , ~32!

where^•••&6 indicates an average over the oscillators w
the frequencyṽ6 , respectively. This system can be diag
nalized analytically in full generality. The eigenmodes of t
coupled system are characterized by the complex frequen

V6
(1)5 i

g

2
6v0A11

k

2v0
2

2
g2

4v0
2

1AA21S k

2v0
2D 2

,

V6
(2)5 i

g

2
6v0A11

k

2v0
2

2
g2

4v0
2

2AA21S k

2v0
2D 2

.

~33!

This case clearly illustrates the distinction between what
have called ‘‘single oscillator instabilities’’ and ‘‘chain insta
bilities.’’ The former refer to the frequency~31! while the
latter refer to Eq.~33!. While the single oscillators would
remain stable untilA511k/2v0

2 ~at which point ṽ2 be-
comes imaginary! the chain becomes destabilized whenA
reaches the valueA11k/v0

2, where the imaginary part o
V2

(2) becomes negative~note that the transition point is inde
pendent ofg). Beyond that the system is in a saddle-poi
unstable-node instability region of nonoscillatory expone
tial growth due to potential inversion, which was the prima
reason of instability in the previous work@8#. In the phase
diagrams Figs. 12 and 14 this translates to a stability bou
ary that settles atA53 asTp→`. Note that in particular the
boundaryA5A11k/v0

2 remains valid in the overdampe
limit g→`, consistent with our early work@37#.

The origin of the instabilities presented as narrow b
and pink tongues in the low-A region of Fig. 14 is entirely
different from the mechanism based on the temporarily
verted potential and unique to the underdamped case. In
following sections we will explain the cause of these ins
bilities using a dimer of parametric oscillators.

VII. COMPARISON WITH PARAMETRIC OSCILLATOR
DIMER

In a recent paper@9# we reported results for a model o
two coupled oscillators subject to parametric modulatio
with a phase differenceu. The equations of motion for this
system are just theN52 version of Eq.~1!:

ẍ152v0
2@11j1~ t !#x12

k

2
~x12x2!2g ẋ1,
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ẍ252v0
2@11j2~ t !#x22

k

2
~x22x1!2g ẋ2 . ~34!

The piecewise-constant periodic modulations of the two
cillators differ by a constant phaseu, so that we can write
Eq. ~2! for this case as

j1~ t !5A sgn@sin~vpt !#,

j2~ t !5A sgn@sin~vpt1u!#. ~35!

We want to investigate whether the mean positionx[(x1
1x2)/2 reproduces the macroscopic behavior of the mea
the globally coupled model.

In the absence of parametric modulations, a dimer has
eigenmodes: symmetric@or mutually synchronized, x1(t)
5x2(t)# and antisymmetric@or mutually antisynchronized,
x1(t)52x2(t)# with the former having a lower energy
When the parametric modulations are applied, these mo
are in general no longer the eigenmodes of the dimer~except
for u50). However, the motions can be expressed as lin
combinations of these modes and, in particular, the beha
of the mean of interest is reflected in the excitation of t
symmetric mode by the parametric modulations.

In previous work@9# we focused on the behavior of th
system as a function of the parametersA, Tp52p/vp , v0 ,
g,k, and u. Among our conclusions is the fact that the r
gions of parametric instability are sensitively dependent
the phase differenceu. Of particular interest for the analysi
in this paper is the behavior of the antiphased dimeru
5p). This particular dimer captures many of the features
the mean-field coupled system with unexpected accur
This assertion, which was originally based on our previo
comparison of the regions of parametric resonance@9#, is
reinforced when the dimer bifurcation diagrams are furth
refined to take into account details of qualitatively differe
trajectories, as we shall see below.

