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Polarization patterns and vectorial defects in type-Il optical parametric oscillators
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Previous studies of lasers and nonlinear resonators have revealed that the polarization degree of freedom
allows for the formation of polarization patterns and novel localized structures, such as vectorial defects. Type-
Il optical parametric oscillators are characterized by the fact that the down-converted beams are emitted in
orthogonal polarizations. In this paper we show the results of the study of pattern and defect formation and
dynamics in a type-Il degenerate optical parametric oscillator, for which the pump field is not resonated in the
cavity. We find that traveling waves are the predominant solutions and that the defects are vectorial dislocations
that appear at the boundaries of the regions where traveling waves of different phase or wave-vector orientation
are formed. A dislocation is defined by two topological charges, one associated with the phase and another with
the wave-vector orientation. We also show how to stabilize a single defect in a realistic experimental situation.
The effects of phase mismatch of nonlinear interaction are finally considered.
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[. INTRODUCTION between the different polarization components may occur.
The consequences of a walk-off have also been considered
Most studies of patteril—3] and localized structure and convective instabiliies and noise-sustained patterns
[4—17] formation in optical systems consider light with a found [39,40,45,49,5D Most of these theoretical studies
fixed linear polarization. However, the vectorial degree ofhave been performed in the context of a scalar approxima-
freedom of light, associated with a space- and timedion, which is valid for the so-called type-l OPQ’s; in the
dependent polarization, leads to a very interesting phenontype-I interaction the signal and idler fields have the same
enology, as previously shown for Kerr cavitigs8—20, so-  polarization, orthogonal to the pump beam. However, there
dium vapors[21], lasers[22—-24 and intracavity second- are not many studies involving type-Il OPO’s where the po-
harmonic generatiofi25]. This degree of freedom is also larization degree of freedom is taken into account. In Refs.
relevant from the point of view of information encoding and [31,34,35,38 the model equations can be valid for an OPO
processing, because it yields a tool for the control of these¢hat is nondegenerate either in polarization or in frequency,
structures. Optical vortices have been predicted to occur ihowever, the intrinsic physical difference between the two
optical systems such as las¢®6], and they have been ex- cases was not made evident. In R¢#6] and[51] the po-
perimentally observed in lasef®27] and photorefractive larization nondegenerate case and the polarization and fre-
resonators[12,28,29. More recent theoretical studies re- quency nondegenerate case have been considered and the
vealed the existence of vectorial defects in optical systemsole of the walk-off explored. Finally, the case of polariza-
[24]. tion coupling, due to cavity birefringence and/or dichroism
Among optical systems, optical parametric oscillatorshas been analyzed for the case of an OPO, showing Bloch
(OPO’9 have been the object of intense theoretical study inwalls formation[52]; these structures were later found also
recent years, which has revealed the existence of patterdisr second-harmonic generatips3].
[30—41] and localized structurefl0,13,14,17,42—-45 few In this paper we will focus our attention on the polariza-
examples of defect dynamics have also been publishetion pattern and vectorial defect formation in a type-ll, fre-
[17,38,44. Finally, experimental results on transverse pattermquency degenerate OPO. In particular we will consider the
formation have been recently presenfel¥,48. An OPO case in which the pump is not resonated in the cavity and can
consists of a ringlor Fabry-Perot resonator containing a be eliminated from the dynamics by means of a multiple
nonlinear quadratic medium, which performs a parametricscale approximation. This simplification has also been made
down-conversion of an injected laser beéptical pump at  in order to take into account the effects of phase mismatch,
frequencyw,. Two new fields are generated in the crystal,which has been only partly studied in connection with type-I
the signal, and the idler, at frequencies, w;, respectively, OPO’s[33]. In fact, the conservation of the photon momen-
such thatw,= ws+ w;, the last relation indicating the con- tum need not to be exact for down conversion to occur, the
servation of photon energy. The nonlinear interaction als@onversion efficiency being lower K,—ks—k;#0.
requires photon momentum to be conserved, i.e., the The paper is organized as follows. In Sec. Il we present
phase-matching conditiok,—ks—k;=0, which is usually the equations which model the type-lIl OPO and some exact,
obtained by exploiting polarized beams and crystal birefrinstable solutions that are combinations of traveling waves
gence. This effect often implies that a transverse walk-ofiTW's). Due to the vectorial nature of the field, these solu-
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tions represent spatial polarization patterns. We also show 1.57

that these TW’s are spontaneously formed starting from a 1.0- N7
random perturbation of the trivial steady state, that is repre- | ’

sented by the field below the threshold of signal and idler 0.5 P 1
generation. In Sec. Ill we show that, on a background made 0.0 S
of TW's, vectorial defects are spontaneously generated. The ] 7 |
defects are classified as vectorial dislocations by comparing =057 N s
the quantities characteristic of a dislocation of a complex 1 S - .
field with those of the defects obtained in the dynamical ~1.5.

system. The dynamics of defects is also studied in this sec-
tion. The stabilization of a single defect is then presented in
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Sec. IV. The discussion of the effects due to the presence of

the phase mismatch is given in Sec. V and the conclusions FIG. 1. The solid(dashed curve is the realimaginary part of
presented in Sec. VI. In Appendix A we derive the basicx and the dashed-dottédotted curve the realimaginary part of
equations in which our study is based, and in Appendix B we” as functions of the mismatcteg=1.5).

derive the corresponding amplitude equatiga Swift-
Hohenberg equatigrfor the instability leading to frequency-
converted light generation in our model.

