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Polarization patterns and vectorial defects in type-II optical parametric oscillators
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Previous studies of lasers and nonlinear resonators have revealed that the polarization degree of freedom
allows for the formation of polarization patterns and novel localized structures, such as vectorial defects. Type-
II optical parametric oscillators are characterized by the fact that the down-converted beams are emitted in
orthogonal polarizations. In this paper we show the results of the study of pattern and defect formation and
dynamics in a type-II degenerate optical parametric oscillator, for which the pump field is not resonated in the
cavity. We find that traveling waves are the predominant solutions and that the defects are vectorial dislocations
that appear at the boundaries of the regions where traveling waves of different phase or wave-vector orientation
are formed. A dislocation is defined by two topological charges, one associated with the phase and another with
the wave-vector orientation. We also show how to stabilize a single defect in a realistic experimental situation.
The effects of phase mismatch of nonlinear interaction are finally considered.
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I. INTRODUCTION

Most studies of pattern@1–3# and localized structure
@4–17# formation in optical systems consider light with
fixed linear polarization. However, the vectorial degree
freedom of light, associated with a space- and tim
dependent polarization, leads to a very interesting phen
enology, as previously shown for Kerr cavities@18–20#, so-
dium vapors@21#, lasers@22–24# and intracavity second
harmonic generation@25#. This degree of freedom is als
relevant from the point of view of information encoding an
processing, because it yields a tool for the control of th
structures. Optical vortices have been predicted to occu
optical systems such as lasers@26#, and they have been ex
perimentally observed in lasers@27# and photorefractive
resonators@12,28,29#. More recent theoretical studies re
vealed the existence of vectorial defects in optical syste
@24#.

Among optical systems, optical parametric oscillato
~OPO’s! have been the object of intense theoretical study
recent years, which has revealed the existence of patt
@30–41# and localized structures@10,13,14,17,42–45#; few
examples of defect dynamics have also been publis
@17,38,46#. Finally, experimental results on transverse patt
formation have been recently presented@47,48#. An OPO
consists of a ring~or Fabry-Perot! resonator containing a
nonlinear quadratic medium, which performs a parame
down-conversion of an injected laser beam~optical pump! at
frequencyvp . Two new fields are generated in the cryst
the signal, and the idler, at frequenciesvs , v i , respectively,
such thatvp5vs1v i , the last relation indicating the con
servation of photon energy. The nonlinear interaction a
requires photon momentum to be conserved, i.e.,
phase-matching conditionkp2ks2ki50, which is usually
obtained by exploiting polarized beams and crystal birefr
gence. This effect often implies that a transverse walk
1063-651X/2002/65~3!/036610~14!/$20.00 65 0366
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between the different polarization components may occ
The consequences of a walk-off have also been consid
and convective instabilities and noise-sustained patte
found @39,40,45,49,50#. Most of these theoretical studie
have been performed in the context of a scalar approxi
tion, which is valid for the so-called type-I OPO’s; in th
type-I interaction the signal and idler fields have the sa
polarization, orthogonal to the pump beam. However, th
are not many studies involving type-II OPO’s where the p
larization degree of freedom is taken into account. In Re
@31,34,35,38#, the model equations can be valid for an OP
that is nondegenerate either in polarization or in frequen
however, the intrinsic physical difference between the t
cases was not made evident. In Refs.@46# and @51# the po-
larization nondegenerate case and the polarization and
quency nondegenerate case have been considered an
role of the walk-off explored. Finally, the case of polariz
tion coupling, due to cavity birefringence and/or dichrois
has been analyzed for the case of an OPO, showing B
walls formation@52#; these structures were later found al
for second-harmonic generation@53#.

In this paper we will focus our attention on the polariz
tion pattern and vectorial defect formation in a type-II, fr
quency degenerate OPO. In particular we will consider
case in which the pump is not resonated in the cavity and
be eliminated from the dynamics by means of a multip
scale approximation. This simplification has also been m
in order to take into account the effects of phase misma
which has been only partly studied in connection with typ
OPO’s @33#. In fact, the conservation of the photon mome
tum need not to be exact for down conversion to occur,
conversion efficiency being lower ifkp2ks2kiÞ0.

The paper is organized as follows. In Sec. II we pres
the equations which model the type-II OPO and some ex
stable solutions that are combinations of traveling wa
~TW’s!. Due to the vectorial nature of the field, these so
©2002 The American Physical Society10-1
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tions represent spatial polarization patterns. We also s
that these TW’s are spontaneously formed starting from
random perturbation of the trivial steady state, that is rep
sented by the field below the threshold of signal and id
generation. In Sec. III we show that, on a background m
of TW’s, vectorial defects are spontaneously generated.
defects are classified as vectorial dislocations by compa
the quantities characteristic of a dislocation of a comp
field with those of the defects obtained in the dynami
system. The dynamics of defects is also studied in this s
tion. The stabilization of a single defect is then presented
Sec. IV. The discussion of the effects due to the presenc
the phase mismatch is given in Sec. V and the conclus
presented in Sec. VI. In Appendix A we derive the ba
equations in which our study is based, and in Appendix B
derive the corresponding amplitude equation~a Swift-
Hohenberg equation! for the instability leading to frequency
converted light generation in our model.