For the piecewise constant parametric modulation~35! the
solution of the dimer problem is formally simple. The stab
ity analysis is based on the eigenvalues$l j% (ul1u
>ul2u>ul3u>ul4u) of the Floquet operator@9#; parametric
instability occurs whenul1u.1. To characterize differen
types of parametric instability we present bifurcation d
grams using the same color conventions as in the phase
grams of the mean-field model~Figs. 12 and 14!. If Im l1
Þ0, then clearly one has an oscillatory instability~pink re-
gions!. If Im l150, the instability can be either oscillator
or monotonic. Using the eigenvector corresponding tol1 as
an initial condition, we have determined whether or nox
crosses zero during one period of the modulation. If it do
the point is assigned to a pink region. If it does not, t
second largest eigenvaluel2 will determine whether the
point belongs to a blue (ul2u<1) or green (ul2u.1) region.
The pink, blue, and green regions are all caused by the
stability of the symmetric mode. The yellow region, on t
other hand, requires the instability of the antisymmet
modeand the decay of the symmetric mode. However, su
a purely antisynchronous solution is forbidden in theu5p
1-12
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COLLECTIVE BEHAVIOR OF PARAMETRIC OSCILLATORS PHYSICAL REVIEW E65 036611
case@9#, which means that yellow regions cannot appea
all in the antiphased dimer@38#.

Results for relatively large damping (g/v050.4) are pre-
sented in the bifurcation diagram of Fig. 15, which should
compared to Fig. 12. The similarity between the two figu
is remarkable. Despite some extra green regions and the
sence of the yellow tongue, one notices that the princ
resonance regions of the dimer bifurcation diagram (
&Tp /Tk&3/2) fits the same region in the mean-field mod

FIG. 14. ~Color! Phase diagram for the mean-field model w
oscillator parametersv050.4, k51.28, andg50.01.

FIG. 15. ~Color! Bifurcation diagram for the antiphased dim
with the same parameters as in Fig. 12.
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almost exactly. The green regions connected to pink regi
in the mean-field model are also well mimicked by the dim

Figure 16 illustrates the bifurcation diagram for a sm
value of damping (g/v050.01). Comparison with Fig. 14
shows that although the agreement between the two mo
is not as good as for higher values ofg/v0, the basic struc-
ture and similarities of the phase diagram and the bifurca
diagram are nonetheless preserved. The main difference
the complex pink patterns in regionTp /Tk*3 of the dimer.
Also, as in the high-gamma case, the dimer has larger g
regions than the mean-field model, suggesting that the c
pling in the latter plays a stronger role in stabilizing th
system. But in spite of these differences and most imp
tantly, the principal resonance region (1/2&Tp /Tk&3/2)
again shows an almost perfect match.

In the dimer, competition between two kinds of synchr
nization plays a key role in the destabilization of the syste
on the one hand, synchronization between each oscillator
its modulation, on the other hand, synchronization betw
the two oscillators. This competition is essentially govern
by the values ofA andk. Larger values ofA favor the former,
while larger values ofk favor the latter. When the coupling i
weak, the energy difference between symmetric and antis
metric modes is small and both can be excited. In this ca
the individual oscillators are nearly independent and the
bility diagram of the dimer is similar to that of a singl
oscillator. As the coupling strength increases, the energy
antisymmetric oscillations increases until eventually only
phase oscillations are energetically accessible. This mutu
synchronized motion brings the system out of synchroni
tion with the modulation.

FIG. 16. ~Color! Phase diagram for the antiphased dimer w
the same parameters as in Fig. 14.
1-13
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The stability diagram of the antiphased dimer in t
(Tp /Tk ,k) plane shown in Fig. 17 illustrates the above sto
First, considerTp /Tk'0.5, where a single oscillator is in th
main parametric instability region (R,21, the first light
gray region in the lower panel of Fig. 17!. For smallk, the
dimer is also unstable and still dominated by the antisymm
ric mode ~even though the symmetric modecannot disap-
pear, as mentioned above!. However, ask increases, excita
tion of the antisymmetric mode becomes more difficult a
the symmetric mode becomes dominant, which stabilizes
system. When 0.5&Tp /Tk&1 a single oscillator is stable
(uRu,1, between the dark and light gray regions!. In this
parameter region, individual oscillators do not have to
synchronous to the modulation~see Fig. 1!. They are free to
become mutually synchronized and the system becomes
stable above a certain coupling strength. Since the symm
mode dominates, this instability persists even for largek.
Finally, whenTp /Tk'1, the single oscillator is again in a
unstable region (R.1, the dark gray region!. Although the
situation is similar to the first case, the individual oscillato
now have a zero-frequency mode, which is not subjec
synchronization with the modulation. Therefore, the ze

FIG. 17. ~Color! Upper panel: bifurcation diagram for the an
tiphased dimer in the (Tp /Tk ,k) plane forA50.9, g50.01, and
v050.4, using the same color convention as in Fig. 12. Low
panel:R @Eq. ~12!# as a function ofTp /Tk ; light gray areas denote
R,21 and dark gray areasR.1.
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frequency mode of the two oscillators can be mutually s
chronized, which produces a monotonic growth of the me
Again, this instability does not have strong dependence
the coupling strength and persists even for largek.