At perfect phase matching=E,, o= —1; otherwise, the
coefficients are complex numbers; their real, imaginary parts
are shown in Fig. 1 foEq=1.5. Similar coefficients were
also found for a type-I, singly resonant frequency degenerate

Il. EQUATIONS AND BACKGROUND SOLUTIONS OPO, by Longhi in Ref[33], with the same type of analysis.

We considered a model for a type-Il OPO, for which the Note that the lasing of an OPO requiresk| < /L because
pump is not resonated in the cavity and in which some misthe parametric gain outside this range is too small and the
match among the interacting waves is allowed. Previouglevice tends to “jump” to another pair of signal-idler fre-
studies of pattern formation, except RgF3], neglected mis- quencies that satisfy this conditi¢4]. Finally, note that all
match, however, real devices are likely to present a residudloefficients can become dimensionless as soon as appropri-
mismatch due to the selection mechanism of the signal andte time, space, and field amplitude scaling are performed.
idler frequenciegsee[54] for detail9. Since the type-Il con- Equations(1) and(2) have exact traveling wave solutions
figuration means that the signal and the idler are orthogoof the same type as those found in R&5):
nally polarized fields, we will use the notatidy ,A, to de- i
note them. The starting point is the slowly varying envelope A _ JCeitwtrkn ero

AT Ce e-ia=dg) |

approximation propagation equations for a type-Il interaction
where ¢, is an arbitrary phase, while the intenst@yand the

which includes the mismatcltsee, for example[55]). By
following the procedure outlined in Appendix A, we obtain phase difference: between the signal and the idler are given
by

the evolution equations for the cavity fields:

©)

A= Y — (LHTIA) At wAS + ol AyPA ] +ia,V2A,,

1 ~ =
D) C=roplo'+o'Bx VIpPlol?=(a"=a'8)?1, ()
A= yyl — (LHIA)A + uAf + ol AyPA ] +ia, VA, .

2 ’ ’ "ea ”

) COSQZW[M (1-ad'C)+u"(A-d"C)], (7)
wherey,, vy, are the decay rates of the signal and idler in the
cavity, A the cavity detuninga,,a, the diffraction coeffi- where ¢’ =Re(0), " =Im(0), u’'=Re(u), u"=Im(u) and
cients. Note that the detunings of the two fields are madg — A + |k|2(y,a, + ,3,)/ (7,+7,) is an effective detuning

equal to a common valua [56] by choosing the temporal parameter. The TW intensit¢ and the phase difference
reference frame such that stationary homogeneous states dgs shown in Fig. 2 foE,=1.5.

not have free rotating phases. The other terms that appear in e frequency shift is given by
these coupled equations are, respectiv@lya linear para-
metric coupling with coefficient

- iAKL\ sin(AKL/2) ;
r=Bo®P 5" xyiz ©)

YxVy
w:
YxT vy

[(ay—a,)|k[?]. (8

This quantity can be zero if the diffraction coefficients are
equal for the signal and the idler. Hereafter, we will consider
only the case of frequency degenerate OPO, i.e., when the
frequency of the signal and idler are the same; this also im-
plies thaty,=, (without loss of generality we sef,= vy,

=1 in our simulations, thus scaling time with the cavity
lifetime). The conditiona,=a,=a can be exactly obtained,
for example, by introducing compensating prisms in the cav-

whereE, is the injected pump field\k the photon momen-
tum mismatch, and. the crystal length57]; (ii) a cubic
nonlinear coupling with coefficient

o= a2 (c0S AKL) ~ 1) +i(SinAKL) - AKL)]. (4)
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FIG. 2. The solid(dashed curve is the traveling wave solution
intensity C (phase differencer) as a function of the mismatch, as - 0 1 -1 0 1

given by Egs(6) and(7) for A=0. (A Re{As

=
@

ity, as suggested in Appendix A. Strictly speakingwif=0

the solutiong(5) are not traveling waves but rather standing 1 — 1
phase waves, however, we will generally refer to them as < 0 < 0
TW’s. It is important to note that considering the case 2 ;:3

1

=0 is not restrictive in the sense that all features observed
for this case survive also fav+#0; at least when a uniform -1 1
pump and periodic boundary conditions are used. We RefA ) Re{A )
checked this by integrating Eq$l) and (2) also for a,

#ay; the main difference is that phase waves travel. Under

the hypothesis made in this paragraph, the effective detuning 1

simply readsA = A +alk|?. e o s !

TW solutions (5) exist for |u|?>1+A%=|u|? if o ;:5 g 0
+¢”A<0; in this case only the solution with the plus sign is -1 -1
acceptable in Eq(6). If ¢’ +¢”A>0, solutions exist for -1 0 1 -1 0 1
| 112> el 2= U o 2(o" + 0" K) and there is bistability up to RefA Re{A]

Hc am_ong thﬁ solutions ?}btamEd by takltn% the plusxkd mi- FIG. 3. The change of the state of polarization of the solution
nus sSigns. Flowever, when no mismaich 1S pres ( (5) [ke=(kc,0),C=0.82=0,¢o=0] is shown at the spatial points

=0), given thato”’ <2’ no bizstability regime_ exists_and W of coordinatesx=n/8, n=0---7 (left to right and top to bottom
are found only forf u|*>|uc|*=1. Note that if no mismatch

is present the solutions also satisky=0 and thereforeA, These equations mean that the coupled-TW solutionA,)

— A* ; ;
=A, . Hereafter, we will consider only the case of perfect o, esents an elliptically polarized field with a two-valued
phase-matching and leave the observations about the eﬁecsfﬁatially periodic azimuth(9=tan (S,/S)/2) and with a

of mismatch to Sec. V. . I L
) : . . spatially periodic ellipticity parameten(r)=a/2—k-r. In
A physical interpretation of the exact solutions can be articular, in the direction of the wave vectorthe polariza-

given in terms of spatial polarization patterns. In fact, undel{,:i)On chanaes from lineafwith 6= /4). to right circular. to
the assumptions made, the Stokes param¢bdis g o i), g !

linear (with 6= — =/4), then to left circular and back again to
linear (with 6= 7r/4) with a spatial period /2= 7/k (see Fig.