II. EQUATIONS AND BACKGROUND SOLUTIONS

We considered a model for a type-II OPO, for which t
pump is not resonated in the cavity and in which some m
match among the interacting waves is allowed. Previ
studies of pattern formation, except Ref.@33#, neglected mis-
match, however, real devices are likely to present a resid
mismatch due to the selection mechanism of the signal
idler frequencies~see@54# for details!. Since the type-II con-
figuration means that the signal and the idler are ortho
nally polarized fields, we will use the notationAx ,Ay to de-
note them. The starting point is the slowly varying envelo
approximation propagation equations for a type-II interact
which includes the mismatch~see, for example,@55#!. By
following the procedure outlined in Appendix A, we obta
the evolution equations for the cavity fields:

] tAx5gx@2~11 iD!Ax1mAy* 1suAyu2Ax#1 iax¹
2Ax,

~1!

] tAy5gy@2~11 iD!Ay1mAx* 1suAxu2Ay#1 iay¹
2Ay ,

~2!

wheregx , gy are the decay rates of the signal and idler in
cavity, D the cavity detuning,ax ,ay the diffraction coeffi-
cients. Note that the detunings of the two fields are m
equal to a common valueD @56# by choosing the tempora
reference frame such that stationary homogeneous state
not have free rotating phases. The other terms that appe
these coupled equations are, respectively,~i! a linear para-
metric coupling with coefficient

m5E0 expS iDkL

2 D sin~DkL/2!

DkL/2
, ~3!

whereE0 is the injected pump field,Dk the photon momen-
tum mismatch, andL the crystal length@57#; ~ii ! a cubic
nonlinear coupling with coefficient

s5
2

Dk2L2 @„cos~DkL!21…1 i „sin~DkL!2DkL…#. ~4!
03661
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At perfect phase matchingm5E0 , s521; otherwise, the
coefficients are complex numbers; their real, imaginary pa
are shown in Fig. 1 forE051.5. Similar coefficients were
also found for a type-I, singly resonant frequency degene
OPO, by Longhi in Ref.@33#, with the same type of analysis
Note that the lasing of an OPO requiresuDku,p/L because
the parametric gain outside this range is too small and
device tends to ‘‘jump’’ to another pair of signal-idler fre
quencies that satisfy this condition@54#. Finally, note that all
coefficients can become dimensionless as soon as appr
ate time, space, and field amplitude scaling are performe

Equations~1! and~2! have exact traveling wave solution
of the same type as those found in Ref.@35#:

S Ax

Ay*
D5ACei ~vt1k•r !S eif0

e2 i ~a2f0!D , ~5!

wheref0 is an arbitrary phase, while the intensityC and the
phase differencea between the signal and the idler are giv
by

C5
1

usu2 @s81s9D̃6Aumu2usu22~s92s8D̃ !2#, ~6!

cosa5
1

umu2 @m8~12s8C!1m9~ñ2s9C!#, ~7!

where s85Re(s), s95Im(s), m85Re(m), m95Im(m) and
D̃5D1uku2(gxax1gyay)/(gx1gy) is an effective detuning
parameter. The TW intensityC and the phase differencea
are shown in Fig. 2 forE051.5.

The frequency shiftv is given by

v5
gxgy

gx1gy
@~ay2ax!uku2#. ~8!

This quantity can be zero if the diffraction coefficients a
equal for the signal and the idler. Hereafter, we will consid
only the case of frequency degenerate OPO, i.e., when
frequency of the signal and idler are the same; this also
plies thatgx.gy ~without loss of generality we setgx5gy
51 in our simulations, thus scaling time with the cavi
lifetime!. The conditionax5ay5a can be exactly obtained
for example, by introducing compensating prisms in the c

FIG. 1. The solid~dashed! curve is the real~imaginary! part of
m and the dashed-dotted~dotted! curve the real~imaginary! part of
s as functions of the mismatch (E051.5).
0-2
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POLARIZATION PATTERNS AND VECTORIAL DEFECTS . . . PHYSICAL REVIEW E 65 036610
ity, as suggested in Appendix A. Strictly speaking, ifv50
the solutions~5! are not traveling waves but rather standi
phase waves, however, we will generally refer to them
TW’s. It is important to note that considering the casev
50 is not restrictive in the sense that all features obser
for this case survive also forvÞ0; at least when a uniform
pump and periodic boundary conditions are used.
checked this by integrating Eqs.~1! and ~2! also for ax
Þay ; the main difference is that phase waves travel. Un
the hypothesis made in this paragraph, the effective detu
simply readsD̃5D1auku2.

TW solutions ~5! exist for umu2.11D̃25umcu2 if s8

1s9D̃,0; in this case only the solution with the plus sign
acceptable in Eq.~6!. If s81s9D̃.0, solutions exist for
umu2.umcu221/usu2(s81s9D̃) and there is bistability up to
mc among the solutions obtained by taking the plus and
nus signs. However, when no mismatch is present (Dk
50), given thats8,0, no bistability regime exists and TW
are found only forumu2.umcu251. Note that if no mismatch
is present the solutions also satisfya50 and thereforeAx

5Ay* . Hereafter, we will consider only the case of perfe
phase-matching and leave the observations about the ef
of mismatch to Sec. V.

A physical interpretation of the exact solutions can
given in terms of spatial polarization patterns. In fact, un
the assumptions made, the Stokes parameters@58#

S05uAxu21uAyu2,

S15uAxu22uAyu2,

S25AxAy* 1Ax* Ay ,

S35 i ~AxAy* 2Ax* Ay!, ~9!

associated with the TW’s at frequencyvs5v i5vp/2 can be
simply calculated as

S052C, S150, S252C cos~2k•r2a!,

S352C sin~22k•r1a!. ~10!