The good agreement between the dimer and mean-
models is not merely a coincidence. Consider one partic
test oscillator in the globally coupled system. Now define
group of its ‘‘friends’’ as the set of all oscillators whos
modulation phase lies within an interval of6p/2 around its
phase. The group of its ‘‘enemies’’ comprises the set of
other oscillators, whose average modulation phase is op
site to that of the test oscillator. When the oscillators a
synchronized to the modulations, ‘‘friends’’ are also mutua
synchronized to one another, regardless of the coupl
When the coupling increases, there is a competition betw
two kinds of synchronization: synchronization between
enemies and friends, and synchronization with their o
modulations. This situation is similar to the antiphas
dimer, which helps explain the remarkable similarity b
tween the instability diagrams of the dimer and mean-fi
models. Notice that this description becomesexact in the
quenched limit, where the friends and enemies can be re
sented, respectively, bŷx&1 and ^x&2 . From this perspec-
tive, the choiceu5p for the dimer appears as a natural on
being not only a particularly symmetric case in the gene
dimer problem@9# but also the effective phase differenc
between the two groups.

VIII. DISCUSSION AND CONCLUSION

We have investigated collective instabilities of an infin
set of globally coupled linear oscillators driven by tim
periodic piecewise linear modulations with random init
phases. These instabilities occur in certain parameter reg
~and not in others!, and we have produced phase diagrams
a function of system parameters indicating detailed stab
boundaries and types of instabilities.

Instabilities arise from phase synchronization~although
not all phase synchronization leads to instability! and there
are two possible competing synchronization mechanis
synchronization of individual oscillators with the extern
modulation~‘‘modulation synchronization’’! and mutual syn-
chronization between oscillators~‘‘mutual synchroniza-
tion’’ !. In the absence of the external modulation, only m
tual synchronization is possible. On the other hand, when
coupling is absent, a single oscillator in parametric resona
condition (uRu.1) synchronizes with the external modul
tion. Note that parametric instability of a single oscillat
requires modulation synchronization, and in generalany in-
stability requires an external modulation to pump energy i
the system.

In the presence of external modulation with rando
phasesand coupling, even in a parameter regime where
ther alone would lead to synchronization, it is not possi
for both types of synchronization to occur simultaneous
Intuition might lead to the conclusion that sufficiently stron
coupling would favor mutual synchronization thereby d
stroying modulation synchronization~and hence stabilizing
the system!. Intuition might also lead one to conclude th

r
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COLLECTIVE BEHAVIOR OF PARAMETRIC OSCILLATORS PHYSICAL REVIEW E65 036611
weak coupling necessarily results in a dominance of mo
lation synchronization and hence to instabilities of individu
oscillators not related to one another. However, we h
shown that this intuitive picture would be incomplete b
cause it does not account for the existence ofcollectivepara-
metric instabilities due to the coupling and entirely absen
a single parametric oscillator. Here we discuss our result
terms of the two competing synchronization mechanisms

In a globally coupled model, the individual oscillators a
coupled to the mean̂x&, and thus mutual synchronizatio
can be thought of as synchronization between the individu
and the mean. Note that there is no mutual synchroniza
when^x&50 ~because if there were, the mean would not
zero!.

Now suppose we are in the parameter regimeR,21
where individual uncoupled oscillators are parametrica
unstable. When these oscillators are coupled, one can im
ine one of two possible scenarios. If the coupling leads
mutual synchronization, the individual oscillators can
longer be synchronous with the external modulation a
therefore the coupled system has been stabilized by the
pling. On the other hand, if the coupling does not lead
mutual synchronization but instead there is modulation s
chronization, then the oscillators may be individually u
stable but with^x&50. Our results show that the secon
scenario is the correct one for sufficiently small values ok,
as shown in the yellow regions of incoherent instability
Fig. 14. Modulation synchronization has ‘‘won.’’ On th
other hand, there is a coupling energy cost to the lack
mutual synchronization, which slows down the instability
individual oscillators relative to their uncoupled amplitu
growth. For largerk the first scenario takes over, and th
yellow region disappears above a certain value of the c
pling.