SOZ|AX|2+|Ay|21 3).
5 ) Other stable solutions can be found as combinations of
S =[Ad* =A%, the basic TW solutiong5) as shown in Ref{34] for a triply
resonant, nondegenerate OPO. They can be generally written
S;=AAJ +ATA, as
S:=i(AA] —AZA)), 9

A
(AI) = (f, exp(ikx) + f, exp(iky) + f 3 exp( — ikx)
associated with the TW's at frequeney= ;= w,/2 can be g
simply calculated as +f,4exp(—iky))

1
1) . (12)

So=2C, $,=0, S,=2Ccog2k-r—a),
The coefficientsf, determine the kind of solution, for
S;=2Csin(—2k-r+a). (100  example, the TW is f(;,f,,f5,f,)=(1/C,0,0,0) and the
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occurrence of defects in the patterns as will be shown below.
Hereafter, we will treat only the case of polarization pattern
formation, i.e.,A<O0.

If the pump amplitude is weakly above the threshold
(5%), two different final situations can be found starting
from a random perturbation of the trivial steady state under
periodic boundary conditions. In the first, all defects initially
formed tend to annihilate each other and the final state is a
single TW of random orientation whose wave vector is ex-
actly k.. As in the case of nondegenerate OP({3§], no
intensity patterns appear but only phase stripe patterns,
which correspond to the polarization patterns described by
Egs.(5) and(10). In another case, for the same pump ampli-
tude, but with other initial random conditions, ordered struc-
tures of defects may form as shown in Fig. 5. By looking at
the real and imaginary parts of the fiedd, it is clear that
these defects are found along the fronts that separate regions

FIG. 4. The amplitude|@,|) of the alternating roll solutioKi12) where TW’s with the same wave vector but with different
at t=500 time units(a=0.8, A=—0.8, Eo=1.5, the integrating phase have been selected. From the figure it is also clear that
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window size wasX; =Y =62.8 unit3. these defects appear on a background of TW solutions, at
those points where the stripes do not match.

standing rolls are {C,0,,/C,0). An interesting solution for Defects also appear spontaneously with pump amplitudes

this case is that of the alternating rolls(f,,f5,f,)  Well above threshold50%); in this case the positions of the

=(VC,i\C,\C,i\C), ie., defects are not ordered, as shown, for example, in Figs. 6

and Gb). Defects always appear in both orthogonal polariza-
tion components(i.e., the signal and the idler simulta-
X ) 1 neously and therefore they can be classified as vectorial,
AT =2,/C(cogkx)+i cos{ky))(l)’ (12 since the two components of the vector field, (A,) are
zero at the same point in space. In Figé&)6and Gd) the
phase of the polarization components is also presented; note
which gives rise to a square intensity pattern. We found thaghat it is not defined at the points where the amplitude goes
this structure is stable with periodic boundary conditions, buto zero. Then, such objects require a topological classifica-
it deforms and disappears as soon as other, more realistion that is furnished in the next section. Finally, note that
boundary conditions are applied. We show in Fig. 4 thesettinga,+a, or y,#y, does not alter the basic features
square array with periodic boundary conditions after an evoppserved; defects persist and are advected by the phase
lution of t=500 time units; no appreciable change of thewaves, which now travel as previously described. This has
initial condition (12) has been observed. been checked by running the same simulatipe., that of
The equations also have a trivial steady-state soltAipn  Fig. 5 with and without equal coefficients.
=A,=0, that represents the nonlasing state of the OPO and |t is always useful to have in mind the general character-
whose stability analysis is similar to that performed in Refs.istics of the instability of the zero state in our OPO model, in
[30,31,39. Briefly, A,=A,=0 becomes unstable fdi| order to relate it to other pattern forming systems. In our
>1 if A<O and for u>\1+A? if A>0. For A>0 the case, the instability foA <0 is at a nonvanishing wave num-
trivial solution becomes unstable for homogeneous perturbaerk,, so that a Swift-Hohenberg equation for the complex
tions (k;=0) and no pattern or structure is expected to beenvelope of the unstable modes is the appropriate amplitude-
spontaneously formed. In numerical simulation we observe@quation description close to threshold. For the cage
the transition to a final, stable, homogeneous state of inten=a, , this Swift-Hohenberg equation has real coefficients.
sity C, preceded by a transient regime where domain wallsThis equation is derived from our basic E¢$) and (2) in
form but soon disappedd7]. For A<O the most unstable Appendix B.
modes are TW’s with a critical wave vecttk |?=—A/a,

i.e., such that the equivalent detuniigs zero. Note that the
most unstable modes are also exact TW solutions of @gs.
and(2). Although the stability of such TW’s was not studied,
numerical solutions give evidence that they are stable, and In this section we analyze the formation and dynamics of
moreover, that they are spontaneously formed starting from defects, in type-1l OPO’s. The existence of defects in a type-
random perturbation of the trivial steady state when the nondegenerate triply resonant OPO was pointed out in Ref.
pump amplitude is above the threshold of the parametri¢3g] where the dynamics of an advected defect pair was also
interaction. Then, the spontaneously selected TW’s have theported. Here, we present a detailed study of the defects that
wave-vector modulugk.|=k.=+/—A/a, but a random ori- spontaneously appear in the type-ll frequency degenerate
entation or phase in different region of space; this causes thePO. The analysis includés the classification of the defect