FIG. 2. The solid~dashed! curve is the traveling wave solutio
intensity C ~phase differencea! as a function of the mismatch, a

given by Eqs.~6! and ~7! for D̃50.
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These equations mean that the coupled-TW solution (Ax ,Ay)
represents an elliptically polarized field with a two-valu
spatially periodic azimuth„u5tan21(S2 /S1)/2… and with a
spatially periodic ellipticity parameterh(r )5a/22k•r . In
particular, in the direction of the wave vectork the polariza-
tion changes from linear~with u5p/4!, to right circular, to
linear~with u52p/4!, then to left circular and back again t
linear~with u5p/4! with a spatial periodl/25p/k ~see Fig.
3!.

Other stable solutions can be found as combinations
the basic TW solutions~5! as shown in Ref.@34# for a triply
resonant, nondegenerate OPO. They can be generally wr
as

S Ax

Ay*
D5„f 1 exp~ ikx!1 f 2 exp~ iky!1 f 3 exp~2 ikx!

1 f 4 exp~2 iky!…S 1
1D . ~11!

The coefficientsf k determine the kind of solution, fo
example, the TW is (f 1 , f 2 , f 3 , f 4)5(AC,0,0,0) and the

FIG. 3. The change of the state of polarization of the solut
~5! @kc5(kc,0),C50.8,a50,f050# is shown at the spatial point
of coordinatesx5np/8, n50•••7 ~left to right and top to bottom!.
0-3
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M. SANTAGIUSTINA et al. PHYSICAL REVIEW E 65 036610
standing rolls are (AC,0,AC,0). An interesting solution for
this case is that of the alternating rolls (f 1 , f 2 , f 3 , f 4)
5(AC,iAC,AC,iAC), i.e.,

S Ax

Ay*
D52AC„cos~kx!1 i cos~ky!…S 1

1D , ~12!

which gives rise to a square intensity pattern. We found t
this structure is stable with periodic boundary conditions,
it deforms and disappears as soon as other, more real
boundary conditions are applied. We show in Fig. 4
square array with periodic boundary conditions after an e
lution of t5500 time units; no appreciable change of t
initial condition ~12! has been observed.

The equations also have a trivial steady-state solutionAx
5Ay50, that represents the nonlasing state of the OPO
whose stability analysis is similar to that performed in Re
@30,31,35#. Briefly, Ax5Ay50 becomes unstable forumu
.1 if D,0 and for m.A11D2 if D.0. For D.0 the
trivial solution becomes unstable for homogeneous pertu
tions (kc50) and no pattern or structure is expected to
spontaneously formed. In numerical simulation we obser
the transition to a final, stable, homogeneous state of in
sity C, preceded by a transient regime where domain w
form but soon disappear@17#. For D,0 the most unstable
modes are TW’s with a critical wave vectorukcu252D/a,
i.e., such that the equivalent detuningD̃ is zero. Note that the
most unstable modes are also exact TW solutions of Eqs~1!
and~2!. Although the stability of such TW’s was not studie
numerical solutions give evidence that they are stable,
moreover, that they are spontaneously formed starting fro
random perturbation of the trivial steady state when
pump amplitude is above the threshold of the parame
interaction. Then, the spontaneously selected TW’s have
wave-vector modulusukcu5kc5A2D/a, but a random ori-
entation or phase in different region of space; this causes

FIG. 4. The amplitude (uAxu) of the alternating roll solution~12!
at t5500 time units~a50.8, D520.8, E051.5, the integrating
window size wasXL5YL562.8 units!.
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occurrence of defects in the patterns as will be shown be
Hereafter, we will treat only the case of polarization patte
formation, i.e.,D,0.

If the pump amplitude is weakly above the thresho
~5%!, two different final situations can be found startin
from a random perturbation of the trivial steady state un
periodic boundary conditions. In the first, all defects initia
formed tend to annihilate each other and the final state
single TW of random orientation whose wave vector is e
actly kc . As in the case of nondegenerate OPO’s@35#, no
intensity patterns appear but only phase stripe patte
which correspond to the polarization patterns described
Eqs.~5! and~10!. In another case, for the same pump amp
tude, but with other initial random conditions, ordered stru
tures of defects may form as shown in Fig. 5. By looking
the real and imaginary parts of the fieldAx , it is clear that
these defects are found along the fronts that separate reg
where TW’s with the same wave vector but with differe
phase have been selected. From the figure it is also clear
these defects appear on a background of TW solutions
those points where the stripes do not match.

Defects also appear spontaneously with pump amplitu
well above threshold~50%!; in this case the positions of th
defects are not ordered, as shown, for example, in Figs.~a!
and 6~b!. Defects always appear in both orthogonal polariz
tion components~i.e., the signal and the idler simulta
neously! and therefore they can be classified as vector
since the two components of the vector field (Ax ,Ay) are
zero at the same point in space. In Figs. 6~c! and 6~d! the
phase of the polarization components is also presented;
that it is not defined at the points where the amplitude g
to zero. Then, such objects require a topological classifi
tion that is furnished in the next section. Finally, note th
setting axÞay or gxÞgy does not alter the basic feature
observed; defects persist and are advected by the p
waves, which now travel as previously described. This
been checked by running the same simulation~i.e., that of
Fig. 5! with and without equal coefficients.

It is always useful to have in mind the general charact
istics of the instability of the zero state in our OPO model,
order to relate it to other pattern forming systems. In o
case, the instability forD,0 is at a nonvanishing wave num
ber kc , so that a Swift-Hohenberg equation for the compl
envelope of the unstable modes is the appropriate amplitu
equation description close to threshold. For the caseax
5ay , this Swift-Hohenberg equation has real coefficien
This equation is derived from our basic Eqs.~1! and ~2! in
Appendix B.