Next suppose that we are in the other parametric re
nance regimeR.1. The situation is in some ways similar t
the previous case but there is a major difference: there is
a mode, thej 50 mode, whose frequency is zero and the
fore ~contrary to the other modes! need not~indeed cannot!
synchronize to the modulation. The amplitude of this mo
can grow monotonically in either direction, and the coupli
among oscillators leads to a tendency for the zero-freque
mode of all the individual oscillators to move in the sam
direction. Thus while the growth rate of thej Þ0 modes is
reduced by coupling due to the lack of mutual synchroni
tion, that of thej 50 mode is enhanced because the coupl
fosters mutual synchronization of this mode.

If the individual oscillators are not in regimes of param
ric instability (uRu,1), there is no synchronization to th
modulation and the oscillators are free to synchronize w
one another. Mutual synchronization is thus established
the mean̂ x& becomes oscillatory with the same frequency
that of individual oscillators in the coupled system. The o
cillatory mean drives the system into unstable states via
mean-field coupling.

We have found that the instability bifurcation diagram f
a simple antiphased dimer model reproduces the phase
gram for the mean-field system with surprising accuracy.

In the absence of external modulation, a dimer has
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eigenmodes: symmetric or mutually synchronized~lower en-
ergy!, and antisymmetric or mutually antisynchronize
~higher energy!. In the presence of time-periodic piecewis
linear modulations, which are exactly out of phase on
two coupled oscillators (u5p), a competition between thes
two modes~which are no longer eigenmodes! ensues. This
competition is in many ways similar to the competition b
tween modulation synchronization and mutual synchroni
tion described for the globally coupled system, and h
again it determines the stability of a dimer. When the co
pling is weak, the energy difference between symmetric a
antisymmetric modes is small and both can be excited
this case, the individual oscillators are nearly independ
and the stability diagram of the dimer is similar to that of
single oscillator. The synchronization of each oscillator w
its modulation dominates the behavior, and instabilities th
represent boundless excitation of the antisymmetric mo
With increasing coupling the energy of the antisymmet
mode increases until it is too high to be excited. Only t
symmetric mode can be excited, i.e., the oscillators beco
mutually synchronized. The synchronization with the mod
lation is thus destroyed and the associated parametric in
bility is suppressed.

Although the similarity between the dimer and globa
coupled models is remarkable, they also exhibit various
portant differences. In the dimer model, mutual synchroni
tion involves only two oscillators. On the other hand, in t
global coupling model an oscillator must be synchrono
with essentially all others to create collective motion. The
fore, in the thermodynamic limitN→`, the collective insta-
bility in the globally coupled system is a genuine phase tr
sition, whereas the instabilities in the dimer are simp
bifurcations. Nevertheless, the stability boundaries and
namics of the mean amplitudes in both cases show imp
sive similarities.

An interesting case that is in some sense ‘‘in betwee
these two and that promises interesting new features is
of a one-dimensional chain of oscillators with neare
neighbor coupling. When the phase of the modulations of
oscillators in the chain is chosen at random, there is a
nificant chance that both neighbors of any given oscilla
have a phase ‘‘similar’’~suitably defined within some range!
to its phase. In this case, the middle oscillator can ea
establish simultaneously both mutual synchronization w
its neighbors and synchronization with the modulatio
Therefore, locally this oscillator could become unstable.
the other hand, if the neighbors of a given oscillator a
modulated with phases opposite to its own modulation pha
that oscillator may be stabilized. Therefore, the spatial p
tern of the modulation phase is expected to play an impor
role and instability may become wavelength dependent, s
gesting spatial pattern formation. Such patterns can of co
not be observed in either a dimer or a globally coup
model. A detailed analysis of such systems will be presen
elsewhere@33#.

Note added in proof. Recently, we have completed an an
lytic solution of the antiphased dimer with which we are ab
to adjust some of the features of the numerically compu
bifurcation diagrams@39#.
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APPENDIX: TIME-EVOLUTION OPERATOR OF A
SINGLE PARAMETRIC OSCILLATOR

We solve the equation of motion~6! using a standard
Floquet method. The damping term can be eliminated
introducing a new variabley defined as

x~ t !5e2gt/2y~ t !. ~A1!