IIl. DEFECT CLASSIFICATION, FORMATION, AND
DYNAMICS
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FIG. 6. Amplitude and phase of the polarization components of
the field well above thresholdep=1.5,a=1,A=-0.25 X, =Y
=80,t=2000). (@) |AJ; (b) [A)]: (©) tan[Im(A)/Re®)]; (d)
tan’l[lm(Ay)/ReQAy)]. Note that the defects are always in pairs and
that signs of the charge, are opposite in the two components.

The functionR(r) is real and depends on the radial coor-
dinate such thaR(0)=0. This condition is necessary be-
cause the phasg¢ of the field is not defined in the origin of

C) coordinates. In Fig. (& we show the real part oA from
which we can observe that the defect is found at the point
where the stripes of the background, whose wave vector far
from the defect ik, do not match. The phasgis shown in
Fig. 7(b), the defect is centered at the pom=0, around
which the phase changes byr.2The topological charge as-
sociated with the phase change is defined by the integral of
the phase gradient on a closed contour surrounding the point

ro:
X 1
n0=ﬂ qudr=1 (14)
FIG. 5. Ordered arrays of dislocations obtained close to thresh- o
old (Eq=1.05): (@) |A,]; (b) Re@); (c) Im(A). The other param- . . . .
eters werea, =2, a,=2.05, y,=1, y,=1.025,A=—0.8, X, =Y, Note that there exists also another dislocation obtained by
=80, t=4000. ’ ’ setting é— — 6 for which the topological charge, is equal

to —1. However, the most interesting feature of a dislocation
is that it is characterized by another topological charge. This

type, showing that these defects are dislocations of the TV ;ssociated with the function

pattern; (ii) the formation process under several different
conditions and regimes, ar(di) the trapping and stabiliza-
tion of a single defect. P(x,y)=tan !
A dislocation of a scalar complex fiell(r, ), (r,6) be-
ing spatial polar coordinates, can be defined as a configura-
tion that can be deformed continuousiy a neighborhood of where the indiceg, y of the term on the right-hand side refer
a pointry, which is then identified as the core of the dislo- to the vector components. This function, which defines the
cation and it is taken as the origin of the polar coordinatesorientation angle of the wave-vecthkr is shown in Fig. )
into the following function: for the field A defined by Eq(13). Note that there are two
points wherey is not defined: one is located at the paigt
corresponding to the point of zero amplitude; the second is at
A(r,0)=R(r)exp(i(6+kr cosd))=R(r)expi ¢). another point, where|r;—ro|=k ™. Then, the topological
(13 charges associated withare

(V¢>)y)

Vo), 19
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1

c)

)

X

FIG. 7. Dislocation of a complex fielda) Re@); (b) ¢; (c)
i, where A, ¢ are defined by Eq(13) and ¢ by Eq. (15
[k=1,R(0)=0,R()=1].

1
Mo=5_ iOVWdr:l, (16)

where the integration contour surrounds the paigtbut
leaves outside the poimt, and

1
m=5_ ﬁlvwdr:—l, a7

where the integration contour surrounds the paiptbut
leaves outside the poimt. Note that there is not a zero in
the amplitudeRr at the pointr .
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K

X

FIG. 8. The amplitude of the far field~ourier transformof A,
for the same data of Fig. 6. The average modulus of the wave
number of the modes in the ring is about 0.47 and the predicted

value isk,=+—A/a=0.5.

We now turn our attention back to the type-Il OPO and
compare the defects that are found in the numerical solutions
of Egs. (1) and(2) with the dislocation just defined. In this
section, to better compare numerical and theoretical results,
only periodic boundary conditions and homogeneous pump
beams are considered; more realistic conditions will be ex-
plored in Sec. IV when stabilization of a dislocation is con-
sidered.

The randomly generated defects of Figs. 5 and 6 are dis-
locations on a background of TW'’s, although in the second
case it is difficult to recognize the background solutions
since the defects are dense in the integration window. How-
ever, a fingerprint of TW is found also for the data of Fig. 6
by observing the far field in Fig. 8. There, a ring of modes of
radius k. is clearly observable, a clear indication that the
background is made mostly of TW solutions of different ori-
entation but of the same wave numiter. The dislocations
can be also clearly identified when the quantitigsand
[defined again through E¢L5) where the phases are those of
A, Ay] are calculated for the same data of Fig. 6. The result
is presented in Figs.(8 and 9b), where a contour plot of
|AJ, |A,| taken at a low intensity level to indicate the loca-
tions of the zeros of the field, is superimposed on the gray-
scale coded images of the functiogg and ¢, . From Fig. 9
we note that in this static condition “chains” of defects of
the functionsy, , are formed. Two zeros of the amplitude
(defects of charges,,mg) are in fact connected by the rela-
tive pair of defects of the functiong, , at the second point
(defects of chargem;). This stems from the fact that the
phase difference betwedy andA, is zero(when there is no
mismatch, and thusA,=A7 .