III. DEFECT CLASSIFICATION, FORMATION, AND
DYNAMICS

In this section we analyze the formation and dynamics
defects, in type-II OPO’s. The existence of defects in a ty
I nondegenerate triply resonant OPO was pointed out in R
@38# where the dynamics of an advected defect pair was a
reported. Here, we present a detailed study of the defects
spontaneously appear in the type-II frequency degene
OPO. The analysis includes~i! the classification of the defec
0-4
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POLARIZATION PATTERNS AND VECTORIAL DEFECTS . . . PHYSICAL REVIEW E 65 036610
type, showing that these defects are dislocations of the
pattern; ~ii ! the formation process under several differe
conditions and regimes, and~iii ! the trapping and stabiliza
tion of a single defect.

A dislocation of a scalar complex fieldA(r ,u), (r ,u) be-
ing spatial polar coordinates, can be defined as a config
tion that can be deformed continuously~in a neighborhood of
a point r0 , which is then identified as the core of the disl
cation and it is taken as the origin of the polar coordinat!
into the following function:

A~r ,u!5R~r !exp„i ~u1kr cosu!…5R~r !exp~ if!.
~13!

FIG. 5. Ordered arrays of dislocations obtained close to thre
old (E051.05): ~a! uAxu; ~b! Re(Ax); ~c! Im(Ax). The other param-
eters wereax52, ay52.05, gx51, gy51.025,D520.8, XL5YL

580, t54000.
03661
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The functionR(r ) is real and depends on the radial coo
dinate such thatR(0)50. This condition is necessary be
cause the phasef of the field is not defined in the origin o
coordinates. In Fig. 7~a! we show the real part ofA from
which we can observe that the defect is found at the po
where the stripes of the background, whose wave vector
from the defect isk, do not match. The phasef is shown in
Fig. 7~b!, the defect is centered at the pointr050, around
which the phase changes by 2p. The topological charge as
sociated with the phase change is defined by the integra
the phase gradient on a closed contour surrounding the p
r0 :

n05
1

2p R
r0

¹f•dr51. ~14!

Note that there exists also another dislocation obtained
settingu→2u for which the topological chargen0 is equal
to 21. However, the most interesting feature of a dislocat
is that it is characterized by another topological charge. T
is associated with the function

c~x,y!5tan21S ~¹f!y

~¹f!x
D , ~15!

where the indicesx, yof the term on the right-hand side refe
to the vector components. This function, which defines
orientation angle of the wave-vectork, is shown in Fig. 7~c!
for the field A defined by Eq.~13!. Note that there are two
points wherec is not defined: one is located at the pointr0 ,
corresponding to the point of zero amplitude; the second i
another pointr1 whereur12r0u5k21. Then, the topological
charges associated withc are

h-

FIG. 6. Amplitude and phase of the polarization components
the field well above threshold (E051.5,a51,D520.25,XL5YL

580,t52000). ~a! uAxu; ~b! uAyu: ~c! tan21@Im(Ax)/Re(Ax)#; ~d!
tan21@Im(Ay)/Re(Ay)#. Note that the defects are always in pairs a
that signs of the chargen0 are opposite in the two components.
0-5
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m05
1

2p R
r0

¹c•dr51, ~16!

where the integration contour surrounds the pointr0 but
leaves outside the pointr1 , and

m15
1

2p R
r1

¹c•dr521, ~17!

where the integration contour surrounds the pointr1 but
leaves outside the pointr0 . Note that there is not a zero i
the amplitudeR at the pointr1 .

FIG. 7. Dislocation of a complex field:~a! Re(A); ~b! f; ~c!
c; where A, f are defined by Eq.~13! and c by Eq. ~15!
@k51,R(0)50,R(`)51#.
03661
We now turn our attention back to the type-II OPO a
compare the defects that are found in the numerical solut
of Eqs. ~1! and ~2! with the dislocation just defined. In thi
section, to better compare numerical and theoretical res
only periodic boundary conditions and homogeneous pu
beams are considered; more realistic conditions will be
plored in Sec. IV when stabilization of a dislocation is co
sidered.

The randomly generated defects of Figs. 5 and 6 are
locations on a background of TW’s, although in the seco
case it is difficult to recognize the background solutio
since the defects are dense in the integration window. H
ever, a fingerprint of TW is found also for the data of Fig.
by observing the far field in Fig. 8. There, a ring of modes
radius kc is clearly observable, a clear indication that t
background is made mostly of TW solutions of different o
entation but of the same wave numberkc . The dislocations
can be also clearly identified when the quantitiescx andcy
@defined again through Eq.~15! where the phases are those
Ax , Ay# are calculated for the same data of Fig. 6. The res
is presented in Figs. 9~a! and 9~b!, where a contour plot of
uAxu, uAyu taken at a low intensity level to indicate the loc
tions of the zeros of the field, is superimposed on the gr
scale coded images of the functionscx andcy . From Fig. 9
we note that in this static condition ‘‘chains’’ of defects o
the functionscx,y are formed. Two zeros of the amplitud
~defects of chargesn0 ,m0! are in fact connected by the rela
tive pair of defects of the functionscx,y at the second poin
~defects of chargem1!. This stems from the fact that th
phase difference betweenAx andAy is zero~when there is no
mismatch!, and thusAx5Ay* .