Equation~6! becomes

ÿ1v2~ t !y50 ~A2!

with the time-dependent frequency

v2~ t ![v0
2@11jt~ t !#2g2/4. ~A3!

The solution of the undamped frequency-modulated osc
tor ~A2! can be expressed in terms of the time-evolut
operator fromt50 to t,gt(t), as

S y~ t !

ẏ~ t !
D 5gt~ t !S y~0!

ẏ~0!
D . ~A4!

For a piecewise constant modulation such as Eq.~2!, the
explicit form of the time-evolution operator is known. Usin
its periodicity and composition property we note that ift
5nT1u then
03661
e
e

y

-

gt~ t !5gt~nT1u!5gt~u!gt~nT!5gt~u!@gt~T!#n.
~A5!

It is thus sufficient to findgt(t) for tP@0,T#.
When the phase istP@0,T/2#, the frequency varies as

v~ t !55
v1 for tPF0,

T

2
2t D ,

v2 for tPFT

2
2t,T2t D ,

v1 for tP@T2t,T#,

~A6!

while for tP@T/2,T#,

v~ t !55
v2 for tP@0,T2t!,

v1 for tPFT2t,
3T

2
2t D ,

v2 for tPF3T

2
2t,TG ,

~A7!

where thev6 are defined in Eq.~13!. During each constan
frequency time window the system evolves according to
propagator of a simple harmonic oscillator of the appropri
frequency. This propagator is well known:

g6~ t,t8!5S cos@v6~ t2t8!#
1

v6
sin@v6~ t2t8!#

2v6 sin@v6~ t2t8!# cos@v6~ t2t8!#
D .

~A8!

The full operatorgt(t) can be expressed as products of t
g6 . For the case~A6!,
gt~ t !55
g1~ t,0! for tPF0,

T

2
2t D ,

g2S t,
T

2
2t Dg1S T

2
2t,0D for tPFT

2
2t,T2t D ,

g1~ t,T2t!g2S T2t,
T

2
2t Dg1S T

2
2t,0D for tP@T2t,T#,

~A9!

and for the case~A7!,

gt~ t !55
g2~ t,0! for tP@0,T2t!,

g1~ t,T2t!g2~T2t,0! for tPFT2t,
3T

2
2t D ,

g2S t,
3T

2
2t Dg1S 3T

2
2t,T2t Dg2~T2t,0! for tPF3T

2
2t,TG .

~A10!
1-16
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These expressions can be further simplifed by using tim
translation symmetry, g6(t1u,t81u)5g6(t,t8)5g6(t
2t8,0). We can thus simplify our notation and setg6(t,0)
[g6(t) with no loss of information.

In particular, fort5T

gt~T!5Stg0~T!St
21 ~A11!

where

g0~T![g2S T

2Dg1S T

2D , St[g1~t!, for tPF0,
T

2G
g0~T![g1S T

2Dg2S T

2D ,

St[g2S t2
T

2D , for tPFT

2
,TG . ~A12!

Since onlySt depends ont, the trace, determinant, and e
genvalues ofgt(T) do not depend on the random phase.

Transforming back to the original variables, we fina
obtain the time-evolution operator forx(t) and ẋ(t)

Gt~ t !5e2gt/2gt~ t !. ~A13!

Next we derive an explicit expresion for the Lapla
transform of the evolution operator with the help of E
~A5!:
p

ce

s-

ju

03661
-

.

G̃t~s!5E
0

`

e2stGt~ t !dt

5 (
m50

`

@e2sTGt~T!#mE
0

T

e2stGt~ t !dt

5@ I 2e2sTGt~T!#21E
0

T

e2stGt~ t !dt

5

1

2
e2gT/2@e(s1g)TI 2Gt~T!#E

0

T

e2stGt~ t !dt

coshF S s1
g

2DTG2R

~A14!

whereI is an identity matrix and

R5
1

2
egT/2 Tr G0~T!

5
1

2
Tr g0~T!

5cosS v1T

2 D cosS v2T

2 D2
v1

2 1v2
2

2v1v2
sinS v1T

2 D
3sinS v2T

2 D . ~A15!

The geometric series in Eq.~A14! converges only when

ie2sTG0~T!i,1. ~A16!
.
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