Regarding the dynamid$9] of the spontaneously gener-
ated defects, we observe that they appear at the early stage of
the process. Some of them are annihilated within a few thou-
sand cavity lifetime units. After this stage we cannot observe
any annihilation, up to 100000 cavity lifetime units. The
initial number of dislocations and their positions change with
different initial conditions. The statistical distribution of the

036610-6
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b)
Y' H
X

d)

X

FIG. 11. Pair of dislocations obtained by integratiiy and(2)
with a single dislocatior(13) as an initial condition forA, and a
random initial condition forA,: (a) |A,]; (b) Re@); (©) ¢y; (d)
X . The integration parameters weee=2, A=-0.2, E;=1.5,
X =Y_=100,t=2000.
FIG. 9. Functions(@ #, and (b) #, for the data of Fig. 6.

Contour plots, with a contour level close to zero/Af|, |A,| have ) ) ) )

been superimposed to locate the positions of the amplitude zerosdefects have a slow, random motion. This regime is mostly
dominated by the attraction of pairs of defects of opposite
chargesng= = 1. For longer times, the motion tends to stop
fnd an equilibrium condition is reached. Although no de-
X iled statistical study has been conducted, we also note by
good. We note that the defect density never reaches that ?ispection of Fig. 9, that there seems to exist a characteristic

the square. patter[Eq._ (12)] with critical wave vectorks. length of separation between the defects, which is an indica-
After the initial formation stage, we observe in our runs thatTion that an equilibrium is likely to be reached.
To better study defect interaction we use Etf@) as an

0.16 ' ‘ ' ‘ initial condition and integrate Eq$1) and (2). Due to the
periodic boundary conditions a pair of defects is generated,
as shown in Fig. 1(B). These correspond to two dislocations
in the real part of each fielgFig. 11(b)], two phase singu-
larities with opposite topological chargEig. 11(c)] and two
pairs of defects associated with the quantity[Fig. 11(d)].
At the initial stage the zeros of the amplitude, which have
oppositen, charge, attract each other; later, when ihe

final number of defects, by changing initial conditions, is
shown in Fig. 10; observe that a Gaussian fit is actually ver

0.14¢

=)
o I
SN

frequenc
Q_O Y
o
[e>]

0.06/ defects(which have the same charg®,=1) get closer, this
0.04t ] attraction is stopped and an equilibrium position is found
[59]. This paired structure is stable at least up to the time
0.02 L\ ] explored by numerical solutions.
0 ‘ J({ . ‘ In general, the detailed behavior of defects dynamics is
0 20 40 60 80 100 governed both by local, phase curvature effects and by

number of defects defect-defect interactions. The range of these interactions de-

FIG. 10. Distribution(barg of the final number of defects for P€nds on the parameters of the system, which determine the
different random initial conditions a=1,A=—0.4,Eq=1.5,X, spatial extent of the defect. For example, if we make the
=Y_=50). The Gaussian fit average and variance are those olfletuning more negative.g.,A,=A,=—1 anda,=a,=1),
tained from the data. two defects displaced parallel to the background wave fronts
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FIG. 12. Interaction of two vorticeflabeled 1 and Rfor vy, (9) ’ (h)
=v,=1,A=-0.2 anda,=a,=2, X, =Y, =16m/k;. The images "
show|A,| at intervals of 50 cavity lifetimes. >>>>>>>>>>>>/
/|

either annihilate, if close enough, or repel each other, if fur-

ther away. FIG. 13. A bound defect pair foy,=vy,=1, A=—1 anday

Figure 12 also shows a pair of defe¢same parameter =a,=1, X, =Y, =32n/k.. (a), (c), (), and(g) show the real part
values as in Fig. 11 but different initial displacemembder-  of A, att=5 500, 11000, 36 000 and 54 000 cavity lifetimes, re-
going motion; the background has a wave vector kof @nd  spectively. The figures in the rightmost column shpdy| at the
it is stable when the system is pumped far above thresholdorresponding times. The arrows indicate the direction of transverse
When their separation is small enough, the defects brieflynotion of the defects.
rotate around each other before continuing their transverse
motion. As a consequence of this motion and the periodithe type-lIl OPO dislocations by means of amplitude equa-
boundary conditions, the defects collide and annihilateions. These are derived in Appendix B where comparisons
shortly afterwardgnot shown. are made with simulations of the full model.

Figure 13 shows another interesting example. Two defects
approach each other while the background phase wave un-
dergoes a zig-zag instabilif$0]. When they meet they form
a bound pair that follows the local curvature of the back- We know that periodic boundary conditions always re-
ground phase fronts, changing direction as the slow phasguire the total topological charge within the domain to be
dynamics alters this curvature. The bound defect pair izero. In this section, we take into account that the pump
stable for the duration of the simulati¢hl15 000 cavity life- amplitudeE, actually has a spatial dependence and periodic
times. It also exists for lower pump powers, down to at leastboundary conditions are not applicable. If a spatial Gaussian
5% above threshold. On the other hand, at slightly higheor super-Gaussian distribution is used for the parametric gain
pump powers than that used in Fig. 13, the structure destdactor u [Eq. (3)], the spontaneously generated defects often
bilizes: after a short time the defect pair rotates slightly betend to move to the region where the field is zero. The trap-
fore annihilating. ping of single defects necessary for their experimental obser-