Regarding the dynamics@59# of the spontaneously gene
ated defects, we observe that they appear at the early sta
the process. Some of them are annihilated within a few th
sand cavity lifetime units. After this stage we cannot obse
any annihilation, up to 100 000 cavity lifetime units. Th
initial number of dislocations and their positions change w
different initial conditions. The statistical distribution of th

FIG. 8. The amplitude of the far field~Fourier transform! of Ax

for the same data of Fig. 6. The average modulus of the w
number of the modes in the ring is about 0.47 and the predic
value iskc5A2D/a50.5.
0-6
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POLARIZATION PATTERNS AND VECTORIAL DEFECTS . . . PHYSICAL REVIEW E 65 036610
final number of defects, by changing initial conditions,
shown in Fig. 10; observe that a Gaussian fit is actually v
good. We note that the defect density never reaches tha
the square pattern@Eq. ~12!# with critical wave vectorkc .
After the initial formation stage, we observe in our runs th

FIG. 9. Functions~a! cx and ~b! cy for the data of Fig. 6.
Contour plots, with a contour level close to zero, ofuAxu, uAyu have
been superimposed to locate the positions of the amplitude ze

FIG. 10. Distribution~bars! of the final number of defects fo
different random initial conditions (a51,D520.4,E051.5,XL

5YL550). The Gaussian fit average and variance are those
tained from the data.
03661
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defects have a slow, random motion. This regime is mo
dominated by the attraction of pairs of defects of oppos
chargesn0561. For longer times, the motion tends to sto
and an equilibrium condition is reached. Although no d
tailed statistical study has been conducted, we also note
inspection of Fig. 9, that there seems to exist a character
length of separation between the defects, which is an ind
tion that an equilibrium is likely to be reached.

To better study defect interaction we use Eq.~13! as an
initial condition and integrate Eqs.~1! and ~2!. Due to the
periodic boundary conditions a pair of defects is genera
as shown in Fig. 11~a!. These correspond to two dislocation
in the real part of each field@Fig. 11~b!#, two phase singu-
larities with opposite topological charge@Fig. 11~c!# and two
pairs of defects associated with the quantitycx @Fig. 11~d!#.
At the initial stage the zeros of the amplitude, which ha
oppositen0 charge, attract each other; later, when thecx
defects~which have the same chargem051! get closer, this
attraction is stopped and an equilibrium position is fou
@59#. This paired structure is stable at least up to the ti
explored by numerical solutions.

In general, the detailed behavior of defects dynamics
governed both by local, phase curvature effects and
defect-defect interactions. The range of these interactions
pends on the parameters of the system, which determine
spatial extent of the defect. For example, if we make
detuning more negative~e.g.,Dx5Dy521 andax5ay51!,
two defects displaced parallel to the background wave fro

s.

b-

FIG. 11. Pair of dislocations obtained by integrating~1! and~2!
with a single dislocation~13! as an initial condition forAx and a
random initial condition forAy : ~a! uAxu; ~b! Re(Ax); ~c! fx ; ~d!
cx . The integration parameters werea52, D520.2, E051.5,
XL5YL5100, t52000.
0-7
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either annihilate, if close enough, or repel each other, if f
ther away.

Figure 12 also shows a pair of defects~same paramete
values as in Fig. 11 but different initial displacement! under-
going motion; the background has a wave vector of 2kc and
it is stable when the system is pumped far above thresh
When their separation is small enough, the defects bri
rotate around each other before continuing their transv
motion. As a consequence of this motion and the perio
boundary conditions, the defects collide and annihil
shortly afterwards~not shown!.

Figure 13 shows another interesting example. Two defe
approach each other while the background phase wave
dergoes a zig-zag instability@60#. When they meet they form
a bound pair that follows the local curvature of the bac
ground phase fronts, changing direction as the slow ph
dynamics alters this curvature. The bound defect pair
stable for the duration of the simulation~115 000 cavity life-
times!. It also exists for lower pump powers, down to at lea
5% above threshold. On the other hand, at slightly hig
pump powers than that used in Fig. 13, the structure de
bilizes: after a short time the defect pair rotates slightly
fore annihilating.

The previous examples show that long-lived defect int
actions are important features of the dynamics of type
OPO’s. This fact is in agreement with instances of long-te
survival of many defects generated by random initial con
tions ~e.g., Fig. 6! and is clearly different from vortex dy
namics observed, for example, in complex Ginzburg-Lan
models@61#.

Close to threshold, it is possible to study the behavior

FIG. 12. Interaction of two vortices~labeled 1 and 2! for gx

5gy51, D520.2 andax5ay52, XL5YL516p/kc . The images
show uA1u at intervals of 50 cavity lifetimes.
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the type-II OPO dislocations by means of amplitude eq
tions. These are derived in Appendix B where comparis
are made with simulations of the full model.

IV. TRAPPING OF ISOLATED DISLOCATIONS

We know that periodic boundary conditions always r
quire the total topological charge within the domain to
zero. In this section, we take into account that the pu
amplitudeE0 actually has a spatial dependence and perio
boundary conditions are not applicable. If a spatial Gauss
or super-Gaussian distribution is used for the parametric g
factorm @Eq. ~3!#, the spontaneously generated defects of
tend to move to the region where the field is zero. The tr
ping of single defects necessary for their experimental ob
vation as single entities is then an interesting issue.