The previous examples show that long-lived defect intervation as single entities is then an interesting issue.
actions are important features of the dynamics of type-Il  We tried, successfully, to isolate a single defect in a more
OPO'’s. This fact is in agreement with instances of long-ternrealistic pump beam, by using, as an initial condition for one
survival of many defects generated by random initial condi-of the fields, a doughnut mode. This idea follows the experi-
tions (e.g., Fig. 6 and is clearly different from vortex dy- mental results of induced dislocation formation in quadratic
namics observed, for example, in complex Ginzburg-Landauonlinear interaction§62]. Note that no cavity was used in
models[61]. those experiments and the defect was maintained by forcing

Close to threshold, it is possible to study the behavior ofa doughnut mode in the field at the crystal input. Here the

(L3

IV. TRAPPING OF ISOLATED DISLOCATIONS
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dislocation is “written” at the beginning but, after that, no
injection is required since the cavity provides the necessary
feedback to sustain the structure. The resulting, stable
trapped defect is shown in Fig. 14. The spiral wave in the
phase field spins whea,+#a,, otherwise it is stationary
after the initial formation stage. Note that in order to trap the
defect, the beam size must be kept smaller than the wave-
length of the most unstable TW,=2x/k., otherwise more
defects are induced or the initial defect is dragged outside the
beam. The creation of other defects is due to the tendency of
the system to generate pairs. If the system size is comparable
with the critical wavelength, the paired defect will appear
inside the pumping region and will destabilize the original
defect. If the size is smaller, the second defect will be gen-
erated outside the pumping region, and therefore, will not
influence the dynamics of the trapped defg€ig. 14(c)].

The amplitude profiles of the fields of this single defect are
shown in Fig. 15.

This way of generating the defects is also useful for un-
derstanding the mechanism of their formation. The presence
of a defect in one field, sa%,, induces a defect of opposite
chargeng in the other because of the parametric coupling. In
fact, if A,=0 att=0 the term that dominates the dynamics
of A, in the initial regime is the largest linear one, i, @Ay .
Hence,A, is forced by the complex conjugate 8§ and a
defect of opposite charge is formed. Eventually the other
terms of Eqs(1) and(2) become significant: the real part of
the cubic term provides the saturation that stabilizes the so-
lution and nonlinear phase modulations appear if mismatch
is present, due to its imaginary part. If we initialize a defect
with topological chargeny==*=2 using the technique de-
scribed above, we observe that it breaks up into two defects
of chargeng=*1.

Since the generation of such defects has been seeded ex-
ternally, the question arises whether it is possible to obtain
defects for positive detunings. In spite of the absence of
stable traveling-wave solutions, single vortices can be
trapped by using the same seeding technique.

We also observe that walk-off removes all structures from
the pumping region and a single TW is selected asymptoti-
cally. However, it is interesting to note that in the transient
regime dislocations are formed. They appear at the front that
divides two regions where stripes with different wave-vector
modulus are selected. The difference in the wave vectors is
due to the walk-off, as shown in R4#6].

Finally, we estimate the threshold for the observation of
this isolated dislocation in an OPO. Considering data for
KTiOPO, [63]: x=7.33 pm/V,ny=1.8 atA;=1.064.m,
and by using the definition of the effective coupling param-
eter defined in Appendix Ax) and considering a nonlinear
crystal length of 1 cm, a mirror transmittivity 18, the input
field at threshold £=1) can be evaluated agy =2
X 10* VIm that yields an intensity |
=no/2(po! €0) YAE N o 2=1 MWIM? (ug,€, are, respec-
tively, the vacuum magnetic permeability and electric per-

PH'SICAL REVIEW E 65 036610

Y

Y

FIG. 14. Isolated defecta) |A,l; (b) ¢y; () . The initial

mittivity constant$. The super-Gaussian beam used in thecondition for A, was a doughnut mode of the form,(x,y)
simulation has a beam diameter of about 10 normalized-0.01(x+iy)exd —(x*+y?)/200] while A, was random. The pa-
units; a spatial normalized unit corresponds, for the diffractameters of the integration wera=2, A=-0.2, E;=1.5, X,
tion coefficient of the simulation, to about 0.195 mm, hence= Y =60, t=2000.
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1.07 ‘ ‘ ‘ negative to positive values, keeping all the other parameters
0 8; ] fixed. In particular it seems that positive values of the mis-
o I match encourage the annihilation of the pairs of dislocations.
° o6l i This has been verified by numerical integrations with the
= i same parameters and initial conditions as Fig. 11 but with
? 0.4F 1 nonzero mismatch. Fakk>0 we observed that the pair is
°© [ ] annihilated, while forAk<<O the pair reaches a stable con-
0.21 ] ] figuration. A possible cause of this asymmetry is the phase
00f J L ] modulation « introduced by the mismatch, which changes
_40 _90 0 20 40 sign according to the sign of the mismatee Fig. 2
N The effect of phase mismatch on the trapped defect is to

destabilize it, by generating asymmetries in the fields for

FIG. 15. Amplitude profile of the isolated defect of Fig. 1A;| both positive and negative values k.
solid curve,|A,| dashed curve.

the cw threshold power is about 0.95 W. The physical cavity VI. CONCLUSIONS
decay rategy, , are about 0.17 GHz, while the cavity detun-
ing is 34 MHz. All these data are compatible with an experi-
mental realization.

In conclusion, we have studied the polarization pattern
and vectorial defect formation in a type-Il frequency degen-
erate optical parametric oscillator.

We found that the preferred solutions, those that are se-

V. MISMATCH EFFECTS lected out of an initial perturbation of the zero state, are

. S . onjugate traveling waves in the two components of the po-

This section is dedicated to the study of the efiects .Oflcarization. A spatial polarization pattern is then formed: the

mismatch @k+0) between the fields in the OPO. As previ- state of polarization changes along the spatial coordinate par-

ously noted, in real devices it is often possible that the S€lel to the selected wave-vectdg, with period equal to

lection rules of the oscillation frequencies force the OPO 0O o kN particular, the state of polarization changes
cle— C* 1

emit radiation with a slight mismatdib4]. S . X
. . . long the meridian of the Poincaphere which passes
The effects of the mismatch, predicted by the analysis o hrough the linearly polarized states of azimuth = 7/4 if

Sec_. I, are the foI_Iowmg: , . Ak=0. The magnitude of the wave vector of the selected
(i) An increase in the threshold for signal generafioa., S .
the instability, see Eq(3)], solution is fixed by the parameters and has a single random

(i) a spatial shift of the isopolarization lines for the eXactorlentatlon close to threshold and multiple random orienta-

TW solutions. The latter effect is due to the appearance o ons far from threshold. Combinations of trav_elmg waves,
the phase shifi:#0 [see Eq(5)] between polarization com hat form square patterns are also stable solutions, and close

P L alo)] . P -to the threshold of the instability, ordered arrays of defects
ponents; this stems from the imaginary parts of the coeffi-

) L ) .~ "can form spontaneously.
cientsu and g, the contribution of the latter being a nonlin- . .
; ) (2) ; Such defects are isolated zeros of the two linear compo-

ear phase modulation due to th&?): () cascading effect

nents of the polarization, i.e., they are vectorial defects. They
[64]. . . ) . -
For th fth ntan neration of defect are dislocations that form in spatial positions where the back-
haveO beeenC;l;Z ?0 deetesrmneathez;liﬁeg ehgsae gh'ﬁf(t)nor?zz(rzo& ound solutionsitraveling waves do not match spatially.
. . pnhas . Two different kinds of topological charge must be defined:
in the regions where the background solution dominates. Th

. . . ne kind of charge is associated with the phase and two
numerically found value is very close to the value predicte

by Eq. (7). However, approaching the zeros of the amplitudeChargeS with the director angle of the field wave vector. The

the phase difference also tends to zero, although the phaseflr t charge, located at the point where the amplitude goes to

. . ) . ! ro, can bet1 and is always opposite in the two polariza-
the fields is not s_tnctly d?f'”eo' at the defects. In practice, th‘?ion components. The charge associated with the wave vector
zeros of the spatial functioa(x,y) are located exactly at the

” . . . .~ is always+1 at the point where the amplitude is zero and
positions of the field defects. This behavior can be explalne<|:lj1 ;l:tze paired poirF:t Iwh\(lavre the amplitl?dleuis nlotzzero The
as foIIc_>ws: close to the defe(_:ts the CUb'(.: terms tend to Zerobolarization components are totally correlated; in fact all de-
n particular th_e term proportlona_l to the_ imaginary parbof fects, both in the phase and wave-vector fields, have a cor-
(i.e., the Kerr-like phase modulation terim the first that can ' '

- . responding defect in the other polarization component. In
be neglected. Althougp=|.|exp(p) is complex, by an ap- this way, the defects form chains in which the separation

propriate redefinition of the variables &s=A; exp(f/2) ]  among defects seems to have a typical size, which is of the
=1,2, we can obtain a set of equations # where the order of the background wavelength.
parametric gain is purely reau('=0). Thus, we reduce the The trapping of an isolated defect has also been demon-
problem to the case where no mismaitch is pregee¢ Eq. strated. This is accomplished by keeping the size of the
(7)] and thereforex— 0. pump beam smaller than the critical wavelength of the pre-
The final number of spontaneously generated dislocationferred traveling wave such that a second defect cannot be
seems also to be affected by the phase mismatch. We noteeated inside the pump beam but rather lies outside and
that this number decreases by changing the mismatch fromioes not influence the dynamics.

036610-10



POLARIZATION PATTERNS AND VECTORIAL DEFECE. .. PH'SICAL REVIEW E 65 036610

Finally, we have addressed the effects that may arise No i
when the nonlinear interaction is slightly phase mismatched, ﬁon=?(9tEo=§V2Eo— aE,E,,
i.e., the increase in the threshold of signal generation, and the 0
linear and nonlinear phase shifts among the polarizations, the Ny
latter due to the cascading effect. Numerical results showed IoExt = HE= 2k 5 VZExt naEqEy (A3)
that a positive mismatch can favor the annihilation of
dislocations.
Possible applications of defects can be foreseen in the d,Ey+ Ey_2k VZE,+ vaEoEy .

field of particle and atom trappind5].
All these equations describing the fields in the crystal have a
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case, the doubly resonant case of nonresonated pump being a
subset of this general frame. We then obtain

APPENDIX A
In this appendix we derive the dynamical equations for a g, + L(yzpi: — yiF, —i8,E;+ia;V2E;
cw type-1l OPO in the presence of diffraction. We start from L+(ni—1)L
the amplitude equations for the pump, signal and idler fields -
in the cprystal[55(]] Pump. =19 +¥iBini T BINLT(E} B,
(A5)
4mQox —iAk where
aZE0+ HEo= T V2E0 TEXEye 1akz,
t'=t+|—— £t
N N B c L’
X 2 * AiAkz
IExt o B 2k 2,V Bt EoEye™™,  coe R B (i 0
(A1) YLy YT L+ (n—DL L+ (n—1)L
cL . cBiL
ny 71'QyX ; = ot S
BT 05, S VE* e EoEx e, A= okicrin-DL P rrm-oL A9