We tried, successfully, to isolate a single defect in a m
realistic pump beam, by using, as an initial condition for o
of the fields, a doughnut mode. This idea follows the expe
mental results of induced dislocation formation in quadra
nonlinear interactions@62#. Note that no cavity was used i
those experiments and the defect was maintained by for
a doughnut mode in the field at the crystal input. Here

FIG. 13. A bound defect pair forgx5gy51, D521 and ax

5ay51, XL5YL532p/kc . ~a!, ~c!, ~e!, and~g! show the real part
of Ax at t55 500, 11 000, 36 000 and 54 000 cavity lifetimes, r
spectively. The figures in the rightmost column showuAxu at the
corresponding times. The arrows indicate the direction of transv
motion of the defects.
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dislocation is ‘‘written’’ at the beginning but, after that, n
injection is required since the cavity provides the necess
feedback to sustain the structure. The resulting, sta
trapped defect is shown in Fig. 14. The spiral wave in
phase field spins whenaxÞay , otherwise it is stationary
after the initial formation stage. Note that in order to trap t
defect, the beam size must be kept smaller than the w
length of the most unstable TWlc52p/kc , otherwise more
defects are induced or the initial defect is dragged outside
beam. The creation of other defects is due to the tendenc
the system to generate pairs. If the system size is compar
with the critical wavelength, the paired defect will appe
inside the pumping region and will destabilize the origin
defect. If the size is smaller, the second defect will be g
erated outside the pumping region, and therefore, will
influence the dynamics of the trapped defect@Fig. 14~c!#.
The amplitude profiles of the fields of this single defect a
shown in Fig. 15.

This way of generating the defects is also useful for u
derstanding the mechanism of their formation. The prese
of a defect in one field, sayAx , induces a defect of opposit
chargen0 in the other because of the parametric coupling.
fact, if Ax.0 at t50 the term that dominates the dynami
of Ay in the initial regime is the largest linear one, i.e.,mAx* .
Hence,Ay is forced by the complex conjugate ofAx and a
defect of opposite charge is formed. Eventually the ot
terms of Eqs.~1! and~2! become significant: the real part o
the cubic term provides the saturation that stabilizes the
lution and nonlinear phase modulations appear if misma
is present, due to its imaginary part. If we initialize a defe
with topological chargen0562 using the technique de
scribed above, we observe that it breaks up into two def
of chargen0561.

Since the generation of such defects has been seede
ternally, the question arises whether it is possible to ob
defects for positive detunings. In spite of the absence
stable traveling-wave solutions, single vortices can
trapped by using the same seeding technique.

We also observe that walk-off removes all structures fr
the pumping region and a single TW is selected asympt
cally. However, it is interesting to note that in the transie
regime dislocations are formed. They appear at the front
divides two regions where stripes with different wave-vec
modulus are selected. The difference in the wave vector
due to the walk-off, as shown in Ref.@46#.

Finally, we estimate the threshold for the observation
this isolated dislocation in an OPO. Considering data
KTiOPO4 @63#: x57.33 pm/V, n051.8 atl051.064mm,
and by using the definition of the effective coupling para
eter defined in Appendix A~a! and considering a nonlinea
crystal length of 1 cm, a mirror transmittivity 1022, the input
field at threshold (E51) can be evaluated asEIN,0.2
3104 V/m that yields an intensity I
5n0/2(m0 /e0)1/2uEIN,0u2.1 MW/m2 ~m0 ,e0 are, respec-
tively, the vacuum magnetic permeability and electric p
mittivity constants!. The super-Gaussian beam used in
simulation has a beam diameter of about 10 normali
units; a spatial normalized unit corresponds, for the diffr
tion coefficient of the simulation, to about 0.195 mm, hen
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FIG. 14. Isolated defect:~a! uAxu; ~b! fx ; ~c! cx . The initial
condition for Ax was a doughnut mode of the formAx(x,y)
50.01(x1 iy)exp@2(x21y2)/200# while Ay was random. The pa-
rameters of the integration were:a52, D520.2, E051.5, XL

5YL560, t52000.
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the cw threshold power is about 0.95 W. The physical cav
decay ratesgx,y are about 0.17 GHz, while the cavity detu
ing is 34 MHz. All these data are compatible with an expe
mental realization.

V. MISMATCH EFFECTS

This section is dedicated to the study of the effects
mismatch (DkÞ0) between the fields in the OPO. As prev
ously noted, in real devices it is often possible that the
lection rules of the oscillation frequencies force the OPO
emit radiation with a slight mismatch@54#.

The effects of the mismatch, predicted by the analysis
Sec. II, are the following:

~i! An increase in the threshold for signal generation@i.e.,
the instability, see Eq.~3!#,

~ii ! a spatial shift of the isopolarization lines for the exa
TW solutions. The latter effect is due to the appearance
the phase shiftaÞ0 @see Eq.~5!# between polarization com
ponents; this stems from the imaginary parts of the coe
cientsm ands, the contribution of the latter being a nonlin
ear phase modulation due to thex (2):x (2) cascading effect
@64#.

For the case of the spontaneous generation of defects
have been able to determine that the phase shifta is nonzero
in the regions where the background solution dominates.
numerically found value is very close to the value predic
by Eq.~7!. However, approaching the zeros of the amplitu
the phase difference also tends to zero, although the pha
the fields is not strictly defined at the defects. In practice,
zeros of the spatial functiona(x,y) are located exactly at th
positions of the field defects. This behavior can be explai
as follows: close to the defects the cubic terms tend to z
in particular the term proportional to the imaginary part ofs
~i.e., the Kerr-like phase modulation term! is the first that can
be neglected. Althoughm5umuexp(ib) is complex, by an ap-
propriate redefinition of the variables asÃj5Aj exp(ib/2) j

51,2, we can obtain a set of equations forÃj where the
parametric gain is purely real (m950). Thus, we reduce the
problem to the case where no mismatch is present@see Eq.
~7!# and thereforea→0.