Note that the presence of birefringence introduces an explicit
where Eq, Ey, E, are the slowly varying amplitudes of dependence on the refractive indices in the coefficients of the
pump, signal and idler, respectively,= (), + (), is the fre-  final equations. This is a consequence of the tight comb of
guency constraint on the OP®;=n;{};/c are the wave resonances observed when the length of the cavity is scanned
numbers,Ak=ko,—k,—k, is the phase mismatcly is the  [56].

second order susceptibility of the crystal, ani the speed Finally, we introduce a linear transformation of the fields
of light. We treat here the perfectly matched cad&£0) in
order to focus on the form of the diffraction coefficients of | Y A :O‘_L [V =
the final equations. The phase matching condition implies ay X g o0y X
that once the three frequencies and two refractive indices are
given, then the third refractive index is determined. For ex- A _a_L M P (A7)
ample, forny we have V" & Voo, V'
and a final normalization of the parameters
_nXQX+ nyQy Nty A2
no— QX+Qy no— 2 ’ ( ) E( ) al 172% E A 3i wi—Qi
Xl = ) iz = .
= Ox0Oy N0 Yy Yin
where the second equation is valid at frequency degeneracy. (A8)
It is also useful to |ntroduc§2X=MQO, _Qyz v with The final equations read
+v=1 and the effective coupling parametew
=470 yx/(nc) to obtain 9rAo= Yol — (L+i1Ag)Ag+E(X,Y) — AA ] +iagV?Ay,
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Ay A= 7x[—(1+iAx)Ax+AoA§]+iaxV2Ax, (A9) mine the appropriate amplitude-equation description for the
instability. Related derivations have been presented in

dp A= yy[—(1+iAy)Ay+AOA§]+iayV2Ay, [36,37. For simplicity, consider the case
where Yx=Yy= Vs
_ Coie . B cL ALO
Y= rrn-DL AT akcr(n—nLy ALY a=ay=a. (B1)

These equations clearly show that the loss and diffractioWith the benefit of soma posterioriknowledge, we rewrite
coefficients depend critically on the refractive indices even irthe field equations in terms of the variableg= A+ A;‘ and
the frequency degenerate case. F2=AX—A; :

Since our analysis starts from stationary homogeneous so-
lutions, the choice of the temporal reference frame is fixed 1
by the conditionA,=A,=A, which excludes phase rota- d,F,= y[(E—l)Fl— ZF’{(F%— F2)
tions for the stationary homogeneous stqt#. In this case
the final equations are

+i(aV2—yA)F,,

1 :
31 Ao=yol — (1+1A0)AgTE(X.Y) ~ A ] +iagV?Ag, ath=y[—<E+1>Fz+ZFE(F%—F%) +i(aV2-yA)F;.
Ju A= Yl — (LHIA)A+AAN ] +ia VA, (ALl (B2)
T : x4 2 We define a smallness parameteand perform appropriate
duAy= = (LHTAA+ AcAcTHia, VoA, . scalings and expansions:
We note that it is still possible to have equal loss and
diffraction coefficients for the three waves if we consider E=1+€°P, T=¢€4, X=\/Ex, Y=\/Zy,
cavities of different length<; for each field. This can be
achieved by inserting compensating prisms of chosen length A=eb, Fi=eF  +eFt . (B3)

A; and refractive indiced\; . In this case the equations are

the same as EqA11) but with redefined loss and diffraction We can then proceed order by orderdim a straightforward

coefficients manner. At third order we have
Coie
YT LA (- DL (N— 1A, 1 y(a 2
b ' ' IF1=7vy (E—l)Fl_Z|F1|2F1 ) ;Vz_A Fi,
B cL (B4)
AT KILi+ (M —1)L+(Ni— DA
(A12) ifa_,

By adjusting losses; and compensating prism coefficients, 2\y

one can select equgj . In this way, the compensating prism
parameters can be left free to adjust the diffraction coeffi-The important point is that there is a single-order parameter
cientsa; . In particular, we want,=a, at degeneracy that (F;) governed by a Swift-Hohenberg equati®HE) [60]
means and a second fieldR) that is slaved td~,. In other words,

the dynamics of the system is described by a single complex
Lx+(NX= 1)L+ (NX—1)Ax] scalar field. Note that it is only wheA,=AJ that the order

=ny[ Lyt (Ny—1)L+(Ny—1)A, ], A13 parameter becomes rg@8]. An extra imaginary transverse
Loy (= DL Ny =) A,] (A13) Laplacian term appears in E(B2) whena,#a, .
which leaves a lot of flexibility for the final setting. Despite the assumptions underlying its derivatj&ys.

Finally, we observe that in the absence of a cavity for the(B3)], the SHE can sometimes offer a good description of the
pump field there are just two equations for the signal andystem even outside its expected range of validity. For ex-
idler waves remaining. By settind,=E—A,A, in Eqs. ample, when integrating EqB4) with the same parameter
(A11), we obtain Equation$l) and (2) for the oppositely values as in Fig. 11, the final state is essentially the same
polarized fieldsA, and A, in a doubly-resonant configura- stable defect pair. Nonetheless, notable failures of the SHE
tion. can be found; for example, in reproducing the movement of

the bound defect pair in Fig. 13. This indicates that the origi-
APPENDIX B nal dynamics is not well reproduced when the assumptions
leading to Eqs(B3) and (B4) are violated, and serves as a

In this appendix we perform a weakly nonlinear analysiswarning about the limitations of order parameter equations

in the regionk.<1 and close to threshold in order to deter- such as Eq(B4).
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