The final number of spontaneously generated dislocat
seems also to be affected by the phase mismatch. We
that this number decreases by changing the mismatch f

FIG. 15. Amplitude profile of the isolated defect of Fig. 14:uAxu
solid curve,uAyu dashed curve.
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negative to positive values, keeping all the other parame
fixed. In particular it seems that positive values of the m
match encourage the annihilation of the pairs of dislocatio
This has been verified by numerical integrations with t
same parameters and initial conditions as Fig. 11 but w
nonzero mismatch. ForDk.0 we observed that the pair i
annihilated, while forDk,0 the pair reaches a stable co
figuration. A possible cause of this asymmetry is the ph
modulationa introduced by the mismatch, which chang
sign according to the sign of the mismatch~see Fig. 2!.

The effect of phase mismatch on the trapped defect i
destabilize it, by generating asymmetries in the fields
both positive and negative values ofDk.

VI. CONCLUSIONS

In conclusion, we have studied the polarization patte
and vectorial defect formation in a type-II frequency dege
erate optical parametric oscillator.

We found that the preferred solutions, those that are
lected out of an initial perturbation of the zero state, a
conjugate traveling waves in the two components of the
larization. A spatial polarization pattern is then formed: t
state of polarization changes along the spatial coordinate
allel to the selected wave-vectorkc with period equal to
lc/25p/kc . In particular, the state of polarization chang
along the meridian of the Poincare´ sphere which passe
through the linearly polarized states of azimuthu56p/4 if
Dk50. The magnitude of the wave vector of the selec
solution is fixed by the parameters and has a single rand
orientation close to threshold and multiple random orien
tions far from threshold. Combinations of traveling wave
that form square patterns are also stable solutions, and c
to the threshold of the instability, ordered arrays of defe
can form spontaneously.

Such defects are isolated zeros of the two linear com
nents of the polarization, i.e., they are vectorial defects. T
are dislocations that form in spatial positions where the ba
ground solutions~traveling waves! do not match spatially.
Two different kinds of topological charge must be define
one kind of charge is associated with the phase and
charges with the director angle of the field wave vector. T
first charge, located at the point where the amplitude goe
zero, can be61 and is always opposite in the two polariz
tion components. The charge associated with the wave ve
is always11 at the point where the amplitude is zero a
21 at the paired point, where the amplitude is not zero. T
polarization components are totally correlated; in fact all d
fects, both in the phase and wave-vector fields, have a
responding defect in the other polarization component.
this way, the defects form chains in which the separat
among defects seems to have a typical size, which is of
order of the background wavelength.

The trapping of an isolated defect has also been dem
strated. This is accomplished by keeping the size of
pump beam smaller than the critical wavelength of the p
ferred traveling wave such that a second defect canno
created inside the pump beam but rather lies outside
does not influence the dynamics.
0-10
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Finally, we have addressed the effects that may a
when the nonlinear interaction is slightly phase mismatch
i.e., the increase in the threshold of signal generation, and
linear and nonlinear phase shifts among the polarizations
latter due to the cascading effect. Numerical results sho
that a positive mismatch can favor the annihilation
dislocations.

Possible applications of defects can be foreseen in
field of particle and atom trapping@65#.
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APPENDIX A

In this appendix we derive the dynamical equations fo
cw type-II OPO in the presence of diffraction. We start fro
the amplitude equations for the pump, signal and idler fie
in the crystal@55#

]zE01
n0

c
] tE05

i

2k0
¹2E02

4pV0x

n0c
ExEye

2 iDkz,

]zEx1
nx

c
] tEx5

i

2kx
¹2Ex1

4pVxx

nxc
E0Ey* eiDkz,

~A1!

]zEy1
ny

c
] tEy5

i

2ky
¹2Ey1

4pVyx

nyc
E0Ex* eiDkz,

where E0 , Ex , Ey are the slowly varying amplitudes o
pump, signal and idler, respectively,V05Vx1Vy is the fre-
quency constraint on the OPO,ki5niV i /c are the wave
numbers,Dk5k02kx2ky is the phase mismatch,x is the
second order susceptibility of the crystal, andc is the speed
of light. We treat here the perfectly matched case (Dk50) in
order to focus on the form of the diffraction coefficients
the final equations. The phase matching condition imp
that once the three frequencies and two refractive indices
given, then the third refractive index is determined. For
ample, forn0 we have

n05
nxVx1nyVy

Vx1Vy
n05

nx1ny

2
, ~A2!

where the second equation is valid at frequency degene
It is also useful to introduceVx5mV0 , Vy5nV0 with m
1n51 and the effective coupling parametera
54pV0x/(nc) to obtain
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]zE05
n0

c
] tE05

i

2k0
¹2E02aExEy ,

]zEx1
nx

c
] tEx5

i

2kx
¹2Ex1maE0Ey* , ~A3!

]zEy1
ny

c
] tEy5

i

2ky
¹2Ey1naE0Ex* .

All these equations describing the fields in the crystal hav
similar form of the kind

]zEi1
ni

c
] tEi5 idi¹

2Ei1b iNLT~Ej ,Em!, ~A4!

where NLT stands for nonlinear terms and the indicesi, j, m
take the symbolic values 0,x, y.

We consider a ring cavity of lengthL with a crystal length
L and apply longitudinal boundary conditions and the st
dard mean field limit. We consider here the triply resona
case, the doubly resonant case of nonresonated pump be
subset of this general frame. We then obtain

] t8Ei1
cL

L1~ni21!L
]zFi52g iFi2 i d̂ iEi1 iai¹

2Ei

1g iEIN,i1b̂ iNLT~Ej ,Em!,

~A5!

where

t85t1FL2L

c G z

L
,

g i5
cs i«

L1~ni21!L
, d̂ i5

cd i

L1~ni21!L
5

~v i2V i !L
L1~ni21!L

,

ai5
cL

2ki@L1~ni21!L#
, b̂ i5

cb iL

L1~ni21!L
. ~A6!

Note that the presence of birefringence introduces an exp
dependence on the refractive indices in the coefficients of
final equations. This is a consequence of the tight comb
resonances observed when the length of the cavity is sca
@56#.

Finally, we introduce a linear transformation of the fiel

A05
aL

«
A mn

sxsy
F0, Ax5

aL

«
A n

s0sy
Fx,

Ay5
aL

«
A m

s0sx
Fy , ~A7!

and a final normalization of the parameters

E~x,y!5
aL

«
A mn

sxsy
EIN,0, D i5

d̂ i

g i
5

v i2V i

g ini
.

~A8!

The final equations read

] t8A05g0@2~11 iD0!A01E~x,y!2AxAy#1 ia0¹2A0 ,
0-11
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] t8Ax5gx@2~11 iDx!Ax1A0Ay* #1 iax¹
2Ax , ~A9!

] t8Ay5gy@2~11 iDy!Ay1A0Ax* #1 iay¹
2Ay ,

where

g i5
cs i«

L1~ni21!L
; ai5

cL
2ki@L1~ni21!L#

. ~A10!

These equations clearly show that the loss and diffrac
coefficients depend critically on the refractive indices even
the frequency degenerate case.

Since our analysis starts from stationary homogeneous
lutions, the choice of the temporal reference frame is fix
by the conditionDx5Dy5D, which excludes phase rota
tions for the stationary homogeneous states@56#. In this case
the final equations are

] t8A05g0@2~11 iD0!A01E~x,y!2AxAy#1 ia0¹2A0 ,

] t8Ax5gx@2~11 iD!Ax1A0Ay* #1 iax¹
2Ax , ~A11!

] t8Ay5gy@2~11 iD!Ay1A0Ax* #1 iay¹
2Ay .

We note that it is still possible to have equal loss a
diffraction coefficients for the three waves if we consid
cavities of different lengthsLi for each field. This can be
achieved by inserting compensating prisms of chosen len
L i and refractive indicesNi . In this case the equations a
the same as Eq.~A11! but with redefined loss and diffractio
coefficients

g i5
cs i«

Li1~ni21!L1~Ni21!L i
,

ai5
cL

2ki@Li1~ni21!L1~Ni21!L i #
.

~A12!

By adjusting lossess i and compensating prism coefficient
one can select equalg i . In this way, the compensating prism
parameters can be left free to adjust the diffraction coe
cientsai . In particular, we wantax5ay at degeneracy tha
means

nx@Lx1(nx21)L1(Nx21)Lx]

5ny@Ly1~ny21!L1~Ny21!Ly#, ~A13!

which leaves a lot of flexibility for the final setting.
Finally, we observe that in the absence of a cavity for

pump field there are just two equations for the signal a
idler waves remaining. By settingA05E2AxAy in Eqs.
~A11!, we obtain Equations~1! and ~2! for the oppositely
polarized fieldsAx and Ay in a doubly-resonant configura
tion.

APPENDIX B

In this appendix we perform a weakly nonlinear analy
in the regionkc!1 and close to threshold in order to dete
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mine the appropriate amplitude-equation description for
instability. Related derivations have been presented
@36,37#. For simplicity, consider the case

gx5gy5g,

ax5ay5a. ~B1!

With the benefit of somea posterioriknowledge, we rewrite
the field equations in terms of the variablesF15Ax1Ay* and
F25Ax2Ay* :

] tF15gF ~E21!F12
1

4
F1* ~F1

22F2
2!G1 i ~a¹22gD!F2 ,

] tF25gF2~E11!F21
1

4
F2* ~F1

22F2
2!G1 i ~a¹22gD!F1 .

~B2!

We define a smallness parametere and perform appropriate
scalings and expansions:

E511e2P, T5e2t, X5Aex, Y5Aey,

D5ed, Fi5eFi11e2Fi21••• . ~B3!

We can then proceed order by order ine in a straightforward
manner. At third order we have

] tF15gF ~E21!F12
1

4
uF1u2F1G2

g

2 S a

g
¹22D D 2

F1 ,

~B4!

F25
i

2 S a

g
¹22D DF1 . ~B5!

The important point is that there is a single-order parame
(F1) governed by a Swift-Hohenberg equation~SHE! @60#
and a second field (F2) that is slaved toF1 . In other words,
the dynamics of the system is described by a single comp
scalar field. Note that it is only whenAx5Ay* that the order
parameter becomes real@38#. An extra imaginary transvers
Laplacian term appears in Eq.~B2! whenaxÞay .

Despite the assumptions underlying its derivation@Eqs.
~B3!#, the SHE can sometimes offer a good description of
system even outside its expected range of validity. For
ample, when integrating Eq.~B4! with the same paramete
values as in Fig. 11, the final state is essentially the sa
stable defect pair. Nonetheless, notable failures of the S
can be found; for example, in reproducing the movemen
the bound defect pair in Fig. 13. This indicates that the or
nal dynamics is not well reproduced when the assumpti
leading to Eqs.~B3! and ~B4! are violated, and serves as
warning about the limitations of order parameter equatio
such as Eq.~B4!.
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